Nothing Special   »   [go: up one dir, main page]

KR100748891B1 - Sensor position learning method of tpms high line - Google Patents

Sensor position learning method of tpms high line Download PDF

Info

Publication number
KR100748891B1
KR100748891B1 KR1020060078650A KR20060078650A KR100748891B1 KR 100748891 B1 KR100748891 B1 KR 100748891B1 KR 1020060078650 A KR1020060078650 A KR 1020060078650A KR 20060078650 A KR20060078650 A KR 20060078650A KR 100748891 B1 KR100748891 B1 KR 100748891B1
Authority
KR
South Korea
Prior art keywords
vehicle
sensor
air pressure
acceleration
pneumatic
Prior art date
Application number
KR1020060078650A
Other languages
Korean (ko)
Inventor
문성훈
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060078650A priority Critical patent/KR100748891B1/en
Application granted granted Critical
Publication of KR100748891B1 publication Critical patent/KR100748891B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0401Signalling devices actuated by tyre pressure mounted on the wheel or tyre characterised by the type of alarm
    • B60C23/0405Mechanically generated visible signals, e.g. by using a gauge needle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0438Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver
    • B60C23/0442Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender comprising signal transmission means, e.g. for a bidirectional communication with a corresponding wheel mounted receiver the transmitted signal comprises further information, e.g. instruction codes, sensor characteristics or identification data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0471System initialisation, e.g. upload or calibration of operating parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A method for identifying a sensor position of a TPMS High Line is provided to reduce the weight of the TPMS without using an LFI by changing a logic which identifies the position of an air pressure sensor in a tire. A method for identifying a sensor position of a TPMS High Line comprises a step of receiving RF messages, such as a sensor ID, air pressure, angular acceleration, temperature through a receiver(S204). The RF messages are transmitted from air pressure sensors at an initial state. The method comprises a step of deciding whether the air pressure sensor is installed at left or right of a vehicle by using a phase difference between a normal acceleration and a tangential acceleration(S206). The method comprises a step of deciding and memorizing whether the air pressure sensor is installed in front or back of the vehicle.

Description

티피엠에스 하이라인의 센서위치 인식방법{Sensor Position Learning Method of TPMS High Line}Sensor Position Learning Method of TPMS High Line

도 1은 종래 TPMS의 구성을 개략적으로 나타낸 도면,1 is a view schematically showing the configuration of a conventional TPMS,

도 2는 본 발명에 따른 티피엠에스 하이라인의 센서위치 인식방법의 순서도,2 is a flowchart of a sensor position recognition method of a TPM high line according to the present invention;

도 3a와 도 3b는 도 2에 나타낸 공기압 센서의 좌우 구분 로직을 위해 좌측 타이어의 각가속도와 리시버가 수신하는 가속도의 파형을 나타낸 도면,3A and 3B are diagrams illustrating waveforms of angular acceleration of a left tire and acceleration received by a receiver for right and left distinct logic of the air pressure sensor shown in FIG. 2;

도 4a와 도 4b는 도 2에 나타낸 공기압 센서의 좌우 구분 로직을 위해 우측 타이어의 각가속도와 리시버가 수신하는 가속도의 파형을 나타낸 도면,4A and 4B are diagrams illustrating waveforms of angular acceleration of the right tire and acceleration received by a receiver for right and left logic of the pneumatic sensor shown in FIG. 2;

도 5는 도 2에 나타낸 공기압 센서의 전후 구분 로직을 위해 RF 수신 세기를 나타낸 도면.FIG. 5 is a diagram illustrating RF reception strength for front and rear division logic of the air pressure sensor shown in FIG. 2; FIG.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

20a,20b,20c,20d: 타이어 30a,30b,30c,30d: 공기압 센서20a, 20b, 20c, 20d: Tire 30a, 30b, 30c, 30d: Pneumatic sensor

40: 리시버40: receiver

본 발명은 TPMS 하이라인의 센서위치 인식방법에 관한 것으로서, 더욱 상세 하게는 TPMS 하이라인 타입에서 타이어내 공기압 센서의 위치를 인식하는 로직의 변경을 통하여 공기압 센서의 위치를 확인하는 LFI를 사용하지 않아도 되는 TPMS 하이라인의 센서위치 인식방법에 관한 것이다.The present invention relates to a sensor position recognition method of a TPMS high line, and more particularly, in the TPMS high line type, it is not necessary to use the LFI for identifying the position of the pneumatic sensor by changing the logic for recognizing the position of the pneumatic pressure sensor in the tire. It relates to a sensor position recognition method of the TPMS high line.

자동차 타이어의 공기압을 측정하여 운전자에게 정보를 알려주고, 규정 압력 이하로 낮아졌을 때 경고 신호를 줌으로써 사고의 위험을 미리 방지하도록 도와주는 시스템이 타이어 압력 모니터링 시스템(Tire Pressure Monitoring System; 이하, TPMS라 함)이다.The Tire Pressure Monitoring System (hereinafter referred to as TPMS) is a system that measures the air pressure in a car's tires and informs the driver and alerts the driver when the pressure has dropped below a specified pressure. )to be.

이러한 TPMS는 간접방식과 직접방식으로 구분되는데, 간접방식은 ABS(Anti-lock Brake System) 센서를 통해 각 바퀴의 회전수를 감지해 타이어의 상태를 감지하는 것이고, 직접방식은 휠(타이어)에 공기압 센서를 내장하여 타이어의 압력을 감지하는 것이다.The TPMS is classified into indirect and direct methods. The indirect method detects the tire state by detecting the rotation speed of each wheel through an anti-lock brake system (ABS) sensor, and the direct method uses the wheel (tire). The built-in air pressure sensor detects the tire pressure.

상기 간접방식은 그 신뢰성이 떨어져서 현재는 그 시스템의 사용을 허용하지 않으려는 상황이며 이에 따라 직접방식의 TPMS가 상용화되었다.The indirect method is not reliable and currently does not allow the use of the system. Accordingly, the TPMS of the direct method has been commercialized.

이 직접방식 TPMS의 타입(type)에는 하이라인(High-Line)과 로우라인(Low-Line)이 있다.There are two types of direct TPMS: high-line and low-line.

상기 로우라인은 규정 압력을 벗어난 타이어가 존재한다는 것만을 경고할 수 있는데 반해, 하이라인은 도 1에 도시된 바와 같이, 각 타이어(1a,1b,1c,1d) 부근에 4개의 LFI(Low Frequency Initiator)(3a,3b,3c,3d)를 추가하여 압력이 규정치를 벗어난 타이어의 위치를 알려줄 수 있다.The low line can only warn that there is a tire outside the prescribed pressure, whereas the high line shows four low frequency near each tire 1a, 1b, 1c, 1d, as shown in FIG. Initiators (3a, 3b, 3c, 3d) can be added to indicate the position of the tire where the pressure is out of specification.

즉, 차량의 대시보드 중앙에서 운전석과 조수석 사이에 있는 컨트롤 패널 보 드 즉, 센터페시아(center fascia)에 장착되는 리시버(4)는 하드와이어로 연결된 4개의 LFI(3a,3b,3c,3d)에 트리거 명령을 내린다.In other words, the receiver 4 mounted on the control panel board in the center of the vehicle's dashboard between the driver's seat and the passenger seat, ie the center fascia, has four LFIs (3a, 3b, 3c, 3d) connected by hardwire. Give a trigger command to

4개의 LFI는 각 타이어(1a,1b,1c,1d)에 장착된 공기압 센서(2a,2b,2c,2d)에 순차적(FL->FR->RL->RR)으로 125kHz의 저주파 전계강도신호를 보냄으로써 해당 공기압 센서(2a,2b,2c,2d)를 웨이크업(Wake up) 시켜준다.The four LFIs are 125kHz low frequency field strength signals with sequential (FL-> FR-> RL-> RR) to air pressure sensors (2a, 2b, 2c, 2d) mounted on each tire (1a, 1b, 1c, 1d). Wake up the corresponding air pressure sensors 2a, 2b, 2c, and 2d.

순차적으로 웨이크업된 공기압 센서(2a,2b,2c,2d)는 리시버(4)로 RF신호를 보내 LFI 신호를 받았다는 응답을 한다.The air pressure sensors 2a, 2b, 2c, and 2d, which are sequentially woken up, send an RF signal to the receiver 4 and respond to the reception of the LFI signal.

응답을 받은 리시버(4)는 공기압 센서(2a,2b,2c,2d)의 위치를 기억하여 시동키 온 위치의 초기 상태에서 4개의 LFI(3a,3b,3c,3d)를 이용한 자동인식(Auto-Learning)을 통해 어떤 위치의 타이어(1a,1b,1c,1d)가 저압인지 알아낸다.The receiver 4, which received the response, memorizes the positions of the air pressure sensors 2a, 2b, 2c, and 2d, and uses the four LFIs 3a, 3b, 3c, and 3d in the initial state of the start key on position. Learning to find out where the tires 1a, 1b, 1c and 1d are at low pressure.

여기서 상기 자동인식로직은 시동키 온 위치의 초기상태에서 리시버(4)가 차량에 장착된 타이어(1a,1b,1c,1d)내 공기압 센서(2a,2b,2c,2d)의 고유 ID 및 그 ID의 위치를 인식하는 로직이다.The automatic recognition logic is a unique ID of the air pressure sensors 2a, 2b, 2c, and 2d in the tires 1a, 1b, 1c, and 1d in which the receiver 4 is mounted on the vehicle in the initial state of the ignition key on position. Logic that recognizes the location of the ID.

그런데 상기 LFI(3a,3b,3c,3d)는 자동인식로직을 위해 1개의 공기압 센서(2a,2b,2c,2d)를 일 대 일로 제어해야만 하였다.However, the LFI (3a, 3b, 3c, 3d) had to control one air pressure sensor (2a, 2b, 2c, 2d) one-to-one for the automatic recognition logic.

따라서 각 타이어의 공기압 센서(2a,2b,2c,2d)별로 LFI(3a,3b,3c,3d)를 각각 구비해야 하므로 차량에 동일한 LFI를 4개나 장착하여야 하고 이에 따라 TPMS의 원가가 상승하고 중량이 증가하며, 라인 조립시에 시간이 많이 소요되는 문제점이 있었다.Therefore, the LFIs (3a, 3b, 3c, 3d) must be provided for each tire of the tire pressure sensors (2a, 2b, 2c, 2d). Therefore, four identical LFIs must be installed in the vehicle, thereby increasing the cost of the TPMS and weight. This increases, there was a problem that takes a lot of time when assembling the line.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 더욱 상세하게는 TPMS 하이라인 타입에서 타이어내 공기압 센서의 위치를 인식하는 로직의 변경을 통하여 LFI를 사용하지 않음으로써 TPMS의 원가를 절감하고 중량을 감소하며, 라인 조립 공정에서 걸리는 시간을 단축할 수 있는 TPMS 하이라인의 센서위치 인식방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, more specifically, by reducing the cost and weight of the TPMS by not using the LFI through the change of logic to recognize the position of the air pressure sensor in the tire in the TPMS high-line type The purpose of the present invention is to provide a method for recognizing the sensor position of a TPMS high line which can reduce the time required for the assembly process and reduce the time required.

상술한 목적을 달성하기 위한 본 발명의 실시예에 따른 TPMS 하이라인의 센서위치 인식방법은, 차량의 전륜좌우와 후륜좌우 타이어에 장착된 공기압 센서와, 리시버로 이루어진 하이라인 타입의 TPMS에서 센서위치 인식로직을 수행하는 방법에 있어서,Sensor position recognition method of the TPMS high line according to an embodiment of the present invention for achieving the above object, the sensor position in the high-line type TPMS consisting of a pneumatic sensor mounted on the front wheel left and right and rear wheel left and right tires of the vehicle, and the receiver In the method of performing recognition logic,

상기 차량의 시동키가 ON 포지션에 위치된 초기 상태에서 각 공기압 센서에서 보내온 센서 ID, 공기압, 각가속도, 온도 등을 포함하는 RF 메시지를 리시버에서 수신하는 제1단계와, 상기 리시버에서 수신된 RF 메시지에 포함된 각가속도를 이루는 법선가속도의 위상과 접선가속도의 위상 차이를 이용하여 공기압 센서가 차량의 좌측에 장착되었는지 우측에 장착되었는지를 판단하는 제2단계와, 상기 리시버에서 수신된 RF신호의 수신감도 세기의 차이를 이용하여 공기압 센서가 차량의 전륜에 장착되었는지 후륜에 장착되었는지를 판단/기억하는 제3단계로 이루어지는 것을 특징으로 한다.A first step of receiving, at the receiver, an RF message including a sensor ID, air pressure, angular acceleration, temperature, etc. sent from each air pressure sensor in an initial state where the start key of the vehicle is in the ON position; and the RF message received at the receiver. A second step of determining whether the pneumatic pressure sensor is mounted on the left side or the right side of the vehicle using the phase difference between the normal acceleration and the tangential acceleration included in the angular acceleration; and the reception sensitivity of the RF signal received from the receiver. And a third step of determining / remembering whether the air pressure sensor is mounted on the front wheel or the rear wheel of the vehicle using the difference in intensity.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.

도 5에 개략적으로 도시된 바와 같이, 본 발명에 따른 TPMS는 차량 FR, FL, RR, RL 위치의 타이어(20a,20b,20c,20d)에 각각 장착되는 4개의 공기압 센서(30a,30b,30c,30d)와, 4개의 공기압 센서(30a,30b,30c,30d)로부터 공기압 센서 ID 및 압력정보를 수신하고 차량의 센터페시아에 장착되는 1개의 리시버(40)로 이루어진다.As schematically shown in Fig. 5, the TPMS according to the present invention is provided with four pneumatic pressure sensors 30a, 30b and 30c respectively mounted on the tires 20a, 20b, 20c and 20d in the vehicle FR, FL, RR and RL positions. 30d and one receiver 40 receiving the air pressure sensor ID and the pressure information from the four air pressure sensors 30a, 30b, 30c, and 30d and mounted on the center fascia of the vehicle.

상기 공기압 센서(30a,30b,30c,30d)는 웨이크업시 타이어(20a,20b,20c,20d)의 RF 메시지인, 센서 ID, 공기압, 온도, 가속도)를 리시버(40)에 무선으로 송신한다.The air pressure sensors 30a, 30b, 30c, and 30d wirelessly transmit the sensor ID, air pressure, temperature, and acceleration, which are RF messages of the tires 20a, 20b, 20c, and 20d, to the receiver 40 during wakeup.

상기 공기압 센서(30a,30b,30c,30d) 내부에는 가속도 센서가 장착되어 법선가속도와 접선가속도의 벡터합으로 이루어지는 각가속도를 리시버(40)로 전송하고, 리시버(40)는 이 각가속도 성분을 이루는 법선가속도와 접선가속도의 위상차로써 상기 공기압 센서(30a,30b,30c,30d)의 좌우 장착 위치를 구분한다.An acceleration sensor is mounted inside the air pressure sensors 30a, 30b, 30c, and 30d to transmit the angular acceleration, which is a vector sum of the normal acceleration and the tangential acceleration, to the receiver 40, and the receiver 40 forms the angular acceleration component. The left and right mounting positions of the pneumatic pressure sensors 30a, 30b, 30c, and 30d are distinguished by the phase difference between the acceleration and the tangential acceleration.

즉, 접선가속도가 법선가속도보다 90° 앞서면 우측에 장착된 공기압 센서(30b,30d)로 판단하고, 법선가속도가 접선가속도보다 90° 앞서면 좌측에 장착된 공기압 센서(30a,30c)로 판단한다.That is, when the tangential acceleration is 90 ° ahead of the normal acceleration, it is determined by the pneumatic sensors 30b, 30d mounted on the right side, and when the normal acceleration is 90 ° ahead of the tangential acceleration, it is determined by the pneumatic sensors 30a, 30c mounted on the left side.

또한, 리시버(40)는 센터페시아에 장착되는 장착 특성상 전륜에 위치한 공기압 센서(30a,30b)에서 송신하는 RF신호의 수신감도 세기와, 후륜에 위치한 공기압 센서(30c,30d)에서 송신하는 RF신호 수신감도 세기에서 차이가 존재한다.In addition, the receiver 40 has a reception sensitivity strength of the RF signal transmitted from the pneumatic pressure sensors 30a and 30b located at the front wheel and an RF signal transmitted from the pneumatic pressure sensors 30c and 30d located at the rear wheel due to mounting characteristics mounted on the center fascia. There is a difference in reception strength.

이러한 RF신호의 수신감도 세기의 차이를 감안하여 수신감도 세기가 상대적으로 크면 차량의 전륜에 공기압 센서(30a,30b)가 장착된 것으로 판단하고, 수신감 도가 상대적으로 작으면 차량의 후륜에 공기압 센서(30a,30b)가 장착된 것으로 판단한다.In consideration of the difference in the received sensitivity of the RF signal, if the received sensitivity is relatively large, it is determined that the pneumatic sensors 30a, 30b are mounted on the front wheel of the vehicle, and if the received sensitivity is relatively small, the pneumatic sensor is mounted on the rear wheel of the vehicle. It is determined that 30a and 30b are mounted.

도 2는 본 발명에 따른 티피엠에스 하이라인의 센서위치 인식방법의 순서도이다.2 is a flowchart illustrating a sensor position recognition method of a TPS high line according to the present invention.

차량의 시동키가 시동 전에 각종 경고등을 점검하면서 차량의 모든 전기장치를 사용할 수 있는 ON 포지션에 위치되면(S202), TPMS의 리시버(40)에서는 각 타이어(20a,20b,20c,20d)에 장착된 공기압 센서(30a,30b,30c,30d)를 웨이크업(Wake up) 시켜준다.When the vehicle's ignition key is positioned at the ON position where all electric devices of the vehicle can be used while checking various warning lights before starting (S202), the receiver 40 of the TPMS is mounted on each tire 20a, 20b, 20c, 20d. Wake up the pneumatic pressure sensor (30a, 30b, 30c, 30d).

이와 같은 상태에서 리시버(40)는 웨이크업된 공기압 센서(30a,30b,30c,30d)에서 전송하는 각 공기압 센서의 RF메시지 즉, 센서 ID, 공기압, 온도, 각가속도를 수신한다(S204).In such a state, the receiver 40 receives an RF message of each air pressure sensor transmitted from the wake-up air pressure sensors 30a, 30b, 30c, and 30d, that is, sensor ID, air pressure, temperature, and angular acceleration (S204).

상기 리시버(40)는 RF메시지 중 각가속도 성분의 법선가속도와 접선가속도 사이에 위상차가 존재하는지 판단하여(S206), 위상차가 존재하는 경우에 법선가속도의 위상이 접선가속도의 위상보다 90°앞서는가를 판단한다(S208).The receiver 40 determines whether there is a phase difference between the normal acceleration and the tangential acceleration of the angular acceleration component in the RF message (S206), and determines that the phase of the normal acceleration is 90 ° ahead of the phase of the tangential acceleration in the presence of the phase difference. (S208).

상기 법선가속도의 위상이 접선가속도의 위상보다 90°앞서는 경우에 차량의 좌측에 공기압 센서(30a,30c)가 장착된 것으로 판단한다(S210).When the phase of the normal acceleration is 90 ° ahead of the phase of the tangential acceleration, it is determined that the air pressure sensors 30a and 30c are mounted on the left side of the vehicle (S210).

도 3에 나타낸 좌측 타이어(20a,20c)의 도면에서 타이어(20a,20c)의 전진 회전시 각가속도 a는 법선가속도(a1)과 접선가속도(a2)의 벡터합으로 이루어지는 것을 알 수 있다.It can be seen from the diagrams of the left tires 20a and 20c shown in FIG. 3 that the angular acceleration a is the vector sum of the normal acceleration a1 and the tangential acceleration a2 during the forward rotation of the tires 20a and 20c.

그리고 법선가속도 a1는 rθcos(γt)이고, 접선가속도 a2는 rθsin(γt)으로 위상차가 90°발생한다.The normal acceleration a1 is rθcos (γt), and the tangential acceleration a2 is rθsin (γt), resulting in a phase difference of 90 °.

여기서 θ는 회전한 각도이고, r는 동반경이며, γ는 a와 a2 사이의 각도이다.Where θ is the rotated angle, r is the companion diameter, and γ is the angle between a and a2.

이와 같이, 차량의 전진 주행시 차량의 좌측에 장착된 타이어(20a,20c) 내부의 법선가속도 a1의 위상은 접선가속도 a2의 위상보다 90°앞서게 되고, 실차상태에서 a1이 a2보다 90°보다 앞선다는 정보 즉 각가속도 정보를 받은 리시버(40)는 좌측에 장착된 공기압 센서(30a,30c)로 판단할 수 있게 된다.As such, the phase of the normal acceleration a1 in the tires 20a and 20c mounted on the left side of the vehicle during the forward driving of the vehicle is 90 ° ahead of the phase of the tangential acceleration a2, and a1 is ahead of 90 ° in the actual vehicle state. The receiver 40 receiving the information, that is, the angular acceleration information, can be determined by the air pressure sensors 30a and 30c mounted on the left side.

차량의 좌측에 장착된 공기압 센서(30a,30c)로 판단한 후에, 리시버(40)는 좌측에 장착된 공기압 센서(30a,30c)에서 보내온 RF신호의 수신감도 세기를 기준 dB(-50dBm)와 비교하여(S212), 기준 dBm보다 크면 전륜에 장착된 것 즉, 차량의 FL 위치에 장착된 공기압 센서(30a)로 판단/기억하고(S214), 기준 dBm보다 작으면 후륜에 장착된 것 즉, 차량의 RL 위치에 장착된 공기압 센서(30c)로 판단/기억한다(S222).After judging by the pneumatic pressure sensors 30a and 30c mounted on the left side of the vehicle, the receiver 40 compares the reception sensitivity strength of the RF signal sent from the pneumatic pressure sensors 30a and 30c mounted on the left side with a reference dB (-50 dBm). (S212), when larger than the reference dBm is mounted on the front wheel, that is, judged / memorized by the air pressure sensor 30a mounted at the FL position of the vehicle (S214), if smaller than the reference dBm is mounted on the rear wheel, that is, the vehicle The air pressure sensor 30c mounted at the RL position is determined / memorized (S222).

도 5에서, 센터페시아 내에 장착되는 리시버(40)의 장착 특성상 전륜에 장착된 공기압 센서(30a,30b)와 리시버(40) 사이의 거리가 후륜에 장착된 공기압 센서(30c,30d)와 리시버(40) 사이의 거리보다 짧고, 리시버(40)에 수신되는 RF신호의 수신감도 세기는 거리의 제곱에 반비례하므로, 전륜에 장착된 공기압 센서(30a,30b)에서 보내온 RF 신호의 수신감도 세기가 후륜에 장착된 공기압 센서(30c,30d)에서 보내온 RF 신호의 수신감도 세기보다 클 수밖에 없다.In FIG. 5, the distance between the pneumatic sensors 30a and 30b mounted on the front wheel and the receiver 40 due to the mounting characteristics of the receiver 40 mounted in the center fascia is the pneumatic sensors 30c and 30d mounted on the rear wheel and the receiver ( Since the reception sensitivity strength of the RF signal received at the receiver 40 is inversely proportional to the square of the distance, the reception sensitivity strength of the RF signal sent from the pneumatic sensors 30a and 30b mounted on the front wheel is less than the distance between the distances 40). The reception sensitivity of the RF signal sent from the air pressure sensors 30c and 30d mounted in the air is inevitably greater.

실제로 전륜에 장착된 공기압 센서(30a,30b)에서 보내온 RF신호의 수신감도 세기는 약 -40dBm 정도이고, 후륜에 장착된 공기압 센서(30c,30d)에서 보내온 RF 신호의 수신감도 세기는 약 -60dBm 정도로서, 실차상태에서 그 사이의 값인 -50dBm을 기준 dBm으로 하여 그 크기를 비교함으로써 리시버(40)는 공기압 센서가 전륜에 장착되었는지 또는 후륜에 장착되었는지 판단할 수 있게 된다.In fact, the reception sensitivity strength of the RF signal sent from the pneumatic sensors 30a and 30b mounted on the front wheel is about -40 dBm, and the reception sensitivity strength of the RF signal sent from the pneumatic sensors 30c and 30d mounted on the rear wheel is about -60 dBm. As a precision, by comparing the magnitude between -50 dBm, which is a value between them, as a reference dBm in the actual vehicle state, the receiver 40 can determine whether the air pressure sensor is mounted on the front wheel or the rear wheel.

다음, 상기 S208단계에서 법선가속도의 위상이 접선가속도의 위상보다 90°앞서지 않는 경우에 차량의 우측에 공기압 센서(30b,30d)가 장착된 것으로 판단한다(S232).Next, when the phase of the normal acceleration is not 90 ° ahead of the phase of the tangential acceleration in step S208, it is determined that the air pressure sensors 30b and 30d are mounted on the right side of the vehicle (S232).

도 4에 나타낸 우측 타이어(20b,20d)의 도면에서 타이어(20b,20d)의 전진 회전시 각가속도 a는 법선가속도(a1)과 접선가속도(a2)의 벡터합으로 이루어지는 것을 알 수 있다.In the diagram of the right tires 20b and 20d shown in FIG. 4, it can be seen that the angular acceleration a in the forward rotation of the tires 20b and 20d consists of a vector sum of the normal acceleration a1 and the tangential acceleration a2.

그리고 법선가속도 a1는 rθcos(γt)이고, 접선가속도 a2는 rθsin(γt)으로 위상차가 90°발생한다.The normal acceleration a1 is rθcos (γt), and the tangential acceleration a2 is rθsin (γt), resulting in a phase difference of 90 °.

여기서 θ는 회전한 각도이고, r는 동반경이며, γ는 a와 a2 사이의 각도이다.Where θ is the rotated angle, r is the companion diameter, and γ is the angle between a and a2.

이와 같이, 차량의 전진 주행시 차량의 우측에 장착된 타이어(20b,20d) 내부의 접선가속도 a2의 위상은 법선가속도 a1의 위상보다 90°앞서게 되고, 실차상태에서 a2이 a1보다 90°보다 앞선다는 정보 즉 각가속도 정보를 받은 리시버(40)는 우측에 장착된 공기압 센서(30b,30d)로 판단할 수 있게 된다.As such, the phase of the tangential acceleration a2 inside the tires 20b and 20d mounted on the right side of the vehicle is 90 ° ahead of the normal acceleration a1 when the vehicle is driven forward, and a2 is ahead of 90 ° in the actual vehicle state. The receiver 40 receiving the information, that is, the angular acceleration information, can be determined by the air pressure sensors 30b and 30d mounted on the right side.

차량의 우측에 장착된 공기압 센서(30b,30d)로 판단한 후에, 리시버(40)는 우측에 장착된 공기압 센서(30b,30d)에서 보내온 RF신호의 수신감도 세기를 기준 dB(-50dBm)와 비교하여(S234), 기준 dBm보다 크면 전륜에 장착된 것 즉, 차량의 FR 위치에 장착된 공기압 센서(30b)로 판단/기억하고(S236), 기준 dBm보다 작으면 후륜에 장착된 것 즉, 차량의 RR 위치에 장착된 공기압 센서(30d)로 판단/기억한다(S242).After judging by the pneumatic pressure sensors 30b and 30d mounted on the right side of the vehicle, the receiver 40 compares the reception sensitivity strength of the RF signal sent from the pneumatic pressure sensors 30b and 30d mounted on the right side with a reference dB (-50 dBm). (S234), if greater than the reference dBm is mounted on the front wheels, that is, judging / memorized by the air pressure sensor 30b mounted at the FR position of the vehicle (S236), if smaller than the reference dBm is mounted on the rear wheels, that is, the vehicle The air pressure sensor 30d mounted at the RR position is determined / memorized (S242).

이와 같이 본원발명의 리시버(40)는 각가속도를 구성하는 법선가속도와 접선가속도의 위상 차이로 공기압 센서의 좌우 위치를 판단하고, 수신감도의 차이를 이용하여 공기압 센서의 전후 위치를 판단하여 4개의 LFI를 별도로 구비하지 않고서도 공기압 센서의 위치를 확인할 수 있다.As described above, the receiver 40 of the present invention determines the left and right positions of the pneumatic sensors based on the phase difference between the normal acceleration and the tangential acceleration constituting the angular acceleration, and determines the front and rear positions of the pneumatic sensors using the difference in the reception sensitivity. You can check the position of the pneumatic sensor without separately provided.

이상에서 살펴본 바와 같이 본 발명에 의하면, TPMS 하이라인 타입에서 타이어내 공기압 센서의 위치를 인식하는 로직의 변경을 통하여 LFI를 별도로 구비하지 않아도 되어 TPMS의 원가를 절감하고 중량을 감소하며, 라인 조립 공정에서 걸리는 시간을 단축할 수 있다.As described above, according to the present invention, it is not necessary to separately provide an LFI by changing the logic for recognizing the position of the air pressure sensor in the tire in the TPMS highline type, thereby reducing the cost of TPMS and reducing the weight, and the line assembly process. This can shorten the time it takes.

Claims (6)

차량의 전륜좌우와 후륜좌우 타이어(20a,20b,20c,20d)에 장착된 공기압 센서(30a,30b,30c,30d)와, 리시버(40)로 이루어진 하이라인 타입의 TPMS에서 센서위치 인식로직을 수행하는 방법에 있어서,The sensor position recognition logic is applied to the high-line type TPMS consisting of the pneumatic sensors 30a, 30b, 30c, and 30d mounted on the front, left and right tires 20a, 20b, 20c, and 20d of the vehicle and the receiver 40. In the method of carrying out, 상기 차량의 시동키가 ON 포지션에 위치된 초기 상태에서 각 공기압 센서(30a,30b,30c,30d)에서 보내온 센서 ID, 공기압, 각가속도, 온도 등을 포함하는 RF 메시지를 리시버(40)에서 수신하는 제1단계와,The receiver 40 receives an RF message including the sensor ID, air pressure, angular acceleration, temperature, and the like sent from each of the air pressure sensors 30a, 30b, 30c, and 30d in the initial state in which the start key of the vehicle is in the ON position. The first step, 상기 리시버(40)에서 수신된 RF 메시지에 포함된 각가속도를 이루는 법선가속도의 위상과 접선가속도의 위상 차이를 이용하여 공기압 센서가 차량의 좌측에 장착되었는지 우측에 장착되었는지를 판단하는 제2단계와,A second step of determining whether the pneumatic pressure sensor is mounted on the left side or the right side of the vehicle using the phase difference between the normal acceleration and the tangential acceleration constituting the angular acceleration included in the RF message received by the receiver 40; 상기 리시버(40)에서 수신된 RF신호의 수신감도 세기의 차이를 이용하여 공기압 센서가 차량의 전륜에 장착되었는지 후륜에 장착되었는지를 판단/기억하는 제3단계로 이루어지는 것을 특징으로 하는 TPMS 하이라인의 센서위치 인식방법.And a third step of determining / remembering whether the pneumatic sensor is mounted on the front wheel or the rear wheel of the vehicle by using the difference in the received sensitivity of the RF signal received by the receiver 40. Sensor position recognition method. 제 1 항에 있어서,The method of claim 1, 상기 제2단계에서 법선가속도의 위상이 접선가속도의 위상보다 90°앞서는 경우에 차량의 좌측에 공기압 센서(30a,30c)가 장착된 것으로 판단하는 것을 특징으로 하는 TPMS 하이라인의 센서위치 인식방법.And in the second step, when the phase of the normal acceleration is 90 ° ahead of the phase of the tangential acceleration, it is determined that the pneumatic sensors (30a, 30c) are mounted on the left side of the vehicle. 제 2 항에 있어서,The method of claim 2, 상기 제3단계에서 상기 공기압 센서(30a,30c)에서 보내온 RF신호의 수신감도 세기를 기준 dBm와 비교하여, 기준 dBm보다 크면 차량의 FL 위치에 장착된 공기압 센서(30a)로 판단/기억하고, 기준 dBm보다 작으면 차량의 RL 위치에 장착된 공기압 센서(30c)로 판단/기억하는 것을 특징으로 하는 TPMS 하이라인의 센서위치 인식방법.In the third step, the reception sensitivity strength of the RF signal sent from the pneumatic pressure sensors 30a and 30c is compared with the reference dBm, and when it is larger than the reference dBm, the air pressure sensor 30a mounted at the FL position of the vehicle is determined / remembered. If less than the reference dBm sensor position recognition method of the TPMS high line, characterized in that it is determined / memorized by the air pressure sensor (30c) mounted at the RL position of the vehicle. 제 1 항에 있어서,The method of claim 1, 상기 제2단계에서 접선가속도의 위상이 법선가속도의 위상보다 90°앞서는 경우에 차량의 우측에 공기압 센서(30b,30d)가 장착된 것으로 판단하는 것을 특징으로 하는 TPMS 하이라인의 센서위치 인식방법.And detecting the air pressure sensors (30b, 30d) on the right side of the vehicle when the phase of the tangential acceleration is 90 ° ahead of the phase of the normal acceleration in the second step. 제 4 항에 있어서,The method of claim 4, wherein 상기 제3단계에서 상기 공기압 센서(30b,30d)에서 보내온 RF신호의 수신감도 세기를 기준 dBm와 비교하여, 기준 dBm보다 크면 차량의 FR 위치에 장착된 공기압 센서(30b)로 판단/기억하고, 기준 dBm보다 작으면 차량의 RR 위치에 장착된 공기압 센서(30d)로 판단/기억하는 것을 특징으로 하는 TPMS 하이라인의 센서위치 인식방법.In the third step, the reception sensitivity intensity of the RF signal sent from the pneumatic pressure sensors 30b and 30d is compared with the reference dBm, and when it is larger than the reference dBm, it is determined / memorized by the pneumatic sensor 30b mounted at the FR position of the vehicle. If less than the reference dBm sensor position recognition method of the TPMS high line, characterized in that it is determined / memorized by the pneumatic pressure sensor (30d) mounted at the RR position of the vehicle. 제 3 항 또는 제 5 항에 있어서,The method according to claim 3 or 5, 상기 RF신호의 수신감도 세기와 비교되는 기준 dBm는 -50dBm인 것을 특징으로 하는 TPMS 하이라인의 센서위치 인식방법.And a reference dBm compared with the received sensitivity strength of the RF signal is -50 dBm.
KR1020060078650A 2006-08-21 2006-08-21 Sensor position learning method of tpms high line KR100748891B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060078650A KR100748891B1 (en) 2006-08-21 2006-08-21 Sensor position learning method of tpms high line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060078650A KR100748891B1 (en) 2006-08-21 2006-08-21 Sensor position learning method of tpms high line

Publications (1)

Publication Number Publication Date
KR100748891B1 true KR100748891B1 (en) 2007-08-13

Family

ID=38602751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060078650A KR100748891B1 (en) 2006-08-21 2006-08-21 Sensor position learning method of tpms high line

Country Status (1)

Country Link
KR (1) KR100748891B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921300B1 (en) 2008-05-07 2009-10-14 현대자동차주식회사 Method for recognizing position of air pressure sensor in TPMS
KR101571109B1 (en) 2009-07-20 2015-12-04 현대모비스 주식회사 Position Distiction Method Using TPMS And Position Distiction Device Thereof
US10067897B1 (en) 2017-05-02 2018-09-04 Bendix Commercial Vehicle Systems Llc System and method for determining the positions of side collision avoidance sensors on a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321511A (en) * 2001-04-26 2002-11-05 Nippon Seiki Co Ltd Tire inflation pressure monitoring device and id registration method for the same
JP2003154825A (en) * 2001-11-19 2003-05-27 Nissan Motor Co Ltd Tire air pressure monitoring device
US6633229B1 (en) 1998-12-09 2003-10-14 Beru Aktiengesellschaft Method for assigning identifying elements in signals emitted by transmitters in a tire pressure indicating system to the wheels on which the transmitters are mounted
KR20040012571A (en) * 2002-07-31 2004-02-11 가부시키가이샤 덴소 Id registration method for tire air pressure sensor, id registration system, tire air pressure monitoring system, tire air pressure sensor, and smart control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633229B1 (en) 1998-12-09 2003-10-14 Beru Aktiengesellschaft Method for assigning identifying elements in signals emitted by transmitters in a tire pressure indicating system to the wheels on which the transmitters are mounted
JP2002321511A (en) * 2001-04-26 2002-11-05 Nippon Seiki Co Ltd Tire inflation pressure monitoring device and id registration method for the same
JP2003154825A (en) * 2001-11-19 2003-05-27 Nissan Motor Co Ltd Tire air pressure monitoring device
KR20040012571A (en) * 2002-07-31 2004-02-11 가부시키가이샤 덴소 Id registration method for tire air pressure sensor, id registration system, tire air pressure monitoring system, tire air pressure sensor, and smart control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100921300B1 (en) 2008-05-07 2009-10-14 현대자동차주식회사 Method for recognizing position of air pressure sensor in TPMS
KR101571109B1 (en) 2009-07-20 2015-12-04 현대모비스 주식회사 Position Distiction Method Using TPMS And Position Distiction Device Thereof
US10067897B1 (en) 2017-05-02 2018-09-04 Bendix Commercial Vehicle Systems Llc System and method for determining the positions of side collision avoidance sensors on a vehicle

Similar Documents

Publication Publication Date Title
JP4821714B2 (en) Tire theft detection device
KR100537739B1 (en) Transmitter of tire condition monitoring apparatus and tire condition monitoring apparatus
US7224269B2 (en) Method and system for resetting tire pressure monitoring system for an automotive vehicle
US20040172179A1 (en) Transmitter of tire condition monitoring apparatus and tire condition monitoring apparatus
CN101585302B (en) System for automatically recognizing locations of respective tires
US9950578B2 (en) Tire air pressure detection device
JP2005138826A (en) Method and system for reporting theft and towing of vehicle
US7750798B2 (en) Wheel position detecting device that verifies accuracy of detection using trigger signal reception strength and tire air pressure detecting device including the same
US6820476B2 (en) Tire pressure monitoring system and method
KR100748891B1 (en) Sensor position learning method of tpms high line
JP2019026218A (en) Tire air pressure monitoring system
KR101343168B1 (en) Auto location-distinguishable machine and method for vehicle wheel
WO2014181511A1 (en) Theft sensory system, and transmission device and reception device constituting said system
KR100748890B1 (en) Auto learning method of tpms high line
JP2006123725A (en) Tire pneumatic pressure monitoring device
CN109572335A (en) Tire localization method and system
JP2006175975A (en) Wheel position detecting device and tire air pressure detecting device equipped with the same
KR20150022448A (en) Method for Determining the Location of TPMS Sensors and the Device of Determining TPMS Location Using the Method of
JP2007237827A (en) Tire air pressure monitoring device
KR101013909B1 (en) A tire pressure monitoring system and a method of auto learning in the tire pressure monitoring system
KR100783313B1 (en) High-line tpms using a permanent magnet
KR100783958B1 (en) Method for monitoring spare tire in the tpms
KR100747355B1 (en) A tire position finding apparatus of tpms
JP6287697B2 (en) Contact avoidance system
KR20110052822A (en) A tire autolocation system thereof in a tire pressure monitoring system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee