Nothing Special   »   [go: up one dir, main page]

KR100842298B1 - Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells - Google Patents

Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells Download PDF

Info

Publication number
KR100842298B1
KR100842298B1 KR1020070007101A KR20070007101A KR100842298B1 KR 100842298 B1 KR100842298 B1 KR 100842298B1 KR 1020070007101 A KR1020070007101 A KR 1020070007101A KR 20070007101 A KR20070007101 A KR 20070007101A KR 100842298 B1 KR100842298 B1 KR 100842298B1
Authority
KR
South Korea
Prior art keywords
cobalt
platinum
precursor
catalyst
carbon
Prior art date
Application number
KR1020070007101A
Other languages
Korean (ko)
Inventor
문상흡
서상준
조한익
김현태
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070007101A priority Critical patent/KR100842298B1/en
Application granted granted Critical
Publication of KR100842298B1 publication Critical patent/KR100842298B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

A preparation method of an electrode catalyst with high activity for polymer electrolyte fuel cells and direct methanol fuel cells by supporting Pt particles with a small particle size and a low oxidation degree onto a surface of a Co-supported carbon at a high dispersion degree through the chemical vapor deposition process is provided. A preparation method of an electrode catalyst for polymer electrolyte fuel cells and direct methanol fuel cells comprises: a cobalt supporting step(A) of adding an aqueous cobalt precursor solution to a carbon support to support a cobalt precursor with the carbon support, and heating the cobalt precursor-supported carbon support to remove water, decompose the cobalt precursor, and reduce a cobalt surface; and a platinum supporting step(B) of injecting a platinum precursor vapor onto a cobalt catalyst supported onto carbon by a pulse to perform a chemical vapor deposition of the platinum precursor vapor on the cobalt catalyst, and decomposing a platinum precursor by heating the platinum precursor-deposited cobalt catalyst while flowing a gas in which hydrogen is mixed with nitrogen at a mixing ratio of 1:3 to 1:5 onto a platinum precursor-deposited cobalt catalyst. The preparation method further comprises a pre-treatment step of heat-treating the carbon support in an air atmosphere and cleaning the heat-treated carbon support in prior to the cobalt supporting step(A).

Description

고분자 전해질 및 직접 메탄올 연료전지용 백금-코발트 전극촉매의 제조방법 {preparation of Pt-Co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells}Preparation of Pt-Co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells

도 1은 실시예 2와 비교예 1에서 제조된 백금-코발트촉매의 백금입자크기를 X-선 회절법(X-ray diffraction)으로 나타낸 것이다.Figure 1 shows the platinum particle size of the platinum-cobalt catalyst prepared in Example 2 and Comparative Example 1 by X-ray diffraction (X-ray diffraction).

도 2는 실시예 2와 비교예 1에서 제조된 백금-코발트촉매의 백금표면적을 순환전압전류법(cyclic-voltammetry)에 의해 측정된 수소흡착영역으로 나타낸 것이다.       FIG. 2 shows the platinum surface areas of the platinum-cobalt catalysts prepared in Example 2 and Comparative Example 1 as hydrogen adsorption regions measured by cyclic-voltammetry.

도 3은 실시예와 비교예에서 제조한 백금-코발트촉매의 백금 질량당 활성을 나타낸 것이다.       Figure 3 shows the activity per platinum mass of the platinum-cobalt catalyst prepared in Examples and Comparative Examples.

도 4는 실시예 2와 비교예 1에서 제조된 백금-코발트촉매에서 촉매표면에 노출된 백금의 농도를 X-선 광전자분광법(X-ray photoelectron spectroscopy)으로 나타낸 것이다.       Figure 4 shows the concentration of platinum exposed to the catalyst surface in the platinum-cobalt catalyst prepared in Example 2 and Comparative Example 1 by X-ray photoelectron spectroscopy (X-ray photoelectron spectroscopy).

도 5는 실시예 2와 비교예 1에서 제조된 백금-코발트촉매에서 열에 의한 백금표면적의 변화를 순환전압전류법(cyclic-voltammetry)에 의해 측정된 수소흡착영역으로 나타낸 것이다.FIG. 5 shows the change in the surface area of platinum by heat in the platinum-cobalt catalysts prepared in Example 2 and Comparative Example 1 as a hydrogen adsorption region measured by cyclic-voltammetry.

본 발명은 고분자 전해질 연료전지 및 직접 메탄올 연료전지의 전극에 사용되는 카본담지 백금-코발트 전극촉매의 제조방법에 관한 것이다. The present invention relates to a method for producing a carbon-supported platinum-cobalt electrode catalyst for use in a polymer electrolyte fuel cell and a direct methanol fuel cell.

연료전지는 작동온도와 주 연료의 형태에 따라 여러 종류로 나뉘는데, 저온에서 작동되는 고분자 전해질 연료전지와 직접 메탄올 연료전지는 특히, 전극촉매의 활성에 따라 그 성능이 좌우된다. Fuel cells are divided into various types according to operating temperatures and types of main fuels. The polymer electrolyte fuel cells and the direct methanol fuel cells operated at low temperatures are particularly dependent on the activity of the electrode catalyst.

백금은 고분자 전해질 연료전지 및 직접 메탄올 연료전지가 개발된 이래 전극촉매로 사용되어 왔는데 활성은 높지만 비싸다는 단점이 있다. 따라서 백금의 사용량을 줄이면서 백금의 활성을 높일 수 있는 합금촉매가 꾸준히 연구되고 있다.Platinum has been used as an electrode catalyst since the development of polymer electrolyte fuel cells and direct methanol fuel cells. However, platinum has high activity but high cost. Therefore, alloy catalysts that can increase the activity of platinum while reducing the amount of platinum has been steadily researched.

연료전지용 백금-코발트 합금촉매는 백금보다 활성이 높을 뿐만 아니라 합금촉매 중에서도 가장 활성이 높기 때문에 일반적으로 많이 사용된다(J. Electrochem. Soc., 1994, 141, 2659-2668). 하지만, 대부분의 백금-코발트 촉매는 함침법으로 제조하기 때문에 첨가하는 코발트의 대부분이 백금보다는 카본의 표면에 존재하게 된다. 최근 연구결과에서, 카본에 존재하는 코발트가 연료전지 운전조건에서 쉽게 용출되면서 연료전지에 사용되는 막을 오염시키고, 오염된 막은 전기전도도가 급격히 떨어져서 결과적으로 전극의 활성이 저하되는 원인이 되고 있다는 사실이 밝혀졌다(J. Power Sources, 2005, 144, 11-20). Platinum-cobalt alloy catalysts for fuel cells are generally used because of their higher activity than platinum and the highest activity among alloy catalysts ( J. Electrochem. Soc., 1994 , 141, 2659-2668). However, since most platinum-cobalt catalysts are prepared by impregnation, most of the added cobalt is present on the surface of carbon rather than platinum. Recent studies have shown that cobalt present in carbon easily elutes under fuel cell operating conditions, contaminating the membrane used in the fuel cell, and the contaminated membrane causes a sharp drop in electrical conductivity, resulting in a decrease in electrode activity. ( J. Power Sources, 2005 , 144, 11-20).

함침법의 단점을 보완하기 위하여, 최근에는 반도체 공정중의 하나인 화학기 상증착을 통해서 첨가된 코발트가 카본표면에는 존재하지 않고, 백금표면에만 선택적으로 증착되도록 함으로써 연료전지 운전조건에서 코발트의 용출량을 줄이고, 촉매성능도 증가시킨 연구사례가 보고되고 있다(J. Power Sources, 2006, Avaliable online 27). In order to make up for the disadvantages of impregnation, cobalt added through chemical vapor deposition, which is one of the semiconductor processes, is not present on the carbon surface but selectively deposited only on the platinum surface. Cases have been reported to reduce the chemical properties and increase the catalytic performance ( J. Power Sources, 2006, Avaliable online 27 ).

그러나 함침법이나 화학기상증착법으로 제조한 백금-코발트촉매는 백금촉매에 비해서 활성은 우수하나, 첨가된 코발트의 양이 증가함에 따라 코발트에 의하여 백금의 표면이 덥히는 정도도 점차로 증가하기 때문에 결과적으로 촉매작용을 하는 백금의 표면적이 감소하여 활성이 감소하는 단점이 있다.However, the platinum-cobalt catalyst prepared by the impregnation method or chemical vapor deposition method has better activity than the platinum catalyst, but as the amount of added cobalt increases, the surface of platinum is gradually increased by cobalt. The surface area of the catalyzed platinum is reduced, resulting in a decrease in activity.

본 발명의 목적은 카본위에 담지 된 코발트의 표면에 화학기상증착을 통하여 크기가 작고 산화도가 낮은 백금 입자를 높은 분산도로 담지시킴으로써 활성이 높은 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매를 제조하는 방법을 제공하는 것이다.An object of the present invention is to prepare a highly active polymer electrolyte fuel cell and direct methanol fuel cell electrode catalyst by supporting a small dispersion of platinum particles of low size and low oxidation rate through chemical vapor deposition on the surface of cobalt supported on carbon. To provide a way.

상기 목적을 달성하기 위한 본 발명의 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매의 제조방법은,Method for producing a polymer electrolyte fuel cell and a direct methanol fuel cell electrode catalyst of the present invention for achieving the above object,

카본담체에 코발트 전구체 수용액을 가하여 코발트 전구체를 담지시키고, 승온하여 수분을 제거하고, 코발트 전구체를 분해시키고, 코발트 표면을 환원시키는 코발트 담지 단계(A)와,A cobalt supporting step (A) in which a cobalt precursor aqueous solution is added to the carbon carrier to support the cobalt precursor, and the temperature is increased to remove water, decompose the cobalt precursor, and reduce the cobalt surface;

코발트가 담지된 카본에 백금 전구체 증기를 펄스로 주입하여 화학기상 증착시킨 후, 수소: 질소의 비가 1:3 ~ 1:5인 가스를 흘려주면서 승온하여 백금 전구체를 분해시키는 백금 담지 단계(B)를 포함한다.Platinum supporting step (B) to decompose the platinum precursor by heating the gas while the gas is hydrogen 1: nitrogen ratio 1: 3 ~ 1: 5 by injecting a platinum precursor vapor in a pulse to the cobalt-containing carbon pulse It includes.

바람직하게는, 상기 코발트 담지 단계(A)에 앞서 카본담체를 공기 분위기하에서 열처리하여 세척하는 전처리 단계를 포함할 수도 있다.Preferably, prior to the cobalt loading step (A) may comprise a pre-treatment step of washing by heating the carbon carrier in an air atmosphere.

코발트 전구체는 코발트아세틸아세토네이트하이드레이트(cobaltacetylacetonatehydrate), 코발트클로라이드헥사하이드레이트(cobaltchloridehexahydrate), 코발트나이트레이트헥사하이드레이트(cobaltnitratehexahydrate)에서 1 또는 2 이상 선택하여 사용하고, Cobalt precursor is used by selecting one or two or more from cobaltacetylacetonate hydrate (cobaltacetylacetonatehydrate), cobalt chloride hexahydrate (cobaltchloridehexahydrate), cobalt nitrate hexahydrate (cobaltnitratehexahydrate),

백금 전구체는 플래티넘아세틸아세토네이트(platinum acetylacetonate), 테트라키스(트리플루오로포스핀)플래티넘(tetrakis(trifluorophosphine)platinum), 디클로로(디카르보닐)플래티넘(dichloro(dicarbonyl)platinum), (트리메틸)메틸사이클로펜타디에닐플래티넘((trimethyl)methylcyclopentadienylplatinum), 트리메틸사이클로펜타디에닐플래티넘(trimethylcyclopentadienylplatinum), 트리메틸아세틸아세토네이트플래티넘(trimethylacetylacetonateplatinum)에서 1 또는 2 이상 선택하여 사용한다.Platinum precursors include platinum acetylacetonate, tetrakis (trifluorophosphine) platinum, dichloro (dicarbonyl) platinum, (trimethyl) methylcyclo 1 or 2 or more selected from (trimethyl) methylcyclopentadienylplatinum, trimethylcyclopentadienylplatinum, and trimethylacetylacetonate platinum.

이하, 본 발명의 구성을 단계별로 보다 상세히 설명한다.Hereinafter, the configuration of the present invention in more detail step by step.

먼저, 카본담체의 전처리는 카본담체를 공기 분위기에서 1∼3시간동안 400∼600℃의 온도에서 열처리한 후, 물로 세척하는 방법에 의한다. 이렇게 하면 카본담체의 단위질량당 표면적이 더욱 커진다.First, pretreatment of the carbon carrier is performed by heat treating the carbon carrier at an air temperature of 400 to 600 ° C. for 1 to 3 hours and then washing with water. This increases the surface area per unit mass of the carbon carrier.

코발트 담지 단계(A)는 카본담체를 코발트 전구체 수용액에 담가 코발트 전구체를 카본 담체에 담지시키고, 승온하여 수분을 제거하고, 코발트 전구체를 분해시키고, 코발트 표면을 환원시키는 방법에 의해 코발트를 카본 담체에 담지시키는데 이는 공지된 방법이다.The cobalt loading step (A) is to immerse the carbon carrier in an aqueous solution of cobalt precursor, to support the cobalt precursor in a carbon carrier, to raise the temperature to remove water, to decompose the cobalt precursor, and to reduce the cobalt surface. This is a known method.

코발트 전구체의 사용량은 제조하고자 하는 전극촉매의 코발트 담지량에 따라 달라지나 카본담체 100중량부에 대해 2∼20중량부의 비율로 혼합하는 것이 적당하고, 수분 제거는 100∼150℃에서 10∼30분간, 코발트 전구체의 분해는 220∼370℃에서 1∼2시간, 코발트 표면의 환원은 375∼600℃에서 1∼5시간 진행한다.The amount of cobalt precursor used varies depending on the amount of cobalt supported on the electrode catalyst to be prepared, but is preferably mixed at a ratio of 2 to 20 parts by weight based on 100 parts by weight of carbon carrier, and water removal is performed at 100 to 150 ° C. for 10 to 30 minutes. The decomposition of the cobalt precursor proceeds for 1 to 2 hours at 220 to 370 ° C, and the reduction of the cobalt surface is carried out for 1 to 5 hours at 375 to 600 ° C.

수분제거, 분해 및 환원 과정은 수소: 질소의 비가 1: 5인 가스를 흘려주면서 진행한다.The water removal, decomposition and reduction process proceeds by flowing a gas with a hydrogen to nitrogen ratio of 1: 5.

백금 담지 단계(B)는 카본위에 담지 된 코발트 촉매의 표면에 백금 전구체 증기를 펄스로 주입하여 화학기상 증착시킨 후, 승온하여 백금 전구체를 분해시켜 백금을 담지시키는데, 백금 전구체를 기화기에 넣고 백금 전구체의 종류에 따라 5∼150℃로 유지하면서 (A) 단계에서 제조한 코발트-카본촉매가 담겨있는 반응기로 흘려준다. Platinum supporting step (B) is a chemical vapor deposition by injecting a platinum precursor vapor on the surface of the cobalt catalyst supported on carbon in a pulse, and then heated up to decompose the platinum precursor to support the platinum, put the platinum precursor in a vaporizer and the platinum precursor Depending on the type of while maintaining at 5 ~ 150 ℃ flow to the reactor containing the cobalt-carbon catalyst prepared in step (A).

여기서, 백금 전구체의 농도, 펄스 횟수 및 펄스당 주입량은 제조하고자 하는 전극촉매의 백금 담지량에 따라 달라지며, 백금 전구체는 샘플링루프를 이용하여 0.1∼5cc씩 주입하는 것이 바람직하다. Here, the concentration of the platinum precursor, the number of pulses, and the injection amount per pulse vary depending on the platinum loading amount of the electrode catalyst to be prepared, and the platinum precursor is preferably injected by 0.1 to 5 cc using a sampling loop.

이어서 흡착된 백금 전구체를 분해시키는데 수소: 질소의 비가 1: 3∼1: 5인 가스를 흘려주면서 200∼300℃에서 1∼2시간 진행한다.       Subsequently, the adsorbed platinum precursor is decomposed to proceed for 1 to 2 hours at 200 to 300 ° C. while flowing a gas having a ratio of hydrogen: nitrogen 1: 3 to 1: 5.

(A)단계에서 제조된 카본위에 담지 된 코발트 촉매는 환원과정을 통하여 산화상태의 코발트가 아닌 금속상태로 존재하게 되고, (B)단계에서 환원된 코발트-카본촉매와 수소를 포함한 백금 전구체가 반응하게 될 때, 백금 전구체는 카본이 아닌 수소를 흡착한 코발트와만 반응하게 된다. 이 후에 분해 및 환원과정을 통해 백금입자로 완전히 환원되어 코발트 표면에 존재하게 된다.The cobalt catalyst supported on the carbon prepared in step (A) is present in the metal state instead of the cobalt in the oxidation state through the reduction process, and the reduced cobalt-carbon catalyst and the platinum precursor including hydrogen react in step (B). When the platinum precursor is reacted only with cobalt adsorbed hydrogen, not carbon. Subsequently, it is completely reduced to platinum particles through decomposition and reduction to exist on the cobalt surface.

백금 전구체의 증기를 펄스로 주입하여 화학기상증착시키는 것은 본 발명에서 가장 특징 있는 단계인데, 종래의 함침법의 경우에는 코발트-카본 촉매에 첨가한 백금 전구체가 코발트뿐만 아니라 카본의 표면에도 존재하는데 반하여, 본 발명은 백금 전구체가 코발트의 표면에만 존재한다는 점이 가장 큰 차이점이다.Chemical vapor deposition by injecting the vapor of the platinum precursor into the pulse is the most characteristic step in the present invention, in the case of the conventional impregnation method, while the platinum precursor added to the cobalt-carbon catalyst is present on the surface of carbon as well as cobalt In the present invention, the biggest difference is that the platinum precursor is present only on the surface of cobalt.

그리고 이러한 구성의 차이에서 비롯되는 효과로는 크게 다음 두 가지를 들 수 있다. In addition, there are two main effects resulting from such a difference.

(1) 백금의 분산도가 우수하다.(1) The dispersion of platinum is excellent.

기존의 함침법에서는 백금 전구체 수용액을 코발트-카본 촉매에 담지하게 되는데, 이 때 제조과정에서 수용액상태의 백금 전구체는 코발트-카본 촉매에 골고루 분산시키기 어려우며, 환원되지 않은 상태의 큰 덩어리로 코발트 표면과 카본에 존재하게 된다. 이 후 300∼400℃의 비교적 높은 온도에서 분해 및 환원과정을 거쳐야 하기 때문에 열에 의해 백금입자가 상대적으로 커지게 되는 단점이 있다.In the conventional impregnation method, the aqueous solution of the platinum precursor is supported on the cobalt-carbon catalyst. In this process, the aqueous solution of the platinum precursor is difficult to evenly disperse in the cobalt-carbon catalyst. It is present in carbon. After that, since the decomposition and reduction process at a relatively high temperature of 300 ~ 400 ℃ has a disadvantage that the platinum particles are relatively large by heat.

그러나 본 발명에서는 기상상태의 백금 전구체가 코발트와 반응하기 때문에 백금입자를 함침법에 비해 작은 입자로 담지 할 수 있다. 또한 분해 및 환원과정도 300℃이하로서 함침법에 의해 제조된 촉매의 처리온도 보다 상대적으로 낮기 때문에 백금입자가 열에 의해 영향을 덜 받게 된다. 그 결과로, 백금의 입자도 작고 코발트 표면에만 백금이 존재하기 때문에 노출된 백금표면적도 커지게 된다. However, in the present invention, since the platinum precursor in the gaseous state reacts with cobalt, the platinum particles can be supported by smaller particles than the impregnation method. In addition, since the decomposition and reduction process is less than 300 ℃ and relatively lower than the processing temperature of the catalyst prepared by the impregnation method, the platinum particles are less affected by heat. As a result, the platinum surface is small because the platinum particles are small and platinum is present only on the cobalt surface.

도 1, 2에서 보는 바와 같이, 화학기상증착법에 의하여 제조된 백금-코발트 촉매의 경우 백금입자의 크기는 XRD에서 백금(111) 피크의 관찰이 잘 되지 않을 만큼 함침법에 비하여 매우작고, 순환전압전류법에 의해 관찰된 백금표면적도 상대적으로 크게 나타난다.As shown in Figures 1 and 2, in the case of the platinum-cobalt catalyst prepared by chemical vapor deposition method, the size of the platinum particles is very small compared to the impregnation method so that the observation of the platinum (111) peak in XRD is very small, and the circulating voltage The platinum surface area observed by the ampere method is also relatively large.

(2) 백금입자의 열적안정성이 우수하다. (2) The thermal stability of platinum particles is excellent.

백금-코발트 촉매는 촉매제조 후 500∼600℃에서 1∼2시간 정도 열처리를 하는데 이 과정에서 백금과 코발트 간에 합금이 형성되어 활성이 증가하게 된다. 그러나 고온의 열로 인해서 백금-코발트 촉매의 백금입자가 소결현상으로 커지게 되어 활성표면적이 감소하는 문제가 있다. The platinum-cobalt catalyst is heat treated at 500 to 600 ° C. for 1 to 2 hours after the preparation of the catalyst. In this process, an alloy is formed between platinum and cobalt to increase activity. However, due to the high temperature heat, the platinum particles of the platinum-cobalt catalyst become large due to the sintering phenomenon, thereby reducing the active surface area.

본 발명의 방법에서는 백금입자가 코발트표면에만 선택적으로 고분산되어 있기 때문에 백금과 코발트간의 상호작용이 더욱 강하게 되어 백금의 소결이 억제된다. In the method of the present invention, since the platinum particles are selectively highly dispersed only on the cobalt surface, the interaction between platinum and cobalt becomes stronger, and the sintering of platinum is suppressed.

본 발명의 구성은 후술하는 실시예에 의하여 더욱 명확해질 것이며, 비교예와의 비교에서 그 효과가 입증될 것이다.The construction of the present invention will be further clarified by the following examples, and the effect thereof will be demonstrated in comparison with the comparative example.

<실시예 1><Example 1>

카본을 전처리하고, 코발트 전구체를 함침법에 의해 담지시킨 후, 백금 전구체를 화학기상증착법에 의해 담지시켜 촉매를 제조하였다.Carbon was pretreated, and the cobalt precursor was supported by impregnation, and then the platinum precursor was supported by chemical vapor deposition to prepare a catalyst.

A. 시료A. Sample

(1) 카본담체: 표면적 220㎡/g의 카본 블랙(Vulcan XC-72)(1) Carbon carrier: Carbon black (Vulcan XC-72) with surface area of 220m2 / g

(2) 코발트 전구체: 코발트나이트레이트헥사하이드레이트 (Co(NO3)6H2O)(2) Cobalt precursor: cobalt nitrate hexahydrate (Co (NO 3 ) 2 ˙ 6H 2 O)

(3) 백금 전구체: 테트라키스(트리플루오로포스핀)플래티넘 (Pt(PF3)4)(3) Platinum precursors: tetrakis (trifluorophosphine) platinum (Pt (PF 3 ) 4 )

B. 촉매의 제조과정B. Preparation of Catalyst

(1) 카본담체의 전처리(1) pretreatment of carbon carrier

공기 분위기하에서 카본담체 2g을 500℃에서 2시간 동안 열처리하고, 물로 5회 세척하고, 100℃에서 건조시킨 후, 유리막대로 분쇄하였다. Under air atmosphere, 2 g of the carbon carrier was heat treated at 500 ° C. for 2 hours, washed 5 times with water, dried at 100 ° C., and then ground with a glass rod.

전처리 과정을 거친 카본담체의 표면적은 303㎡/g이다. The surface area of the carbon carrier after pretreatment is 303 m 2 / g.

(2) 코발트 담지(2) cobalt support

전처리 과정을 거친 카본담체 2g을 코발트나이트레이트헥사하이드레이트 1.1g을 물 40ml에 녹인 수용액에 담가 카본담체에 코발트 전구체를 담지시키고, 120℃에서 30분간 수분을 제거하고, 220℃에서 60분간 코발트 전구체를 분해시키고, 500℃에서 60분간 유지하여 코발트 표면을 환원시켰다. 2 g of the carbon carrier after the pretreatment was immersed in an aqueous solution of 1.1 g of cobalt nitrate hexahydrate dissolved in 40 ml of water. The cobalt precursor was dipped into the carbon carrier, the water was removed at 120 ° C. for 30 minutes, and the cobalt precursor was heated at 220 ° C. for 60 minutes. The cobalt surface was reduced by decomposition and maintained at 500 ° C. for 60 minutes.

여기에서, 수분제거, 분해 및 환원 과정은 수소: 질소의 비가 1: 5인 가스를 흘려주면서 진행하였다. Here, the water removal, decomposition and reduction process was performed while flowing a gas of the ratio of hydrogen: nitrogen 1: 5.

(3) 백금 담지(3) platinum support

코발트가 담지된 카본 0.1g을 반응기에 넣고, 한편으로는 백금 전구체로 테트라키스(트리플루오로포스핀)플래티넘 5g을 기화기에 넣고 5℃에서 기화시킨 다음, 이렇게 얻어진 백금 전구체의 증기를 1cc씩 1분 간격으로 60회에 걸쳐 샘플링 루프(sampling loop)를 통하여 반응기에 주입하였다. 백금 전구체의 운반가스로는 수소를 사용하였으며 주입이 완료된 후에는 반응기의 온도를 200℃로 승온하여 1시간 유지하였다.0.1 g of cobalt-carrying carbon was placed in a reactor. Meanwhile, 5 g of tetrakis (trifluorophosphine) platinum as a platinum precursor was placed in a vaporizer and vaporized at 5 ° C. Then, the vapor of the platinum precursor thus obtained was 1 cc each. The reactor was injected through a sampling loop 60 times at minute intervals. Hydrogen was used as a carrier gas of the platinum precursor, and after the injection was completed, the temperature of the reactor was raised to 200 ° C. and maintained for 1 hour.

상기 과정을 거쳐 제조된 백금-코발트 전극촉매에 담지된 백금량은 4wt.%이었다.The amount of platinum supported on the platinum-cobalt electrocatalyst prepared through the above process was 4 wt.%.

<실시예 2>      <Example 2>

반응기에 주입한 테트라키스(트리플루오로포스핀)플래티넘의 양을 60회에서 120회로 바꾼 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 제조하였다. A catalyst was prepared in the same manner as in Example 1 except that the amount of tetrakis (trifluorophosphine) platinum injected into the reactor was changed from 60 times to 120 times.

백금-코발트 전극촉매에 담지된 백금량은 6.7wt.%이었다.The amount of platinum supported on the platinum-cobalt electrocatalyst was 6.7 wt.%.

<비교예 1>Comparative Example 1

실시예 1과 동일한 방법으로 카본담체를 전처리(1)하고, 역시 실시예 1과 동일한 방법으로 코발트를 담지(2)시킨 후, 함침법(종래기술)에 의해 백금을 담지시켜 백금-코발트 전극촉매를 제조하였다. The carbon carrier was pretreated (1) in the same manner as in Example 1, and cobalt was supported (2) in the same manner as in Example 1, and then platinum was supported by impregnation (prior art) to form a platinum-cobalt electrode catalyst. Was prepared.

(1) 카본담체의 전처리(1) pretreatment of carbon carrier

실시예 1과 동일Same as Example 1

(2) 코발트 담지(2) cobalt support

실시예 1과 동일Same as Example 1

(3) 백금 담지(3) platinum support

백금 전구체로 헥사클로로플라티닉산(H2PtCl6) 0.29g을 물 40ml에 녹인 수용 액에 (2)단계에서 제조된 코발트가 담지된 카본 2g을 넣어 백금 전구체를 담지시킨 후, 수소: 질소의 비가 1: 5인 가스를 흘려주며 350℃에서 60분간 분해하였다.2g of cobalt-containing carbon prepared in step (2) was added to an aqueous solution of 0.29g of hexachloroplatinic acid (H 2 PtCl 6 ) as a platinum precursor, and 40ml of water was used to support the platinum precursor. The gas was flowed at a ratio of 1: 5 and decomposed at 350 ° C. for 60 minutes.

상기 과정을 거쳐 백금-코발트 전극촉매에 담지된 백금량은 10wt.%이었다.The amount of platinum supported on the platinum-cobalt electrocatalyst through the above process was 10wt.%.

<비교예 2>      Comparative Example 2

백금량이 10wt.%인 상용 백금-카본촉매(Johnson & Matthey Co.)Commercial platinum-carbon catalysts with 10 wt.% Platinum (Johnson & Matthey Co.)

<실시예 3>      <Example 3>

상기 실시예 1과 2 및 비교예 1에서 제조된 촉매와 비교예 2의 촉매의 물성을 비교하였다. 결과는 다음과 같다.The physical properties of the catalysts prepared in Examples 1 and 2 and Comparative Example 1 and the catalyst of Comparative Example 2 were compared. The result is as follows.

(1) 산소환원 반응활성       (1) Oxygen reduction reaction activity

도 3은 실시예 1과 2 및 비교예 1과 2에서 제조된 촉매의 산소환원 반응활성을 반쪽 전지 실험을 통하여 측정한 결과이다. 3 is a result of measuring the oxygen reduction reaction activity of the catalyst prepared in Examples 1 and 2 and Comparative Examples 1 and 2 through a half-cell experiment.

실시예 1, 2에서 제조된 백금-코발트 촉매가 비교예 1, 2에서 제조된 촉매보다 백금량이 적음에도 불구하고, 질량당 활성이 높음을 알 수 있다. 특히, 실시예 2에서 제조된 촉매는 비교예 1에서 제조된 촉매보다 약 42% 활성이 높다.Although the platinum-cobalt catalysts prepared in Examples 1 and 2 had less platinum than the catalysts prepared in Comparative Examples 1 and 2, it can be seen that the activity per mass is high. In particular, the catalyst prepared in Example 2 is about 42% higher than the catalyst prepared in Comparative Example 1.

(2) 백금입자의 크기, 표면적 및 분산도(2) Size, surface area and dispersion of platinum particles

백금입자의 크기는 X-선 회절법(X-ray diffraction)으로 얻은 스펙트럼에서 백금 (111)피크의 반폭치로부터 계산할 수 있다.The size of the platinum particles can be calculated from the half width of the platinum (111) peak in the spectrum obtained by X-ray diffraction.

도 1의 결과에 의하면 실시예 2에 의해 제조된 백금-코발트촉매의 백금입자의 크기는 백금 (111)피크를 구분할 수 없을 정도로 매우 작은 것을 알 수 있으며, 도 2에 보인 순환전압전류법 수소흡착량에 의해 측정된 백금 표면적도 비교예 1에 의해 제조된 촉매에 비해 넓은 것을 알 수 있다. According to the results of FIG. 1, the size of the platinum particles of the platinum-cobalt catalyst prepared in Example 2 is very small so that the platinum (111) peak cannot be distinguished, and the cyclic voltammetry hydrogen adsorption shown in FIG. It can be seen that the platinum surface area measured by the amount is larger than that of the catalyst prepared by Comparative Example 1.

도 4는 X-선 광전자분광법(X-ray photoelectron spectroscopy)에 의해 측정된 촉매표면에 노출된 백금의 농도를 보여주고 있다. 실시예 2에 의해 제조된 백금-코발트 촉매의 경우 비교예 1에 의해 제조된 촉매에 비해 백금 담지량이 적음에도 불구하고, 촉매표면에 노출된 백금의 농도는 대략 2배 이상 높다. FIG. 4 shows the concentration of platinum exposed on the catalyst surface measured by X-ray photoelectron spectroscopy. In the case of the platinum-cobalt catalyst prepared by Example 2, the amount of platinum exposed on the surface of the catalyst is approximately two times higher than that of the catalyst prepared by Comparative Example 1.

따라서 실시예에 의해 제조된 백금-코발트촉매는 백금의 입자크기가 작고, 분산도가 높음을 알 수 있다. 이처럼 고 분산된 백금은 반응물과 접촉할 수 있는 면적이 넓기 때문에 촉매 활성이 높다.Therefore, it can be seen that the platinum-cobalt catalyst prepared according to the example has a small particle size of platinum and a high degree of dispersion. This highly dispersed platinum has high catalytic activity because of its large area of contact with the reactants.

(3) 백금입자의 열적안정성(3) thermal stability of platinum particles

도 5는 촉매의 열적안정성을 측정하기 위해서 제조된 촉매를 500℃에서 열을 가하고, 열을 가하기 전후의 백금표면적을 순환전압전류법에 의해 측정한 것이다. FIG. 5 shows the platinum surface area before and after applying a heated catalyst at 500 ° C. to measure the thermal stability of the catalyst by cyclic voltammetry.

실시예 2의 경우 열을 가하기 전후의 백금 표면적은 백금-코발트의 큰 변화를 보이지 않고 있으나, 비교예 1의 경우에는 백금표면적이 열을 가한 후에 50%정도 감소하고 있음을 알 수 있다. 실시예에서는 백금 입자가 코발트에만 선택적으로 또한 고 분산되어 있기 때문에 백금과 코발트간의 상호작용이 더욱 강하게 되어 백금의 소결이 억제되는 것으로 판단된다.      In Example 2, the platinum surface area before and after applying the heat did not show a large change in platinum-cobalt, but in Comparative Example 1, the platinum surface area decreased by about 50% after applying the heat. In the examples, since the platinum particles are selectively and highly dispersed only in the cobalt, it is determined that the interaction between the platinum and the cobalt becomes stronger and the sintering of the platinum is suppressed.

본 발명에 의하면 코발트-카본담체에 크기가 작은 백금 입자를 높은 분산도로 담지시킴으로써 활성이 높은 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매를 제조할 수 있다. According to the present invention, an electrode catalyst for a highly active polymer electrolyte fuel cell and a direct methanol fuel cell can be produced by supporting small platinum particles on a cobalt-carbon carrier with high dispersion.

고분자 전해질 연료전지 및 직접 메탄올 연료전지는 낮은 온도에서 작동하기 때문에 많은 양의 백금이 높은 분산도로 담지된 백금촉매를 사용해야 한다. 특히, 음극에서 일어나는 산소환원반응은 양극에서 일어나는 수소산화반응보다 반응속도가 느리기 때문에 더욱 그러한데, 본 발명에 의하면 백금입자의 크기가 작고 분산도가 높아 백금 표면적이 넓은 촉매를 제조할 수 있고, 또한 노출된 백금 농도가 상대적으로 높기 때문에 적은 백금 담지량으로도 효율이 높은 연료전지 전극을 제작할 수 있다. Since polymer electrolyte fuel cells and direct methanol fuel cells operate at low temperatures, it is necessary to use platinum catalysts in which a large amount of platinum is supported at high dispersion. Particularly, the oxygen reduction reaction occurring at the cathode is more slow because the reaction rate is slower than the hydrogen oxidation reaction occurring at the anode. According to the present invention, the platinum particles are small in size and have a high dispersion so that a catalyst having a large platinum surface area can be prepared. Since the exposed platinum concentration is relatively high, a highly efficient fuel cell electrode can be manufactured even with a small amount of platinum.

Claims (4)

카본담체에 코발트 전구체 수용액을 가하여 코발트 전구체를 담지시키고, 승온하여 수분을 제거하고, 코발트 전구체를 분해시키고, 코발트 표면을 환원시키는 코발트 담지 단계(A)와,A cobalt supporting step (A) in which a cobalt precursor aqueous solution is added to the carbon carrier to support the cobalt precursor, and the temperature is increased to remove water, decompose the cobalt precursor, and reduce the cobalt surface; 카본위에 담지 된 코발트 촉매에 백금 전구체 증기를 펄스로 주입하여 화학기상 증착시킨 후, 수소: 질소의 비가 1:3 ~ 1:5인 가스를 흘려주면서 승온하여 백금 전구체를 분해시키는 백금 담지 단계(B)를 포함하는 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매의 제조방법.Platinum precursor vapor is injected into a cobalt catalyst supported on carbon by pulse injection, followed by chemical vapor deposition. A platinum supporting step of decomposing a platinum precursor by heating up while flowing a gas having a hydrogen: nitrogen ratio of 1: 3 to 1: 5 (B) Method for producing a polymer electrolyte fuel cell and an electrocatalyst for direct methanol fuel cell comprising a). 제1항에 있어서, 상기 코발트 담지 단계(A)에 앞서 카본담체를 공기 분위기하에서 열처리하고, 세척하는 전처리 단계를 두는 것을 특징으로 하는 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매의 제조방법. The method according to claim 1, wherein a pretreatment step of heat treating and washing the carbon carrier in an air atmosphere prior to the cobalt supporting step (A) is provided. 제1항 또는 제2항에 있어서, 코발트 전구체는 코발트아세틸아세토네이트하이드레이트, 코발트클로라이드헥사하이드레이트, 코발트나이트레이트헥사하이드레이트에서 1 또는 2 이상 선택되는 것을 특징으로 하는 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매의 제조방법.The electrode for a polymer electrolyte fuel cell and a direct methanol fuel cell according to claim 1 or 2, wherein the cobalt precursor is selected from cobalt acetylacetonate hydrate, cobalt chloride hexahydrate, and cobalt nitrate hexahydrate. Method for preparing a catalyst. 제1항 또는 제2항에 있어서, 백금 전구체가 플래티넘아세틸아세토네이트, 테트라키스(트리플루오로포스핀)플래티넘, 디클로로(디카르보닐)플래티넘, (트리메 틸)메틸사이클로펜타디에닐플래티넘, 트리메틸사이클로펜타디에닐플래티넘, 트리메틸아세틸아세토네이트플래티넘에서 1 또는 2 이상 선택되는 것을 특징으로 하는 고분자 전해질 연료전지 및 직접 메탄올 연료전지용 전극촉매의 제조방법.3. The platinum precursor of claim 1, wherein the platinum precursor is platinum acetylacetonate, tetrakis (trifluorophosphine) platinum, dichloro (dicarbonyl) platinum, (trimethyl) methylcyclopentadienyl platinum, trimethyl A method for producing an electrode catalyst for a polymer electrolyte fuel cell and a direct methanol fuel cell, characterized in that at least one selected from cyclopentadienyl platinum and trimethylacetylacetonate platinum.
KR1020070007101A 2007-01-23 2007-01-23 Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells KR100842298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070007101A KR100842298B1 (en) 2007-01-23 2007-01-23 Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070007101A KR100842298B1 (en) 2007-01-23 2007-01-23 Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells

Publications (1)

Publication Number Publication Date
KR100842298B1 true KR100842298B1 (en) 2008-06-30

Family

ID=39772785

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070007101A KR100842298B1 (en) 2007-01-23 2007-01-23 Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells

Country Status (1)

Country Link
KR (1) KR100842298B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105936B2 (en) 2006-11-20 2015-08-11 Samsung Sdi Co., Ltd. Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same
WO2021061953A1 (en) * 2019-09-25 2021-04-01 The Regents Of The University Of California High performance platinum-based catalyst combined with carbon support engineering
CN114400337A (en) * 2022-01-20 2022-04-26 氢电中科(广州)新能源设备有限公司 Preparation method of nitrogen-containing carbon-loaded platinum alloy catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060001455A (en) * 2004-06-30 2006-01-06 삼성에스디아이 주식회사 Membrane electrode assembly, and a fuel cell comprising the same
KR20060028032A (en) * 2004-09-24 2006-03-29 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell comprising the same, and method for preparing the electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060001455A (en) * 2004-06-30 2006-01-06 삼성에스디아이 주식회사 Membrane electrode assembly, and a fuel cell comprising the same
KR20060028032A (en) * 2004-09-24 2006-03-29 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell comprising the same, and method for preparing the electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105936B2 (en) 2006-11-20 2015-08-11 Samsung Sdi Co., Ltd. Fuel cell catalyst, method of preparing same, and membrane-electrode assembly for fuel cell and fuel cell system including same
WO2021061953A1 (en) * 2019-09-25 2021-04-01 The Regents Of The University Of California High performance platinum-based catalyst combined with carbon support engineering
CN114400337A (en) * 2022-01-20 2022-04-26 氢电中科(广州)新能源设备有限公司 Preparation method of nitrogen-containing carbon-loaded platinum alloy catalyst

Similar Documents

Publication Publication Date Title
KR101797782B1 (en) Catalyst with metal oxide doping for fuel cells
Arico et al. Investigation of a carbon-supported quaternary Pt Ru Sn W catalyst for direct methanol fuel cells
Zhou et al. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports
US10957915B2 (en) Platinum-based alloy catalyst and preparation method therefor, membrane electrode, and fuel cell
AU2013290185B2 (en) Carbendazim-based catalytic materials
CN108598505B (en) Preparation method of vanadium carbide/carbon cloth composite material and product
CN1577928B (en) High electrocatalytic active fuel battery platinum-base noble metal catalyst and producing process thereof
Chisaka et al. Active site formation for oxygen reduction reaction on carbon-support-free titanium oxynitride with boosted activity in acidic media
CN114420961A (en) Nitrogen-doped carbon-loaded platinum-zinc alloy electrocatalyst and preparation method and application thereof
Hang et al. Pt/Ru–Sn oxide/carbon catalysts for ethanol oxidation
Mamat et al. The performance and degradation of Pt electrocatalysts on novel carbon carriers for PEMFC applications
KR100842298B1 (en) Preparation of pt-co electrode catalysts for polymer-electrolyte membrane and direct-methanol fuel cells
US9728788B2 (en) Mechanochemical synthesis for preparation of non-PGM electrocatalysts
CN109012693B (en) Preparation method and application of Pd-Ni porous nanocage catalytic material
Altamirano-Gutiérrez et al. Methanol resistant ruthenium electrocatalysts for oxygen reduction synthesized by pyrolysis of Ru3 (CO) 12 in different atmospheres
Si et al. A highly active nitrogen-containing non-precious metal catalyst CoHMTA/C for oxygen reduction reaction
Wang et al. Improving electrochemical activity of PtRu/SnO2/C catalyst by reduction treatment and alkaline etching
CN109301266B (en) Oxygen reduction catalyst, preparation method and application thereof
Pushkarev et al. Heteroatom-Modified Carbon Materials and Their Use as Supports and Electrocatalysts in Proton Exchange Membrane Fuel Cells (A Review)
KR100719239B1 (en) preparation of electrode catalysts for polymer-electrolyte membrane fuel cell and direct-methanol fuel cell
CN116505007B (en) Preparation and application of single-atom/nanocluster composite anode catalyst for hydrogen fuel cell
CN111229283B (en) Noble metal modified Mo2Preparation method of N/OMC catalyst and application of N/OMC catalyst in biomass oil hydrodeoxygenation
KR100509230B1 (en) production method of Pt-Ru catalyst for anode of direct methanol fuel cell
CN116111112A (en) High-stability self-forming monoatomic ordered catalyst and preparation method and application thereof
Xiong et al. Preparation and performance of a non-precious metal catalyst CoMe/C for oxygen reduction reaction from modified carbon black using melamine as nitrogen source

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130611

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140613

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee