KR100736909B1 - Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte - Google Patents
Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte Download PDFInfo
- Publication number
- KR100736909B1 KR100736909B1 KR1020060010157A KR20060010157A KR100736909B1 KR 100736909 B1 KR100736909 B1 KR 100736909B1 KR 1020060010157 A KR1020060010157 A KR 1020060010157A KR 20060010157 A KR20060010157 A KR 20060010157A KR 100736909 B1 KR100736909 B1 KR 100736909B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- formula
- carbonate
- electrolyte
- battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
도 1은 본 발명의 비교예 1의 비수 전해액이 적용된 단위전지의 다양한 조건에서의 충방전 특성에 관한 것이다.1 relates to charge and discharge characteristics under various conditions of a unit cell to which the nonaqueous electrolyte solution of Comparative Example 1 of the present invention is applied.
도 2는 본 발명의 실시예 2의 비수 전해액이 적용된 단위전지의 다양한 조건에서의 충방전 특성에 관한 것이다.2 is related to charge and discharge characteristics under various conditions of a unit cell to which the nonaqueous electrolyte solution of Example 2 of the present invention is applied.
도 3은 본 발명의 실시예 2의 비수 전해액이 적용된 단위전지의 다양한 조건에서 계속되는 충방전 동안 용량 유지 특성에 관한 것이다.FIG. 3 relates to capacity retention characteristics during continuous charge and discharge under various conditions of the unit cell to which the nonaqueous electrolyte of Example 2 of the present invention is applied.
본 발명은 리튬이차전지용 비수 전해액의 첨가제로 부동태 피막 안정화 및 충방전 특성 향상을 위해 사용 가능한 것으로, 보다 상세하게는 비닐실레인계 물질과 보레이트계 물질로 이루어진 새로운 첨가제를 포함하는 기능성 비수 전해액 및 이를 적용한 리튬이차전지에 관한 것이다.The present invention can be used to stabilize the passivation film and improve the charge and discharge characteristics as an additive of the non-aqueous electrolyte solution for lithium secondary batteries, and more particularly, a functional non-aqueous electrolyte solution containing a new additive made of a vinyl silane-based material and a borate-based material and applying the same. It relates to a lithium secondary battery.
최근 급속한 정보통신 기술의 고도화와 더불어 급격히 성장하고 있는 휴대전화, 노트북(Note Book)PC, PDA 등 이동정보기술(Mobile Information Technology) 관련 전자기기의 필수적인 전원으로 사용되는 소형 이차전지(Secondary battery)에 대한 수요가 기하급수적으로 증가하는 추세에 있다. In recent years, with the rapid advancement of information and communication technology, small secondary batteries used as essential power sources for mobile information technology-related electronic devices such as mobile phones, notebook PCs, and PDAs are rapidly growing. Demand is growing exponentially.
각종 휴대형 정보통신기기에서 전지가 차지하는 무게비중이 노트북 PC의 경우 10∼20%, 휴대전화의 경우 50% 내외를 차지할 정도로 이차전지는 기기본체의 소형경량화에 크게 영향을 미칠 뿐만 아니라 장시간 연속사용여부가 휴대형 정보통신기기의 중요한 경쟁요소가 되고 있어 향후 이와 같은 기기의 요구를 충족해줄 수 있는 소형 이차전지의 개발이 전지산업뿐만 아니라 전자정보통신 제품의 경쟁력을 결정짓는 핵심요소가 될 것이다. The weight of battery in various portable information and communication equipment accounts for 10-20% for notebook PC and 50% for mobile phone. Secondary battery not only affects the small size and light weight of the device body but also continuously for a long time. Has become an important competitive factor for portable information and communication devices, and the development of small secondary batteries that can meet the demands of such devices will be a key factor in determining the competitiveness of not only the battery industry but also electronic information and communication products.
이동통신 시스템의 전송속도 증가추이에 따라 기존의 이차전지 (니켈-카드뮴전지, 니켈수소합금전지)로는 휴대형 정보통신기기와 소형 전자기기의 고기능화 (무선 인터넷 및 무선 데이터 통신 서비스)에 따른 에너지 소비량을 충족시킬 수 없으므로 소형 이차전지의 고에너지 밀도화, 고성능화, 고안정성이 요구되고 있다. As the transmission speed of mobile communication systems increases, the existing secondary batteries (nickel-cadmium batteries, nickel-metal hydride batteries) are used to increase energy consumption due to the high functionalization of portable information communication devices and small electronic devices (wireless Internet and wireless data communication services). Since it cannot be satisfied, high energy density, high performance, and high stability of small secondary batteries are required.
이를 위해 일본, 미국 등 선진국들은 오래전부터 국가 주도형 연구개발이 활발히 추진되어왔으며, 현재 세계적으로 가장 각광받고 있는 소형 이차전지는 리튬 이차전지이다. 리튬 이차전지 시스템은 전기화학적 산화, 환원 반응에서 생성되는 자유에너지 변화를 전기에너지로 끌어낼 수 있는 화학에너지 변환장치중의 하나로 양극, 음극 및 액체전해질(유기용매+염)로 구성되며 두 전극간 물리적 접촉 방지를 위해 박막형 격리막(separator)이 사용되고 있다. To this end, advanced countries such as Japan and the United States have been actively promoting national-led R & D for a long time, and the lithium secondary battery is the world's most popular small secondary battery. Lithium secondary battery system is one of the chemical energy converters that can bring the change of free energy generated by electrochemical oxidation and reduction into electrical energy. It consists of a positive electrode, a negative electrode and a liquid electrolyte (organic solvent + salt). Thin film separators are used to prevent contact.
리튬이차전지의 고에너지 밀도화, 고성능화 및 고안전성을 확보하기 위해서는 전극소재 뿐만 아니라 고기능성 전해질 소재의 개발이 필수적이다. 기존의 전해질 기능을 보완할 수 있는 고기능성 전해질 시스템은 부동태피막 안정화제, 과충전방지제, 난연제 등의 기능성 첨가제를 포함하는 비수 전해액이다. In order to secure high energy density, high performance, and high safety of lithium secondary batteries, development of high functional electrolyte materials as well as electrode materials is essential. A high functional electrolyte system that can supplement the existing electrolyte function is a non-aqueous electrolyte containing functional additives such as passivation film stabilizer, overcharge inhibitor, flame retardant.
리튬이온 이차전지의 경우 초기 충전시 양극인 리튬금속 산화물로부터 나온 리튬 이온이 음극인 그래파이트 전극으로 이동하여 그래파이트에 삽입된다. 이때 리튬이온과 비수 전해액 또는 염의 음이온 등의 분해산물이 반응하여 그래파이트 표면 위에 얇은 피막을 형성하게 되는데, 이러한 피막을 부동태피막(Solid electrolyte interface layer:SEI layer)이라고 한다. In the case of a lithium ion secondary battery, during initial charging, lithium ions derived from lithium metal oxide, which is a positive electrode, move to a graphite electrode, which is a negative electrode, and are inserted into graphite. At this time, decomposition products such as lithium ions and non-aqueous electrolytes or anions of salts react to form a thin film on the graphite surface. Such a film is referred to as a solid electrolyte interface layer (SEI layer).
이 부동태피막은 리튬 이온은 통과시키되 전자의 이동은 막아준다. 또한 그래파이트 음극에 리튬이온이 분자량이 큰 전해액의 유기용매 환원 부산물과 함께 삽입되면서 그래파이트 구조가 붕괴되는 것을 막아준다. 따라서 부동태피막이 형성되고 나면, 리튬 이온이 다른 유기용매나 염의 음이온 등과 추가적인 부반응을 하지 않도록 막아주어 방전 용량이 긴 충방전 동안에도 유지될 수 있도록 도와준다. 즉, 전지의 초기 충전시 음극 활물질 입자 표면에 형성되는 부동태피막의 성분 및 몰폴로지가 전지의 안정성 및 충방전 특성을 결정한다. The passivation film allows lithium ions to pass but prevents electrons from moving. In addition, the lithium ion is inserted into the graphite anode together with the organic solvent reduction by-product of the large molecular weight electrolyte to prevent the graphite structure from decaying. Therefore, after the passivation film is formed, lithium ions are prevented from further side reactions with other organic solvents or anions of salts, thereby helping to maintain the discharge capacity even during long charge and discharge. That is, the components and morphology of the passivation film formed on the surface of the negative electrode active material particles during initial charging of the battery determine the stability and charge / discharge characteristics of the battery.
이런 긍정적인 효과를 기대할 수 있는 부동태피막이 본래의 의도와는 달리 안정적으로 형성되지 못하면 오히려 유기용매의 추가적인 분해를 유도할 수 있다. 이로 인해 가역적으로 이동하는 리튬이온의 수를 감소시키고 충방전 용량의 감소 및 효율이 떨어지게 된다. 이러한 경향은 고온에서 구동시 더욱 심각하다. 따라서 고성능 이차전지를 구현하기 위해서는 혼합 유기용매 성분보다 낮은 전위에서 먼저 분해하여 안정한 부동태 피막을 형성할 수 있는 기능성 물질이 필요하다. 기능성 물질이 첨가되지 않을 경우에는 전지의 초기 충전시 사용된 유기용매의 환원분해 반응에 의해 리튬이온과 전자가 소모되어 비가역 용량을 증가시키고 형성된 저항층이 반복적인 충방전 동안 전지의 계속적인 용량감소를 유발하게 된다.If the passive film, which can expect such a positive effect, is not formed stably unlike the original intention, it may lead to further decomposition of the organic solvent. This reduces the number of lithium ions reversibly moving, decreases the charge and discharge capacity and decreases the efficiency. This tendency is more severe when driven at high temperatures. Therefore, in order to implement a high performance secondary battery, a functional material that can decompose first at a lower potential than a mixed organic solvent component to form a stable passivation film is required. If no functional substance is added, lithium ions and electrons are consumed by the reductive decomposition reaction of the organic solvent used in the initial charging of the battery, increasing irreversible capacity, and the formed resistance layer decreases the battery continuously during repeated charging and discharging. Will cause.
유기용매의 환원 분해반응으로 인한 전지 성능의 저하를 최소화하기 위해 연구가 된 부동태피막 안정화 물질은 일본 특허공개 평7-176323호에서 전해액에 이산화탄소(CO2)를 첨가하는 방법을 개시하고 있고, 일본 특허공개 평7-320779호에서 전해액에 설파이드계 화합물을 첨가하여 전해액 분해를 억제하는 방법이 기재되어 있다. 또한 대한민국 특허 제10-0412527호에서는 비닐 에스테르계 화합물을 포함한 전해액을 만들어 안정한 부동태피막을 만들려 시도하였다. The passive film stabilizing material studied to minimize the deterioration of battery performance due to the reduction and decomposition of organic solvents is disclosed in Japanese Patent Application Laid-open No. Hei 7-176323, which discloses a method of adding carbon dioxide (CO 2 ) to an electrolyte solution. Patent Publication No. 7-320779 discloses a method of suppressing decomposition of an electrolyte by adding a sulfide compound to the electrolyte. In addition, Korean Patent No. 10-0412527 attempted to make a stable passivation film by making an electrolyte solution containing a vinyl ester compound.
이와 같이 소량의 유기 또는 무기물을 첨가함으로써 초기 충전시 유기용매보다 낮은 전위에서 환원 분해하여 음극 표면에 보다 안정한 피막을 형성하려 노력하였다. 그러나 첨가되는 화합물의 특성에 따라 오히려 비가역 용량을 증가시키기도 하고, 음극인 카본과 상호작용하여 분해되거나 불안정한 피막을 형성하기도 하며, 고온이나 고율에서 이러한 경향은 보다 심해진다. In this way, by adding a small amount of organic or inorganic materials, it was tried to form a more stable film on the surface of the negative electrode by reducing decomposition at a lower potential than the organic solvent during the initial charging. However, depending on the nature of the compound added, rather than increasing the irreversible capacity, and may interact with the carbon as the negative electrode to form a decomposed or unstable coating, this tendency is more severe at high temperatures or high rates.
한편 본 발명과 관련된 종래기술로는 한국특허등록 10-0412527(비수성 전해액 및 이를 포함하는 리튬 이차 전지)와 아바흐등(D.Aurbach, K.Gamolsky, B.Marcovsky, Y.Gofer, M.Schmidt, U.Heider, On the use of vinylene caebonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta 47, 2002, 1423-1439)이 있으나 본 발명과는 기술적 구성이 다른 것 들이다.Meanwhile, the related arts related to the present invention include Korean Patent Registration 10-0412527 (a non-aqueous electrolyte and a lithium secondary battery including the same) and Abach et al. (D.Aurbach, K.Gamolsky, B.Marcovsky, Y.Gofer, M. Schmidt, U. Heider, On the use of vinylene caebonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta 47, 2002, 1423-1439).
본 발명은 종래 기술의 문제점인 전지 성능의 저하를 방지하기 위하여 비수 전해액으로 화학식 1과 2로 표시되는 비닐실레인계와 보레이트계를 리튬염이 포함된 혼합 유기용매에 첨가함으로써, 초기 충전시 유기용매보다 먼저 분해되어 안정한 피막을 형성하여 유기용매의 분해를 막는 것은 물론 고온, 고율 등의 다양한 조건에서 계속되는 충방전에서 전지 성능을 유지시키는 데 있다.The present invention provides a non-aqueous electrolyte by adding a vinyl silane-based and a borate-based to a mixed organic solvent containing lithium salts to prevent a decrease in battery performance, which is a problem of the prior art. It is not only to decompose earlier to form a stable film to prevent decomposition of the organic solvent, but also to maintain battery performance in continuous charge and discharge under various conditions such as high temperature and high rate.
이하, 본 발명에 관하여 보다 상세하게 설명하기로 한다. 본 발명의 리튬 전지용 비수 전해액은 유기용매, 리튬염 및 첨가제로 구성된다. Hereinafter, the present invention will be described in more detail. The nonaqueous electrolyte solution for lithium batteries of the present invention is composed of an organic solvent, a lithium salt, and an additive.
상기에서 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 감마부틸로락톤, 에틸메틸카보네이트, 디메톡시에탄, 디에톡시에탄, 2-메틸테트라하이드로퓨란, 디메틸설폭사이드 중에서 선택되는 1종 또는 2종 이상의 혼합용매를 사용한다. 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 제한 받는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제 조시의 혼합비에 따른다.The organic solvent is one selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma butyrolactone, ethyl methyl carbonate, dimethoxyethane, diethoxy ethane, 2-methyltetrahydrofuran, and dimethyl sulfoxide. Or two or more mixed solvents are used. The mixing ratio of the organic solvent is not particularly limited as long as the object of the present invention is not impaired, and it depends on the mixing ratio at the time of manufacturing a nonaqueous electrolyte solution for ordinary lithium batteries.
상기에서 리튬염은 리튬퍼클로레이트, 리튬헥사플루오로포스페이트, 리튬트리플레이트, 리튬비스트리플루오로메틸설포닐아미드, 리튬테트라플루오로보레이트염 중에서 선택되는 1종 또는 2종 이상의 혼합염을 사용한다. 상기 리튬염은 0.8∼2.0M의 농도로 첨가된다. 염의 농도가 0.8M 미만이면 전해액의 전도도가 낮아짐으로써 전해액 성능이 떨어지고, 2.0M을 초과할 경우는 저온에서 점도 증가에 기인한 리튬 이온의 이동도가 감소하여 저온 성능이 떨어지는 문제점이 발생할 수 있다.In the lithium salt, one or two or more mixed salts selected from lithium perchlorate, lithium hexafluorophosphate, lithium triflate, lithium bistrifluoromethylsulfonylamide, and lithium tetrafluoroborate salts are used. The lithium salt is added at a concentration of 0.8 to 2.0 M. When the concentration of the salt is less than 0.8M, the conductivity of the electrolyte is lowered and the performance of the electrolyte is lowered. When the salt concentration is higher than 2.0M, the mobility of lithium ions due to the increase in viscosity at low temperatures may decrease, resulting in a problem of low temperature performance.
상기의 비수 전해액에서 화학식 1과 화학식 2로 표시되는 비닐실레인계와 보레이트계 첨가제를 리튬염을 포함한 유기용매 100중량% 대비 0.1중량% 내지 10중량%, 보다 바람직하게는 1∼5중량% 첨가하여 제조한다. 상기 첨가제의 양이 0.1중량% 미만이면 안정한 부동태피막을 형성시킬 수 없는 문제점이 있고, 10중량%를 초과하면 전지 성능을 떨어뜨리는 문제점이 발생할 수 있다.In the nonaqueous electrolyte solution, 0.1 to 10% by weight, more preferably 1 to 5% by weight, of the vinylsilane-based and borate-based additives represented by Formulas 1 and 2 are added to 100% by weight of the organic solvent including lithium salt Manufacture. If the amount of the additive is less than 0.1% by weight, there is a problem that a stable passivation film cannot be formed, and when the amount of the additive exceeds 10% by weight, a problem of deterioration of battery performance may occur.
(화학식 1) (Formula 1)
상기의 화학식 1에서 R1, R2, R3는 H나 CH3, CH2CH3 등의 알킬기 중에서 선택된 1종 또는 2종 이상을 나타낸다. R4는 H, CH3 중에서 선택된 것을 나타낸다.In Formula 1, R 1 , R 2 , and R 3 represent one or two or more selected from alkyl groups such as H, CH 3 , and CH 2 CH 3 . R 4 represents selected from H and CH 3 .
(화학식 2) (Formula 2)
상기의 화학식 2에서 R1, R2, R3는 (OCH2CH2)nOCH3이며 n=1∼10 중에서 선택된 것을 나타낸다.In Formula 2, R 1 , R 2 , and R 3 are (OCH 2 CH 2 ) n OCH 3 and represent one selected from n = 1 to 10.
본 발명의 리튬 전지용 비수 전해액을 사용하여 통상의 방법에 따라 리튬이차전지를 제조할 수 있다.The lithium secondary battery can be manufactured by a conventional method using the nonaqueous electrolyte solution for lithium batteries of the present invention.
이하 본 발명의 내용을 실시예, 비교예 및 시험예를 통하여 구체적으로 설명한다. 그러나 이들은 본 발명을 구체적으로 설명하기 위한 것일 뿐, 본 발명을 제한하고자 하는 것은 아니다. Hereinafter, the contents of the present invention will be described in detail through Examples, Comparative Examples, and Test Examples. However, these are only for illustrating the present invention in detail, and are not intended to limit the present invention.
<실시예 1><Example 1>
에틸렌 카보네이트/디메틸 카보네이트(EC/DMC)가 1:1 부피비로 혼합된 비수성 유기용매에 1M의 LiPF6를 첨가하고 비닐실레인계 부동태피막 안정화제로서 화학식 3에 나타낸 트리아세톡시비닐실레인(Triacetoxyvinylsilane)을 전해액 대비 3중량% 첨가하여 전해액을 제조하였다.1M LiPF 6 is added to a nonaqueous organic solvent in which ethylene carbonate / dimethyl carbonate (EC / DMC) is mixed in a 1: 1 volume ratio, and triacetoxyvinylsilane represented by Chemical Formula 3 as a vinylsilane-based passivation film stabilizer. ) Was added 3% by weight relative to the electrolyte solution to prepare an electrolyte solution.
(화학식 3) (Formula 3)
<실시예 2><Example 2>
실시예 1과 동일한 과정으로 전해액을 제조하였으며, 기본 전해액에 트리아세톡시비닐실레인을 3중량%와 화학식 4에 나타낸 디에틸렌글라이콜보레이트를 2중량%를 첨가하였다.An electrolyte solution was prepared in the same manner as in Example 1, and 3% by weight of triacetoxy vinylsilane and 2% by weight of diethylene glycol borate shown in Chemical Formula 4 were added to the basic electrolyte solution.
(화학식 4) (Formula 4)
<비교예 1>Comparative Example 1
트리아세톡시비닐실레인과 디에틸렌글라이콜보레이트를 첨가하지 않는 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해액을 제조하였다. An electrolyte solution was prepared in the same manner as in Example 1, except that triacetoxy vinyl silane and diethylene glycol borate were not added.
<비교예 2>Comparative Example 2
트리아세톡시비닐실레인과 디에틸렌글라이콜보레이트를 첨가하지 않고 화학식 5에 나타낸 비닐렌카보네이트를 2중량%를 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해액을 제조하였다. An electrolyte solution was prepared in the same manner as in Example 1, except that 2 wt% of the vinylene carbonate represented by
(화학식 5) (Formula 5)
<시험예 1><Test Example 1>
비교예 1∼2과 실시예 1∼2에 의해 제조된 기능성 비수 전해액의 초기 방전용량을 측정하기 위하여 단위전지를 제조하였다. 전지 음극은 활물질로 흑연, 결착제로 폴리비닐리덴플루오라이드를 사용하여 구성하였고, 양극은 활물질로 LiCoO2를, 결착제로 폴리비닐리덴플루오라이드를, 도전제로 아세틸렌블랙을 사용하여 구성하였다. 상기 제조된 단위 전지를 C/10의 전류 및 4.2V 충전 전압으로 CC조건으로 충전한 후, C/10의 전류로 3.0V 까지 방전하여, 초기 방전 용량을 측정하였다. 그 결과를 하기 표1로 나타냈다. In order to measure initial discharge capacities of the functional nonaqueous electrolytes prepared in Comparative Examples 1 and 2 and Examples 1 and 2, unit cells were manufactured. The battery negative electrode was composed of graphite as the active material and polyvinylidene fluoride as the binder, and the positive electrode was composed of LiCoO 2 as the active material, polyvinylidene fluoride as the binder and acetylene black as the conductive agent. The prepared unit cell was charged under CC conditions with a current of C / 10 and a charging voltage of 4.2V, and then discharged to 3.0V with a current of C / 10, and the initial discharge capacity was measured. The results are shown in Table 1 below.
표 1. 비교예 및 실시예의 비수 전해액 초기 방전용량Table 1. Initial discharge capacity of nonaqueous electrolyte of Comparative Example and Example
<시험예 2> <Test Example 2>
비교예 1∼2와 실시예 1∼2에 의해 제조된 기능성 비수 전해액이 초기 충전동안 형성된 부동태피막 안정화제의 계면저항를 조사하였다. 그 변화는 하기 표 2와 같다. The interfacial resistance of the passive film stabilizer in which the functional nonaqueous electrolytes prepared in Comparative Examples 1 and 2 and Examples 1 and 2 were formed during initial charging was investigated. The change is shown in Table 2 below.
표 2.Table 2.
<시험예 3><Test Example 3>
비교예 1과 실시예 2에 의해 제조된 기능성 비수 전해액의 다양한 조건에서 의 충방전 특성을 알아보기 위해 시험예 1과 동일한 과정으로 단위 전지를 구성하여, 상온에서 C/2의 전류 및 4.2V 충전 전압으로 CC-CV조건으로 충전한 후, C/2의 전류로 3.0V 까지 방전, 고온에서 C/2의 전류 및 같은 조건, 그리고 상온에서 1C의 전류 및 같은 조건으로 충방전을 실시하였다. 도 1에서는 이런 다양한 충방전 조건을 걸어주었을 때 성능을 유지할 수 있는 정도를 확인하기 위해 첫 번째 충방전의 방전용량을 비교하였다.In order to determine the charge and discharge characteristics of the functional nonaqueous electrolyte prepared by Comparative Example 1 and Example 2 under various conditions, the unit cell was configured by the same procedure as in Test Example 1, and the C / 2 current and 4.2V were charged at room temperature. After charging under a CC-CV condition with a voltage, charging and discharging were performed under a C / 2 current to 3.0V, a C / 2 current at the high temperature and the same conditions, and a 1C current at the same temperature and the same conditions. In FIG. 1, the discharge capacities of the first charge / discharge were compared to confirm the degree of maintaining the performance when the various charge and discharge conditions were applied.
<시험예 4><Test Example 4>
비교예 1과 실시예 2에 의해 제조된 기능성 비수 전해액의 다양한 조건에서의 충방전 특성을 알아보기 위해 시험예 1과 동일한 과정으로 단위 전지를 구성하여, 상온에서 C/2의 전류 및 4.2V 충전 전압으로 CC-CV조건으로 충전한 후, C/2의 전류로 3.0V 까지 방전, 고온에서 C/2의 전류 및 같은 조건, 그리고 상온에서 1C의 전류 및 같은 조건에서 충방전하였다. 도 2에서는 이런 다양한 충방전 조건에서 계속되는 충방전동안 용량유지특성을 확인하였다.In order to determine the charge and discharge characteristics under various conditions of the functional nonaqueous electrolyte prepared by Comparative Example 1 and Example 2, the unit cell was configured in the same procedure as in Test Example 1, and the C / 2 current and 4.2V were charged at room temperature. After charging under a CC-CV condition with a voltage, the battery was discharged to a current of 3.0 C with a C / 2 current, charged with a current of C / 2 at high temperature and the same condition, and a current of 1C at room temperature and the same condition. In FIG. 2, the capacity maintenance characteristics were confirmed during the continuous charge and discharge under these various charge and discharge conditions.
표 1에서 확인할 수 있듯이, 기존의 리튬이차전지 산업에서 가장 우수한 성능을 나타낸다고 알려져 있는 비교예 2와 유사한 성능을 나타내는 실시예 2를 개발하였다. 또한, 표 2에서 확인할 수 있듯이, 실시예 1과 같이 트리아세톡시비닐실레인만 도입되었을 때 문제가 되는 큰 계면저항이 실시예 2와 같이 디에틸렌글라이콜보레이트가 도입되면 비교예 2의 비닐렌카보네이트와 유사한 수준으로 떨어졌다. 실시예 1의 경우 고온의 조건에서는 향상된 충방전 특성을 보이나 높은 계면저항의 문제로 고율조건에서의 충방전 특성을 저하되었다. 이를 실시예 2와 같이 해결하여 도 1에서 나타난 바와 같이 고율에서도 향상된 충방전 특성을 보이며, 도 3과 같이 계속되는 충방전 동안에도 거의 100%에 가까운 유지특성을 보인다. As can be seen in Table 1, Example 2 showing a similar performance to Comparative Example 2, which is known to show the best performance in the existing lithium secondary battery industry was developed. In addition, as can be seen in Table 2, when the diethylene glycol borate is introduced as in Example 2, the large interfacial resistance that is a problem when only triacetoxy vinyl silane is introduced as in Example 1, the vinyl of Comparative Example 2 It fell to a level similar to that of carbonate. In Example 1, although the charge and discharge characteristics were improved under high temperature conditions, the charge and discharge characteristics under high rate conditions were deteriorated due to the problem of high interface resistance. The solution was solved as in Example 2 to show improved charge and discharge characteristics even at high rates as shown in FIG. 1, and nearly 100% retention characteristics were shown even during continuous charge and discharge as shown in FIG. 3.
본 발명에서 제시된 비닐실레인계 부동태피막 안정화제와 보레이트계 음이온 고정화 물질이 함께 첨가된 비수전해액의 경우 초기 충전시 비수 전해액보다 먼저 분해되어 안정한 부동태 피막을 만들어 비수 전해액의 분해를 막고 부반응을 억제하여 방전 용량을 증가시킨다. 또한 열에 약한 리튬헥사플루오로포스페이트와 같은 리튬염을 포함하는 전해액에 사용하여도 고온 충방전시 우수한 충방전 특성을 보임은 물론, 고율에서의 충방전 특성도 향상된다. 뿐만 아니라 가격 경쟁력에 있어서도 다른 물질에 비해 유리하다.In the case of the non-aqueous electrolyte added with the vinylsilane-based passivation film stabilizer and the borate-based anion-immobilizing material presented in the present invention, it is decomposed before the non-aqueous electrolyte at the time of initial charging to make a stable passivation film to prevent the decomposition of the non-aqueous electrolyte and suppress side reactions to discharge. To increase the dose. In addition, even when used in an electrolyte solution containing a lithium salt, such as lithium hexafluorophosphate, which is weak in heat, it exhibits excellent charge and discharge characteristics during high temperature charge and discharge, and also improves charge and discharge characteristics at high rates. In addition, it is advantageous in terms of price competitiveness over other materials.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060010157A KR100736909B1 (en) | 2006-02-02 | 2006-02-02 | Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060010157A KR100736909B1 (en) | 2006-02-02 | 2006-02-02 | Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100736909B1 true KR100736909B1 (en) | 2007-07-10 |
Family
ID=38503623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060010157A KR100736909B1 (en) | 2006-02-02 | 2006-02-02 | Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100736909B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9653726B2 (en) | 2013-02-06 | 2017-05-16 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery comprising positive electrode comprising sacrificial positive active material |
WO2018169369A1 (en) * | 2017-03-17 | 2018-09-20 | 주식회사 엘지화학 | Electrolyte additive and lithium secondary battery electrolyte comprising same |
CN110168797A (en) * | 2017-03-17 | 2019-08-23 | 株式会社Lg化学 | For the electrolyte of lithium secondary battery and including the lithium secondary battery of electrolyte |
KR20200127374A (en) | 2019-05-02 | 2020-11-11 | 한밭대학교 산학협력단 | Electrolyte additives for secondary battery, electrolyte comprising the same and lithiumsecondary battery comprising the electrolyte |
CN114512713A (en) * | 2021-09-30 | 2022-05-17 | 中国科学院苏州纳米技术与纳米仿生研究所 | Single-ion conductor polymer solid electrolyte and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729557A (en) * | 1993-07-12 | 1995-01-31 | Fuji Photo Film Co Ltd | Nonaqueous battery |
KR20010005630A (en) * | 1997-03-27 | 2001-01-15 | 스타르크, 카르크 | Method For Producing Shaped Bodies For Lithium Ion Batteries |
KR20040045322A (en) * | 2002-11-21 | 2004-06-01 | 가부시끼가이샤 히다치 세이사꾸쇼 | Boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochemical devices |
KR20050062341A (en) * | 2003-12-19 | 2005-06-23 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
KR20060036931A (en) * | 2003-06-25 | 2006-05-02 | 도레이 가부시끼가이샤 | Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell |
-
2006
- 2006-02-02 KR KR1020060010157A patent/KR100736909B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0729557A (en) * | 1993-07-12 | 1995-01-31 | Fuji Photo Film Co Ltd | Nonaqueous battery |
KR20010005630A (en) * | 1997-03-27 | 2001-01-15 | 스타르크, 카르크 | Method For Producing Shaped Bodies For Lithium Ion Batteries |
KR20040045322A (en) * | 2002-11-21 | 2004-06-01 | 가부시끼가이샤 히다치 세이사꾸쇼 | Boron-containing compound, ion-conductive polymer and polyelectrolyte for electrochemical devices |
KR20060036931A (en) * | 2003-06-25 | 2006-05-02 | 도레이 가부시끼가이샤 | Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell |
KR20050062341A (en) * | 2003-12-19 | 2005-06-23 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9653726B2 (en) | 2013-02-06 | 2017-05-16 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery comprising positive electrode comprising sacrificial positive active material |
WO2018169369A1 (en) * | 2017-03-17 | 2018-09-20 | 주식회사 엘지화학 | Electrolyte additive and lithium secondary battery electrolyte comprising same |
KR20180106973A (en) * | 2017-03-17 | 2018-10-01 | 주식회사 엘지화학 | Electrolyte additive and electrolyte solution for lithium secondary battery comprising the same |
CN109863635A (en) * | 2017-03-17 | 2019-06-07 | 株式会社Lg化学 | Electrolyte additive and the electrolyte for lithium secondary battery including the electrolyte additive |
CN110168797A (en) * | 2017-03-17 | 2019-08-23 | 株式会社Lg化学 | For the electrolyte of lithium secondary battery and including the lithium secondary battery of electrolyte |
US11031628B2 (en) | 2017-03-17 | 2021-06-08 | Lg Chem, Ltd. | Electrolyte additive and electrolyte for lithium secondary battery including the same |
CN109863635B (en) * | 2017-03-17 | 2021-12-24 | 株式会社Lg化学 | Electrolyte additive and electrolyte for lithium secondary battery comprising the same |
KR102402107B1 (en) * | 2017-03-17 | 2022-05-26 | 주식회사 엘지에너지솔루션 | Electrolyte additive and electrolyte solution for lithium secondary battery comprising the same |
US11476499B2 (en) | 2017-03-17 | 2022-10-18 | Lg Energy Solution, Ltd. | Electrolyte additive and electrolyte for lithium secondary battery including the same |
KR20200127374A (en) | 2019-05-02 | 2020-11-11 | 한밭대학교 산학협력단 | Electrolyte additives for secondary battery, electrolyte comprising the same and lithiumsecondary battery comprising the electrolyte |
CN114512713A (en) * | 2021-09-30 | 2022-05-17 | 中国科学院苏州纳米技术与纳米仿生研究所 | Single-ion conductor polymer solid electrolyte and preparation method and application thereof |
CN114512713B (en) * | 2021-09-30 | 2024-01-30 | 中国科学院苏州纳米技术与纳米仿生研究所 | Single-ion conductor polymer solid electrolyte and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100758570B1 (en) | Electrochemical cells providing overcharge protection | |
KR100817695B1 (en) | Electrochemical cells for providing overcharge protection | |
US8808924B2 (en) | Electrolyte comprising eutectic mixture and secondary battery using the same | |
KR100467453B1 (en) | Electrolyte for lithium secondary batteries and lithium secondary batteries comprising the same | |
KR101073233B1 (en) | Non-aqueous electrolyte and electrochemical device comprising the same | |
EP1679760A1 (en) | Electrolytes, cells and methods of forming passivation layers | |
KR100813309B1 (en) | Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same | |
KR100736909B1 (en) | Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte | |
US7422827B2 (en) | Nonaqueous electrolyte | |
KR20040084858A (en) | Positive Electrode, Non-Aqueous Electrolyte Secondary Battery, and Method of Manufacturing the Same | |
KR100412522B1 (en) | A non-aqueous electrolyte and a lithium secondary battery comprising the same | |
KR100726889B1 (en) | Nonaqueous electrolyte for lithium battery and lithium secondary battery comprising the electrolyte | |
KR101179397B1 (en) | Non-aqueous electrolyte and electrochemical device comprising the same | |
JP4901089B2 (en) | Nonaqueous electrolyte secondary battery | |
KR20080095352A (en) | Secondary battery with high capacity and longevity comprising silazane-based compound | |
KR100585947B1 (en) | Nonaqueous Electrolyte for Batteries | |
KR100450199B1 (en) | A non-aqueous electrolyte and a lithium secondary battery comprising the same | |
KR100574328B1 (en) | Nonqueous Electrolyte for Battery | |
KR101278794B1 (en) | Non-aqueous electrolyte and secondary battery using the same | |
KR100370384B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100330151B1 (en) | A electrolyte for a lithium secondary battery | |
KR100611462B1 (en) | Nonaqueous Electrolyte for Battery | |
KR100412524B1 (en) | A non-aqueous electrolyte and a lithium secondary battery comprising the same | |
KR100616205B1 (en) | Non-aqueous electrolyte for Lithium battery | |
KR100572283B1 (en) | Non-aqueous electrolyte for lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20120629 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |