Nothing Special   »   [go: up one dir, main page]

KR100699057B1 - Light emitting device and method therefor - Google Patents

Light emitting device and method therefor Download PDF

Info

Publication number
KR100699057B1
KR100699057B1 KR1020050107515A KR20050107515A KR100699057B1 KR 100699057 B1 KR100699057 B1 KR 100699057B1 KR 1020050107515 A KR1020050107515 A KR 1020050107515A KR 20050107515 A KR20050107515 A KR 20050107515A KR 100699057 B1 KR100699057 B1 KR 100699057B1
Authority
KR
South Korea
Prior art keywords
layer
semiconductor layer
light emitting
emitting device
diffusion prevention
Prior art date
Application number
KR1020050107515A
Other languages
Korean (ko)
Inventor
이재호
Original Assignee
서울옵토디바이스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울옵토디바이스주식회사 filed Critical 서울옵토디바이스주식회사
Priority to KR1020050107515A priority Critical patent/KR100699057B1/en
Application granted granted Critical
Publication of KR100699057B1 publication Critical patent/KR100699057B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A light emitting diode and a method for manufacturing the same are provided to reduce the density of crystal defects of a semiconductor layer by using a potential diffusion protection layer. A buffer layer(120) is formed on a substrate(110). A first semiconductor layer(130) is formed on the buffer layer. An active layer(150) is formed on the first semiconductor layer. A second semiconductor layer(160) is formed on the active layer. A potential diffusion protection layer(140) is formed to contain the first semiconductor layer or the second semiconductor layer. The potential diffusion protection layer is stacked sequentially and repeatedly in an AlxGaPN layer and a GaPN layer.

Description

발광소자 및 그 제조방법 { LIGHT EMITTING DEVICE AND METHOD THEREFOR }Light emitting device and manufacturing method thereof {LIGHT EMITTING DEVICE AND METHOD THEREFOR}

도 1은 본 발명에 따른 발광소자의 일부를 도시한 도면,1 is a view showing a part of a light emitting device according to the present invention;

도 2는 본 발명에 따른 전위확산방지층을 도시한 도면,2 is a view showing a potential diffusion prevention layer according to the present invention;

도 3은 본 발명에 따른 발광소자의 일실시예를 도시한 도면,3 is a view showing an embodiment of a light emitting device according to the present invention;

도 4는 본 발명에 따른 발광소자의 제조방법을 도시한 도면이다.4 is a view showing a method of manufacturing a light emitting device according to the present invention.

< 도면의 주요 부호에 대한 간단한 설명 ><Brief Description of Major Codes in Drawings>

100 : 발광셀 110 : 기판100: light emitting cell 110: substrate

120 : 버퍼층 130 : 제1반도체층120: buffer layer 130: first semiconductor layer

140 : 전위확산방지층 150 : 활성층140: potential diffusion prevention layer 150: active layer

160 : 제2반도체층160: second semiconductor layer

본 발명은 발광소자에 관한 것으로, 더욱 상세하게는, 발광 효율을 향상시킬 수 있는 구조를 갖는 발광소자 및 그 제조 방법에 관한 것이다.The present invention relates to a light emitting device, and more particularly, to a light emitting device having a structure capable of improving the luminous efficiency and a manufacturing method thereof.

일반적으로 질화갈륨(GaN), 질화알루미늄(AlN) 등과 같은 Ⅲ족 원소의 질화물은 열적 안정성이 우수하고 직접 천이형의 에너지 밴드(band) 구조를 갖고 있어, 최근 청색 및 자외선 영역의 광전소자용 물질로 많은 각광을 받고 있다. 특히, 질화갈륨(GaN)을 이용한 청색 및 녹색 발광 소자는 대규모 천연색 평판 표시 장치, 신호등, 실내 조명, 고밀도광원, 고해상도 출력 시스템과 광통신 등 다양한 응용 분야에 활용되고 있다. In general, nitrides of Group III elements, such as gallium nitride (GaN) and aluminum nitride (AlN), have excellent thermal stability and have a direct transition energy band structure. As a lot of attention. In particular, blue and green light emitting devices using gallium nitride (GaN) have been used in various applications such as large-scale color flat panel display devices, traffic lights, indoor lighting, high density light sources, high resolution output systems, and optical communications.

이러한 Ⅲ족 원소의 질화물 반도체층은 육방 정계의 구조를 갖는 사파이어(Sapphire)나 실리콘 카바이드(SiC) 등의 이종 기판에서 금속유기화학기상증착법(MOCVD) 또는 분자선 증착법(molecular beam epitaxy; MBE) 등의 공정을 통해 성장된다. 그러나, Ⅲ족 원소의 질화물 반도체층이 이종기판 상에 형성될 경우, 반도체층과 기판 사이의 격자상수 및 열팽창 계수의 차이에 기인하여 반도체층 내에 크랙(crack) 또는 뒤틀림(warpage)이 발생하고, 전위(dislocation)가 생성된다. 반도체층 내의 크랙, 뒤틀림 및 전위는 발광소자의 특성을 악화시킨다. The nitride semiconductor layer of the group III element is a metal organic chemical vapor deposition (MOCVD) or molecular beam deposition (MBE) on a heterogeneous substrate such as sapphire or silicon carbide (SiC) having a hexagonal structure Grown through the process. However, when a nitride semiconductor layer of a group III element is formed on a dissimilar substrate, cracks or warpage occur in the semiconductor layer due to a difference in lattice constant and thermal expansion coefficient between the semiconductor layer and the substrate, Dislocations are created. Cracks, distortions and dislocations in the semiconductor layer deteriorate the characteristics of the light emitting element.

이러한 문제를 해결하기 위해 종래에는 반도체층을 래터럴 방향으로 성장시키는 LEO(Lateral Epitaxial Overgrowth)기법이 사용되고 있다. 이 방법에 있어서는, 기판상에 질화갈륨을 MOCVD(유기금속 화학증착)법 등으로 성장시킨 후, 포토 공정을 통해 성장저해층을 스트라이프형으로 형성한다. 그 후 다시 질화갈륨을 성장시키면, 질화갈륨은 포토공정에 의해 오픈된 기판상에서부터 수직 성장됨과 동시에 측방향으로도 성장된다. 그러나, 이러한 스트라이프형의 성장저해층이 성장저해층이 형성된 부분에만 전위밀도가 감소되는 문제점이 있다.In order to solve this problem, conventionally, a technique of Lateral Epitaxial Overgrowth (LEO), in which a semiconductor layer is grown in a lateral direction, has been used. In this method, gallium nitride is grown on a substrate by MOCVD (organic metal chemical vapor deposition) or the like, and then the growth inhibition layer is formed into a stripe through a photo process. Then, when gallium nitride is grown again, gallium nitride grows vertically from the substrate opened by the photo process and also grows laterally. However, there is a problem that the dislocation density decreases only in the portion where the growth inhibition layer of the stripe type is formed.

본 발명이 이루고자 하는 기술적 과제는, 반도체층의 결정결함 밀도를 감소시키기 위해 전위확산방지층을 구비하는 발광소자를 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a light emitting device having a dislocation diffusion prevention layer in order to reduce the crystal defect density of a semiconductor layer.

본 발명이 이루고자 하는 다른 기술적 과제는, 반도체층의 결정결함 밀도를 감소시키기 위해 전위확산방지층을 구비하는 발광소자의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method of manufacturing a light emitting device having a dislocation diffusion prevention layer in order to reduce the crystal defect density of a semiconductor layer.

상기 기술적 과제들을 달성하기 위하여, 본 발명은 기판 상에 형성된 버퍼층과, 상기 버퍼층에 형성된 제1반도체층과, 상기 제1반도체층 상에 형성된 활성층;In order to achieve the above technical problem, the present invention is a buffer layer formed on a substrate, a first semiconductor layer formed on the buffer layer, and an active layer formed on the first semiconductor layer;

상기 활성층 상에 형성된 제2반도체층 및 상기 반도체층들 중 어느 하나의 층에 일부가 되도록 형성된 전위확산방지층을 포함하되, 상기 전위확산방지층이 형성된 층은 상기 전위확산방지층을 사이에 두고 상기 전위확산방지층 아래에 형성된 제1층과, 상기 전위확산방지층 위에 형성된 제2층을 가지는 것을 특징으로 하는 발광소자를 제공한다.And a potential diffusion prevention layer formed to be part of any one of the semiconductor layers and the second semiconductor layer formed on the active layer, wherein the potential diffusion prevention layer is formed with the potential diffusion prevention layer interposed therebetween. Provided is a light emitting element having a first layer formed under the prevention layer and a second layer formed over the potential diffusion prevention layer.

상기 전위확산방지층은 제1반도체층의 일부층을 이루도록 형성되는 것이 바람직하다.The dislocation diffusion prevention layer is preferably formed to form a partial layer of the first semiconductor layer.

상기 전위확산방지층은 AlXGaYP (1-X-Y) N( 단, 0≤X,Y≤1)과, GaXP YN ( 단, 0≤X,Y≤1)의 혼합층으로 이루어지는 것이 바람직하다.The dislocation diffusion prevention layer is Al X Ga Y P (1-XY) N ( However, 0≤X, Y≤1) and Ga X P Y N ( However, it is preferable that it consists of a mixed layer of 0 <= X, Y <= 1).

상기 전위확산방지층은 AlXGaYAs(1-X-Y)N( 단, 0≤X,Y≤1)과, GaXAsYN ( 단, 0≤X,Y≤1)의 혼합층으로 이루어지는 것이 바람직하다.The dislocation diffusion prevention layer is Al X Ga Y As (1-XY) N ( However, 0≤X, Y≤1) and Ga X As Y N ( However, it is preferable that it consists of a mixed layer of 0 <= X, Y <= 1).

상기 버퍼층은 SiNX와 GaN계의 혼합으로 이루어지거나, AlN층으로 이루어지는 것이 바람직하다.The buffer layer is preferably made of a mixture of SiN X and GaN, or made of an AlN layer.

상기 제2반도체층 상에 형성된 투명전극과, 상기 제1반도체층과 상기 투명전극을 전기적으로 연결하는 연결전극 및 금속범프를 매개로 상기 제1,2반도체층에 플립본딩되는 서브마운트 기판을 더 포함하는 것이 바람직하다.The sub-mount substrate is flip-bonded to the first and second semiconductor layers through a transparent electrode formed on the second semiconductor layer, a connecting electrode electrically connecting the first semiconductor layer and the transparent electrode, and metal bumps. It is preferable to include.

또한, 본 발명은 기판상에 버퍼층을 형성하고, 상기 버퍼층 상에 제1반도체층의 일부를 형성하고, 상기 제1반도체층의 일부상에 전위확산방지층을 형성하고, 상기 전위확산방지층 상에 상기 제1반도체층의 나머지를 형성하고, 상기 제1반도체층 상에 활성층을 형성하고, 상기 활성층에 제2반도체층을 형성하는 것을 포함하는 발광소자의 제조방법을 제공한다.The present invention also provides a buffer layer on a substrate, a portion of a first semiconductor layer formed on the buffer layer, a potential diffusion prevention layer formed on a portion of the first semiconductor layer, and on the potential diffusion prevention layer It provides a method of manufacturing a light emitting device comprising forming a remainder of the first semiconductor layer, forming an active layer on the first semiconductor layer, and forming a second semiconductor layer on the active layer.

이하, 첨부한 도면들을 참조하여 본 발명에 따른 실시예들을 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되어지는 것이다. 따라서, 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.The following embodiments are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art. Accordingly, the invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, widths, lengths, thicknesses, and the like of components may be exaggerated for convenience. Like numbers refer to like elements throughout.

도 1은 본 발명에 따른 발광소자의 일부를 도시한 도면이고, 도 2는 본 발명에 따른 전위확산방지층을 도시한 도면이다. 1 is a view showing a part of the light emitting device according to the present invention, Figure 2 is a view showing a potential diffusion preventing layer according to the present invention.

도 3은 본 발명에 따른 발광소자의 일실시예를 도시한 도면이고, 도 4는 본 발명에 따른 발광소자의 제조방법을 도시한 도면이다.3 is a view showing an embodiment of a light emitting device according to the present invention, Figure 4 is a view showing a manufacturing method of a light emitting device according to the present invention.

이들 도면에 도시된 바와 같이, 본 발명에 따른 발광소자는 플립칩용으로서, 도 1을 참조하면, 발광 셀(100)은 기판(110) 상에 형성된 버퍼층(120)과, 버퍼층(120) 상에 형성된 제1반도체층(130)과, 제1반도체층(130)의 일부에 형성된 활성층(150) 그리고, 활성층(150) 상에 형성된 제2반도체층(160)을 포함한다. 여기서, 제1반도체층(130)은 N형 반도체층이고, 제2반도체층(160)은 P형 반도체층인 것이 바람직하다. 이와 같은 발광 셀(100)들은 기판(110) 상에 정렬되어 배치된다.As shown in these drawings, the light emitting device according to the present invention is for flip chip. Referring to FIG. 1, the light emitting cell 100 is formed on the buffer layer 120 and the buffer layer 120 formed on the substrate 110. The first semiconductor layer 130 is formed, an active layer 150 formed on a portion of the first semiconductor layer 130, and a second semiconductor layer 160 formed on the active layer 150. Here, it is preferable that the first semiconductor layer 130 is an N-type semiconductor layer, and the second semiconductor layer 160 is a P-type semiconductor layer. Such light emitting cells 100 are arranged on the substrate 110.

기판(110)은 발광 다이오드를 제작하기 위한 통상의 웨이퍼로서, 기판(110)은 Al₂O₃, SiC, ZnO, Si, GaAs, GaP, LiAl₂O₃, BN, AlN 및 GaN 중 적어도 어느 하나를 사용할 수 있다. 기판(110)은 그 위에 형성될 반도체층의 격자상수를 고려하여 선택된다. 예컨대, 기판(110)상에 GaN 계열의 반도체층이 형성될 경우, 기판(110)은 사파이어로 제조될 수 있다. The substrate 110 is a conventional wafer for fabricating a light emitting diode, and the substrate 110 may use at least one of Al 2 O 3, SiC, ZnO, Si, GaAs, GaP, LiAl 2 O 3, BN, AlN, and GaN. The substrate 110 is selected in consideration of the lattice constant of the semiconductor layer to be formed thereon. For example, when a GaN-based semiconductor layer is formed on the substrate 110, the substrate 110 may be made of sapphire.

기판(110) 상에는 N형 반도체층(130) 형성시 완충역할을 하는 버퍼층(120)을 형성하였다. 버퍼층(120)은 결정 성장시에 기판(110)과 후속층들의 격자 부정합을 줄이기 위한 것으로서, SiNX와 GaN계가 혼합된 혼합층으로 이루어지거나, AlN층으로 이루어질 수 있다. 또한, 버퍼층(120)은 셀 단위로 서로 이격될 수 있으나, 이에 한정하는 것은 아니며, 버퍼층(120)이 절연 물질 또는 반절연(Semi-insulating) 물질로 형성된 경우 서로 연속적일 수 있다. 하지만, 버퍼층(120)은 형성되지 않을 수도 있으므로, 본 실시예에서 이를 한정하는 것은 아니다.On the substrate 110, a buffer layer 120 that serves as a buffer when the N-type semiconductor layer 130 is formed is formed. The buffer layer 120 is to reduce lattice mismatch between the substrate 110 and subsequent layers during crystal growth, and may be made of a mixed layer in which SiN X and GaN are mixed or an AlN layer. In addition, the buffer layers 120 may be spaced apart from each other in units of cells, but the present invention is not limited thereto. When the buffer layers 120 are formed of an insulating material or a semi-insulating material, the buffer layers 120 may be continuous with each other. However, since the buffer layer 120 may not be formed, the present invention is not limited thereto.

제1 반도체층(130; 이하 'N형 반도체층'으로 칭함.)은 전자가 생성되는 층이다. N형 반도체 층(130)은 N형 화합물 반도체층과 N형 클래드층으로 형성된다. 이 때, N형 반도체층(130)은 N형 불순물이 주입된 GaN막을 사용하는 것이 바람직하다. 그러나 이에 한정되지 않고 다양한 반도체 성질의 물질층이 가능하다. 본 실시예에서는 N형 InxGayAl1 -x-y N(0≤x,y≤1)막을 포함하는 N형 반도체층(130)을 형성한다. The first semiconductor layer 130 (hereinafter referred to as an 'N-type semiconductor layer') is a layer in which electrons are generated. The N-type semiconductor layer 130 is formed of an N-type compound semiconductor layer and an N-type cladding layer. In this case, it is preferable that the N-type semiconductor layer 130 use a GaN film into which N-type impurities are injected. However, the present invention is not limited thereto, and material layers having various semiconductor properties are possible. In the present embodiment, an N-type semiconductor layer 130 including an N-type In x Ga y Al 1- xy N (0 ≦ x, y ≦ 1) film is formed.

N형 반도체층(130)에는 전위확산방지층(140)이 포함된다. The N-type semiconductor layer 130 includes a potential diffusion preventing layer 140.

이하에서는 전위확산방지층이 도시된 도 2를 참조하여 상세히 설명한다.Hereinafter, the potential diffusion prevention layer will be described in detail with reference to FIG. 2.

전위확산방지층(140)은 버퍼층(120)과 같이 후속층들의 격자부정합을 줄일 수 있도록 각 성분이 규칙적으로 배열된 결정격자로서 규칙격자로서, 아래 버퍼층(120)에서 부터 확장되는 전위결함의 추가확장을 막는 역할을 한다. 전위확산방지층(140)은 AlXGaYP (1-X-Y) N ( 단, 0≤X,Y≤1)과, GaXP YN( 단, 0≤X,Y≤1)으로 이루어진 각각의 층으로 이루어진다. 이때, 각각의 층은 반복되게 다수 적층되어 이루어진다. 또한, 전위확산방지층(140)은 AlXGaYAs(1-X-Y)N( 단, 0≤X,Y≤1)과, GaXAsYN( 단, 0≤X,Y≤1)으로 이루어진 각각의 층으로 이루어질 수 있다. 따라서, 후술될 제2반도체층(160)은 N형 반도체층(130)에 의해 P원자가 선택적으로 받아들여져 규칙적인 결정격자를 이룰 수 있다.The potential diffusion preventing layer 140 is a crystal lattice in which each component is arranged regularly so as to reduce lattice mismatch of subsequent layers, such as the buffer layer 120, and further expands the potential defect extending from the lower buffer layer 120. It serves to prevent. Dislocation diffusion prevention layer 140 is Al X Ga Y P (1-XY) N ( However, 0≤X, Y≤1) and Ga X P Y N ( However, each layer is composed of 0 ≦ X, Y ≦ 1). At this time, each layer is made of a plurality of layers repeatedly. In addition, the potential diffusion prevention layer 140 is made of Al X Ga Y As (1-XY) N ( However, 0 ≦ X , Y ≦ 1) and Ga X As Y N ( However, each layer may be formed of 0 ≦ X, Y ≦ 1). Therefore, the second semiconductor layer 160, which will be described later, may selectively accept P atoms by the N-type semiconductor layer 130 to form a regular crystal lattice.

제2반도체층(160; 이하 'P형 반도체층'으로 칭함.)은 정공이 생성되는 층이다. P형 반도체층(160)은 P형 클래드층과 P형 화합물 반도체층으로 형성된다. 이때, P형 반도체층(160)은 P형 불순물이 주입된 AlGaN을 사용한다. 본 실시예에서는 P형 AlxGa1 - xN(0≤x≤1)막을 포함하는 P형 반도체층(160)을 형성한다. 뿐만 아니라 P형 반도체층 막으로 InGaN막을 사용할 수 있다. The second semiconductor layer 160 (hereinafter referred to as a 'P-type semiconductor layer') is a layer in which holes are generated. The P-type semiconductor layer 160 is formed of a P-type cladding layer and a P-type compound semiconductor layer. At this time, the P-type semiconductor layer 160 uses AlGaN implanted with P-type impurities. In this embodiment, a P-type semiconductor layer 160 including a P-type Al x Ga 1 - x N (0 ≦ x ≦ 1) film is formed. In addition, an InGaN film may be used as the P-type semiconductor layer film.

활성층(150)은 전자 및 정공이 재결합되는 영역으로서, N형 반도체층(130) 위에 양자우물층과 장벽층이 반복적으로 형성된 다층막이 사용될 수 있다. 장벽층와 우물층은 2원 화합물인 GaN, InN, Al 등을 사용할 수 있고, 3원 화합물 InxGa1 -xN(0≤x≤1), AlxGa1 - xN(0≤x≤1)등을 사용할 수 있고, 4원 화합물 AlxInyGa1 -x- yN(0≤x,y,x+y≤1)을 사용할 수 있다. 물론, 상기의 2원 내지 4원 화합물에 소정의 불순물을 주입하여 N형 반도체층(130) 및 P형 반도체층(160)을 형성할 수도 있다. 여기서, 활성층(150)은 활성층(150)을 이루는 물질의 종류에 따라 전자 및 정공이 결합하여 발생하는 발광 파장이 변화된다. 따라서, 활성층(150)은 목표로 하는 파장에 따라 포함되는 물질을 조절하는 것이 바람직하다. The active layer 150 is a region where electrons and holes are recombined, and a multilayer film in which a quantum well layer and a barrier layer are repeatedly formed on the N-type semiconductor layer 130 may be used. As the barrier layer and the well layer, binary compounds GaN, InN, Al, etc. may be used, and ternary compounds In x Ga 1- x N (0 ≦ x ≦ 1) and Al x Ga 1 - x N (0 ≦ x ≦ 1), and the like, can be used 4 won compound Al x In y Ga 1 -x- y N (0≤x, y, x + y≤1). Of course, the N-type semiconductor layer 130 and the P-type semiconductor layer 160 may be formed by implanting predetermined impurities into the two- to four-membered compounds. Herein, the emission wavelength generated by the combination of electrons and holes in the active layer 150 is changed according to the type of material forming the active layer 150. Therefore, it is preferable that the active layer 150 adjusts a material included according to a target wavelength.

이러한 활성층(150)은 N형 반도체층(130) 일부 상에 위치하며, P형 반도체층(160)은 활성층(150)상에 위치한다. 이에 따라, N형 반도체층(130)의 일부는 활성층(150) 및 P형 반도체층(160)에 의해 상부면이 덮히고, 나머지 일부는 노출된다. The active layer 150 is located on a portion of the N-type semiconductor layer 130, and the P-type semiconductor layer 160 is located on the active layer 150. Accordingly, a portion of the N-type semiconductor layer 130 is covered by the top surface of the active layer 150 and the P-type semiconductor layer 160, the remaining portion is exposed.

도 3을 참조하면, 본 발명에 따른 발광소자의 일실시예로서, P형 반도체층(160) 상에는 P형 반도체층(160)의 저항을 줄이기 위해 별도의 투명전극(161)을 더 형성한다. 투명전극(161)은 투명 전도체로서 ITO(인디움-틴 산화막)이거나 ITO산화물이 될 수 있다.Referring to FIG. 3, as an embodiment of the light emitting device according to the present invention, an additional transparent electrode 161 is further formed on the P-type semiconductor layer 160 to reduce the resistance of the P-type semiconductor layer 160. The transparent electrode 161 may be indium tin oxide (ITO) or an ITO oxide as a transparent conductor.

또한, N형 반도체층(130) 상에도 전극(131)을 더 포함할 수 있다. 그리고, N형 반도체층(130)과 P형 반도체층(160) 상에는 접합 저항을 줄여 전류의 공급을 원활하게 하기 위해 별도의 오믹 금속층을 더 형성할 수 있다. In addition, the electrode 131 may be further included on the N-type semiconductor layer 130. In addition, an additional ohmic metal layer may be further formed on the N-type semiconductor layer 130 and the P-type semiconductor layer 160 to reduce the bonding resistance and facilitate the supply of current.

이하에서는 상술한 구조를 갖는 본 발명에 따른 발광소자의 제조 방법을 도 4를 참조하여 설명한다.Hereinafter, a method of manufacturing a light emitting device according to the present invention having the above-described structure will be described with reference to FIG. 4.

기판(110)을 준비한다. (S200)The substrate 110 is prepared. (S200)

기판(110) 상에 버퍼층(120)을 형성한다. 버퍼층(120)은 MOCVD 또는 MBE 공정을 사용하여 형성될 수 있다. 즉, 버퍼층(120)은 챔버내에 소오스 가스로 TMA, TMI, TMG, TEA 및/또는 TEG를 공급하고, 반응가스로 암모니아 등을 공급하여 형성될 수 있다. 버퍼층(120)을 AlN으로 형성하는 경우, 소오스 가스로 TMA 또는 TEA가 사용될 수 있으며, 버퍼층(120)을 SiNX와 GaN계의 혼합으로 형성하는 경우, 소오스 가스로 TMG 또는 TEG가 사용될 수 있다. (S210)The buffer layer 120 is formed on the substrate 110. The buffer layer 120 may be formed using a MOCVD or MBE process. That is, the buffer layer 120 may be formed by supplying TMA, TMI, TMG, TEA and / or TEG as a source gas in the chamber, and supplying ammonia or the like as the reaction gas. When the buffer layer 120 is formed of AlN, TMA or TEA may be used as the source gas, and when the buffer layer 120 is formed of a mixture of SiN X and GaN-based, TMG or TEG may be used as the source gas. (S210)

다음, 버퍼층(120) 상에 N형 반도체층(130)이 형성된다. 여기서, N형 반도체층(130)은 제1,2N형 반도체층(131,133)으로 분리되어 형성된다. 먼저, 버퍼층(120) 상에 제1N형 반도체층(131)이 형성된다. (S220) Next, the N-type semiconductor layer 130 is formed on the buffer layer 120. In this case, the N-type semiconductor layer 130 is formed by separating the first and second N-type semiconductor layers 131 and 133. First, the first N-type semiconductor layer 131 is formed on the buffer layer 120. (S220)

제1N형 반도체층(131) 상에는 전위확산방지층(140)이 형성된다. (S230) 예를 들면, 제1N형 반도체층(131) 상에 AlXGaYP (1-X-Y) N( 단, 0≤X,Y≤1)의 층이 형성된 후 GaXP YN( 단, 0≤X,Y≤1)의 층이 적층될 수 있다. 이때, 상기 두 개의 층은 반복되어 적층되게 형성된다. 물론, AlXGaYAs(1-X-Y)N( 단, 0≤X,Y≤1)과, GaXAsYN ( 단, 0≤X,Y≤1)의 층이 상기와 같이 다수 적층되어 형성될 수 있다. 전위확산방지층(140)은 결정결함이 적은 표면을 가지므로 그 위에 형성될 반도체층의 결정구조 결정질 및 컬럼의 크기 분포 등에 영향을 미쳐 결정결함 밀도를 감소시킨다.The potential diffusion prevention layer 140 is formed on the first N-type semiconductor layer 131. For example, on the first N-type semiconductor layer 131, Al X Ga Y P (1-XY) N ( However, after forming layers of 0≤X, Y≤1), Ga X P Y N ( However, layers of 0 ≦ X, Y ≦ 1) may be laminated. At this time, the two layers are formed to be repeatedly stacked. Of course, Al X Ga Y As (1-XY) N ( However, 0≤X, Y≤1) and Ga X As Y N ( However, 0? X, Y? 1) may be formed by stacking a plurality of layers as described above. Since the dislocation diffusion prevention layer 140 has a surface having few crystal defects, the dislocation diffusion prevention layer 140 affects the crystal structure crystal quality of the semiconductor layer to be formed thereon and the size distribution of the column, thereby reducing the crystal defect density.

다음, 전위확산방지층(140) 상에는 상기 제1N형 반도체층(131)과 같은 제2N형 반도체층(133)이 형성된다. (S240) 여기서, 제2N형 반도체층(133)은 전위확산방지층(140) 상에 형성되므로 제1N형 반도체층(131)보다 결정결함 밀도가 감소되게 형성된다. Next, a second N-type semiconductor layer 133, like the first N-type semiconductor layer 131, is formed on the potential diffusion preventing layer 140. Here, since the second N-type semiconductor layer 133 is formed on the potential diffusion preventing layer 140, the density of crystal defects is reduced than that of the first N-type semiconductor layer 131.

제2N형 반도체층(133) 상에 활성층(150)을 형성한다.(S250)The active layer 150 is formed on the second N-type semiconductor layer 133. (S250)

활성층(150) 상에는 P형 반도체층(160)을 형성한다. (S260)The P-type semiconductor layer 160 is formed on the active layer 150. (S260)

다음, 상술한 것들이 적층된 기판(110)은 사진 및 식각 공정을 사용하여 식각함으로써 발광셀(100)들을 형성할 수 있다. 다시 설명하면, N형 반도체층(130), 전위확산방지층(140), 활성층(150), P형 반도체층(160) 그리고 버퍼층(120)의 일부를 제거하여 발광 셀(100) 간을 분리한다. 이를 위해 P형 반도체층(160) 상에는 마스크 패턴(미도시)을 형성한 후, 마스크 패턴에 의해 노출된 영역의 N형 반도체층(130), 활성층(150), P형 반도체층(160) 및 버퍼층(120)을 식각하여 다수의 발광 셀(100)을 전기적으로 분리한다. 이를 통해 기판(110) 상에는 다수의 패턴이 형성된 발광 셀(100)이 형성된다. 버퍼층(120)이 절연 또는 반절연 물질로 형성된 경우 버퍼층(120)의 식각을 생략할 수 있다.Next, the substrate 110 in which the above-described ones are stacked may be formed by etching the substrate 110 using photo and etching processes. In other words, a portion of the N-type semiconductor layer 130, the potential diffusion prevention layer 140, the active layer 150, the P-type semiconductor layer 160, and the buffer layer 120 are removed to separate the light emitting cells 100. . To this end, after forming a mask pattern (not shown) on the P-type semiconductor layer 160, the N-type semiconductor layer 130, the active layer 150, the P-type semiconductor layer 160 and the area exposed by the mask pattern and The buffer layer 120 is etched to electrically separate the plurality of light emitting cells 100. As a result, the light emitting cell 100 having a plurality of patterns is formed on the substrate 110. When the buffer layer 120 is formed of an insulating or semi-insulating material, etching of the buffer layer 120 may be omitted.

다음, 식각공정을 통해 P형 반도체층(160)의 일부와 N형 반도체층(130) 및 활성층(150)의 일부를 제거하여 N형 반도체층(130)의 일부를 노출한다. 다시 설명하면, P형 반도체층(160) 상에는 식각 마스크 패턴을 형성한 후, 건식/습식 식각공정을 실시하여 노출된 영역의 P형 반도체층(160) 및 활성층(150)을 제거하여 N형 반도체층(130)을 노출시킨다. 그 후, 발광셀(100)의 N형 반도체층(130)과 P형 반도 체층(160) 상에는 전극(131)과 투명전극(161)을 형성한다. 전극(131)과 투명전극(161)은 리프트-오프(Lift-off) 공정을 사용하여 형성될 수 있다. 여기서, N형 반도체층(130) 상의 전극(131)은 투명하게 형성되어도 무방하므로 투명 전극(161)이 형성될 때 동시에 형성되어 공정과정을 줄일 수 있다.Next, a portion of the N-type semiconductor layer 130 is exposed by removing a portion of the P-type semiconductor layer 160, a portion of the N-type semiconductor layer 130, and an active layer 150 through an etching process. In other words, after forming an etch mask pattern on the P-type semiconductor layer 160, a dry / wet etching process is performed to remove the N-type semiconductor by removing the P-type semiconductor layer 160 and the active layer 150 in the exposed region. Expose layer 130. Thereafter, the electrode 131 and the transparent electrode 161 are formed on the N-type semiconductor layer 130 and the P-type semiconductor layer 160 of the light emitting cell 100. The electrode 131 and the transparent electrode 161 may be formed using a lift-off process. Here, since the electrode 131 on the N-type semiconductor layer 130 may be formed to be transparent, it may be simultaneously formed when the transparent electrode 161 is formed, thereby reducing the process.

투명 전극(161)의 형성은 전체 구조상에 감광막을 도포한 다음, 마스크를 이용한 사진식각 공정을 실시하여 P형 반도체층(160)을 노출시킬 제1감광막 패턴(미도시)을 형성한다. 그 후, 전체 구조상에 투명 전극(161)을 형성하고, 제1감광막 패턴을 제거하여 형성한다. 전극(131) 역시 이와 같은 방법으로 형성될 수 있다. The transparent electrode 161 is formed by applying a photoresist film over the entire structure and then performing a photolithography process using a mask to form a first photoresist pattern (not shown) to expose the P-type semiconductor layer 160. Thereafter, the transparent electrode 161 is formed on the entire structure, and the first photosensitive film pattern is removed and formed. The electrode 131 may also be formed in this manner.

다음, 상기와 같은 발광셀(100)은 도시되지 않은 연결 전극에 의해 전극(131)과 투명 전극(161)이 전기적으로 연결되고, 금속범프를 매개로 서브 마운트 기판에 플립본딩되어 완성된다.Next, the light emitting cell 100 as described above is electrically connected to the electrode 131 and the transparent electrode 161 by a connection electrode (not shown), and is flip-bonded to the sub-mount substrate through metal bumps to be completed.

여기서, 전위확산방지층(140)은 적층구조가 반복됨에 따라, 최상층 예컨대, 제2N형 반도체층(133)의 결함이 감소되며, 이에 따라 그 위에 형성될 P형 반도체층(160)의 결정결함밀도를 더욱 감소시킬 수 있다.Here, as the potential diffusion preventing layer 140 repeats the stacked structure, defects of the uppermost layer, for example, the second N-type semiconductor layer 133 are reduced, and thus the crystal defect density of the P-type semiconductor layer 160 to be formed thereon. Can be further reduced.

본 발명의 실시예들에 따르면, 본 발명은 종래기술에 비해 결정결함이 적은 반도체층을 형성할 수 있으므로 그 위에 형성될 반도체층의 결정결함 밀도를 감소시킬 수 있는 효과가 있다. 따라서, 발광소자는 광효율이 증대될 수 있다.According to embodiments of the present invention, the present invention can form a semiconductor layer with fewer crystal defects than the prior art, thereby reducing the density of crystal defects of the semiconductor layer to be formed thereon. Therefore, the light emitting device can increase the light efficiency.

Claims (13)

기판 상에 형성된 버퍼층;A buffer layer formed on the substrate; 상기 버퍼층에 형성된 제1반도체층;A first semiconductor layer formed on the buffer layer; 상기 제1반도체층 상에 형성된 활성층;An active layer formed on the first semiconductor layer; 상기 활성층 상에 형성된 제2반도체층; 및A second semiconductor layer formed on the active layer; And 상기 반도체층들 중 어느 하나의 층에 일부가 되도록 형성된 전위확산방지층을 포함하되,It includes a potential diffusion prevention layer formed to be part of any one of the semiconductor layers, 상기 전위확산방지층이 형성된 층은 상기 전위확산방지층을 사이에 두고 상기 전위확산방지층 아래에 형성된 제1층과, 상기 전위확산방지층 위에 형성된 제2층을 가지는 것을 특징으로 하는 발광소자.The layer having the potential diffusion preventing layer formed thereon has a first layer formed below the potential diffusion prevention layer with the potential diffusion prevention layer interposed therebetween, and a second layer formed on the potential diffusion prevention layer. 청구항 1에 있어서,The method according to claim 1, 상기 전위확산방지층은 제1반도체층의 일부층을 이루도록 형성된 것을 특징으로 하는 발광소자.The potential diffusion preventing layer is formed to form a partial layer of the first semiconductor layer. 청구항 1에 있어서,The method according to claim 1, 상기 전위확산방지층은 AlXGaYP (1-X-Y) N( 단, 0≤X,Y≤1)과, GaXP YN(단, 0≤X,Y≤1)으로 이루어진 각각의 층이 다수 적층되어 이루어진 것을 특징으로 하는 발광소자.The dislocation diffusion prevention layer is Al X Ga Y P (1-XY) N ( However, 0≤X, Y≤1) and Ga X P A light emitting device comprising: a plurality of layers each consisting of Y N (where 0 ≦ X and Y ≦ 1) are stacked. 청구항 1에 있어서,The method according to claim 1, 상기 전위확산방지층은 AlXGaYAs(1-X-Y)N(단, 0≤X,Y≤1)과, GaXAsYN(단, 0≤X,Y≤1)으로 이루어진 각각의 층이 다수 적층되어 이루어진 것을 특징으로 하는 발광소자.The dislocation diffusion prevention layer is formed of Al X Ga Y As (1-XY) N (where 0 ≦ X , Y ≦ 1) and Ga X As Y N (where 0 ≦ X , Y ≦ 1). A light emitting device characterized in that a plurality of stacked. 청구항 1에 있어서,The method according to claim 1, 상기 버퍼층은 SiNX와 GaN계의 혼합으로 이루어진 것을 특징으로 하는 발광소자.The buffer layer is a light emitting device, characterized in that made of a mixture of SiN X and GaN-based. 청구항 1에 있어서,The method according to claim 1, 상기 버퍼층은 AlN층인 것을 특징으로 하는 발광소자.The buffer layer is a light emitting device, characterized in that the AlN layer. 청구항 1에 있어서,The method according to claim 1, 상기 제2반도체층 상에 형성된 투명전극;A transparent electrode formed on the second semiconductor layer; 상기 제1반도체층과 상기 투명전극을 전기적으로 연결하는 연결전극; 및A connection electrode electrically connecting the first semiconductor layer and the transparent electrode; And 금속범프를 매개로 상기 제1,2반도체층에 플립본딩되는 서브마운트 기판을 더 포함하는 것을 특징으로 하는 발광소자.And a submount substrate flip-bonded to the first and second semiconductor layers via metal bumps. 기판상에 버퍼층을 형성하고,Forming a buffer layer on the substrate, 상기 버퍼층 상에 제1반도체층의 일부를 형성하고,Forming a part of the first semiconductor layer on the buffer layer, 상기 제1반도체층의 일부상에 전위확산방지층을 형성하고,Forming a potential diffusion prevention layer on a portion of the first semiconductor layer, 상기 전위확산방지층상에 상기 제1반도체층의 나머지를 형성하고,Forming a remainder of the first semiconductor layer on the dislocation diffusion prevention layer; 상기 제1반도체층 상에 활성층을 형성하고,An active layer is formed on the first semiconductor layer, 상기 활성층에 제2반도체층을 형성하는 것을 포함하는 발광소자의 제조방법.A method of manufacturing a light emitting device comprising forming a second semiconductor layer on the active layer. 청구항 8에 있어서,The method according to claim 8, 상기 전위확산방지층은 AlXGaYP (1-X-Y) ( 단, 0≤X,Y≤1)과, GaXP YN ( 단, 0≤X,Y≤1)의 혼합층으로 이루어진 것을 특징으로 하는 발광소자의 제조방법.The dislocation diffusion prevention layer is Al X Ga Y P (1-XY) ( However, 0≤X, Y≤1) and Ga X P Y N ( However, the manufacturing method of the light emitting element characterized by consisting of a mixed layer of 0≤X, Y≤1). 청구항 8에 있어서,The method according to claim 8, 상기 전위확산방지층은 AlXGaYAs(1-X-Y)N(단, 0≤X,Y≤1)과, GaXAsYN( 단, 0≤X,Y≤1)의 혼합층으로 이루어진 것을 특징으로 하는 발광소자의 제조방법.The dislocation diffusion prevention layer is made of Al X Ga Y As (1-XY) N (where 0 ≦ X , Y ≦ 1) and Ga X As Y N ( However, the manufacturing method of the light emitting element characterized by consisting of a mixed layer of 0≤X, Y≤1). 청구항 8에 있어서,The method according to claim 8, 상기 버퍼층은 SiNX와 GaN계의 혼합으로 이루어진 것을 특징으로 하는 발광소자의 제조방법.The buffer layer is a method of manufacturing a light emitting device, characterized in that consisting of a mixture of SiN X and GaN-based. 청구항 8에 있어서,The method according to claim 8, 상기 버퍼층은 AlN층인 것을 특징으로 하는 발광소자의 제조방법.The buffer layer is a method of manufacturing a light emitting device, characterized in that the AlN layer. 청구항 8에 있어서,The method according to claim 8, 상기 제2반도체층에 투명전극을 형성하고,Forming a transparent electrode on the second semiconductor layer, 상기 투명전극과 상기 제1반도체층을 전기적으로 연결하고,Electrically connecting the transparent electrode and the first semiconductor layer, 금속범프를 매개로 상기 제1,2반도체층에 서브마운트 기판을 플립본딩하는 것을 더 포함하는 발광소자의 제조방법.A method of manufacturing a light emitting device further comprising flip-bonding a submount substrate to the first and second semiconductor layers via metal bumps.
KR1020050107515A 2005-11-10 2005-11-10 Light emitting device and method therefor KR100699057B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050107515A KR100699057B1 (en) 2005-11-10 2005-11-10 Light emitting device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050107515A KR100699057B1 (en) 2005-11-10 2005-11-10 Light emitting device and method therefor

Publications (1)

Publication Number Publication Date
KR100699057B1 true KR100699057B1 (en) 2007-03-23

Family

ID=41564321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050107515A KR100699057B1 (en) 2005-11-10 2005-11-10 Light emitting device and method therefor

Country Status (1)

Country Link
KR (1) KR100699057B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025266A2 (en) * 2009-08-28 2011-03-03 서울옵토디바이스주식회사 Light-emitting diode having an interlayer with a high voltage density, and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124500A (en) 1998-10-15 2000-04-28 Toshiba Corp Gallium nitride semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124500A (en) 1998-10-15 2000-04-28 Toshiba Corp Gallium nitride semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025266A2 (en) * 2009-08-28 2011-03-03 서울옵토디바이스주식회사 Light-emitting diode having an interlayer with a high voltage density, and method for manufacturing same
WO2011025266A3 (en) * 2009-08-28 2011-04-28 서울옵토디바이스주식회사 Light-emitting diode having an interlayer with a high voltage density, and method for manufacturing same
US8664638B2 (en) 2009-08-28 2014-03-04 Seoul Opto Device Co., Ltd. Light-emitting diode having an interlayer with high voltage density and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US8217400B2 (en) Polychromatic light emitting diode device having wavelength conversion layer made of semiconductor and method for manufacturing the same
US20090001409A1 (en) Semiconductor Light Emitting Device And Illuminating Device Using It
KR101123010B1 (en) semi-conductor light emitting device and manufacturing method thereof
KR100838195B1 (en) Method for fabricating a light emitting diode of a nitride compound semiconductor and a light emitting diode fabricated by the method
US8247244B2 (en) Light emitting device and method of manufacturing the same
KR100728132B1 (en) Light-emitting diode using current spreading layer
JP2009123836A (en) Nitride semiconductor light-emitting element
JP2006005044A (en) Nitride system semiconductor light emitting device and its manufacturing method
KR100699057B1 (en) Light emitting device and method therefor
KR100795547B1 (en) A light emitting device of a nitride conpound seniconductor
JP2009076864A (en) Nitride-based light emitting device
US9548417B2 (en) Epitaxial structure with pattern mask layers for multi-layer epitaxial buffer layer growth
KR20150015760A (en) Template for light emitting device fabricating and method of fabricating ultraviolet light emitting device
KR100730753B1 (en) Method for fabricating a light emitting diode of a nitride compound semiconductor and a light emitting diode fabricated by the method
KR101321935B1 (en) A light emitting diode of a nitride compound and fabricating method therefor
KR101901932B1 (en) Substrate having heterostructure, nitride-based semiconductor light emitting device and method for manufacturing the same
KR100782433B1 (en) Method for fabricating a light emitting diode of a nitride compound semiconductor and a light emitting diode fabricated by the method
KR100972974B1 (en) Surface reformation method of Group ? nitride substrate, Group ? nitride substrate prepared therefrom, and nitride semiconductor light emitting device with the same
KR100608919B1 (en) Light-emitting device and method of manufacturing the same
KR100616631B1 (en) Nitride based semiconductor light emitting device and method for manufacturing the same
KR100906921B1 (en) Manufacturing method of light emitting diode
KR20070079527A (en) Light-emitting diode and method of manufacturing the same
KR101199796B1 (en) Nitride semiconductor light emitting device and method for manufacturing thereof
KR101720621B1 (en) Light emitting device and method of manufacturing the same
KR101316117B1 (en) A light emitting diode of a nitride compound and fabricating method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121217

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150112

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 12