KR100716344B1 - Heat treatment method of cr-mo alloy for transmission gear and shaft - Google Patents
Heat treatment method of cr-mo alloy for transmission gear and shaft Download PDFInfo
- Publication number
- KR100716344B1 KR100716344B1 KR1020050107469A KR20050107469A KR100716344B1 KR 100716344 B1 KR100716344 B1 KR 100716344B1 KR 1020050107469 A KR1020050107469 A KR 1020050107469A KR 20050107469 A KR20050107469 A KR 20050107469A KR 100716344 B1 KR100716344 B1 KR 100716344B1
- Authority
- KR
- South Korea
- Prior art keywords
- chromium
- alloy steel
- molybdenum
- heat treatment
- molybdenum alloy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/28—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
본 발명은 피로강도, 비틀림 피로강도, 접촉피로특성(내피팅성) 향상 및 고강도화를 위해 크롬과 실리콘을 기존 크롬-몰리브덴강 대비 현저히 증가시켜 물성을 크게 개선시킨 변속기 기어 및 샤프트용 초고강도 크롬-몰리브덴 합금강의 열처리 방법에 관한 것이다.The present invention is to increase the chromium and silicon significantly compared to the existing chromium-molybdenum steel in order to improve the fatigue strength, torsional fatigue strength, contact fatigue properties (fitting resistance) and high strength, ultra-high strength chromium- for transmission gear and shaft The present invention relates to a heat treatment method of molybdenum alloy steel.
이를 위해, 본 발명은 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.17∼0.21 중량%, 실리콘(Si) 0.50~0.70 중량%, 망간(Mn) 0.45∼0.75 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.030 중량% 이하, 크롬(Cr) 1.95∼2.25 중량%, 몰리브덴(Mo) 0.33∼0.43 중량%, 니오븀(Nb) 0.015∼0.035 중량%를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 12∼15ppm 이하를 첨가하여 이루어진 크롬-몰리브덴 합금강 및 이 크롬-몰리브덴 합금강을 단조후 미세 조직 균일성 확보 및 단조후 가공성을 확보하기 위해 920∼940℃에서 2∼3시간 동안 오스테나이징을 실시하는 단계와; 150℃/분 이상의 냉각속도로 템퍼링 온도까지 제어냉각하는 단계와; 660∼680℃에서 5∼7시간 동안 템퍼링을 실시한 다음, 공냉 처리하는 단계로 이루어지는 열처리 방법을 제공한다.To this end, the present invention is based on iron (Fe), carbon (C) 0.17 to 0.21% by weight, silicon (Si) 0.50 to 0.70% by weight, manganese (Mn) 0.45 to 0.75% by weight, phosphorus (P) ) 0.020 wt% or less, sulfur (S) 0.030 wt% or less, chromium (Cr) 1.95 to 2.25 wt%, molybdenum (Mo) 0.33 to 0.43 wt%, niobium (Nb) 0.015 to 0.035 wt% Chromium-molybdenum alloy steel and chromium-molybdenum alloy steel made by adding 12 to 15 ppm or less of dissolved oxygen to the alloy for cleanliness are maintained at 2 to 3 at 920 to 940 ° C. to secure microstructure uniformity after forging and workability after forging. Performing austenizing for a time; Controlling cooling to a tempering temperature at a cooling rate of at least 150 ° C./min; Provided is a heat treatment method comprising tempering at 660 to 680 ° C. for 5 to 7 hours, followed by air cooling.
변속기 기어 및 샤프트, 초고강도 크롬-몰리브덴 합금강, 열처리 방법 Transmission gears and shafts, ultra high strength chromium-molybdenum alloy steel, heat treatment method
Description
도 1은 본 발명에 따른 변속기 기어 및 샤프트용 초고강도 크롬-몰리브덴 합금강의 열처리 방법을 설명하는 공정도,1 is a process chart illustrating a heat treatment method of ultra-high strength chromium-molybdenum alloy steel for a transmission gear and a shaft according to the present invention;
도 2는 본 발명에 따른 실시예 및 비교예의 합금강에 대한 조미니 시험 결과를 나타내는 그래프,2 is a graph showing the results of roughness test for alloy steels of Examples and Comparative Examples according to the present invention;
도 3은 본 발명에 따른 실시예 및 비교예의 합금강에 대한 피로한도 시험 결과를 나타내는 그래프,3 is a graph showing the fatigue limit test results for the alloy steel of the Examples and Comparative Examples according to the present invention,
도 4는 가존의 자동차 변속기용 기어 및 샤프트를 제조하는 과정을 설명하는 공정도.4 is a process diagram illustrating a process of manufacturing a gear and a shaft for an existing vehicle transmission.
본 발명은 변속기 기어 및 샤프트용 초고강도 크롬-몰리브덴 합금강의 열처리 방법에 관한 것으로서, 더욱 상세하게는 피로강도, 비틀림 피로강도, 접촉피로특성(내피팅성) 향상 및 고강도화를 위해 크롬과 실리콘을 기존 크롬-몰리브덴강 대비 현저히 증가시켜 물성을 크게 개선시킨 변속기 기어 및 샤프트용 초고강도 크롬-몰리브덴 합금강의 열처리 방법에 관한 것이다.The present invention relates to a heat treatment method of ultra-high strength chromium-molybdenum alloy steel for transmission gears and shafts, and more specifically, to improve fatigue strength, torsional fatigue strength, contact fatigue characteristics (fitting resistance) and increase the strength of chromium and silicon. The present invention relates to a method of heat-treating ultra-high strength chromium-molybdenum alloy steel for transmission gears and shafts, which has significantly increased properties compared to chromium-molybdenum steel and greatly improved physical properties.
통상적으로, 자동차 변속기용 기어 및 샤프트는 첨부한 도 4에서 보는 바와 같이, 소재 → 열간 또는 냉간단조 → 냉각(공냉 또는 방냉) → 가공전 열처리(ISO annealing or Normalizing) → 가공(Hobbing & Shaving) → 침탄 열처리 등의 공정을 통하여 제조되고 있다.Typically, gears and shafts for automotive transmissions are shown in the accompanying Figure 4, material → hot or cold forging → cooling (air or cold) → ISO annealing or Normalizing → processing (Hobbing & Shaving) → It is manufactured through processes such as carburization heat treatment.
최근에는 변속기 기어 소음에 관한 소비자의 불만을 해소시키기 위해 열처리후 가공(연마, Honing)까지 포함하여 제조되는 것이 일반적이다.Recently, in order to solve consumer complaints about transmission gear noise, it is generally manufactured including post-heat treatment (honing).
대개, 종래의 변속기 기어 및 샤프트용 소재의 경우 소입성 증대, 피로강도, 인성 및 내구성을 높이기 위해 합금 원소인 크롬, 몰리브덴 및 니켈을 첨가해서 사용한다.In general, conventional transmission gears and shaft materials are used by adding alloy elements chromium, molybdenum and nickel in order to increase hardenability, fatigue strength, toughness and durability.
즉, 크롬(Cr) 합금강, 크롬(Cr)-몰리브덴(Mo) 합금강 또는 크롬(Cr)-니켈(Ni)-몰리브덴(Mo) 합금강 등을 주로 침탄 열처리를 하여 사용한다.That is, chromium (Cr) alloy steel, chromium (Cr)-molybdenum (Mo) alloy steel, or chromium (Cr)-nickel (Ni)-molybdenum (Mo) alloy steel, etc. are mainly used by carburizing heat treatment.
상기 니켈의 경우 고가(high cost)이면서 강에 첨가시 강의 인성을 너무 높여, 기어 가공시 기어 치면의 조도 악화, 가공 툴의 수명을 단축시켜, 결국 생산성을 떨어뜨리는 문제점이 있어 최근에는 첨가시키지 않는 것이 추세에 있다.In the case of nickel, the nickel is high cost and the toughness of the steel is too high when added to the steel, deterioration of roughness of the gear tooth surface during the machining of the gear, shortening the life of the machining tool, and eventually reducing productivity. Is in the trend.
따라서, 최근에는 기존의 Cr-Ni-Mo강 대체용으로 기존 Cr-Mo합금강 대비 Mo함량을 높인 Cr-Mo합금강이 개발되어 사용되고 있는 실정이다.Therefore, in recent years, Cr-Mo alloy steels having a higher Mo content than conventional Cr-Mo alloy steels have been developed and used to replace existing Cr-Ni-Mo steels.
한편, 상기 몰리브덴은 소입성 및 강도 향상에 매우 유효하며, 또한 결정립 조대화 온도를 상승시키는 좋은 점이 있으나, 최근 합금강의 원소재 가격상승을 불러 일으킨 원소로서, 너무 높은 가격 때문에 많은 사용이 제한되는 단점이 있다.On the other hand, the molybdenum is very effective in improving the hardenability and strength, and also has the advantage of increasing the grain coarsening temperature, but as the element that caused the recent increase in the raw material price of alloy steel, it is a disadvantage that many uses are limited because of too high price There is this.
이에, 본 발명자는 기존의 Cr-Mo합금강의 원소들을 기초로 하여 피로강도, 비틀림 피로강도, 접촉피로특성(내피팅성) 등이 기존 합금강 대비 획기적으로 향상되도록 화학성분을 조절하고, 또한 가공성 개선을 위해 단조후 가공전 열처리 조건을 개선하여 피로강도, 비틀림 피로강도, 접촉피로특성(내피팅성) 향상 및 고강도화를 위해 크롬과 실리콘을 기존 크롬-몰리브덴강 대비 현저히 증가시켜 물성을 크게 개선시킴으로써, 니켈-크롬-몰리브덴강을 적용하는 기어들의 가공성 난이에 따른 생산성 저하, 가공 도구의 수명 단축 등의 문제점 해결 및 물성의 향상을 도모할 수 있고, 그리고 고(High) Mo함유 Cr-Mo강 대비 동등한 가격에 획기적인 물성 향상을 얻을 수 있으며, 또한 최근 자동차 개발추세인 고강도, 고내구성, 컴팩트 설계에 대응할 수 있는 물성을 가지도록 한 변속기 기어 및 샤프트용 초고강도 크롬-몰리브덴 합금강의 열처리 방법을 제공하는데 그 목적이 있다.Accordingly, the present inventors adjust the chemical components such that fatigue strength, torsional fatigue strength, contact fatigue properties (fitting resistance), etc. are significantly improved based on the elements of the existing Cr-Mo alloy steel, and workability is improved. To improve the physical properties by improving chromium and silicon significantly compared to existing chromium-molybdenum steels to improve fatigue strength, torsional fatigue strength, contact fatigue characteristics (fitting resistance) and high strength by improving heat treatment conditions before processing after forging. It is possible to solve problems such as reduced productivity due to the difficulty of workability of the gears applying nickel-chromium-molybdenum steel, shortening the life of machining tools, and improvement of physical properties, and it is equivalent to high Mo-containing Cr-Mo steel. It is possible to achieve breakthrough physical properties at a price, and also to meet the high-strength, high durability, and compact design, which are recently developed by automobiles. It is an object of the present invention to provide a heat treatment method of ultra-high strength chromium-molybdenum alloy steel for a transmission gear and a shaft.
상기한 목적을 달성하기 위한 본 발명은 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.17∼0.21 중량%, 실리콘(Si) 0.50~0.70 중량%, 망간(Mn) 0.45∼0.75 중 량%, 인(P) 0.020 중량% 이하, 황(S) 0.030 중량% 이하, 크롬(Cr) 1.95∼2.25 중량%, 몰리브덴(Mo) 0.33∼0.43 중량%, 니오븀(Nb) 0.015∼0.035 중량%를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 12∼15ppm 이하를 첨가하여 이루어진 것을 특징으로 하는 변속기 기어 및 샤프트용 고강도 크롬-몰리브덴 합금강을 제공한다.The present invention for achieving the above object is based on iron (Fe), carbon (C) 0.17 to 0.21% by weight, silicon (Si) 0.50 to 0.70% by weight, manganese (Mn) 0.45 to 0.75 weight %, 0.020 wt% or less of phosphorus (P), 0.030 wt% or less of sulfur (S), 1.95 to 2.25 wt% of chromium (Cr), 0.33 to 0.43 wt% of molybdenum (Mo), and 0.015 to 0.035 wt% of niobium (Nb) Provided is a high-strength chromium-molybdenum alloy steel for a transmission gear and a shaft characterized by adding 12 to 15 ppm or less of dissolved oxygen for cleanliness of an alloy to an alloy-based component.
또한, 본 발명은 위와 같은 조성의 크롬-몰리브덴 합금강을 단조후 미세 조직 균일성 확보 및 단조후 가공성을 확보하기 위해 가공전 열처리함에 있어서, 920∼940℃에서 2∼3시간 동안 오스테나이징을 실시하는 단계와; 150℃/분 이상의 냉각속도로 템퍼링 온도까지 제어냉각하는 단계와; 660∼680℃에서 5∼7시간 동안 템퍼링을 실시한 다음, 공냉 처리하는 단계로 이루어지는 것을 특징으로 하는 변속기 기어 및 샤프트용 고강도 크롬-몰리브덴 합금강의 열처리 방법을 제공한다.In addition, the present invention is subjected to austenizing for 2 to 3 hours at 920 ~ 940 ℃ in the heat treatment before processing to secure the microstructure uniformity and the workability after forging to secure the chromium-molybdenum alloy steel of the composition as described above Making a step; Controlling cooling to a tempering temperature at a cooling rate of at least 150 ° C./min; It provides a heat treatment method of high-strength chromium-molybdenum alloy steel for a transmission gear and a shaft, which comprises the step of tempering at 660 to 680 ° C for 5 to 7 hours and then air-cooling.
이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
본 발명의 크롬-몰리브덴 합금강은 표 1에 기재된 기존의 크롬-몰리브덴 합금강(SCM920HVSi) 및 니켈-크롬-몰리브덴 합금강(SNCM518H)과 달리, 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.17∼0.21 중량%, 실리콘(Si) 0.50∼0.70 중량%, 망간(Mn) 0.45∼0.75 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.030 중량% 이하, 크롬(Cr) 1.95∼2.25 중량%, 몰리브덴(Mo) 0.33∼0.43 중량%, 니오븀(Nb) 0.015∼0.035 중량% 를 포함하는 합금계 성분에 합금의 청정도를 위해(불순물 함량을 줄이기 위해) 용존 산소량 12∼15ppm 이하를 첨가하여 이루어진 것이다.The chromium-molybdenum alloy steel of the present invention, unlike the conventional chromium-molybdenum alloy steel (SCM920HVSi) and nickel-chromium-molybdenum alloy steel (SNCM518H) described in Table 1, has iron (Fe) as a main component, and carbon (C) 0.17 -0.21 wt%, silicon (Si) 0.50-0.70 wt%, manganese (Mn) 0.45-0.75 wt%, phosphorus (P) 0.020 wt% or less, sulfur (S) 0.030 wt% or less, chromium (Cr) 1.95-2.25 12-15 ppm or less of dissolved oxygen is added to an alloy component including weight%, molybdenum (Mo) 0.33 to 0.43 weight%, and niobium (Nb) 0.015 to 0.035 weight% for the cleanliness of the alloy (to reduce impurities). It is done.
특히, 본 발명의 크롬-몰리브덴 합금강은 가공성을 향상시키기 위하여 니켈을 첨가하지 않았으며, 피로강도, 비틀림 피로강도, 접촉피로특성(내피팅성) 등이 기존 합금강 대비 획기적으로 향상되도록 화학 성분을 크게 조절하였다.In particular, the chromium-molybdenum alloy steel of the present invention is not added nickel to improve the workability, and the chemical composition is greatly increased so that fatigue strength, torsional fatigue strength, contact fatigue properties (fitting resistance), etc. are significantly improved compared to the existing alloy steel. Adjusted.
또한, 산소와의 친화력이 매우 강해 입계산화층을 조장하는 원소로서 지금까지는 기어용 합금강에 함유량을 제한했던 크롬과 실리콘 함유량을 종래의 크롬-몰리브덴 합금강의 함유량보다 크게 증가시켰으며, 높은 가격의 몰리브덴(Mo)함량은 줄여서 경도 및 피로강도를 향상시킬 수 있도록 하였다.In addition, since the affinity with oxygen is very strong, the content of chromium and silicon, which has limited the content of the alloy steel for gears until now, has been greatly increased than that of the conventional chromium-molybdenum alloy steel. Mo) content was reduced to improve hardness and fatigue strength.
본 발명에 따라 그 함유량이 증가된 크롬은 강의 소입성 향상에 매우 유효한 원소로서, 심부 경도를 높여 굽힘피로강도 향상에 매우 유용하며, 안정된 미세탄화물을 잘 만들어 침탄을 촉진시키며 침탄을 적합하게 만들고, 템퍼링(tempering)시 연화저항성을 크게 향상시켜 접촉피로특성(내피팅성)을 현저히 높일 수 있게 된다.Chromium, the content of which is increased according to the present invention, is a very effective element for improving the hardenability of steel, and it is very useful for improving the bending fatigue strength by increasing the core hardness, making stable fine carbide to promote carburization and making carburization suitable, In case of tempering, the softening resistance is greatly improved, and the contact fatigue property (fitting resistance) can be significantly increased.
본 발명에 따라 함유된 실리콘은 기지에 고용되어 피로강도향상에 도움이 되고, 템퍼링(tempering)시 연화저항성을 크게 향상시켜 접촉피로특성(내피팅성)을 현저히 높이게 된다.The silicon contained according to the present invention is dissolved in the base to help improve the fatigue strength, and greatly improve the softening resistance during tempering, thereby significantly increasing the contact fatigue property (fitting resistance).
이와 같이, 크롬과 실리콘은 연화저항성을 매우 향상시키기 때문에 장시간 사용후 발생되는 기어 표면손상 형태인 치면 피팅(fitting) 발생을 최소화해 자동차 보증 연한을 늘릴 수 있는 큰 장점을 제공할 수 있게 된다.As such, since chromium and silicon greatly improve the softening resistance, it is possible to minimize the occurrence of tooth fitting, which is a form of gear surface damage generated after a long time of use, thereby providing a great advantage of increasing the vehicle warranty life.
상기한 크롬과 실리콘이 자동차 기어의 물성 향상에 매우 유효한 원소들임에도 불구하고 사용이 제한되었던 이유는 침탄시 입계산화층을 매우 잘 만드는 원소였기 때문이다.Although chromium and silicon are very effective elements for improving the physical properties of automobile gears, their use was limited because they were very good at making grain boundary oxide layers during carburization.
그럼에도 불구하고, 크롬 및 실리콘의 함량을 증가시켜 사용한 이유는 무산화분위기 침탄공정인 진공침탄법이 개발되어 사용되고 또한 최근 자동차 기어 소음에 대한 소비자 요구사항을 만족시키기 위해 열처리후 가공 공정의 추가가 대세가 되면서, 그 사용에 대한 제한이 없어졌기 때문이다.Nevertheless, the reason for increasing the content of chromium and silicon is that the vacuum carburizing method, which is an anoxic atmosphere-free carburizing process, has been developed and used, and the addition of a post-heat treatment process in order to satisfy consumer requirements for automobile gear noise has recently been popularized. This is because the restrictions on its use have been removed.
본 발명의 주요 구성원소 및 그 함량의 한정 이유에 대해 더욱 상세하게 설명하면 다음과 같다.Referring to the main members of the present invention and the reason for limitation of the content in more detail as follows.
1) 탄소(C): 0.17∼0.21 중량%1) Carbon (C): 0.17 to 0.21 wt%
원하는 심부경도를 HV 440 내지 472 정도로 얻기 위하여 적어도 0.17% 이상의 첨가가 필요하며, 0.21중량% 이상이면 심부경도가 너무 증가하여 담금질후에 표면의 압축잔류응력을 충분히 도입을 할 수 없으므로, 탄소의 함량은 0.17∼0.21 중량%로 한정한다.Addition of at least 0.17% or more is necessary to obtain the desired core hardness from HV 440 to 472. If the core content is 0.21% by weight or more, the core hardness is too high to sufficiently introduce the compressive residual stress on the surface after quenching. It is limited to 0.17 to 0.21% by weight.
2) 실리콘(Si): 0.50∼0.70 중량%2) Silicon (Si): 0.50 to 0.70 wt%
본 발명의 크롬-몰리브덴 합금강에 실리콘은 0.50∼0.70 중량%로 한정하는 것이 바람직하며, 0.50중량% 미만일 경우 상술한 연화저항성이 커지지 않으며, 0.70중량%를 넘어서는 경우에는 기지의 고용강화 효과가 너무 커서 성형성을 극히 떨어뜨림과 함께 단조 및 가공을 어렵게 한다.In the chromium-molybdenum alloy steel of the present invention, silicon is preferably limited to 0.50 to 0.70 wt%, and if it is less than 0.50 wt%, the above softening resistance does not increase, and if it exceeds 0.70 wt%, the known solid solution strengthening effect is too large. Forging and machining are difficult, with extremely low formability.
3) 크롬(Cr): 1.95∼2.25 중량%3) Chromium (Cr): 1.95 to 2.25 wt%
크롬(Cr)은 1.95∼2.25 중량%로 그 함량을 한정하는 것이 좋으며, 이때 함유량이 1.95중량% 미만일 경우 통상 고강도 크롬-몰리브덴 합금강의 소입성 대비 현저한 차이가 나지 않아 피로강도 물성 향상이 크지 않게 되고, 또한 템퍼링(Tempering)시 연화저항성이 현저히 커지지 않아 접촉피로특성 개선이 미흡하며, 2.25중량% 이상일 경우에는 다량의 미세 탄화물 석출로 가공성이 가공 및 단조성형성이 급격히 떨어지는 문제가 발생하게 된다.It is preferable to limit the content of chromium (Cr) to 1.95 to 2.25% by weight. At this time, when the content is less than 1.95% by weight, there is no significant difference compared with the hardenability of the high strength chromium-molybdenum alloy steel, so that the fatigue strength improvement is not large. In addition, the softening resistance does not significantly increase during tempering, so that the contact fatigue characteristics are not improved. When the content is 2.25% by weight or more, the processability due to the precipitation of a large amount of fine carbide causes a sharp drop in processing and forging formation.
4) 몰리브덴(Mo): 0.33∼0.43 중량%4) Molybdenum (Mo): 0.33 to 0.43 wt%
통상, 고강도 크롬-몰리브덴 합금강보다는 작은 0.33 내지 0.43 중량%를 첨가하는 것이 바람직하며, 몰리브덴 함유량을 통상 고강도 크롬-몰리브덴 합금강보다 작게 유지한 이유는 크롬 함량이 많아짐에 따른 다량의 유해탄화물 형성을 방지해 취성을 줄이기 위함이다.In general, it is preferable to add 0.33 to 0.43% by weight, which is smaller than high strength chromium-molybdenum alloy steel, and the reason why the molybdenum content is usually kept smaller than that of high strength chromium-molybdenum alloy steel is to prevent the formation of a large amount of harmful carbides due to the high chromium content. To reduce brittleness.
5) 황(S): 0.030 중량% 이하 5) Sulfur (S): 0.030 wt% or less
물성향상(고강도)에도 불구하고 가공성을 양호하게 하기 위해 통상 크롬-몰리브덴 합금강 보다 유해하지 않는 범위 내에서 상한 함량을 올렸으며, 0.03 중량%이하로 관리하는 것이 좋다.In order to improve workability despite improving physical properties (high strength), the upper limit content is generally raised within a range that is not more harmful than that of chromium-molybdenum alloy steel, and it is better to manage it to 0.03% by weight or less.
6) 인(P): 0.020 중량% 이하6) Phosphorus (P): 0.020 wt% or less
통상 크롬-몰리브덴 합금강과 같이 유해하지 않는 범위 내에서 그 함량을 0.02 중량%이하로 관리하는 것이 좋다.In general, it is preferable to control the content to 0.02% by weight or less within a range that is not harmful, such as chromium-molybdenum alloy steel.
7) 니오븀(Nb): 0.015∼0.035 중량%7) Niobium (Nb): 0.015 to 0.035 wt%
고온침탄시 결정립 조대화 방지 및 결정립 미세화 효과를 극대화하기 위해 니오븀(Nb)을 0.015∼0.035 중량%로 한정하는 것이 바람직하며, 이 니오븀(Nb)은 합금강내에서 미세한 니오비윰 질, 탄화물을 만들어 결정립 조대화를 막아주는 원소로서 그 함량이 0.015중량% 이하인 경우는 그 효과가 크지 않으며, 0.035중량%를 넘어서는 경우는 탄화물이 결정입계에 과다 석출해 취성이 커지는 문제가 발생한다.In order to prevent grain coarsening and maximize grain refinement during high temperature carburizing, niobium (Nb) is preferably limited to 0.015 to 0.035% by weight, and niobium (Nb) forms fine niobium and carbide in alloy steel. If the content is less than 0.015% by weight as an element that prevents grain coarsening, the effect is not great. If the content exceeds 0.035% by weight, carbides are excessively precipitated at the grain boundaries, causing brittleness.
여기서, 본 발명에서는 통상 크롬-몰리브덴 합금강의 경우 대비 Nb의 함량 상한을 높였는데, 이는 크롬(Cr) 함량 증가에 따른 크롬탄화물의 입계에 과다석출을 막기 위함이다.Here, in the present invention, the upper limit of the content of Nb is higher than that of chromium-molybdenum alloy steel in general, which is to prevent over-precipitation at the grain boundary of chromium carbide due to the increase in chromium (Cr) content.
8) 망간(Mn): 0.45∼0.75 중량%8) Manganese (Mn): 0.45 to 0.75 wt%
강의 담금질성을 보장하기 위하여 적어도 0.45중량%의 양이 첨가되어야 한다. 그러나, Mn은 입자계 산화발생을 일으키기 쉬우므로, 이를 감소시키기 위하여 0.75중량% 이하로 한정해야 한다.To ensure hardenability of the steel, an amount of at least 0.45% by weight should be added. However, since Mn is liable to cause particle oxidation, it should be limited to 0.75% by weight or less.
이러한 조성 및 함량비로 이루어진 본 발명의 크롬-몰리브덴 합금강은 기존의 고강도 크롬-몰리브덴 합금강보다 소입성이 월등히 높아 단조후, 미세 조직 균일성 확보 및 단조후 가공성을 확보하기 위해 특수한 가공전 열처리가 필요하며, 열처리 모사시험을 통한 적합한 열처리는 첨부한 도 1에 설명된 바와 같다.The chromium-molybdenum alloy steel of the present invention having such a composition and content ratio is much harder than the existing high strength chromium-molybdenum alloy steel, and thus requires special heat treatment before processing to ensure uniformity after micro forging and to secure workability after forging. Suitable heat treatment through heat treatment simulation test is as described in FIG.
도 1에서 보는 바와 같이 본 발명의 열처리는 오스테나이진(austenizing) 구간, 제어냉각 구간, 템퍼링(tempering) 구간 및 공냉 구간으로 구성되어 있으며, 상세 유지온도, 유지시간 및 냉각속도를 살펴보면, 위와 같은 본 발명의 크롬-몰리브덴 합금강을 단조후 미세 조직 균일성 확보 및 단조후 가공성을 확보하기 위해 가공전 열처리를 하게 되는 바, 920∼940℃에서 2∼3시간 동안 오스테나이징을 실시하는 단계와, 150℃/분 이상의 냉각속도로 템퍼링 온도까지 냉각하기위해 제어냉각하는 단계와(에어, 수증기분사 등), 660∼680℃에서 5∼7시간 동안 템퍼링을 실시한 다음, 공냉 처리하는 단계로 이루어진다.As shown in Figure 1, the heat treatment of the present invention is composed of an austenizing section, a control cooling section, a tempering section and an air cooling section. Looking at the detailed holding temperature, the holding time and the cooling rate, The chromium-molybdenum alloy steel of the present invention is subjected to a heat treatment before processing to ensure microstructure uniformity after forging and workability after forging, performing austenizing at 920 to 940 ° C for 2 to 3 hours, Control cooling to cool to the tempering temperature at a cooling rate of 150 ° C./min or more (air, steam injection, etc.), and tempering at 660 to 680 ° C. for 5 to 7 hours, followed by air cooling.
이러한 본 발명의 열처리 조건에 있어서, 제어냉각 구간에서의 냉각속도를 규제한 이유는 폴리고날 페라이트(polygonal ferrite) 때문이다. 폴리고날 페라이트(polygonal ferrite)는 100℃/분 이하의 냉각속도에서 안정상으로 국부적으로 석출하며, 후공정에서 성분간의 편석을 크게 발생시켜 미세조직 균질성 확보를 어렵게하는 조직이다. In the heat treatment conditions of the present invention, the reason for regulating the cooling rate in the controlled cooling section is because of polygonal ferrite. Polygonal ferrite is a structure that locally precipitates in a stable phase at a cooling rate of 100 ° C./min or less, and it is difficult to secure microstructure homogeneity by generating segregation between components in a later process.
이에 따라, 100℃/분 이상의 냉각속도로 제어하면 페라이트(polygonal ferrite) 석출을 방지할 수 있지만(실험실적), 양산을 감안한 경우 150℃/분 이상의 냉각속도가 적합하다.Accordingly, control at a cooling rate of 100 ° C./min or more can prevent precipitation of ferrite (polygonal ferrite) (experimental results). However, in consideration of mass production, a cooling rate of 150 ° C./min or more is suitable.
또한, 상기 템퍼링(Tempering) 온도를 660∼680℃로 규제한 것은 700℃부근의 폴리고날 페라이트(polygonal ferrite) 석출구간을 배제하기 위함이다.In addition, the tempering temperature is regulated to 660 to 680 ° C to exclude a polygonal ferrite precipitation section near 700 ° C.
또한, 본 발명의 합금강 소재는 내부가 단단하여 가공이 잘 안되는 점을 감안하여 상기와 같이 920∼940℃에서 2∼3시간 동안 오스테나이징을 실시하게 된다.In addition, the alloy steel material of the present invention is subjected to austenizing for 2 to 3 hours at 920 ~ 940 ℃ in consideration of the fact that the interior is hard to work well.
이하, 본 발명의 실시예를 비교예와 함께 더욱 상세하게 설명하겠는 바, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the embodiment of the present invention will be described in more detail with a comparative example, but the present invention is not limited by the following examples.
실시예1Example 1
중량%로서, 탄소(C) 0.18, 실리콘(Si) 0.40, 망간(Mn) 0.69, 인(P) 0.009, (S) 0.020, 니켈(Ni) 0.05, 크롬(Cr) 1.79, 몰리브덴(Mo) 0.25, 니오븀(Nb) 0.025를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 12ppm을 첨가한 크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 오일온도 150℃에 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다(표 2 참조).As weight percent, carbon (C) 0.18, silicon (Si) 0.40, manganese (Mn) 0.69, phosphorus (P) 0.009, (S) 0.020, nickel (Ni) 0.05, chromium (Cr) 1.79, molybdenum (Mo) 0.25 , A chromium-molybdenum alloy steel material containing 12 ppm of dissolved oxygen for the cleanliness of an alloy component containing niobium (Nb) 0.025 for 2 hours was carburized at 900 ° C. for 2 hours, and then quenched at an oil temperature of 150 ° C., followed by 170 ° C. Tempering was carried out for 2 hours to prepare a specimen (see Table 2).
실시예2Example 2
중량%로서, 탄소(C) 0.21, 실리콘(Si) 0.59, 망간(Mn) 0.62, 인(P) 0.010, (S) 0.019, 니켈(Ni) 0.05, 크롬(Cr) 2.07, 몰리브덴(Mo) 0.37, 니오븀(Nb) 0.029를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 14ppm을 첨가한 크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 오일온도 150℃에 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다(표 2 참조).As weight percent, carbon (C) 0.21, silicon (Si) 0.59, manganese (Mn) 0.62, phosphorus (P) 0.010, (S) 0.019, nickel (Ni) 0.05, chromium (Cr) 2.07, molybdenum (Mo) 0.37 , A chromium-molybdenum alloy steel material containing 14 ppm of dissolved oxygen for the cleanliness of an alloy component containing niobium (Nb) 0.029 for 2 hours, carburized at 900 ° C. for 2 hours, and quenched at an oil temperature of 150 ° C., followed by 170 ° C. Tempering was carried out for 2 hours to prepare a specimen (see Table 2).
실시예3Example 3
중량%로서, 탄소(C) 0.19, 실리콘(Si) 0.35, 망간(Mn) 0.62, 인(P) 0.010, (S) 0.023, 니켈(Ni) 0.06, 크롬(Cr) 1.42, 몰리브덴(Mo) 0.38, 니오븀(Nb) 0.026를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 13ppm을 첨가한 크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 오일온도 150℃에 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다(표 2 참조).As weight percent, carbon (C) 0.19, silicon (Si) 0.35, manganese (Mn) 0.62, phosphorus (P) 0.010, (S) 0.023, nickel (Ni) 0.06, chromium (Cr) 1.42, molybdenum (Mo) 0.38 , A chromium-molybdenum alloy steel material containing 13 ppm of dissolved oxygen for the cleanliness of an alloy component containing niobium (Nb) 0.026 for 2 hours, carburized at 900 ° C. for 2 hours, and then quenched at an oil temperature of 150 ° C., followed by 170 ° C. Tempering was carried out for 2 hours to prepare a specimen (see Table 2).
비교예1Comparative Example 1
비교예1에 따른 크롬-몰리브덴 합금강(SCM920HVSi)은 본원 출원인의 대표적 고강도 변속기 기어용강으로서, 중량%로 탄소(C) 0.19, 실리콘(Si) 0.11, 망간(Mn) 0.70, 인(P) 0.012, (S) 0.018, 니켈(Ni) 0.06, 크롬(Cr) 1.31, 몰리브덴(Mo) 0.62, 니오븀(Nb) 0.019를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 15ppm을 첨가한 크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 오일온도 150℃에 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다(표 2 참조).Chromium-molybdenum alloy steel (SCM920HVSi) according to Comparative Example 1 is the representative high strength transmission gear steel of the applicant of the present application, by weight% carbon (C) 0.19, silicon (Si) 0.11, manganese (Mn) 0.70, phosphorus (P) 0.012, (S) Chromium-molybdenum alloy steel added with dissolved dissolved oxygen of 15 ppm for alloy cleanness to alloying components containing 0.018, nickel (Ni) 0.06, chromium (Cr) 1.31, molybdenum (Mo) 0.62, niobium (Nb) 0.019 The material was carburized at 900 ° C. for 2 hours, quenched at an oil temperature of 150 ° C., and then tempered at 170 ° C. for 2 hours to prepare a specimen (see Table 2).
비교예2Comparative Example 2
비교예2에 따른 니켈-크롬-몰리브덴 합금강(SNCM518H)은 일본 미쯔비시제강의 대표적 고강도 변속기 기어용강으로서, 중량%로 탄소(C) 0.18, 실리콘(Si) 0.09, 망간(Mn) 0.55, 인(P) 0.006, (S) 0.015, 니켈(Ni) 1.57, 크롬(Cr) 0.55, 몰리브덴(Mo) 0.61, 니오븀(Nb) 0.022를 함유하는 합금계 성분에 합금의 청정도를 위해 용존산소량 14ppm을 첨가한 크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 오일온도 150℃에 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다(표 2 참조).Nickel-chromium-molybdenum alloy steel (SNCM518H) according to Comparative Example 2 is a representative high-strength transmission gear steel made by Mitsubishi Steel, Japan, in terms of weight% of carbon (C) of 0.18, silicon (Si) of 0.09, manganese (Mn) of 0.55, and phosphorus (P). ) Chromium added with 14 ppm of dissolved oxygen to the alloys containing 0.006, (S) 0.015, nickel (Ni) 1.57, chromium (Cr) 0.55, molybdenum (Mo) 0.61 and niobium (Nb) 0.022 The molybdenum alloy steel material was carburized at 900 ° C. for 2 hours, quenched at an oil temperature of 150 ° C., and then tempered at 170 ° C. for 2 hours to prepare a specimen (see Table 2).
시험예1Test Example 1
위의 실시예1-3 및 비교예1의 합금강에 대한 소입성을 알아보기 위하여 조미니(jominy)법을 이용하여 경도를 측정하였는 바, 첨부한 도 2의 그래프에서 보는 바와 같이 본 발명의 실시예에 따른 합금강이 비교예인 기존의 크롬-몰리브덴 합금강에 비하여 측정 거리에 비례하여 경도가 높아 소입성이 획기적으로 상승됨을 알 수 있었다.In order to find out the hardenability to the alloy steel of Example 1-3 and Comparative Example 1, the hardness was measured by using the jominy method, as shown in the accompanying graph of FIG. Compared to the conventional chromium-molybdenum alloy steel of Comparative Example, the alloy steel according to the example was found to have a high hardness in proportion to the measured distance, thereby increasing the hardenability significantly.
시험예2Test Example 2
실시예1-3 및 비교예1-2에 대한 경도 측정 및 피로시험, 충격시험, 접촉피로시험, 비틀림 피로시험을 표 3의 각주에 설명된 바와 같이 실시하였는 바, 그 결과는 표 3 및 도 3의 그래프에 나타낸 바와 같다.Hardness measurement, fatigue test, impact test, contact fatigue test and torsion fatigue test were carried out as described in the footnote of Table 3 for Example 1-3 and Comparative Example 1-2, and the results are shown in Table 3 and FIG. It is as shown in the graph of 3.
위의 표3에서 보는 바와 같이 본 발명의 실시예2에 따른 합금강이 기존의 비교예1,2의 합금강에 비하여 표면경도 및 심부경도에서 우수하고, 피로한도 및 접촉피로한도에서도 가장 우수함을 알 수 있었다.As shown in Table 3 above, it can be seen that the alloy steel according to Example 2 of the present invention is superior in surface hardness and core hardness, and also excellent in fatigue limit and contact fatigue limit, as compared to the conventional alloy steels of Comparative Examples 1 and 2. there was.
또한, 실시예1,3에 따른 합금강도 기존의 비교예1,2의 합금강에 비하여 우수한 물성을 나타내었지만 기어의 중요한 특성인 접촉피로한도에서는 열등함을 알 수 있었다.In addition, the alloy steels according to Examples 1 and 3 exhibited superior physical properties compared to the alloy steels of Comparative Examples 1 and 2, but were inferior in the contact fatigue limit, which is an important characteristic of the gear.
이상에서 본 바와 같이, 본 발명에 따른 변속기 기어 및 샤프트용 초고강도 크롬-몰리브덴 합금강의 열처리 방법에 의하면, 기존의 고강도 니켈-크롬-몰리브덴 합금강 및 크롬-몰리브덴강 대비 매우 우수한 피로물성(내구성)을 보유하여 컴팩트한 고출력 변속기 기어 및 샤프트에 적용할 수 있는 장점을 제공할 수 있다.As described above, according to the heat treatment method of the ultra-high strength chromium-molybdenum alloy steel for the transmission gear and shaft according to the present invention, compared to the existing high-strength nickel-chromium-molybdenum alloy steel and chromium-molybdenum steel has excellent fatigue properties (durability) It can provide the advantages that can be applied to compact high power transmission gears and shafts.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050107469A KR100716344B1 (en) | 2005-11-10 | 2005-11-10 | Heat treatment method of cr-mo alloy for transmission gear and shaft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050107469A KR100716344B1 (en) | 2005-11-10 | 2005-11-10 | Heat treatment method of cr-mo alloy for transmission gear and shaft |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100716344B1 true KR100716344B1 (en) | 2007-05-11 |
Family
ID=38270228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050107469A KR100716344B1 (en) | 2005-11-10 | 2005-11-10 | Heat treatment method of cr-mo alloy for transmission gear and shaft |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100716344B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106079A (en) * | 2015-12-10 | 2017-06-15 | 山陽特殊製鋼株式会社 | Steel for machine structural use excellent in crystal grain coarsening resistance, bending fatigue-resistant strength and impact-resistant strength |
CN108637148A (en) * | 2018-04-28 | 2018-10-12 | 吴京祥 | Forging blank Three-section type heating process |
KR20220054941A (en) | 2020-10-26 | 2022-05-03 | 한국생산기술연구원 | Heat Treatment Method For Alloy Steel Of Gears Using Adjusting The Speed Of Rising Temperature Of Continuous Furnace |
KR20220054942A (en) | 2020-10-26 | 2022-05-03 | 한국생산기술연구원 | Heat Treatment Method For Alloy Steel Of Gears Using Addjusting Phase Transformation Of Normalizing Period |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03244780A (en) * | 1990-02-20 | 1991-10-31 | Suwan Shoji Kk | End part independent opening and closing folding door |
JPH0559528A (en) * | 1991-08-29 | 1993-03-09 | Kobe Steel Ltd | Gear steel |
KR970021347A (en) * | 1995-10-09 | 1997-05-28 | 노무라 사토루 | Steel for gears |
JPH09241750A (en) * | 1996-03-06 | 1997-09-16 | Hino Motors Ltd | Production of case hardening boron steel gear small in heat treating strain |
JP2003301933A (en) | 2002-04-10 | 2003-10-24 | Nsk Ltd | Pinion shaft and planetary gear device |
-
2005
- 2005-11-10 KR KR1020050107469A patent/KR100716344B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03244780A (en) * | 1990-02-20 | 1991-10-31 | Suwan Shoji Kk | End part independent opening and closing folding door |
JPH0559528A (en) * | 1991-08-29 | 1993-03-09 | Kobe Steel Ltd | Gear steel |
KR970021347A (en) * | 1995-10-09 | 1997-05-28 | 노무라 사토루 | Steel for gears |
JPH09241750A (en) * | 1996-03-06 | 1997-09-16 | Hino Motors Ltd | Production of case hardening boron steel gear small in heat treating strain |
JP2003301933A (en) | 2002-04-10 | 2003-10-24 | Nsk Ltd | Pinion shaft and planetary gear device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106079A (en) * | 2015-12-10 | 2017-06-15 | 山陽特殊製鋼株式会社 | Steel for machine structural use excellent in crystal grain coarsening resistance, bending fatigue-resistant strength and impact-resistant strength |
CN108637148A (en) * | 2018-04-28 | 2018-10-12 | 吴京祥 | Forging blank Three-section type heating process |
CN108637148B (en) * | 2018-04-28 | 2019-12-13 | 吴京祥 | three-section type heating process method for forging blank |
KR20220054941A (en) | 2020-10-26 | 2022-05-03 | 한국생산기술연구원 | Heat Treatment Method For Alloy Steel Of Gears Using Adjusting The Speed Of Rising Temperature Of Continuous Furnace |
KR20220054942A (en) | 2020-10-26 | 2022-05-03 | 한국생산기술연구원 | Heat Treatment Method For Alloy Steel Of Gears Using Addjusting Phase Transformation Of Normalizing Period |
KR102417413B1 (en) | 2020-10-26 | 2022-07-06 | 한국생산기술연구원 | Heat Treatment Method For Alloy Steel Of Gears Using Addjusting Phase Transformation Of Normalizing Period |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101830017B1 (en) | Carburized-steel-component production method, and carburized steel component | |
KR100848784B1 (en) | The high strength alloy steel for transmission gear of automobile and thereof heat treatment | |
JP5669339B2 (en) | Manufacturing method of high strength carburized parts | |
KR101726251B1 (en) | Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component | |
CN112292471B (en) | Mechanical component | |
WO2013024876A1 (en) | Spring steel and spring | |
JP4970811B2 (en) | High surface pressure parts and manufacturing method thereof | |
JP2023002842A (en) | Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength | |
JP4464862B2 (en) | Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing. | |
JP2012237052A (en) | Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same | |
KR100716344B1 (en) | Heat treatment method of cr-mo alloy for transmission gear and shaft | |
JP3932102B2 (en) | Case-hardened steel and carburized parts using the same | |
JP2020041186A (en) | Case hardened steel for gas carburization, and gas carburization | |
KR20150074645A (en) | Material for high carburizing steel and method for producing gear using the same | |
JP7436779B2 (en) | Steel for carburized gears, carburized gears, and method for manufacturing carburized gears | |
JP4464861B2 (en) | Case hardening steel with excellent grain coarsening resistance and cold workability | |
KR20050031540A (en) | Cr-mo alloy for transmission gear | |
KR100811912B1 (en) | High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing | |
KR101655181B1 (en) | High strength steel and method for manufacturing gear | |
JP4411096B2 (en) | Steel wire rod and steel bar for case hardening with excellent cold forgeability after spheronization | |
JP3996386B2 (en) | Carburizing steel with excellent torsional fatigue properties | |
KR102601912B1 (en) | Steel for carburizing gear and method of heat treating the same | |
JP2005281857A (en) | Raw material for nitrided component having excellent broaching workability and method for manufacturing nitrided component using the raw material | |
JP7111029B2 (en) | Method for manufacturing steel parts | |
KR100913172B1 (en) | Ultra high strength carburizing steel with high fatigue resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130430 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140430 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150430 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170919 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180427 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190429 Year of fee payment: 13 |