Nothing Special   »   [go: up one dir, main page]

KR100814615B1 - Cogeneration system using compression type cycle and absorption type cycle - Google Patents

Cogeneration system using compression type cycle and absorption type cycle Download PDF

Info

Publication number
KR100814615B1
KR100814615B1 KR1020070050763A KR20070050763A KR100814615B1 KR 100814615 B1 KR100814615 B1 KR 100814615B1 KR 1020070050763 A KR1020070050763 A KR 1020070050763A KR 20070050763 A KR20070050763 A KR 20070050763A KR 100814615 B1 KR100814615 B1 KR 100814615B1
Authority
KR
South Korea
Prior art keywords
heat
absorption
line
heat exchange
compression
Prior art date
Application number
KR1020070050763A
Other languages
Korean (ko)
Inventor
김수현
이현구
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020070050763A priority Critical patent/KR100814615B1/en
Application granted granted Critical
Publication of KR100814615B1 publication Critical patent/KR100814615B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A cogeneration system using compression/absorption type cycles is provided to carry out heat exchange between cold water circulating an evaporator of an absorption type cycle and vapor refrigerant of a compression type cycle, drive an absorption unit and a compression unit by partial electricity and exhaust gas of a single driving source. A cogeneration system using compression/absorption type cycles includes a driving source(10) for supplying exhaust gas and electricity, and an absorption unit(A) connected to the driving source for transferring heat of the exhaust gas to a high temperature regenerator(20) and having an absorber(28) and a condenser(24) for operating refrigerant vapor of the high temperature regenerator in an absorption cycle. A compression unit(B) is connected to the driving source and has a condenser(42), first and second expansion valves(44,46) and an evaporator(48) for operating gas refrigerant of high temperature and high pressure in a compression type cycle by the electricity of the driving source. A first heat exchange line(34) is mounted to an evaporator(26) of the absorption unit and circulates cooling water for the heat exchange between evaporation latent heat and the cooling water. A second heat exchange line(52) is connected to a connection line(50) of the first and second expansion valves via a bypass for carrying out heat exchange between refrigerant vapor and the cooling water. A third heat exchange line(56) is mounted to the evaporator of the compression unit for utilizing the cooling water carrying out heat exchange with the evaporation latent heat as water for cooling operation.

Description

흡수식 및 압축식 사이클을 이용한 열 병합발전시스템{Cogeneration System Using Compression Type Cycle and Absorption Type Cycle} Cogeneration System Using Compression Type Cycle and Absorption Type Cycle

도 1은 본 발명에 따른 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템의 구성을 보여주는 개념도 이다.1 is a conceptual diagram showing the configuration of the combined heat and power generation system using the absorption and compression cycle according to the present invention.

도 2a는 도 1의 제2 열교환기와 압축식 장치를 보여주는 요부 도면이다.FIG. 2A is an essential part view of the second heat exchanger and the compression apparatus of FIG. 1. FIG.

도 2b는 도 2a에 대한 p-h선도 이다.FIG. 2B is a p-h diagram for FIG. 2A.

<도면의 주요부분에 대한 설명><Description of main parts of drawing>

10 : 구동원 12 : 제1 열교환기10: driving source 12: first heat exchanger

14 : 고온 워터 자켓 냉각수 라인 16 : 저온 워터 자켓 냉각수 라인14 high temperature water jacket coolant line 16 low temperature water jacket coolant line

18 : 배기가스 공급라인 20 : 고온 재생기18: exhaust gas supply line 20: high temperature regenerator

22,48 : 라인 24,42 : 응축기22,48 Line 24,42 Condenser

26 : 증발기 28 : 흡수기 26: evaporator 28: absorber

30 : 배기라인 32,34,36,52,56 : 열교환 라인30: exhaust line 32, 34, 36, 52, 56: heat exchange line

38 : 제2 열교환기 40 : 압축기38: second heat exchanger 40: compressor

44 : 제1 팽창밸브 46 : 제2 팽창밸브44: first expansion valve 46: second expansion valve

54 : 전력라인 54: power line

본 발명은 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템에 관한 것으로, 본 발명에서는 구동원에서 제공되는 전력 일부와 배기가스의 배열을 이용하여 흡수식 장치 및 압축식 장치를 각각 운전시킬 수 있도록 하고, 아울러 흡수식 사이클에서 증발기의 증발 잠열과 열교환 하는 저온 냉각수와, 압축식 사이클에서 제1 팽창밸브를 통과하면서 형성되는 일부 냉매 증기가 서로 열교환 될 수 있도록 구성함으로써, 자체적인 전력생산은 물론 압축식 사이클이 가지는 냉동용량이 더 증대되어 배열을 이용한 지역냉방을 효율적으로 수행할 수 있도록 한 것이다.The present invention relates to a combined heat and power generation system using absorption and compression cycles, and in the present invention, the absorption and compression apparatuses can be operated by using a part of the power provided from the driving source and the arrangement of the exhaust gases. The low-temperature cooling water that exchanges heat with the evaporative latent heat of the evaporator in the absorption cycle and some refrigerant vapors formed while passing through the first expansion valve in the compression cycle can be heat-exchanged with each other. The refrigeration capacity is further increased to efficiently perform district cooling using the array.

일반적으로, 열 병합발전시스템(Cogeneration System)은, 발전을 통한 전력과 열 공급을 동시에 생산하여 에너지 이용률을 높이는 발전 시스템이다.In general, a cogeneration system (Cogeneration System) is a power generation system that increases the energy utilization rate by simultaneously producing power and heat supply through power generation.

구체적으로, 엔진이나 터빈 등과 같은 구동원이 가동하면서 전력과, 배기가스의 배열을 동시에 생산하는 열 병합발전시스템을 이용하게 되면, 수용가에서 난방과 온수 사용을 위한 개별적인 보일러 가동 및 전력회사에서 제공되는 전력에 의존하지 않고 자체적으로 모두 수행할 수 있으므로 에너지 절약효과를 거둘 수 있는 장점이 있다.Specifically, when using a combined heat and power generation system that simultaneously generates power and exhaust gas arrays while a driving source such as an engine or a turbine is running, individual boiler operation for heating and hot water use in a consumer and power provided by a power company All of them can be done on their own, without relying on the energy savings.

위의 열 병합 발전시스템은, 구동원의 종류 혹은 타입에 따라 다소 차이가 있지만 예를 들어 구동원이 가스식 엔진일 경우, 약 120℃의 배기가스와 90℃의 냉각수로 배열이 발생하고, 터빈일 경우에는 약 300℃의 배기가스로 배열이 발생 되며, 이러한 배열을 이용하여 온수 및 난방을 수행하게 된다.The above combined heat generation system differs slightly depending on the type or type of driving source, but for example, when the driving source is a gas engine, the arrangement is generated by exhaust gas of about 120 ° C and cooling water of 90 ° C, and in the case of a turbine An arrangement is generated with exhaust gas of about 300 ° C., and hot water and heating are performed using this arrangement.

그런데, 상기 열 병합발전시스템에서 배기가스의 배열을 난방이 아닌 냉방의 열원으로 사용할 경우, 성적계수(coefficient of performance)가 낮은 중 온수 흡수식 냉동기를 별도로 설치하여야 하므로 냉방 효율이 좋지 못하다.However, when the exhaust gas array is used as a heat source for cooling rather than heating in the combined heat and power generation system, the cooling efficiency is not good because a heavy water absorption chiller having a low coefficient of performance must be separately installed.

또한, 배기가스를 열원으로 사용하는 배기가스 흡수식 냉동기도 사용 가능하지만 역시 성적계수가 높지 않아 효율이 좋지 않고, 앞서 언급된 바와 같이 중 온수 흡수식 냉동기가 필수적으로 설치되어야 한다.In addition, an exhaust gas absorption chiller using the exhaust gas as a heat source may be used, but also the efficiency is not good because the grade factor is not high, and as mentioned above, a heavy water absorption refrigerator should be installed as essential.

따라서, 위와 같은 문제로 인하여 현재 사용되고 있는 열 병합발전시스템으로는 지역냉방을 수행하기 어려워 에너지 이용에 대한 효율성을 더 높이는데 한계가 있다. Therefore, due to the above problems, it is difficult to perform district cooling with the thermally integrated power generation system currently used, and thus there is a limit to increasing the efficiency of energy use.

본 발명은 위와 같은 문제를 해결하기 위하여 발명된 것으로서, 본 발명의 목적은 하나의 구동원을 통해 흡수식 장치와 압축식 장치를 운전시키고, 하절기에 지역냉방이 효율적으로 수행될 수 있도록 새로운 타입으로 개선된 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템을 제공하는 것을 목적으로 한다. The present invention has been invented to solve the above problems, the object of the present invention is to improve the new type to operate the absorption device and the compression device through a single drive source, the district cooling can be performed efficiently in summer It is an object of the present invention to provide a combined heat generation system using absorption and compression cycles.

상기 기술적 과제를 달성하기 위한 본 발명은, 배기가스와 전력을 제공하는 구동원; 상기 구동원에서 제공되는 배기가스 배열이 고온 재생기에 전달되도록 구동원과 연결되고 상기 고온 재생기에서 형성되는 냉매 증기가 흡수식 사이클로 운전되도록 흡수기, 응축기를 포함하는 흡수식 장치; 상기 구동원에서 제공되는 전력이 전력 라인을 따라 압축기에 인가되도록 연결되어 압축기의 구동에 의해 형성되는 고온 고압 기체 냉매가 압축식 사이클로 운전되도록 응축기, 제1 및 제2 팽창밸브, 증발기를 포함하는 압축식 장치; 상기 흡수식 장치의 증발기에 설치되어 증발 잠열과 열교환 되도록 냉각수가 순환되는 열교환 라인 및; 상기 제1 팽창밸브와 제2 팽창밸브가 연결되는 라인에 우회 연결되어 일부 형성되는 냉매 증기가 상기 열교환 라인을 흐르는 냉각수와 열 교환되어 응축될 수 있도록 설치되는 열교환 라인; 상기 압축식 장치의 증발기에 설치되어 증발 잠열과 열교환 되는 냉각수를 냉방 수로 사용할 수 있도록 열교환 라인을 포함하여 구성되는 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템에 기술적 특징이 있다.The present invention for achieving the above technical problem, the drive source for providing exhaust gas and power; An absorbent device comprising an absorber and a condenser connected to the drive source so that the exhaust gas array provided from the drive source is transferred to the high temperature regenerator and the refrigerant vapor formed in the high temperature regenerator is operated in an absorption cycle; Compression type including a condenser, first and second expansion valve, the evaporator is connected so that the power provided from the drive source is applied to the compressor along the power line so that the high temperature and high pressure gas refrigerant formed by the driving of the compressor is operated in a compression cycle Device; A heat exchange line installed in an evaporator of the absorption type device and having a cooling water circulated to exchange heat with latent heat of evaporation; A heat exchange line installed to bypass the first expansion valve and the second expansion valve in a bypass manner so that a part of the refrigerant vapor formed by heat exchange with the cooling water flowing through the heat exchange line is condensed; There is a technical feature in the combined heat and power generation system using the absorption and compression cycle configured to include a heat exchange line to be installed in the evaporator of the compressed device to use the cooling water heat exchanged with the latent heat of evaporation as cooling water.

또한, 상기에서 구동원과 고온 재생기 사이에 배치되고, 구동원으로부터 제공되는 배기가스가 배기가스 공급라인을 통해 공급되도록 연결되는 제1 열교환기; 상기 제1 열교환기와 고온 재생기 간에 배기가스의 배열을 전달하는 열 매체를 순환시키기 위한 라인을 포함하는 것이 바람직할 것이다.In addition, the first heat exchanger is disposed between the drive source and the high temperature regenerator and connected so that the exhaust gas provided from the drive source is supplied through the exhaust gas supply line; It would be desirable to include a line for circulating a heat medium that transfers the arrangement of exhaust gases between the first heat exchanger and the hot regenerator.

또한, 상기에서, 구동원으로부터 제공되는 전력이 전력 라인을 따라 압축기에 인가되는 것이 바람직할 것이다.Also, in the above, it would be desirable to apply power from the drive source to the compressor along the power line.

이하, 첨부된 도면을 참조하여 본 발명에 따른 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the combined heat and power generation system using the absorption and compression cycle according to the present invention.

도 1은 본 발명에 따른 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템의 구성을 보여주는 개념도 이다.1 is a conceptual diagram showing the configuration of the combined heat and power generation system using the absorption and compression cycle according to the present invention.

도면에서 보는 바와 같이, 전력과 열을 생산하는 구동원(10)(예를 들면 가스엔진, 터빈, 연료전지)과 제1 열교환기(12) 간에 연결되는 고온 워터 자켓 냉각수 라인(14) 및 저온 워터 자켓 냉각수 라인(16)을 통하여 냉각수가 각각 순환하면서 구동원(10)을 식혀주고, 아울러 구동원(10)으로부터 제공되는 배기가스가 제1 열교환기(12)로 공급될 수 있도록 배기가스 공급라인(18)이 연결되어 있다.As shown in the figure, a high temperature water jacket coolant line 14 and low temperature water connected between a drive source 10 (eg, a gas engine, a turbine, a fuel cell) and a first heat exchanger 12 that produce power and heat Cooling water is circulated through the jacket cooling water line 16 to cool the driving source 10, and the exhaust gas supply line 18 may supply exhaust gas provided from the driving source 10 to the first heat exchanger 12. ) Is connected.

상기 제1 열교환기(12)와 흡수식 장치(A)의 고온 재생기(20) 간에는 배기가스 배열을 전달하기 위한 열 매체가 순환될 수 있도록 라인(22)을 통해 서로 연결된다. 이러한 상기 흡수식 장치(A)의 구성요소를 살펴보면 고온재생기(20), 응축기(24), 증발기(26), 흡수기(28)로 구성된다.The first heat exchanger 12 and the high temperature regenerator 20 of the absorbent device A are connected to each other via a line 22 so that a heat medium for transferring the exhaust gas array can be circulated. Looking at the components of the absorbent device (A) is composed of a high temperature regenerator 20, a condenser 24, an evaporator 26, an absorber 28.

상기 고온재생기(20)에는 배기가스가 배출될 수 있도록 배기 라인(30)이 형성되며, 응축기(24)와 증발기(26) 및 흡수기(28)에는 각각 발생 되는 열과 열 교환이 이루어지도록 열교환 라인(32,34,36)이 설치되어 된다. 특히 상기 증발기(26)에 증발 잠열과 열교환 되는 열교환 라인(34)은 제2 열교환기(38)를 순환할 수 있도록 설치된다.An exhaust line 30 is formed in the high temperature regenerator 20 to discharge the exhaust gas, and a heat exchange line is formed in the condenser 24, the evaporator 26, and the absorber 28 to generate heat and heat exchange, respectively. 32, 34, 36 are provided. In particular, the heat exchange line 34 is heat-exchanged with the latent heat of evaporation in the evaporator 26 is installed to circulate the second heat exchanger (38).

위와 같이 구성된 흡수식 장치(A)에서 흡수식 사이클에 대한 흐름과 일련의 동작과정은 일반적인 흡수식 장치 및 흡수식 사이클의 흐름과 동일하므로 생략한다.In the absorption device A configured as described above, the flow for the absorption cycle and the sequence of operations are the same as those of the general absorption device and the absorption cycle, and thus are omitted.

한편, 압축기(40), 응축기(42), 제1 팽창밸브(44), 제2 팽창밸브(46), 증발기(48)로 구성되는 압축식 장치(B)에서 제1 팽창밸브(44)와 제2 팽창밸브(46)를 연결하는 라인(50) 상에는 우회하는 형태로 연결되는 열교환 라인(52)이 상기 열교환 라인(34)을 흐르는 냉각수에 의해 열 교환될 수 있도록 제2 열교환기(38)와 연결되어 있다.On the other hand, in the compression device (B) consisting of the compressor 40, the condenser 42, the first expansion valve 44, the second expansion valve 46, the evaporator 48 and the first expansion valve 44 and On the line 50 connecting the second expansion valve 46, the second heat exchanger 38 may be heat exchanged by a cooling water flowing in the bypass heat exchange line 52 connected in a bypass form. Connected with

상기 압축식 장치(B)의 압축기(40)는 구동원(10)에서 제공되는 전력으로 가동될 수 있도록 전력 라인(54)을 통해 연결되어 있고, 상기 증발기(48)에는 증발 잠열과 열 교환되도록 열교환 라인(56)이 설치되어 있다.The compressor 40 of the compressed device B is connected via a power line 54 so as to be operated with the power provided from the drive source 10, and the evaporator 48 is heat exchanged to exchange heat with latent heat of evaporation. Line 56 is provided.

위와 같이 구성된 압축식 장치(B)에서 압축식 사이클에 대한 흐름과 일련의 동작과정은 일반적인 압축식 장치 및 압축식 사이클의 흐름과 동일하므로 생략한다.In the compression device B configured as described above, the flow for the compression cycle and the sequence of operations are the same as the flow of the general compression device and the compression cycle, and thus will be omitted.

위와 같이 구성된 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템에 대한 일련의 동작과정을 하기에서 설명하기로 한다.A series of operating processes for the combined heat and power generation system using the absorption and compression cycle configured as described above will be described below.

가스엔진, 터빈, 연료전기 등과 같이 다양하게 구성되는 구동원(10)이 구동을 하게 되면서 전력과 고온의 배기가스가 발생 된다. 이때 이와 같이 발생 되는 전력 일부는 수용가로 공급되고, 일부 전력은 전력 라인(54)을 통해 압축장치(B)의 압축기(40)를 구동시켜 압축식 사이클에 대한 일련의 동작을 수행하게 된다.As the driving source 10, which is configured in various ways, such as a gas engine, a turbine, and a fuel electric machine, is driven, power and high temperature exhaust gas are generated. At this time, some of the generated power is supplied to the customer, and some of the power is driven through the power line 54 to drive the compressor 40 of the compression device B to perform a series of operations for the compression cycle.

한편, 상기 배기가스는 배기가스 공급라인(18)을 통해 제1 열교환기(12)로 공급되고, 배기가스의 배열과 열교환 되어 고온을 형성하는 열매체가 고온 재생기(20)로 공급되면서 흡수식 사이클에 대한 일련의 동작을 수행하게 된다. On the other hand, the exhaust gas is supplied to the first heat exchanger 12 through the exhaust gas supply line 18, and the heat medium, which is heat-exchanged with the arrangement of the exhaust gas to form a high temperature, is supplied to the high temperature regenerator 20 in the absorption cycle. Will perform a series of actions on the.

먼저, 흡수식 장치(A)의 흡수식 사이클을 간략히 살펴보면, 고온 재생기(20)에서는 제1 열교환기(12)로부터 열교환 되어 전달되는 고온의 열 매체가 흡수액을 가열시켜 고온의 냉매 증기와 고농축 용액으로 분리시키며 이와 같이 분리된 고온의 냉매 증기는 응축기(24)로 공급된다.First, briefly looking at the absorption cycle of the absorption device (A), in the high temperature regenerator 20, the high temperature heat medium transferred by heat exchange from the first heat exchanger 12 heats the absorption liquid to separate the high temperature refrigerant vapor and the high concentration solution. The high temperature refrigerant vapor thus separated is supplied to the condenser 24.

상기 응축기(24)로 공급된 고온의 증기 냉매는 응축되면서 저온의 액체 냉매로 변환되어 증발기(26)로 공급된다.The hot steam refrigerant supplied to the condenser 24 is condensed and converted into a low temperature liquid refrigerant and supplied to the evaporator 26.

상기 증발기(26)에서 증발한 냉매 증기는 흡수기(28)로 흡수되어 고온재생기(20)에서 농축한 흡수액에 흡수되고, 다시 고온 재생기(20)로 공급되는 일련의 과정을 반복하게 된다. The refrigerant vapor evaporated in the evaporator 26 is absorbed by the absorber 28, absorbed by the absorbed liquid concentrated in the high temperature regenerator 20, and then supplied to the high temperature regenerator 20.

위와 같이 흡수식 사이클이 진행되는 동안 흡수식 장치(A)의 증발기(26)와 제2 열교환기(38) 간에 설치된 열교환 라인(34)을 순환하는 냉각수는 저온을 형성하게 되는데, 통상 12℃로 들어가 증발 잠열과 열교환 후 7℃로 나오게 된다. The cooling water circulating in the heat exchange line 34 installed between the evaporator 26 and the second heat exchanger 38 of the absorbent device A during the absorption cycle as described above forms a low temperature. After latent heat and heat exchange, it comes out at 7 ℃.

한편, 상기 압축식 장치(B)의 압축식 사이클을 간략히 살펴보면, 상기에서 언급되었듯이 구동원(10)으로부터 제공되는 일부 전력에 의하여 압축기(40)가 구동을 하게 되면서 고온 고압을 형성하는 냉매 증기는 응축기(42)를 통해 응축되어 냉매액으로 변환된다.On the other hand, briefly looking at the compression cycle of the compression device (B), as mentioned above, the refrigerant vapor to form a high temperature and high pressure while the compressor 40 is driven by some power provided from the drive source 10 is It is condensed through the condenser 42 and converted into a refrigerant liquid.

상기 응축기(42)를 통과한 냉매액은 제1 팽창밸브(44)를 통과하면서 라인(50)을 따라 제2 팽창밸브(46)로 이송되는데, 이때 상기 제1 팽창밸브(44)를 통과하면서 증기로 변화된 일부 냉매 증기가 열교환 라인(52)을 따라 흐르게 된다.The refrigerant liquid passing through the condenser 42 is transferred to the second expansion valve 46 along the line 50 while passing through the first expansion valve 44, while passing through the first expansion valve 44. Some refrigerant vapor, which has been converted to steam, flows along the heat exchange line 52.

그에 따라 상기 제 2열교환기(38)와 증발기(26) 간에 연결된 열교환 라 인(34)으로 흐르는 냉각수에 의해 열을 빼앗기는 열 교환을 통해 응축되며, 응축된 냉매액은 라인(50)을 따라 흐르는 나머지 냉매액과 합쳐져 제2 팽창밸브(46)로 모두 공급된다. Thereby condensed through heat exchange to lose heat by the cooling water flowing into the heat exchange line 34 connected between the second heat exchanger 38 and the evaporator 26, the condensed refrigerant liquid flows along the line 50. Combined with the remaining refrigerant liquid and supplied to the second expansion valve 46.

상기 제2 팽창밸브(46)를 통과한 냉매액은 증발기(48)로 공급되면서 증발하게 되는데, 이때 상기 증발기(48)에서 열교환 라인(56)을 따라 순환하는 냉각수와 열교환을 하게 되어 냉각수가 저온을 형성하게 되고, 이와 같이 열 교환된 저온의 냉각수는 수용가로 공급되어 냉방을 수행하게 된다.The refrigerant liquid passing through the second expansion valve 46 is evaporated while being supplied to the evaporator 48. At this time, the refrigerant liquid exchanges heat with the cooling water circulating along the heat exchange line 56 in the evaporator 48 so that the cooling water has a low temperature. The low temperature cooling water exchanged as described above is supplied to the consumer to perform cooling.

도 2a 및 도 2b에서 보는 바와 같이 앞서 설명된 압축식 사이클과, 이에 대한 상태를 p-h선도를 통해 살펴보면, 압축기(40)를 통해 압축된 고온 고압의 냉매증기(b)는 응축기(42)를 지나면서 응축되어 냉매액(c)이 된다.2A and 2B, the above-described compression cycle, and the state thereof, are shown in the ph diagram, and the high temperature and high pressure refrigerant vapor b compressed through the compressor 40 passes through the condenser 42. While condensing to form the refrigerant liquid c.

이러한, 상기 냉매액(c)은 제1 팽창밸브(44)를 통과하면서 일부 형성되는 냉매 증기(d)가 흡수식 장치(A)의 증발기(26)와 제2 열교환기(38)를 순환하는 열교환 라인(34)의 냉각수에 의해 응축되어 냉매액(e)으로 변환된다. The refrigerant liquid c is a heat exchanger through which the refrigerant vapor d partially formed while passing through the first expansion valve 44 circulates through the evaporator 26 and the second heat exchanger 38 of the absorption device A. It is condensed by the cooling water of the line 34 and converted into the refrigerant liquid e.

변환된 상기 냉매액(e)은 제1 팽창밸브(44)를 통과한 나머지 냉매액과 다시 합쳐져 제2 팽창밸브(46)를 통과하게 되며, 이와 같이 통과한 냉매액(f)은 증발기(48)에 들어가 증발하면서 열교환 라인(56)으로 흐르는 냉각수의 온도를 급격히 낮추게 되어 냉방을 효율적으로 수행할 수 있게 된다. 이 후 증발기(48)을 통과한 냉매액(a)는 다시 압축기(40)으로 회수되는 순환과정을 반복하게 된다.The converted refrigerant liquid e is combined with the remaining refrigerant liquid passing through the first expansion valve 44 to pass through the second expansion valve 46, and the refrigerant liquid f thus passed is evaporator 48. The temperature of the cooling water flowing into the heat exchange line 56 is rapidly lowered while entering the evaporation, so that cooling can be efficiently performed. After that, the refrigerant liquid a having passed through the evaporator 48 repeats the circulation process which is recovered to the compressor 40 again.

즉, p-h선도에 나타낸 바와 같이 압축식 사이클에서의 냉동용량은 qe'에서 qe로 증가함을 알 수 있으며, 이와 같은 냉동용량의 증가에 의해 압축식 장치(B)의 성적계수가 증가하게 되므로 효율적인 냉방을 수행할 수 있게 된다.That is, as shown in the ph diagram, it can be seen that the freezing capacity in the compression cycle increases from q e ′ to q e . Therefore, efficient cooling can be performed.

따라서, 본 발명에 따른 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템을 사용하게 되면, 하나의 구동원(10)에서 전력을 생산하면서, 아울러 전력의 일부와 배기가스의 배열 이용하여 흡수식 장치(A) 및 압축식 장치(B)를 운전할 수 있도록 구동시켜 수용가에 전력공급은 물론, 하절기에 냉방을 효율적으로 수행할 수 있게 된다.Therefore, when using the combined heat and power generation system using the absorption and compression cycle according to the present invention, while generating power from one drive source (10), while using a portion of the power and the arrangement of the exhaust gas absorption apparatus (A) And it is possible to drive the compressed device (B) to operate as well as to supply power to the customer, it is possible to efficiently perform the cooling in the summer.

또한, 본 발명에 따른 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템을 사용하게 되면, 앞서 설명된 바와 같이 하절기에 냉방을 수행할 수도 있지만, 동절기에 배기가스의 배열을 이용하여 난방도 수행할 수 있다. In addition, when using the combined heat and power generation system using the absorption and compression cycle according to the present invention, it is possible to perform the cooling in the summer as described above, but also to perform the heating by using the exhaust gas arrangement in the winter. have.

이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 냉난방을 수행할 수 있도록 다양한 형태로 응용할 수 있음은 자명할 것이다. 나아가 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described with reference to a limited embodiment and drawings, the present invention is not limited thereto, and it will be apparent that the present invention may be applied in various forms to perform cooling and heating. Furthermore, various modifications and variations can be made by those skilled in the art within the equivalent scope of the technical concept of the present invention and the claims to be described below.

이와 같이, 본 발명은 흡수식 사이클에서 증발기를 순환하는 저온의 냉수와, 압축식 사이클에서 응축기와 팽창밸브를 통과하면서 일부 형성되는 증기 냉매가 서 로 열 교환될 수 연결하고, 하나의 구동원에서 제공되는 전력 일부와 배기가스의 배열을 이용하여 상기 흡수식 장치 및 압축식 장치를 가동할 수 있도록 구성되어 압축식 사이클에서의 냉동용량 및 성적계수가 증가함으로써, 효율적인 냉방을 수행할 수 있는 효과를 기대할 수 있다.Thus, the present invention is connected to the low temperature cold water circulating the evaporator in the absorption cycle, and the steam refrigerant, which is partially formed while passing through the condenser and expansion valve in the compression cycle can be heat exchanged with each other, provided in one drive source It is configured to operate the absorbent device and the compressed device by using a part of the power and the exhaust gas, and thus the refrigeration capacity and the coefficient of performance in the compressed cycle are increased, so that the effect of efficient cooling can be expected. .

또한, 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템을 사용하게 되면, 하나의 구동원에서 수용가에 공급하기 위한 전력을 생산하면서, 아울러 전력의 일부와 배기가스의 배열 이용하여 흡수식 장치 및 압축식 장치를 각각 가동시켜 하절기에 냉방을 효율적으로 수행함으로써 에너지 이용 효율을 높일 수 있는 효과를 기대할 수 있다.In addition, using a combined heat and power generation system using absorption and compression cycles, the absorption and compression devices are produced using a portion of the power and the arrangement of exhaust gas while producing power for supplying the consumer from one driving source. It is possible to expect the effect of improving the energy use efficiency by efficiently operating the cooling in the summer in each operation.

또한, 상기 흡수식 장치의 가동을 제어하여 냉방 수행이 제어됨으로써, 제어과 쉽고 관리상에 편의를 제공할 수 있는 효과도 기대할 수 있다. In addition, the cooling performance is controlled by controlling the operation of the absorbent device, so that an effect of providing convenience in control and easy management can also be expected.

Claims (3)

배기가스와 전력을 제공하는 구동원(10);A drive source 10 for providing exhaust gas and electric power; 상기 구동원(10)에서 제공되는 배기가스 배열이 고온 재생기(20)에 전달되도록 구동원(10)과 연결되고 상기 고온 재생기(20)에서 형성되는 냉매 증기가 흡수식 사이클로 운전되도록 흡수기(28), 응축기(24)를 포함하는 흡수식 장치(A);The absorber 28 and the condenser are connected to the driving source 10 so that the exhaust gas array provided from the driving source 10 is transferred to the high temperature regenerator 20, and the refrigerant vapor formed in the high temperature regenerator 20 is operated in an absorption cycle. An absorbent device (A) comprising 24); 압축기(40)의 구동에 의해 형성되는 고온 고압 기체 냉매가 압축식 사이클로 운전되도록 응축기(42), 제1 및 제2 팽창밸브(44,46), 증발기(48)를 포함하는 압축식 장치(B); Compressed device B comprising a condenser 42, first and second expansion valves 44 and 46 and an evaporator 48 such that the high temperature, high pressure gas refrigerant formed by the drive of the compressor 40 is operated in a compression cycle. ); 상기 흡수식 장치(A)의 증발기(26)에 설치되어 증발 잠열과 열교환 되도록 냉각수가 순환되는 열교환 라인(34) 및;A heat exchange line (34) installed in the evaporator (26) of the absorption type device (A), through which cooling water is circulated so as to exchange heat with latent heat of evaporation; 상기 제1 팽창밸브(44)와 제2 팽창밸브(46)가 연결되는 라인(50)에 우회 연결되어 일부 형성되는 냉매 증기가 상기 열교환 라인(34)을 흐르는 냉각수와 열 교환되어 응축될 수 있도록 설치되는 열교환 라인(52);The refrigerant vapor, which is partially formed, is bypassed to the line 50 to which the first expansion valve 44 and the second expansion valve 46 are connected so as to be condensed by heat exchange with the cooling water flowing through the heat exchange line 34. A heat exchange line 52 installed; 상기 압축식 장치(B)의 증발기(48)에 설치되어 증발 잠열과 열교환 되는 냉각수를 냉방 수로 사용할 수 있도록 열교환 라인(56)을 포함하여 구성되는 것을 특징으로 하는 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템.Heat merge line using the absorption and compression cycle characterized in that it comprises a heat exchange line 56 is installed in the evaporator 48 of the compressed device (B) to use the cooling water heat exchanged with the latent heat of evaporation as cooling water Power generation system. 제 1 항에 있어서,The method of claim 1, 상기 구동원(10)과 고온 재생기(20) 사이에 배치되고, 구동원(10)으로부터 제공되는 배기가스가 배기가스 공급라인(18)을 통해 공급되도록 연결되는 제1 열교환기(12);A first heat exchanger (12) disposed between the drive source (10) and the high temperature regenerator (20) and connected to supply exhaust gas from the drive source (10) through an exhaust gas supply line (18); 상기 제1 열교환기(12)와 고온 재생기(20) 간에 배기가스의 배열을 전달하는 열 매체를 순환시키기 위한 라인(22)을 포함하여 구성되는 것을 특징으로 하는 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템.Heat merge using an absorbing and compressing cycle, characterized in that it comprises a line 22 for circulating a heat medium carrying an array of exhaust gases between the first heat exchanger 12 and the hot regenerator 20. Power generation system. 제 1 항에 있어서,The method of claim 1, 상기 구동원(10)에서 제공되는 전력이 전력 라인(54)을 따라 압축기(40)에 인가되는 것을 특징으로 하는 흡수식 및 압축식 사이클을 이용한 열 병합발전시스템.Power generation system using absorption and compression cycle characterized in that the power provided from the drive source 10 is applied to the compressor (40) along the power line (54).
KR1020070050763A 2007-05-25 2007-05-25 Cogeneration system using compression type cycle and absorption type cycle KR100814615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070050763A KR100814615B1 (en) 2007-05-25 2007-05-25 Cogeneration system using compression type cycle and absorption type cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070050763A KR100814615B1 (en) 2007-05-25 2007-05-25 Cogeneration system using compression type cycle and absorption type cycle

Publications (1)

Publication Number Publication Date
KR100814615B1 true KR100814615B1 (en) 2008-03-18

Family

ID=39410888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050763A KR100814615B1 (en) 2007-05-25 2007-05-25 Cogeneration system using compression type cycle and absorption type cycle

Country Status (1)

Country Link
KR (1) KR100814615B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013526B1 (en) 2009-12-22 2011-02-10 주식회사 아남에너지 A boiler-waste heat recovery hot-water generating device
KR101680883B1 (en) 2013-09-30 2016-11-29 티에스알시 코포레이션 Ecosystem and plant using the same
CN106482208A (en) * 2016-12-14 2017-03-08 查都(上海)科技有限公司 One kind is freezed, steams, heating process system
CN110779236A (en) * 2019-11-28 2020-02-11 全球能源互联网研究院有限公司 Heat recovery's ice making system
KR20200104439A (en) * 2019-02-26 2020-09-04 한국자동차연구원 Tri-generation system for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953864A (en) * 1995-01-31 1997-02-25 Denso Corp Engine type cooling device
JP2004069276A (en) 2002-08-09 2004-03-04 Sanyo Electric Co Ltd Waste heat recovering cooling system
KR20060065875A (en) * 2004-12-10 2006-06-14 엘지전자 주식회사 Cogeneration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953864A (en) * 1995-01-31 1997-02-25 Denso Corp Engine type cooling device
JP2004069276A (en) 2002-08-09 2004-03-04 Sanyo Electric Co Ltd Waste heat recovering cooling system
KR20060065875A (en) * 2004-12-10 2006-06-14 엘지전자 주식회사 Cogeneration system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101013526B1 (en) 2009-12-22 2011-02-10 주식회사 아남에너지 A boiler-waste heat recovery hot-water generating device
KR101680883B1 (en) 2013-09-30 2016-11-29 티에스알시 코포레이션 Ecosystem and plant using the same
CN106482208A (en) * 2016-12-14 2017-03-08 查都(上海)科技有限公司 One kind is freezed, steams, heating process system
KR20200104439A (en) * 2019-02-26 2020-09-04 한국자동차연구원 Tri-generation system for fuel cell
KR102717904B1 (en) * 2019-02-26 2024-10-16 한국자동차연구원 Tri-generation system for fuel cell
CN110779236A (en) * 2019-11-28 2020-02-11 全球能源互联网研究院有限公司 Heat recovery's ice making system

Similar Documents

Publication Publication Date Title
KR100649596B1 (en) Cogeneration system
KR101295806B1 (en) Combined cycle power plant utilizing absorption heat pump for improving generating efficiency, and method for controlling thereof
KR101544221B1 (en) Integrated cooling heating and power systems
CN103727703A (en) Recycling combined cooling heating and power system
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
JP2005315127A (en) Gas turbine
KR101208459B1 (en) Organic rankine cycle turbo generation system generating cooling air and hot water
CN102809144A (en) Device and method for using two-stage jet absorption heat pump to improve thermal cycle efficiency
KR101960572B1 (en) Trigeneration system
KR20120103100A (en) Hybrid absorption type air conditioning system
KR20100089741A (en) Apparatus for feusing waste heat of air compressor
JPH10121912A (en) Combustion turbine cycle system
JP2002256970A (en) Co-generation system
JP4152140B2 (en) Waste heat absorption refrigerator
KR101188651B1 (en) Integrated energy recycling system for cogeneration
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
CN211082000U (en) Organic Rankine and reverse Carnot cycle coupled waste heat recovery system
JP3865346B2 (en) Absorption chiller / heater
KR20100030111A (en) Co-generation system
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
CN220958982U (en) Cold and hot combined supply device and taurine production line
CN118457366B (en) Absorption heat exchange device, absorption heat exchange system and absorption heat exchange system
CN201666569U (en) Pre-heating system for coal -fired power plant
JP2645948B2 (en) Hot water absorption absorption chiller / heater

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140224

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190214

Year of fee payment: 12