Nothing Special   »   [go: up one dir, main page]

KR100736436B1 - Method for measuring indentation hardness through analysis of indentation shape - Google Patents

Method for measuring indentation hardness through analysis of indentation shape Download PDF

Info

Publication number
KR100736436B1
KR100736436B1 KR1020060053627A KR20060053627A KR100736436B1 KR 100736436 B1 KR100736436 B1 KR 100736436B1 KR 1020060053627 A KR1020060053627 A KR 1020060053627A KR 20060053627 A KR20060053627 A KR 20060053627A KR 100736436 B1 KR100736436 B1 KR 100736436B1
Authority
KR
South Korea
Prior art keywords
indentation
hardness
load
shape
residual
Prior art date
Application number
KR1020060053627A
Other languages
Korean (ko)
Inventor
이윤희
장훈식
백운봉
김용일
박종서
남승훈
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020060053627A priority Critical patent/KR100736436B1/en
Application granted granted Critical
Publication of KR100736436B1 publication Critical patent/KR100736436B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • G01N2203/0082Indentation characteristics measured during load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A method for measuring indentation hardness through analysis of indentation shape is provided to minimize overestimation or underestimation of measuring contact area to obtain precise test result. A method for measuring indentation hardness through analysis of indentation shape includes the steps of shaping residual indentation generated by applying a load to a harden indenter in a three-dimensional shape through a shaping program to differentiate a height variation based on a distance from the indentation center, and estimating load removal hardness by determining a closed curvature of connecting contacting edges with differentiated value of zero to each other as a contact boundary, calculating a projected contacting area by integrating the inside of the contact boundary to divide the applied load with the projected contacting area. The method further includes the step of obtaining image information of the residual indentation as numeral data based on X-, Y-, and X-axes orthogonal coordinate and of converting the image information as three-dimensional cylindrical coordinate.

Description

비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법{Method for Measuring Indentation Hardness through Analysis of Indentation Shape}Method for Calculating Indentation Hardness through Shape Analysis of Non-Destructive Surface Indentation Traces

도 1은 압입시험시 시험소재에서 발생되는 압흔형상을 나타낸 예시도.1 is an exemplary view showing the indentation shape generated in the test material during the indentation test.

도 2는 본 발명에 의한 압입시험에 의해 잔류압흔이 관찰된 상태의 예시도.Figure 2 is an illustration of a state in which residual indentations were observed by the indentation test according to the present invention.

도 3은 본 발명에 의한 압입시험에서 잔류압흔의 재료쌓임이 발생된 상태를 나타낸 예시도.Figure 3 is an exemplary view showing a state in which material accumulation of residual indentation occurred in the indentation test according to the present invention.

도 4a 내지 도 4c는 본 발명에 의한 압입시험에서 원자현미경의 표면정보로 구현된 3차원 잔류압흔 형상의 예시도.Figures 4a to 4c is an illustration of a three-dimensional residual indentation shape implemented as surface information of the atomic force microscope in the indentation test according to the present invention.

도 5a 내지 도 5c는 본 발명에 의한 압입시험에서 압흔중심으로부터 표면높낮이 변화를 방사상의 거리로 미분한 상태 예시도.Figures 5a to 5c is a diagram illustrating a state in which the surface height change is differentiated from the indentation center by the radial distance in the indentation test according to the present invention.

도 6a 내지 도 6c는 본 발명에 의한 압입시험에서 잔류압흔 주위 재료쌓임부 등고선과 미분법을 통해 얻어진 접촉경계 폐곡선이 중첩된 상태 예시도.6a to 6c is a view illustrating a state where the contact boundary closed curves obtained through the differential packing method and the residual material pile surrounding contours in the indentation test according to the present invention overlap.

도 7a 내지도 7b는 본 발명에 의한 압입시험에서 얻어진 압입하중-변위곡선의 그래프.7a to 7b is a graph of the indentation load-displacement curve obtained in the indentation test according to the present invention.

도 8은 기존의 압입시험과, 본 발명에 의한 압입시험을 통해 평가된 압입경도값을 비교한 상태의 그래프.8 is a graph of a state in which the conventional indentation test and the indentation hardness value evaluated through the indentation test according to the present invention.

본 발명은 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법에 관한 것이다. 상세하게는 경질 압입자에 의해 추하중이 인가되어 형성된 잔류압흔을 보다 정확한 3차원 형상으로 분석하고, 압흔 주변의 재료쌓임에 의해 발생되는 형상변형까지 고려하여 보다 정확한 압입경도를 산출할 수 있도록 한 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법에 관한 것이다.The present invention relates to a method of calculating the indentation hardness through the shape analysis of the non-destructive surface indentation traces. Specifically, the residual indentation formed by the load applied by the hard indenter is analyzed in a more accurate three-dimensional shape, and more accurate indentation hardness can be calculated by considering the shape deformation caused by the stacking of material around the indentation. The present invention relates to a method of calculating the indentation hardness through the shape analysis of nondestructive surface indentation traces.

비파괴 시험의 한 방법으로 적용되는 압입경도시험(indentation hardness test)은 운용중인 설비 및 구조물의 열화 및 안전성 진단을 위해 시험대상을 파괴시키지 않는 상태로 시험이 가능하다. 또한, 상기 압입경도시험은 시험기관 관련 연구영역이 아니라 실 생산라인 및 산업현장의 품질관리와 진단에 적용하기 위해 전문가가 아니더라도 손쉽고 경제적으로 다루어져 간단한 물성을 획득하거나 분석할 수 있게 된다. 동시에 하나의 시험 진행만으로 다양한 변형 및 파괴물성들을 얻을 수 있는 다목적 분석과정을 충족시키는 특징이 있다.The indentation hardness test, which is applied as a method of nondestructive testing, can be tested without destroying the test object for deterioration and safety diagnosis of the equipment and structure in operation. In addition, the indentation hardness test is not an expert research area, but can be easily and economically handled to obtain or analyze simple physical properties without being an expert to apply to quality control and diagnosis of actual production lines and industrial sites. At the same time, it is characterized by a versatile analysis process that can obtain various deformation and fracture properties with only one test.

이러한 압입경도시험은, 다양한 형태의 경질 압입자(rigid indenter)에 추하중을 인가하여 시험소재의 표면을 누르고, 추하중(dead weight)에 의해 시험대상에 형성된 압흔의 대각선 혹은 지름 길이를 측정하여 접촉면적을 계산한 후, 인가된 추하중을 계산된 접촉면적으로 나누어 접촉압력 개념의 압입경도를 산출하게 된다.In this indentation hardness test, by applying a load to the rigid indenter of various forms to press the surface of the test material, by measuring the diagonal or diameter length of the indentation formed on the test object by the dead weight After calculating the contact area, the applied load is divided by the calculated contact area to calculate the indentation hardness of the contact pressure concept.

여기서, 상기 경질 압입자("경질 누르개"로도 호칭됨)는 표 1에 제시된 통상의 데이터와 같이 사각뿔, 삼각뿔, 원뿔 또는 구형 등 여러형태로 형성되며, 특히, 시험소재에 비해 높은 경도를 갖는 다이아몬드나 강철구 재질로 형성됨은 주지된 것과 같다. 또한, 상기 시험소재 표면에 형성된 압흔은 광학현미경(optical microscope)에 의해 관찰되며 표 1에 제시된 수식에 의해 압입경도가 계산된다.Here, the hard indenter (also referred to as "hard presser") is formed in various forms such as square pyramid, triangular pyramid, cone or sphere as shown in the general data shown in Table 1, in particular, diamond having a higher hardness than the test material B) It is known that it is formed of steel ball material. Indentations formed on the surface of the test material are also observed by an optical microscope and the indentation hardness is calculated by the formula shown in Table 1.

Figure 112006041728181-pat00001
Figure 112006041728181-pat00001

상기와 같은 압입경도 시험법은 금속소재의 압입시험시 도 1에서와 같이 돌 출형(convex)이나 별모양(concave)의 복잡한 접촉경계가 나타나고 있다. 그러나, 현재 압입경도시험시 광학현미경으로 단지 압흔의 대각선길이만 측정하기 때문에 측정 접촉면적은 실접촉면적보다 작거나 큰 값으로 나타남. 즉, 상기와 같은 현상에 의해 측정 접촉면적의 과소 혹은 과대평가에 따라 압입경도의 과대 혹은 과소평가 오차가 유발된다.In the indentation hardness test method as described above, a complex contact boundary of a convex or concave is shown in the indentation test of a metal material as shown in FIG. 1. However, at the present indentation hardness test, the measuring contact area is smaller or larger than the actual contact area because only the diagonal length of the indentation is measured by optical microscope. That is, the phenomenon as described above causes an underestimation or underestimation error of the indentation hardness depending on the underestimation or overestimation of the measured contact area.

특히, 상기 도 1에서와 같이 압흔 주변에 재료쌓임(pile-up; 압흔 주변이 일정한 높이로 융기되는 현상)이 심할 경우 접촉깊이는 최대압입깊이 이상의 값을 갖게 된다. 그러나, 현행되는 압입경도의 산출은 이러한 재료쌓임 현상에 대한 형상변형은 고려되지 않은 채 산출된다. 이에 따라, 재료쌓임이 심한 연질 알루미늄 등의 소재의 경우에는, 심할 경우 50 % 이상 과대평가된 압입경도 측정도 보고되고 있음.In particular, when the pile-up (phenomena in which the indentation is raised to a certain height) is severe around the indentation as shown in FIG. 1, the contact depth has a value greater than or equal to the maximum indentation depth. However, the current calculation of the indentation hardness is calculated without considering the shape deformation for this material stacking phenomenon. Accordingly, in the case of materials such as soft aluminum, which is heavily stacked, severe indentation hardness measurements of more than 50% have been reported.

결국, 전술된 압흔의 대각선길이만을 측정하여 분석하는 과정 및 압흔 주변의 재료쌓임이 고려되지 않은 상태에서 산출된 압입경도는 정확한 데이터라 할 수 없어 시험결과의 신뢰도를 저하시키는 문제점이 발생된다.As a result, the process of measuring and analyzing only the diagonal length of the indentation described above and the indentation hardness calculated in the state that the material stacking around the indentation is not taken into account is not accurate data, which lowers the reliability of the test results.

본 발명은 상기 문제점을 해소하기 위해 발명한 것으로서, 경질 압입자에 하중을 인가하여 발생된 잔류압흔을 3차원 형상으로 분석하고, 압흔 주변의 재료쌓임에 의해 발생되는 형상변형까지 고려한 압입경도 산출방법을 제공함에 그 목적이 있다.The present invention has been invented to solve the above problems, the residual indentation generated by applying a load to the hard indenter in a three-dimensional shape, and the method of calculating the indentation hardness considering the shape deformation generated by the stacking material around the indentation The purpose is to provide.

상기 목적을 달성하기 위해 본 발명은 아래의 특징을 갖는다.In order to achieve the above object, the present invention has the following features.

본 발명은 하중이 인가되는 경질 압입자에 하중을 인가하여 발생된 잔류압흔을 형상화 프로그램을 통해 3차원의 형태로 형상화하여 압흔 중심으로부터의 거리에 따른 높낮이 변화를 미분하는 단계와; 상기 미분치가 0이되는 접촉부 가장자리 지점들을 연결한 폐곡선을 접촉경계로 결정한 후, 결정된 접촉경계 내부를 적분하여 투영접촉면적을 계산하여 상기 인가하중을 투영접촉면적으로 나누어 하중제거 경도를 산출하는 단계를 포함하는 것을 특징으로 한다.The present invention comprises the steps of: shaping the residual indentation generated by applying a load to a hard indenter to which a load is applied in a three-dimensional form through a shaping program to differentiate the height change according to the distance from the center of the indentation; Determining a closed curve connecting the edges of the contact portion at which the derivative value is zero as a contact boundary, and then calculating the projected contact area by integrating the determined contact boundary into the projected contact area to calculate the load removal hardness by dividing the applied load by the projected contact area; It is characterized by including.

이하, 상기 특징이 적용된 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention to which the above features are applied will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 의한 압입경도 산출방법을 수행하기 위해 시험소재의 표면에 형성된 잔류압흔이 관찰되는 상태의 예시도이다. 도면에 나타난 잔류압흔은 경질 압입자에 의해 인가되는 하중을 제거한 후 관찰된다. 이는 하중이 인가되어 있는 상태에서 압입자의 표면과 시험소재 표면의 정확한 접촉경계를 정확히 측정하는 것이 곤란하기 때문이다. Figure 2 is an illustration of a state in which residual indentations formed on the surface of the test material is observed to perform the indentation hardness calculation method according to the present invention. The residual indentation shown in the figure is observed after removing the load applied by the hard indenter. This is because it is difficult to accurately measure the exact contact boundary between the surface of the indenter and the surface of the test material under load.

도면을 참조하면, 상기 원자현미경에 의해 관찰된 삼각뿔의 잔류압흔은 중앙의 흑색부가 경질 압입자에 의해 형성된 함몰부위이다. 또한, 삼각형태 주변의 백색부는 삼각뿔의 하중이 인가됨에 의해 외측으로 돌출된 재료쌓임 부위임을 알 수 있다.Referring to the drawings, the residual indentation of the triangular pyramid observed by the atomic force microscope is a depression where the black part in the center is formed by the hard indenter. In addition, it can be seen that the white portion around the triangular shape is a material stacking portion protruding outward by the load of the triangular pyramid.

여기서, 상기 잔류압흔을 형성하기 위한 경질 압입자는 삼각뿔의 형태를 적용한 것이다. 또한, 잔류압흔을 관찰하기 위한 도구는 상용 나노압입시스템에 적용되어 시험소재의 3차원 표면형상을 원자수준의 정밀도로 측정하는 통상의 원자현미경을 사용한 것이다. 특히, 상기 원자현미경은 3차원 표면형상을 관찰한 후, 관찰된 데이터를 전용의 단말기(모니터, CPU 등의 구성을 갖는 컴퓨터 형태의 것임)로 전송하여 이 데이터를 모니터/프린터를 통해 출력할 수 있는 것을 적용한다.Here, the hard indenter for forming the residual indentation is to apply the form of a triangular pyramid. In addition, a tool for observing residual indentations is applied to a commercial nanoindentation system using a conventional atomic force microscope to measure the three-dimensional surface shape of the test material with atomic precision. In particular, the atomic microscope can observe the three-dimensional surface shape, and then transmit the observed data to a dedicated terminal (computer type having a configuration of a monitor, a CPU, etc.) and output the data through a monitor / printer. Apply what is there.

특히, 상기 잔류압흔의 외측에 재료쌓임이 발생될 경우, 경질 압입자에 의한 최대하중 하의 접촉외각은 도 3에서와 같은 삼각형태의 변 외측에 완만한 기울기를 갖는 만곡부가 형성되어(도면의 원내에 도시된 것과 같이) 그 기울기 변화에 의해 경질 압입자와 잔류압흔의 접촉경계가 모호하게 된다. 이와 같은 상태에서 상기 접촉경계는 실제 접촉경계와 근접한 재료쌓임의 지점 중 최대점을 접촉경계로 지정하여 후술될 압입경도 산출을 수행하게 된다.In particular, when material accumulation occurs on the outer side of the residual indentation, the contact angle under the maximum load by the hard indenter is formed with a curved portion having a gentle slope on the outer side of the triangular shape as shown in FIG. As shown in Fig. 5, the change of the slope obscures the contact boundary between the hard indenter and the residual indentation. In this state, the contact boundary designates the maximum point of the material stack close to the actual contact boundary as the contact boundary to perform the indentation hardness to be described later.

상기 과정에서 3차원의 형상화는 3차원의 데이터 값을 얻기 위해 수행되는 과정이다. 즉, 상기 과정을 수행하기 위해서는 촉침식 원자현미경의 접촉모드를 이용하여 도 2에서와 같이 압흔을 중심으로 대략 2배 정도의 영역을 스캔하여 잔류압흔의 형상정보를 저장하게 된다. 이 때, 저장된 형상정보는 x, y 및 z 축선의 직교좌표계에 의한 각 수치데이터를 얻을 수 있게 된다. 표 2는 상기 직교좌표계에 의해 수치 데이터가 산출된 데이터시트의 예시상태를 나타내며, 이 데이터시트에 의해 디스플레이된 상태는 도 4a 내지 도 4c에서와 같다.In the above process, the three-dimensional shaping is a process performed to obtain a three-dimensional data value. That is, in order to perform the above process, the shape information of the residual indent is stored by scanning an area of approximately twice the center of the indent as shown in FIG. 2 using the contact mode of the tactile atomic force microscope. At this time, the stored shape information can obtain respective numerical data by the rectangular coordinate system of the x, y and z axes. Table 2 shows an exemplary state of a data sheet in which numerical data is calculated by the rectangular coordinate system, and the state displayed by this data sheet is the same as in FIGS. 4A to 4C.

Data Size:Data Size: 256 x 256256 x 256 Surface Size:Surface Size: 4.0 x 4.04.0 x 4.0 X Unit:X Unit: Micro MeterMicro meter Y Unit:Y Unit: Micro MeterMicro meter Z Unit:Z Unit: Nano MeterNano meter XX YY ZZ 00 00 5.1985.198 0.01560.0156 00 0.29740.2974 0.03120.0312 00 -0.3649-0.3649 0.04690.0469 00 4.27094.2709 0.06250.0625 00 5.72785.7278 0.07810.0781 00 0.16490.1649 0.09380.0938 00 -2.2192-2.2192 0.10940.1094 00 -4.3384-4.3384 0.1250.125 00 -5.9278-5.9278

도 4a는 시험소재로 석영(fused quartz)을 선택하여 원자현미경 표면정보로 구현한 3차원 잔류압흔의 형상이며, 도 4b는 텅스텐 단결정(tungsten monocrystal), 도 4c는 순수구리(pure copper)를 선택하여 형성된 3차원 잔류압흔의 형상을 나타낸다.Figure 4a is a shape of a three-dimensional residual indentation realized by atomic force microscope surface information by selecting quartz (fused quartz) as a test material, Figure 4b is a tungsten monocrystal, Figure 4c is a selection of pure copper (pure copper) Shows the shape of the three-dimensional residual indentation formed.

이 후, 상기된 직교좌표계로 표현된 잔류압흔 형상을 미분하기 위해 압흔중심을 원점으로 하여 θ, r, z의 3차원 원통형좌표계로 변환한다. 여기서, 상기 θ와 r은 다음의 수학식 1, 2에서와 같이 변환된다.Thereafter, in order to differentiate the residual indentation shape represented by the rectangular coordinate system described above, the indentation center is converted into a three-dimensional cylindrical coordinate system of θ, r, z. Here, θ and r are converted as in Equations 1 and 2 below.

Figure 112006041728181-pat00002
Figure 112006041728181-pat00002

Figure 112006041728181-pat00003
Figure 112006041728181-pat00003

이와 같이 좌표계의 변환이 완료되면, 압흔 가장자리의 최고점(재료쌓임이 발생된 경우 재료쌓임 지점의 최고점)들을 연속적으로 결정하기 위해 원점으로 부 터 압흔 표면의 높낮이 변화를 방사상의 거리로 1차 미분하게 된다. 이 때, 상기 최고점을 연속적으로 결정하기 위한 조건은 다음의 수학식 3에서와 같다.When the transformation of the coordinate system is completed as described above, the height difference of the indentation surface from the origin is first-differentiated to the radial distance to continuously determine the peaks of the indentation edges (the peaks of the stacking points in the case of stacking). do. At this time, the conditions for continuously determining the highest point are as in Equation 3 below.

Figure 112006041728181-pat00004
Figure 112006041728181-pat00004

즉, 상기 압흔 표면의 높낮이 변화를 결정하기 위한 조건은 미분치가 0이 되는 점들을 연결하여 접촉경계가 된다. 따라서, 상기 미분치가 0이 되는 점들을 연결하여 원래의 직교좌표계에 나타내면 도 5a 내지 도 5c에서와 같이 나타난다.That is, the condition for determining the height change of the indentation surface is a contact boundary by connecting the points where the derivative value is zero. Accordingly, when the derivatives are connected to the zero points and are displayed in the original rectangular coordinate system, they appear as shown in FIGS. 5A to 5C.

상기 도 5a는 전술된 3차원 잔류압흔 형상에서 제시한 것과 같이 시험소재를 석영으로 선택한 경우이며, 도 5b는 텅스텐 단결정, 도 5c는 순수한 구리를 선택한 경우를 나타낸다.5A illustrates a case in which the test material is selected from quartz as illustrated in the above-described three-dimensional residual indentation shape, FIG. 5B illustrates a case in which tungsten single crystal is selected and FIG. 5C illustrates pure copper.

결국, 이와 같은 폐곡선은 도 6a 내지 도 6c(도 6a는 전술된 석영, 도 6b는 텅스텐 단결정, 도 6c는 순수한 구리는 나타냄)에서와 같이 잔류압흔의 높낮이를 나타내는 2차원 등고선에 중첩시킬 수 있다. As a result, such a closed curve can be superimposed on a two-dimensional contour representing the height of the residual indentation, as shown in FIGS. 6A-6C (FIG. 6A shows quartz described above, FIG. 6B shows a tungsten single crystal, and FIG. 6C shows pure copper). .

이 후, 상기와 같이 얻어진 접촉경계의 내부를 적분하여 하중이 제거된 투영접촉면적(load-off projected contact area)을 계산하게 된다. 이와 같이 계산된 투영접촉면적으로 경질 압입자를 가압하는 인가하중을 나누어 하중제거 경도가 산출된다.Thereafter, the inside of the contact boundary obtained as described above is integrated to calculate the load-off projected contact area. The load removal hardness is calculated by dividing the applied load for pressing the hard indenter by the calculated projected contact area.

<시험예><Test Example>

상기 실시예의 압입경도 산출방법에 의해 다음과 같은 시험을 시행하였다.The following test was conducted by the indentation hardness calculation method of the above example.

a) 결정립계와 같은 불균일 요소가 없고, 재료쌓임이 없어서 보다 정확한 압입경도를 측정할 수 있는 석영, 등방적인 변형특성을 나타내는 텅스텐 단결정, 재료쌓임이 두드러진 99.99% 순도의 구리를 3종의 시험소재로 선택한다.a) There are no non-uniform elements such as grain boundaries, and there is no material stacking, and quartz can measure more accurate indentation hardness, tungsten single crystal with isotropic deformation characteristics, and 99.99% pure copper with outstanding material stacking. Choose.

b) 기계적인 방법으로 거울면과 같은 정도의 고광택 연마를 수행한 시험소재에 삼각뿔 형태의 경질 압입자를 이용하여 압흔을 형성한다. 이 때, 상기 압입속도는 공히 250μN/sec를 사용하였으며, 최대 인가하중은 표3에서와 같이 선정되었다.b) Indentation is formed by using a hard indenter in the form of a triangular pyramid on a test material which has been subjected to a high-gloss polishing such as a mirror surface by a mechanical method. At this time, the indentation rate was used 250μN / sec, the maximum applied load was selected as shown in Table 3.

시험소재종류Type of test material 석 영Quartz 텅스텐 단결정Tungsten single crystal 순수 구리Pure copper 인가하중 (mN)Applied Load (mN) 10, 6, 3, 110, 6, 3, 1 6, 2.5, 16, 2.5, 1 2, 1.5, 0.8, 0.42, 1.5, 0.8, 0.4

여기서, 상기 압흔을 형성할 때 압입시험은 계장화 압입시험을 적용하였다.Here, the indentation test was applied to the instrumentation indentation test when forming the indentation.

참고로, 계장화 압입시험은 경질 압입자의 추하중을 1회에 인가하는 방식 대신 정밀 모터나 마이크로 액츄에이터를 이용하여 일정속도로 압입자의 표면침투를 일으키고, 동일한 일정속도로 표면으로부터 후퇴시켜 하중을 제거하는 시험기법을 의미한다. 이 때, 상기 경질 압입자의 후단부 또는 측면에 하중센서와 변위센서가 장착되어 마이크로 액츄에이터에서 생성 변위로 인한 압입변형과 회복이 일어나는 도중의 인가하중과 변위를 연속적으로 측정하여 후술될 압입하중-변위곡선을 형성할 수 있게 된다.For reference, the instrumentation indentation test causes surface penetration of the indenter at a constant speed by using a precision motor or a micro actuator instead of applying a load of hard indenter at one time, and retreats from the surface at the same constant speed to remove the load. Means a test technique. At this time, the load sensor and the displacement sensor is mounted on the rear end or side of the hard indenter to continuously measure the applied load and displacement during the indentation deformation and recovery caused by the generated displacement in the micro-actuator to be described below. A curve can be formed.

특히, 본 상세한 설명에서는 상기 계장화 압입시험의 적용하중을 mN 수준으로 낮춰서 μm 이내의 두께를 갖는 박막의 경도평가를 적용하는 시험을 "나노압입시험(nanoindentation test)"이라 명명하기로 하며, 그 시험방법은 전술된 실시예에서 제시된 것을 의미한다.In particular, in this detailed description, a test for applying hardness evaluation of a thin film having a thickness within μm by lowering the applied load of the instrumentation indentation test to mN level will be referred to as a "nanoindentation test". The test method means that given in the above-described examples.

c) 각 시험소재의 각 하중조건에 대응하여 5회의 나노압입시험(전술된 실시예의 시험)을 반복하였고, 최외각에 편재된 곡선을 제외한 압입하중-변위곡선을 도 7a 내지 도 7b의 그래프에서와 같이 얻었다. 이 때, 도 7a는 석영에 대한 그래프, 도 7b는 텅스텐 단결정에 대한 그래프, 도 7c는 순수한 구리에 대한 그래프를 나타낸다.c) 5 times of nanoindentation tests (test of the above-described examples) were repeated corresponding to each loading condition of each test material, and the indentation load-displacement curves except for the curves circumferentially outermost are shown in the graphs of FIGS. 7A to 7B. Got as 7A is a graph for quartz, FIG. 7B is a graph for tungsten single crystal, and FIG. 7C is a graph for pure copper.

d) 상기 그래프를 살펴보면, 인가하중이 낮은 압입하중-변위곡선들은 인가하중이 높은 곡선들에 중첩되어 나타났으며, 이로부터 상기 실시예에 제시된 나노압입시험의 재현성이 우수함을 확인할 수 있었다.d) Looking at the graph, the indentation load-displacement curves with a low applied load were superimposed on the curves with a high applied load, it was confirmed that the reproducibility of the nanoindentation test presented in the above example is excellent.

<비교시험예>Comparative Test Example

상기 시험예에 의해 얻어진 도 7a 내지 도 7c의 압입하중-변위곡선의 그래프에 의해 각 시험소재에 대한 종래의 분석결과와, 본 발명에서 제시된 방법에 의한 분석결과를 도 8에서 중첩하여 그래프로 나타내었다.7A to 7C obtained by the above test example, a graph of the indentation load-displacement curves of the conventional analytical results for each test material and the analytical results by the method presented in the present invention are graphically shown in FIG. 8. It was.

도 8를 참조하면, 재료쌓임이 거의 발생되지 않는 석영의 경우, 수학식 4, 5에 제시된 기존의 압입곡선 분석법과 본 발명에 의한 잔류압흔 미분법이 일치하는 결과를 나타내었다. 따라서, 재료쌓임이 약한 경질소재에서 본 발명에 의한 압입경도 산출방법의 타당성을 확인할 수 있었다.Referring to FIG. 8, in the case of quartz in which material stacking hardly occurs, the existing indentation curve analysis method shown in Equations 4 and 5 and the residual indentation differential method according to the present invention showed the same result. Therefore, the validity of the method of calculating the indentation hardness according to the present invention was confirmed in a hard material having a weak material stacking.

Figure 112006041728181-pat00005
Figure 112006041728181-pat00005

Figure 112006041728181-pat00006
Figure 112006041728181-pat00006

상기 수학식 4는 특정각도의 삼각뿔 등 압입자의 기하학적 형상에 기반하여 투영접촉면적을 환산하기 위한 것이며, 수학식 5는 최대하중을 투영접촉면적으로 나누어 압입경도를 계산하기 위한 것이다. 이러한 수학식 4, 5는 이미 공지된 것으로 이상의 기재를 생략한다.Equation 4 is for converting the projection contact area based on the geometric shape of the indenter, such as a triangular pyramid of a particular angle, Equation 5 is to calculate the indentation hardness by dividing the maximum load by the projection contact area. Equations 4 and 5 are already known, and the above description is omitted.

그러나 얕은 압입영역에서는 하중 인가상태(load-on state)와 하중 제거상태의 차이에 의한 영향이 존재하였다. 즉, 얕은 압입(저하중)에서 압흔의 탄성회복이 심하여 미분법을 통한 경도가 좀 더 증가하는 현상이 발생되었다.However, in the shallow indentation region, there was an effect by the difference between the load-on state and the load removal state. That is, in the shallow indentation (low load), the elastic recovery of the indentation was severe, the hardness was increased by the differential method.

동 도면을 참조하면, 상기 텅스텐 단결정과 순수 구리의 경우 재료쌓임이 심하게 발생되었다. 이 경우, 상기된 기존의 압입곡선 분석법에서 고유경도의 50% 이상 과대평가된 압입경도 값을 나타내는 것을 확인할 수 있었다.Referring to the same figure, in the case of the tungsten single crystal and pure copper, material stacking was severely generated. In this case, it was confirmed that the above-described indentation curve analysis method exhibits an indentation hardness value overestimate at least 50% of the intrinsic hardness.

즉, 본 발명에 의한 압입경도 산출방법에 의하면, 재료쌓임이 심한 금속소재의 경우 소재표면의 고유경도값을 보다 정밀하고 정확하게 얻을 수 있음을 알 수 있었다.That is, according to the method of calculating the indentation hardness according to the present invention, it can be seen that the inherent hardness value of the surface of the material can be obtained more precisely and accurately in the case of a metal material having a severe material stacking.

이상에서 설명한 것과 같이 본 발명은, 잔류압흔을 3차원 형상으로 분석하여 측정 접촉면적의 과대 혹은 과소평가 오차를 최소화하게 된다. 따라서, 보다 정확 한 시험결과를 얻을 수 있는 효과가 있다.As described above, the present invention analyzes residual indentations in a three-dimensional shape, thereby minimizing an excessive or underestimation error of the measured contact area. Therefore, it is effective to obtain more accurate test results.

또한, 본 발명은, 압흔 주변의 재료쌓임에 의해 발생되는 형상변형이 감안된 시험결과를 얻게 되어 보다 정밀한 데이터를 얻게 되며, 이에 따라 산출된 시험결과의 신뢰도를 향상시키는 효과를 있다.In addition, the present invention, by obtaining a test result in consideration of the shape deformation caused by the stacking material around the indentation to obtain more accurate data, thereby improving the reliability of the calculated test results.

Claims (9)

하중이 인가되는 경질 압입자에 하중을 인가하여 발생된 잔류압흔을 형상화 프로그램을 통해 3차원의 형태로 형상화하여 압흔 중심으로부터의 거리에 따른 높낮이 변화를 미분하는 단계와;Shaping the residual indentation generated by applying the load to the hard indenter to which the load is applied in a three-dimensional form through a shaping program to differentiate the height change according to the distance from the center of the indentation; 상기 미분치가 0이되는 접촉부 가장자리 지점들을 연결한 폐곡선을 접촉경계로 결정한 후, 결정된 접촉경계 내부를 적분하여 투영접촉면적을 계산하여 상기 인가하중을 투영접촉면적으로 나누어 하중제거 경도를 산출하는 단계를 포함하는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.Determining a closed curve connecting the edges of the contact portion at which the derivative value is zero as a contact boundary, and then calculating the projected contact area by integrating the determined contact boundary into the projected contact area to calculate the load removal hardness by dividing the applied load by the projected contact area; Indentation hardness calculation method through the shape analysis of the non-destructive surface indentation traces comprising a. 제 1 항에 있어서,The method of claim 1, 상기 잔류압흔을 3차원의 형상으로 구현하기 위해 잔류압흔의 형상정보를 x, y 및 z 축선의 직교좌표계에 의한 각 수치데이터를 얻은 후, 이를 3차원 형상의 θ, r, z의 원통형좌표계로 변환하는 단계를 포함하는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.In order to realize the residual indentation in the three-dimensional shape, the numerical information of the residual indentation is obtained by the rectangular coordinate system of the x, y and z axes, and then the cylindrical indentation of the three-dimensional shape θ, r, z is obtained. Method of calculating the indentation hardness through the shape analysis of the non-destructive surface indentation traces comprising the step of converting. 제 2 항에 있어서, 상기 원통형좌표계의 θ는The θ of the cylindrical coordinate system is
Figure 112006041728181-pat00007
로 변환되는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.
Figure 112006041728181-pat00007
Method of calculating the indentation hardness through the shape analysis of the non-destructive surface indentation traces, characterized in that converted to.
제 2 항에 있어서, 상기 원통형좌표계의 r은The method of claim 2, wherein r of the cylindrical coordinate system is
Figure 112006041728181-pat00008
로 변환되는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.
Figure 112006041728181-pat00008
Method of calculating the indentation hardness through the shape analysis of the non-destructive surface indentation traces, characterized in that converted to.
제 1 항에 있어서, 상기 미분의 수행은The method of claim 1, wherein performing the derivative
Figure 112006041728181-pat00009
의 1차 미분 수학식에 의해 수행되는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.
Figure 112006041728181-pat00009
Method of calculating the indentation hardness through the shape analysis of the non-destructive surface indentation traces, characterized in that the first derivative of the equation.
제 5항에 있어서, 결정된 미분치 0을 만족하는 지점들을 연결하여 2차원 접촉경계 폐곡선을 형성하고, 접촉경계 내부를 적분하여 투영접촉면적을 계산하는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.The method of claim 5, wherein the two-dimensional contact boundary closed curves are formed by connecting the points satisfying the determined differential value 0, and the projected contact area is calculated by integrating the inside of the contact boundary. Indentation hardness calculation method through. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5, 상기 잔류압흔의 외측에 재료쌓임이 발생되어 정확한 접촉점을 지정하지 못할 경우, 상기 접촉경계는 실제 접촉경계와 근접한 재료쌓임의 지점 중 최대점을 접촉경계로 지정하는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.In the case where the material accumulation occurs outside the residual indentation and the exact contact point cannot be specified, the contact boundary specifies the maximum point of the material accumulation point adjacent to the actual contact boundary as the contact boundary. Indentation hardness calculation method through shape analysis. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6, 상기 잔류압흔은 정확한 접촉경계를 결정하기 위해 경질 압입자에 의해 인가되는 하중을 제거한 후 관찰되는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.The residual indentation is calculated after removal of the load applied by the hard indenter to determine the exact contact boundary, the indentation hardness calculation method through the shape analysis of the non-destructive surface indentation traces. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6, 상기 잔류압흔을 관찰하기 위한 도구는 상용 나노압입시스템에 적용되어 시험소재의 3차원 표면형상을 원자수준의 정밀도로 측정하는 원자현미경을 사용하는 것을 특징으로 하는 비파괴 표면 압입흔적의 형상분석을 통한 압입경도 산출방법.The tool for observing the residual indentation is applied to a commercial nanoindentation system using an atomic force microscope to measure the three-dimensional surface shape of the test material with atomic level precision. Hardness calculation method.
KR1020060053627A 2006-06-14 2006-06-14 Method for measuring indentation hardness through analysis of indentation shape KR100736436B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060053627A KR100736436B1 (en) 2006-06-14 2006-06-14 Method for measuring indentation hardness through analysis of indentation shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060053627A KR100736436B1 (en) 2006-06-14 2006-06-14 Method for measuring indentation hardness through analysis of indentation shape

Publications (1)

Publication Number Publication Date
KR100736436B1 true KR100736436B1 (en) 2007-07-09

Family

ID=38503436

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060053627A KR100736436B1 (en) 2006-06-14 2006-06-14 Method for measuring indentation hardness through analysis of indentation shape

Country Status (1)

Country Link
KR (1) KR100736436B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104811B1 (en) 2009-11-19 2012-01-16 한국표준과학연구원 Determining methods of the reference surface and the pile-up width of indented materials for measuring yield strength
KR101111383B1 (en) 2010-01-29 2012-03-05 윈텍 주식회사 Denting inspecting system having 3D surface measuring instrument
CN103335905A (en) * 2013-07-19 2013-10-02 江苏大学 Method for measuring microhardness of curved surface
KR101373059B1 (en) * 2013-01-31 2014-03-11 (주)프론틱스 Residual stress estimation method using instrumented indentation technique
KR102459164B1 (en) * 2021-06-23 2022-10-25 울산과학기술원 Method of evaluation stretch flangeability for steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153089A (en) 1978-05-23 1979-12-01 Nippon Steel Corp Measuring method and apparatus for hardness
US4222262A (en) 1977-11-25 1980-09-16 Vickers Limited Hardness testing apparatus
US4463600A (en) 1980-09-23 1984-08-07 University Of Birmingham Automatic measurement of areas
JPH05223719A (en) * 1992-02-10 1993-08-31 Sankyo Seiki Mfg Co Ltd Hardness measuring instrument
JP2005121416A (en) 2003-10-15 2005-05-12 Shimadzu Corp Indentation type hardness meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222262A (en) 1977-11-25 1980-09-16 Vickers Limited Hardness testing apparatus
JPS54153089A (en) 1978-05-23 1979-12-01 Nippon Steel Corp Measuring method and apparatus for hardness
US4463600A (en) 1980-09-23 1984-08-07 University Of Birmingham Automatic measurement of areas
JPH05223719A (en) * 1992-02-10 1993-08-31 Sankyo Seiki Mfg Co Ltd Hardness measuring instrument
JP2005121416A (en) 2003-10-15 2005-05-12 Shimadzu Corp Indentation type hardness meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104811B1 (en) 2009-11-19 2012-01-16 한국표준과학연구원 Determining methods of the reference surface and the pile-up width of indented materials for measuring yield strength
KR101111383B1 (en) 2010-01-29 2012-03-05 윈텍 주식회사 Denting inspecting system having 3D surface measuring instrument
KR101373059B1 (en) * 2013-01-31 2014-03-11 (주)프론틱스 Residual stress estimation method using instrumented indentation technique
WO2014119817A1 (en) * 2013-01-31 2014-08-07 (주)프론틱스 Method for evaluating residual stress by using instrumented indentation test technique, storage medium storing computer program including same, and indentation test apparatus for performing instrumented indentation test by operating storage medium
CN103335905A (en) * 2013-07-19 2013-10-02 江苏大学 Method for measuring microhardness of curved surface
KR102459164B1 (en) * 2021-06-23 2022-10-25 울산과학기술원 Method of evaluation stretch flangeability for steel

Similar Documents

Publication Publication Date Title
EP2916122B1 (en) Method and apparatus for measuring dynamic panel stiffness of outer panel for automobile parts
McElhaney et al. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments
EP3076153B1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
Othman et al. A modified servo-hydraulic machine for testing at intermediate strain rates
CN101710046B (en) Method for testing Young modulus of material through instrumented micron indentation
KR100736436B1 (en) Method for measuring indentation hardness through analysis of indentation shape
CN106198277A (en) A kind of method measuring press-in raised material Micro Mechanical Properties parameter
Sagadevan et al. Novel Analysis on the Influence of Tip Radius and Shape of the Nanoindenter on the Hardness of Materials
Li et al. Effects of machine stiffness on the loading–displacement curve during spherical nano-indentation
Krier et al. Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetration depth
JP7512932B2 (en) Material evaluation method and manufacturing method for metal member
CN104122205B (en) A kind of method utilizing impression uplift capacity to measure residual stress
JP4956834B2 (en) Hardness test method
JP4261080B2 (en) Residual stress measurement method
CN104729938B (en) A kind of portable hardness determination structure and its detection method based on dynamo-electric impedance method
KR101332264B1 (en) Analysis method of plastic stress-strain curve based on indentation image analysis
JP3312298B2 (en) How to measure stress intensity factor
WO2024009566A1 (en) Method and device for obtaining forming limit of metal sheet
US11988642B2 (en) Method for determining hardness of a material with implementation of three-dimensional imaging
Hoffman et al. Measuring the surface and bulk modulus of polished polymers with AFM and nanoindentation
KR101035401B1 (en) Evaluation method for contact depth, contact area and hardness, and calibration method for indenter using instrumented indentation technique with sharp indenter
CN111982635A (en) Method for measuring elastic modulus of inclusions in material
Kucharski et al. Size effects in spherical indentation of single crystal copper
KR101104811B1 (en) Determining methods of the reference surface and the pile-up width of indented materials for measuring yield strength
KR100367205B1 (en) Determination of strain-hardening exponent and strength coefficient using continuous indentation test

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150602

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160526

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee