Nothing Special   »   [go: up one dir, main page]

KR100697840B1 - SOx, VOx and NOx reduction system at furnace - Google Patents

SOx, VOx and NOx reduction system at furnace Download PDF

Info

Publication number
KR100697840B1
KR100697840B1 KR1020060000542A KR20060000542A KR100697840B1 KR 100697840 B1 KR100697840 B1 KR 100697840B1 KR 1020060000542 A KR1020060000542 A KR 1020060000542A KR 20060000542 A KR20060000542 A KR 20060000542A KR 100697840 B1 KR100697840 B1 KR 100697840B1
Authority
KR
South Korea
Prior art keywords
nox
reducing agent
catalytic reduction
vox
sox
Prior art date
Application number
KR1020060000542A
Other languages
Korean (ko)
Inventor
박정봉
Original Assignee
박정봉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박정봉 filed Critical 박정봉
Priority to KR1020060000542A priority Critical patent/KR100697840B1/en
Application granted granted Critical
Publication of KR100697840B1 publication Critical patent/KR100697840B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

A system for reducing SOx, VOx and NOx in a furnace is provided to reduce SOx, VOx and NOx by selective catalytic reduction or selective non-catalytic reduction by using simplified triple complex equipments without generation air pollution. A system for reducing SOx, VOx and NOx in a furnace includes a first De-NOx equipment(10) based on selective catalytic reduction, a second De-NOx equipment(20) based on selective non-catalytic reduction, and a De-SOx/De-VOx equipment(30). The first De-NOx equipment has a first storage bath(11), a first improved supply module(12), and a catalyst reaction tower(13), and is disposed at a lower part of a furnace(100), wherein a reducing agent kept in the first storage bath is supplied to the catalyst reaction tower along the flow path of exhaust gas out of the furnace. The second De-NOx equipment has a second storage bath(21) and a second improved supply module(22) based on the selective non-catalytic reduction, wherein a reducing agent kept in the second storage bath is sprayed to the inside of the furnace through one or more sprays(110). The De-SOx/De-VOx equipment includes a third storage bath(31) and a third improved supply module(32), wherein an additive kept in the third storage bath is sprayed into the furnace by the spray(110). A first De-NOx action and the De-SOx/De-VOx action are carried out simultaneously by spraying the reducing agent for De-NOx and the additive for the De-SOx/De-VOx simultaneously based on the selective catalytic reduction and a second De-NOx action is further carried out based on the selective non-catalytic reduction for additional reduction of NOx remaining in exhaust air moving along exhaust path.

Description

연소장치에서 황산화물, 바나듐산화물과 질소산화물의 저감시스템 {SOx, VOx and NOx reduction system at furnace}Reduction system of sulfur oxide, vanadium oxide and nitrogen oxide in combustion apparatus {SOx, VOx and NOx reduction system at furnace}

도 1은 본 발명에 따른 저감시스템의 개략적인 공정도이다.1 is a schematic process diagram of an abatement system according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 ----- 저감시스템, 10 ----- 제1탈질설비,1 ----- abatement system, 10 ----- first denitrification equipment,

20 ----- 제2탈질설비, 30 ----- 탈황 및 탈바나듐설비,20 ----- denitrification plant, 30 ----- desulfurization and devanadium plant,

본 발명은 선택적 촉매환원법(Selective Catalytic Reduction;이하 SCR) 또는 선택적 비촉매환원법(Selective Non-Catalytic Reduction;이하 SNCR)을 이용하여 질소산화물을 저감하는 탈질설비와 함께 황산화물 및 바나듐산화물을 저감시킬 수 있는 복합설비를 구비하고 있는 저감시스템이다.The present invention can reduce sulfur oxides and vanadium oxides together with a denitrification system that reduces nitrogen oxides by using Selective Catalytic Reduction (SCR) or Selective Non-Catalytic Reduction (SNCR). It is an abatement system equipped with a complex facility.

기술된 바와 같이, 공장 혹은 연소기관 등에서 화석연료를 연소시켜 발생되 는 생성물 중 유해배출가스인 질소산화물(NOx), 황산화물(SOx), 바나듐산화물(VOx) 등의 부산물들은 다양한 방법과 방식을 동원하여 최대로 저감시켜 대기환경을 청정상태로 유지해야할 필요성이 대두되고 있는게 현실이다.As described, by-products such as nitrogen oxides (NOx), sulfur oxides (SOx), and vanadium oxides (VOx), which are harmful emissions from the combustion of fossil fuels in factories or combustion engines, have various methods and methods. Therefore, the reality is that the need to keep the atmosphere clean by reducing it to the maximum.

이러한 질소산화물은 대류권으로 방출되어 자와선 또는 가시광선의 외부영향으로 오존(O3), HCHO, PAN 등의 각종 산화제를 생성하면서 광화학스모그를 유발시키게 된다. 특히, 오존과 이산화질소(NO2)는 공기 중의 탄화수소와 반응하여 옥시던트를 생성하며, 이들이 광화학스모그를 야기시키는 결과를 초래한다.These nitrogen oxides are released into the troposphere to generate photochemical smog while generating various oxidizing agents such as ozone (O 3 ), HCHO, PAN, etc., due to external influences of self- or visible light. In particular, ozone and nitrogen dioxide (NO 2 ) react with hydrocarbons in the air to produce oxidants, which results in photochemical smog.

이와 함께 황산화물에서, 황은 통상적으로 석탄 및 석유와 같은 "화석연료"에 많이 함유되어 있다. 그러므로 도시화 현상이 진행되면서 이에 필연적으로 화석연료의 소비는 증가되고 결과적으로 산성비를 촉진시키게 된다. In addition, in sulfur oxides, sulfur is commonly found in "fossil fuels" such as coal and petroleum. Therefore, as urbanization progresses, the consumption of fossil fuels is inevitably increased, resulting in acid rain.

그 과정은 다음과 같다.The process is as follows.

Figure 112006000316404-pat00001
Figure 112006000316404-pat00001

화석연료에 포함된 황(sulfur)이 연소되면서 이산화황(SO2)이 생긴다. 이산화황이 대기 중의 산소(O2)와 반응하여 삼산화황(SO3)으로 변환되고, 그런 후에 대기 중의 수분에 녹아 황산(H2SO4)이 되어 빗물에 용해되어 섞여 내린다.Sulfur dioxide in the fossil fuel is burned to produce sulfur dioxide (SO 2 ). Sulfur dioxide reacts with oxygen (O 2 ) in the atmosphere and is converted to sulfur trioxide (SO 3 ), which is then dissolved in moisture in the atmosphere to become sulfuric acid (H 2 SO 4 ), dissolved in rain water and mixed down.

추가로, 화학식에 표기되지는 않았지만 연료속의 바나듐(V)은 V2O5로 변환된다.In addition, although not indicated in the formula, vanadium (V) in the fuel is converted to V 2 O 5 .

이러한, 연료가 연소하면서 발생되는 황과 바나듐의 산화물을 저감하기 위해서는 질소산화물의 저감시스템과는 별도로 구비되어야 하는바, 특히 노에서 질소산화물을 저감하기 위한 선택적 비촉매환원법과 병행하여 황산화물의 저감설비를 추가로 부착해야 하므로 노의 내구성에 문제점을 노출하고 있다.In order to reduce the oxides of sulfur and vanadium generated during combustion of the fuel, the sulfur oxides should be provided separately from the nitrogen oxide reduction system. In particular, the sulfur oxide reduction in parallel with the selective non-catalytic reduction method for reducing the nitrogen oxides in the furnace is required. The installation of additional equipment exposes problems to the durability of the furnace.

더욱 구체적으로, 황, 바나듐 또는 이들 화합물을 함유하고 있는 연료 및 물질이 연소되면서 화력발전소, 공장 등의 연소장치, 예컨대 대형보일러의 배연에는 이산화황이 함유되어 있다. 이 배연이 공해의 한 원인이 되므로 연소장치 뿐만 아니라 암모니아주입설비와 같은 구성부재에 노내에서 발생되는 황산화물, 나트륨(Na), 칼륨(K), 바나듐(V) 및 염소(Cl) 등의 뜻하지 않은 2차반응으로 탈질용 촉매에 치명적인 위해성을 야기시킬 뿐만 아니라 연소장치 내에서의 과도한 슬래그생성 및 비산회분의 강산성화로 다수의 후단설비의 부식 등을 야기시킨다. 특히, 질소산화물을 제거하기 위해 사용되는 요소 또는 암모니아와 같은 환원제와 연소장치 내에서 발생되는 황산화물과 바나듐산화물이 상호 반응하여 촉매의 성능저하는 물론, 심지어는 사용불가상태로까지 만들게 된다. More specifically, sulfur dioxide is contained in flue gas of combustion apparatuses such as thermal power plants and factories, such as large boilers, as sulfur, vanadium or fuels and materials containing these compounds are burned. Since this flue gas is a source of pollution, it does not mean sulfur oxides, sodium (Na), potassium (K), vanadium (V) and chlorine (Cl) generated in the furnace not only in the combustion device but also in components such as ammonia injection facilities. The secondary reactions not only cause fatal hazards to the catalyst for denitrification, but also cause excessive slag formation in the combustion apparatus and strong acidification of fly ash, resulting in corrosion of many post equipment. In particular, a reducing agent such as urea or ammonia used to remove nitrogen oxides and sulfur oxides and vanadium oxides generated in the combustion apparatus react with each other, thereby degrading the performance of the catalyst and even making it unusable.

이상과 같이, 요소 또는 암모니아를 사용하는 선택적 비촉매환원법과 선택적 촉매환원법을 이용한 질소산화물의 저감설비와 황산화물의 저감설비를 구비한 본 발명에 따른 저감시스템은 선택적 비촉매환원법을 통해 연소장치 속으로 탈질용 환원제와 탈황 및 탈바나듐용 첨가제를 동시에 분사하여 1차 탈질작용과 탈황·탈바나듐작용을 수행하고 배출경로를 따라 이동하는 배출가스에 잔류하고 있는 잔여질소산화물을 추가로 저감시키기 위한 2차 탈질작용을 선택적 촉매환원법으로 수행하는 것을 특징으로 한다.As described above, the abatement system according to the present invention having a nitrogen oxide abatement facility and a sulfur oxide abatement facility using a selective non-catalytic reduction method using urea or ammonia and a selective catalytic reduction method is used in the combustion apparatus through a selective non-catalytic reduction method. 2, to perform the first denitrification, desulfurization and devanadium action by simultaneously spraying the denitrification reducing agent and the additive for desulfurization and devanadium and further reducing residual nitrogen oxides remaining in the exhaust gas moving along the discharge path. It is characterized in that the denitrification is carried out by selective catalytic reduction.

당해분야의 숙련자들에게 이미 널리 알려져 있듯이, 선택적 촉매환원법 또는 선택적 비촉매환원법에서 요소(NH2CONH2) 또는 암모니아(NH3)를 환원제로 사용하여 질소산화물을 탈질하는 과정은 다음과 같다.As is well known to those skilled in the art, the process of denitrifying nitrogen oxide using urea (NH 2 CONH 2 ) or ammonia (NH 3 ) as a reducing agent in a selective catalytic reduction method or a selective non-catalytic reduction method is as follows.

암모니아와 질소산화물의 화학반응식은,The chemical reaction of ammonia and nitrogen oxides is

Figure 112006000316404-pat00002
Figure 112006000316404-pat00002

이상과 같다.As above.

다시 말하자면, 암모니아(NH3)는 가수분해되어서 질소산화물과 반응하여 질소(N2)와 물(H2O)이 생성되는바, 이러한 반응식에 따라 질소산화물이 전환되어져 이의 배출량을 최소화시킨다.In other words, ammonia (NH 3 ) is hydrolyzed to react with nitrogen oxides to produce nitrogen (N 2 ) and water (H 2 O), which is converted to nitrogen oxides to minimize its emissions.

암모니아를 대신하여, 환원제로 사용될 요소(NH2CONH2)는 아래의 화학식 3과 같이 전환된다.In place of ammonia, urea (NH 2 CONH 2 ) to be used as a reducing agent is converted to the following formula (3).

Figure 112006000316404-pat00003
Figure 112006000316404-pat00003

요소로부터 분해된 암모니아와 시아누르산(HNCO)은 탈질설비, 예컨대 촉매반응탑 등에서 질소산화물과 반응하게 되는데, 암모니아와 질소산화물과의 반응은 화학식 2로 기재된다. 또 다른 생성물인 시아누르산과 질소산화물과의 반응식을 통한, Ammonia and cyanuric acid (HNCO) decomposed from urea are reacted with nitrogen oxides in a denitrification system such as a catalytic reaction tower, and the reaction of ammonia and nitrogen oxides is described by Chemical Formula 2. Through the reaction of another product, cyanuric acid and nitrogen oxides,

Figure 112006000316404-pat00004
Figure 112006000316404-pat00004

화학반응으로 진행되어서 유해한 질소산화물이 질소(N2)와 이산화탄소(CO2)로 전환된다. As a chemical reaction, harmful nitrogen oxides are converted into nitrogen (N 2 ) and carbon dioxide (CO 2 ).

연소장치, 예컨대 노 내에서 발생되는 SOx 및 나트륨(Na), 칼륨(K), 바나듐(V) 그리고 염소(Cl) 등의 2차반응으로 탈질용 촉매에 치명적인 위험요소로 작용하고 노 내에서의 과도한 슬래그를 생성하고 비산회분의 강산성화로 후단설비의 부식 등의 문제점을 갖게 되므로, 확실하게 황산화물을 제거해야만 한다.Secondary reactions such as SOx and sodium (Na), potassium (K), vanadium (V) and chlorine (Cl) generated in combustion apparatuses, such as furnaces, act as a critical hazard to denitrification catalysts and Since excessive slag is generated and strong acidification of fly ash causes problems such as corrosion of the post equipment, it is necessary to remove sulfur oxides reliably.

Figure 112006000316404-pat00005
Figure 112006000316404-pat00005

화학식 5는 황산화물이 탈황용 환원제로 사용될 첨가제인 산화마그네슘(MgO)와 반응하여 황산마그네슘(MgSO4) 및, MgO·V2O5으로 중성화시켜 충분히 탈황시킨 후에 배출가스를 후단설비로 이송시킨다. 탈황·탈바나듐용 첨가제는 마그네슘(Mg), 산화마그네슘(MgO) 또는 수산화마그네슘(Mg(OH2))의 그룹에서 선택될 수 있다.Formula 5 transports the off-gas after sufficiently desulfurized to the rear end equipment to react with sulfur oxides are magnesium oxide (MgO) additives to be used as a reducing agent for the desulfurization by neutralization with magnesium sulfate (MgSO 4), and, MgO · V 2 O 5 . The additive for desulfurization and vanavanadium may be selected from the group of magnesium (Mg), magnesium oxide (MgO) or magnesium hydroxide (Mg (OH 2 )).

본 발명의 목적은 탈황과 탈질시스템을 제공하는 데에 있다.It is an object of the present invention to provide a desulfurization and denitrification system.

본 발명의 다른 목적은 탈황 및 탈질작업을 통해 플랜트의 수명연장과 유지보수비용을 저감하는 데에 있다.Another object of the present invention is to reduce the life extension and maintenance costs of the plant through desulfurization and denitrification.

본 발명의 또 다른 목적은 질소산화물과 황산화물 및 바나듐산화물을 현격하게 저감시켜 대기환경오염을 방지하는 데에 있다.Still another object of the present invention is to significantly reduce nitrogen oxides, sulfur oxides, and vanadium oxides to prevent air pollution.

이제, 첨부도면을 참조로 하여서 본 발명이 상세히 설명될 것이다.The invention will now be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 저감시스템의 개략적인 공정도로서, 특히 본 발명은 질소산화물과 더불어서 황산화물을 효과적으로 저감시킬 수 있도록 선택적 촉매환원법(Selective Catalytic Reduction;SCR) 또는 선택적 비촉매환원법(Selective Non-Catalytic Reduction;SNCR)을 기본으로 한 탈질설비(10,20)와 탈황·탈바나듐설비(30)를 병합시킨 것을 특징으로 한다.1 is a schematic process diagram of a reduction system according to the present invention, in particular the present invention is to selectively reduce sulfur oxides in addition to nitrogen oxides (Selective Catalytic Reduction (SCR) or selective non-catalytic reduction method (Selective Non- A denitrification facility (10, 20) based on Catalytic Reduction (SNCR) and desulfurization and devanadium facility (30) are combined.

개략적으로 설비만을 간략하게 도시된 바와 같이, 본 발명은 선택적 촉매환원법을 기초로 한 제1탈질설비(10)와 선택적 비촉매환원법을 기초로 한 제2탈질설비(20) 및 탈황·탈바나듐설비(30)로 이루어져 있다.As shown briefly only the equipment, the present invention provides a first denitrification system 10 based on the selective catalytic reduction method, a second denitrification system 20 based on the selective non-catalytic reduction method and a desulfurization / devanadium facility. It consists of 30.

공장 또는 연소기관 등에서 배출되는 유해한 배기가스 중 일부인 질소산화물을 제거하기 위해 구비된 선택적 촉매환원법의 제1탈질설비(10)는 연소장치(100)에서 배출되는 배기가스에 함유된 질소산화물의 함유량에 따른 화학양론비에 따라 암모니아, 혹은 요소인 경우에는 고온하의 짧은 응답시간으로 분해시켜 암모니아로 전환(화학식 3 참조)시킨 다음에, 분해된 암모니아가 제1탈질설비(10) 내에서 질소산화물과 화학반응을 일으키는데, 환원화학반응을 통하여 질소산화물이 무해한 질소로 전화되므로, 유해한 질소산화물의 배출량을 현저하게 줄이게 한다(화학식 2 및 화학식 4 참조).The first denitrification system 10 of the selective catalytic reduction method provided to remove nitrogen oxide which is a part of harmful exhaust gas discharged from a plant or a combustion engine, etc. is based on the content of nitrogen oxide contained in the exhaust gas discharged from the combustion device 100. According to the stoichiometric ratio, if ammonia or urea is decomposed in a short response time under high temperature and converted to ammonia (see Formula 3), the decomposed ammonia is chemically decomposed with nitrogen oxides in the first denitrification system (10). It causes the reaction, through the reduction chemical reaction nitrogen oxides are converted to harmless nitrogen, thereby significantly reducing the emissions of harmful nitrogen oxides (see Formula 2 and Formula 4).

제1탈질설비(10)에서의 저장조(11)는 암모니아 또는 요소 등의 환원제를 보관하는 바, 연소장치(100)에서 발생될 질소산화물의 배출량에 근거하여서 개량공급모듈(12)이 저장조(11)로부터 소정량의 환원제를 다음 단계로 제공한다. 즉, 이 개량공급모듈(12)은 촉매반응탑(13)에서 요구하는 유량속도를 결정하는데, 연소장치(100)에서 발생하는 배기가스에 함유된 질소산화물의 배출량과 이에 필요한 암모니 아 또는 요소로 이루어진 환원제의 양을 화학양론적 당량비에 따라 계산하여 개량공급모듈(12)로 공급된다. 당해분야의 숙련자들에게 이미 널리 공지되어 있듯이, 저장조(11)에서 암모니아의 취급상의 위험성 때문에 요소로 대용가능하며, 여기서 구체적으로 기술되지 않지만 다양한 화학반응을 거쳐 요소가 암모니아로 전환되어 사용되게 한다. 환원제인 암모니아는 공기와 혼합되어 매우 희박한 암모니아증기상으로 되는 것이 바람직하다. 그런 다음에, 희박한 암모니아증기는 암모니아주입설비(ammonia injection grid;도시되지 않음)로 주입된다. 암모니아주입설비는 연소장치(100)에서 배출되는 질소산화물과 희박한 암모니아증기를 원활하게 혼합정도를 극대화시킨다. 기술된 바와 같이, 희박한 암모니아증기와 질소산화물의 혼합가스는 촉매반응탑(13)으로 이동하여, 질소산화물이 암모니아를 매개로 더욱 효과적인 환원반응을 일으키게 된다. 일반적으로, 촉매반응탑(13)의 반응온도는 300℃ 이상의 고온으로, 암모니아의 폭발성을 제한하기 위해서는 촉매반응탑(13)에 유입되기 전에, 충분한 과잉공기와 혼합되어야 한다. 다단으로 이루어진 촉매반응탑(13)은 그 내부에서 질소산화물과 암모니아의 화학반응이 일어날 수 있는 체류시간을 충분히 보장하여서, 질소와 수소로 개질변환시킨다. 이 질소와 산소는 굴뚝(9)을 통하여 대기 중으로 방출한다. 이와 같은 개략적인 선택적 촉매환원법에 따른 제1탈질설비(10)을 통한 유해한 질소산화물이 질소가스로 전환된다.The storage tank 11 in the first denitrification system 10 stores a reducing agent such as ammonia or urea, and the improved supply module 12 stores the storage tank 11 based on the amount of nitrogen oxides to be generated in the combustion device 100. ), A predetermined amount of reducing agent is provided to the next step. That is, the improved supply module 12 determines the flow rate required by the catalytic reaction tower 13, which is the amount of nitrogen oxide contained in the exhaust gas generated from the combustion device 100 and the ammonia or element required therefor. The amount of reducing agent formed is calculated according to the stoichiometric equivalence ratio and is supplied to the improved supply module 12. As is already well known to those skilled in the art, it is possible to substitute urea for use in storage tank 11 due to the handling risks of ammonia, which are not specifically described here but through various chemical reactions to allow urea to be converted to ammonia. Ammonia as a reducing agent is preferably mixed with air to form a very thin ammonia vapor phase. The lean ammonia vapor is then injected into an ammonia injection grid (not shown). The ammonia injection facility smoothly maximizes the degree of mixing nitrogen oxide and lean ammonia vapor discharged from the combustion device 100. As described, the mixed gas of the lean ammonia vapor and the nitrogen oxide is moved to the catalytic reaction column 13, whereby the nitrogen oxide causes a more effective reduction reaction through the ammonia. In general, the reaction temperature of the catalytic reaction tower 13 is at a high temperature of 300 ° C. or higher, and must be mixed with sufficient excess air before entering the catalytic reaction tower 13 to limit the explosiveness of ammonia. The multi-stage catalytic reaction tower 13 ensures a sufficient residence time for chemical reaction of nitrogen oxide and ammonia to occur inside, and is reformed into nitrogen and hydrogen. This nitrogen and oxygen is released to the atmosphere through the chimney (9). The harmful nitrogen oxides through the first denitrification system 10 according to the schematic selective catalytic reduction method are converted into nitrogen gas.

이와는 다른 환원법에 따른 거대한 화학플랜트에 있어서, 연료와 폐기물을 이용한 재활용 연료를 사용하는 구성설비인 연소장치(100)에서 질소산화물(NOX)의 배출량을 감축하기 위한 선택적 비촉매환원법의 제2탈질설비(20)는 가스상 물질을 처리하도록 되어 있는 바, 특히 연소장치(100)의 내부온도, 예컨대 1,500℃ 이상으로 가열 및 연소하는 도중에 고온에서 질소산화물의 생성은 주로 산소와 질소의 자유라디칼의 형성과 질소산화물끼리의 화학결합으로 인하여 더욱 증가된다. 또한, 연료 자체로 질소산화물을 함유하고 있으며, 연소과정에서 질소산화물로 전환되어 암모니아나 요소과 같은 환원제로 사용될 화학물질을 주입시켜 질소산화물을 저감하는 설비이다.The second denitrification of the selective non-catalytic reduction method for reducing the emission of nitrogen oxides (NO X ) in the combustion device 100, which is a component facility using recycled fuel using fuel and waste in a large chemical plant according to the other reduction method. The plant 20 is adapted to treat gaseous substances, in particular the production of nitrogen oxides at high temperatures during the heating and combustion of the combustion apparatus 100 to an internal temperature, for example 1,500 ° C. or higher, mainly due to the formation of free radicals of oxygen and nitrogen. It is further increased due to chemical bonding between and nitrogen oxides. In addition, the fuel itself contains nitrogen oxides, and is converted to nitrogen oxides during the combustion process to reduce the nitrogen oxides by injecting chemicals to be used as a reducing agent such as ammonia or urea.

이러한, 제2탈질설비(20)에서 탈질을 위한 환원반응이 850 내지 1,100℃ 사이에서 일어날 수 있도록 연소장치(100)의 상부측벽 지점에서 환원제를 분무하도록 한다. 또한, 커다란 연소장치 내부로 확실하게 환원제를 분무하기 위해서 연소장치(100)의 상부측벽에 배치된 다수의 분무기(110)는 환원제를 15 내지 30m/s 이상의 속도로 분무하도록 되어 있다.This, in the second denitrification facility 20 to spray the reducing agent at the point of the upper side wall of the combustion device 100 so that the reduction reaction for denitrification can occur between 850 to 1,100 ℃. In addition, a plurality of atomizers 110 disposed on the upper side wall of the combustion apparatus 100 are configured to spray the reducing agent at a speed of 15 to 30 m / s or more in order to reliably spray the reducing agent into the large combustion apparatus.

고온 하에서 작동하는 연소장치(100) 내부에서 발생되는 질소산화물과 직접적으로 반응하여 1차적으로 탈질효과를 갖도록 하는 제2탈질설비(20)는 전술된 제1탈질설비(10)에서 사용되는 환원제와 동일하게 암모니아 또는 요소 등을 환원제로 사용한다. 저장조(21)는 상기와 같은 환원제를 안전하게 보관한다. 연소장치(100)로 공급될 환원제는 개량공급모듈(22)을 수단으로 환원제의 양과 환원제의 분무속도를 제어하여 연소장치(100)의 상부로 배출된다. The second denitrification apparatus 20 for directly reacting with nitrogen oxides generated in the combustion apparatus 100 operating under a high temperature to have a denitrification effect primarily includes a reducing agent used in the first denitrification apparatus 10 described above. Similarly, ammonia or urea is used as the reducing agent. The reservoir 21 safely stores the reducing agent as described above. The reducing agent to be supplied to the combustion device 100 is discharged to the top of the combustion device 100 by controlling the amount of reducing agent and the spraying speed of the reducing agent by means of the improved supply module 22.

전술된 바와 같이, 탈질설비에 저장될 환원제는 암모니아, 바람직하게는 요소 또는 요소프릴형태로 되어 있는 것을 특징으로 한다. 이와 더불어서, 탈질용 환 원제는 탄산암모늄(NH4CO3)를 사용할 수도 있다.As described above, the reducing agent to be stored in the denitrification plant is characterized in that it is in the form of ammonia, preferably urea or ureaprile. In addition, the denitrification reducing agent may use ammonium carbonate (NH 4 CO 3 ).

탈황·탈바나듐설비(30)는 고온으로 연소되는 연소장치(100) 내부에 생성되는 다량의 황산화물 및 바나듐산화물을 저감시키기 위한 것으로, 제2탈질설비(20)와 유사하게 배열된다.The desulfurization and devanadium facility 30 is for reducing a large amount of sulfur oxide and vanadium oxide generated in the combustion device 100 which is burned at a high temperature, and is arranged similarly to the second denitrification facility 20.

도시되었듯이, 탈황·탈바나듐설비(30)는 저장조(31)와 개량공급모듈(32), 펌프 및 분무기(110)로 이루어져 있다. 특히, 모든 구성부재들은 파이프 등의 흐름경로를 통해서 이동한다. 탈황·탈바나듐설비(30)의 저장조(31)는 황산화물과 반응하여 탈황할 수 있는 첨가제, 예컨대 산화마그네슘을 수용한다. 연소장치(100)에서 연료가 연소되면서 발생되는 황산화물의 배출량을 감지하면서 이 배출량에 따라서 개량공급모듈(32)의 제어로 분사기(110)로 이동한다(화학식 5 참조).As shown, the desulfurization and devanadium facility 30 is composed of a reservoir 31, an improved supply module 32, a pump and a sprayer 110. In particular, all components move through a flow path such as a pipe. The storage tank 31 of the desulfurization and devanadium installation 30 contains an additive, for example magnesium oxide, which can react with sulfur oxides and desulfurize. While detecting the emissions of sulfur oxides generated when the fuel is combusted in the combustion device 100, the combustion apparatus 100 moves to the injector 110 under the control of the improved supply module 32 (see Formula 5).

구조적 안정성과 단순화를 향상시키기 위해서, 제2탈질설비의 개량공급모듈(22)로 제어이송될 탈질용 환원제와 탈황·탈바나듐설비(30)의 개량공급모듈(32)로 제어이송될 탈황용 환원제로 사용될 첨가제는 펌프를 통해 각 흐름경로를 지나 동일한 분무기(110)를 통해서 연소장치(100) 내부로 분무될 수도 있다. 다시 말하자면, 제2탈질설비(20)와 탈황·탈바나듐설비(30)에 저장된 환원제와 첨가제가 동일한 분무기(110)를 통해 연소장치(100) 내로 분사되는 것을 특징으로 하되, 연소장치에 구비될 분무기의 갯수를 현저하게 줄여 연소장치의 내구성을 확보할 뿐만 아니라 분무기의 설치함에 있어서 상당한 작업공수를 줄이는 효과를 갖게 된다.In order to improve structural stability and simplification, the denitrification reducing agent to be controlled and transferred to the improved supply module 22 of the second denitrification plant and the desulfurization reducing agent to be controlled and transferred to the improved supply module 32 of the desulfurization and devanadium facility 30. The additive to be used may be sprayed into the combustion device 100 through the same sprayer 110 through each flow path through the pump. In other words, the reducing agent and the additive stored in the second denitrification facility 20 and the desulfurization and devanadium facility 30 are injected into the combustion device 100 through the same atomizer 110, but may be provided in the combustion device. The number of atomizers can be significantly reduced to ensure the durability of the combustion device, as well as to reduce the considerable labor in installing the atomizer.

특히, 첨가제는 마그네슘, 산화마그네슘, 수산화마그네슘 또는 이들의 조합 물로 이루어진 그룹에서 선택될 수 있다.In particular, the additive may be selected from the group consisting of magnesium, magnesium oxide, magnesium hydroxide or combinations thereof.

덧붙여서, 본 발명에 따른 저감시스템(1)을 구동한다. 그러므로써 황산화물과 질소산화물이 연소장치(100) 내에서 발생되며 이들의 배출량을 감지하여 개량공급모듈을 통해 제2탈질설비(20)와 탈황·탈바나듐설비(30)에서 적절한 환원제와 첨가제가 연소장치(100)에 분무기(110)를 통해 분사된다. 그런 다음에, 농도가 낮아진 질소산화물은 연소장치(100) 외부에 설치된 촉매반응탑을 갖춘 제1탈질설비(10)를 수단으로 추가적인 탈질효과를 제공한다. 정화된 배기가스는 도 1의 굴뚝(9)을 통해 대기중으로 방출된다.In addition, the reduction system 1 according to the present invention is driven. Therefore, sulfur oxides and nitrogen oxides are generated in the combustion apparatus 100, and the appropriate reducing agent and additive are added in the second denitrification facility 20 and the desulfurization and devanadium facility 30 through the improved supply module by sensing their emissions. It is injected into the combustion device 100 through the sprayer 110. Then, the nitrogen oxide having a lower concentration provides an additional denitrification effect by means of the first denitrification system 10 having a catalytic reaction tower installed outside the combustion device 100. The purified exhaust gas is discharged into the atmosphere through the chimney 9 of FIG.

본 발명은 첨부도면을 참조로 한 본 명세서로 한정되지 않고 다음의 청구범위에 따른 범주 내에서 변형 및 변경가능함을 밝혀둔다.The invention is not limited to this specification with reference to the accompanying drawings, but it is to be understood that modifications and variations are possible within the scope of the following claims.

이상과 같이 본 발명에 의하면, 요소 또는 암모니아를 환원제로 사용하는 선택적 촉매환원법과 선택적 비촉매환원법 및 이들을 조합한 설비를 통해서 질소산화물을 저감시킬 수 있을 뿐만 아니라 황함유 연료를 사용함으로써 발생되는 황산화물을 위한 고효율의 탈질효과를 갖을 뿐만 아니라 노 내의 슬래그 부착방지, 노내의 황산화물 및 바나듐산화물제거로 촉매의 보호 및 비산회분의 중성화로 연소장치 이후의 후단설비를 보호를 성취할 수 있도록 제공한다. 또한, 3중의 복합설비를 간단하게 적용시킬 수 있기 때문에 경제적으로 대기환경오염을 미연에 방지할 수 있 고 설비의 수명연장과 유지보수의 비용을 절감시키는 경제적 이익효과도 창출할 수 있다.As described above, according to the present invention, not only can nitrogen oxides be reduced through the selective catalytic reduction method using urea or ammonia as a reducing agent, the selective non-catalytic reduction method and a combination thereof, but also sulfur oxides generated by using sulfur-containing fuel. In addition to the high efficiency of denitrification, the protection of the catalyst by preventing slag adhesion in the furnace, the removal of sulfur oxides and vanadium oxides in the furnace, and the neutralization of fly ash are provided to achieve the protection of the post equipment after the combustion device. In addition, it is possible to simply apply the triple complex equipment economically to prevent air pollution in advance, and also to create an economic benefit effect to reduce the life of the equipment and cost of maintenance.

Claims (4)

연소장치(100)의 운전으로 발생되는 오염물질을 개질전환시키는 저감시스템에 있어서,In the reduction system for reforming the pollutant generated by the operation of the combustion device 100, 선택적 비촉매환원법에 기초로 하여 저장조(21)와 개량공급모듈(22)을 갖추고, 상기 저장조(21)에 보관된 환원제가 흐름경로를 따라 상기 연소장치(100) 내부에 하나 이상의 분무기(110)를 통해 분사하는 제2탈질설비(20)와;On the basis of the selective non-catalytic reduction method, a reservoir 21 and an improved supply module 22 are provided, and the reducing agent stored in the reservoir 21 is one or more atomizers 110 inside the combustion device 100 along a flow path. A second denitrification facility 20 sprayed through; 저장조(31)와 개량공급모듈(32)을 갖춰, 상기 저장조(31)에 보관된 첨가제가 흐름경로를 따라 상기 연소장치(100) 내부에 하나 이상의 분무기(110)를 통해 분사하는 탈황·탈바나듐설비(30) 및;Desulfurization and devanadium having a reservoir 31 and the improved supply module 32, the additive stored in the reservoir 31 is sprayed through one or more atomizers 110 inside the combustion device 100 along the flow path Facility 30; 선택적 촉매환원법에 기초로 하여 저장조(11)와 개량공급모듈(12) 및 촉매반응탑(13)을 갖춰 상기 연소장치(100)의 하류흐름 상에 배열되되, 상기 저장조(11)에 보관된 환원제가 상기 연소장치(100)에서 배출될 배기가스를 흐름경로를 따라 상기 촉매반응탑(13)으로 제공하는 제1탈질설비(10);로 이루어진 것을 특징으로 하는 황산화물과 질소산화물의 저감시스템.Based on the selective catalytic reduction method, a storage tank 11, an improved feed module 12, and a catalytic reaction tower 13 are arranged on the downstream side of the combustion device 100, and the reducing agent stored in the storage tank 11 is provided. And a first denitrification system (10) for providing the exhaust gas to be discharged from the combustion device (100) to the catalytic reaction tower (13) along the flow path. 제1항에 있어서, 상기 환원제는 요소 또는 암모니아로 이루어진 것을 특징으로 하는 저감시스템.2. The abatement system of claim 1, wherein said reducing agent consists of urea or ammonia. 제1항 또는 제2항에 있어서, 상기 첨가제는 마그네슘(Mg), 산화마그네슘(MgO), 수산화마그네슘(Mg(OH2))의 그룹에서 선택되어 탈황·탈바나듐용 환원제로 사용되는 것을 특징으로 하는 저감시스템. The method of claim 1 or 2, wherein the additive is selected from the group consisting of magnesium (Mg), magnesium oxide (MgO), magnesium hydroxide (Mg (OH 2 )) and is used as a reducing agent for desulfurization and talvanadium. Abatement system. 제1항에 있어서, 상기 분무기(110)는 상기 연소장치(100)의 상단, 더욱 구체적으로 연소장치의 내부온도가 850 내지 1,100℃ 범위 내에 위치되고, 상기 환원제와 첨가제를 15 내지 30m/s 이상으로 분무하는 것을 특징으로 하는 저감시스템.According to claim 1, wherein the atomizer 110 is located at the top of the combustion device 100, more specifically the internal temperature of the combustion device within the range of 850 to 1,100 ℃, the reducing agent and additives 15 to 30m / s or more Reduction system, characterized in that sprayed by.
KR1020060000542A 2006-01-03 2006-01-03 SOx, VOx and NOx reduction system at furnace KR100697840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060000542A KR100697840B1 (en) 2006-01-03 2006-01-03 SOx, VOx and NOx reduction system at furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060000542A KR100697840B1 (en) 2006-01-03 2006-01-03 SOx, VOx and NOx reduction system at furnace

Publications (1)

Publication Number Publication Date
KR100697840B1 true KR100697840B1 (en) 2007-03-20

Family

ID=41563878

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060000542A KR100697840B1 (en) 2006-01-03 2006-01-03 SOx, VOx and NOx reduction system at furnace

Country Status (1)

Country Link
KR (1) KR100697840B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876161B1 (en) * 2008-03-24 2008-12-31 박정봉 Total nox control process
CN101890279A (en) * 2010-03-10 2010-11-24 张作保 A kind of high-efficiency ammonia-method denitration process and device thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574213A (en) 1980-06-09 1982-01-09 Fuji Kasui Kogyo Kk Desulfurizing method of waste gas
US4830840A (en) 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
KR19990007067A (en) * 1997-06-20 1999-01-25 루돌프 프라이, 부르노 안드레올리 Denitrification method of combustion exhaust
KR20020059495A (en) * 2001-01-06 2002-07-13 김철수 Control method for sufite ion concentration in the circulation water of the flue gas disulfurization equipment
KR20030081231A (en) * 2003-09-16 2003-10-17 박정봉 NOx reduction system by selective catalytic reduction available for urea as reducing agent
KR20050043355A (en) * 2003-11-06 2005-05-11 한국동서발전(주) Method for improving thermal efficiency and removing white plume from flue gas, and fuel additive therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574213A (en) 1980-06-09 1982-01-09 Fuji Kasui Kogyo Kk Desulfurizing method of waste gas
US4830840A (en) 1987-03-13 1989-05-16 Uop Process for removing sulfur oxide and nitrogen oxide
KR19990007067A (en) * 1997-06-20 1999-01-25 루돌프 프라이, 부르노 안드레올리 Denitrification method of combustion exhaust
KR20020059495A (en) * 2001-01-06 2002-07-13 김철수 Control method for sufite ion concentration in the circulation water of the flue gas disulfurization equipment
KR20030081231A (en) * 2003-09-16 2003-10-17 박정봉 NOx reduction system by selective catalytic reduction available for urea as reducing agent
KR20050043355A (en) * 2003-11-06 2005-05-11 한국동서발전(주) Method for improving thermal efficiency and removing white plume from flue gas, and fuel additive therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876161B1 (en) * 2008-03-24 2008-12-31 박정봉 Total nox control process
CN101890279A (en) * 2010-03-10 2010-11-24 张作保 A kind of high-efficiency ammonia-method denitration process and device thereof

Similar Documents

Publication Publication Date Title
US7514052B2 (en) Method for removal of mercury emissions from coal combustion
US9764281B2 (en) Process for the removal of contaminants from flue gas streams
KR101807996B1 (en) Combined De-NOx System using Heterogeneous Reducing agent for Reducing Yellow Plume and NOx
CN101632897B (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
KR102164623B1 (en) Apparatus for simultaneous removing nitrogen oxide and sulfur oxides of flue gas
US6676912B1 (en) Method for removal of nitrogen oxides from stationary combustion sources
CN102343212A (en) Denitration process combining co-oxidation of ozone and hydrogen peroxide with wet absorption
CN101027112A (en) Method and system for reducing ammonia slip after selective reduction of NOx
KR20190106001A (en) Apparatus for simultaneous removing nitrogen oxide and sulfur oxides of flue gas
Li et al. Research and engineering practice of catalytic absorption of NO2 by tetrabutylammonium hydrogen sulfate for simultaneous removal of SO2/NOx
KR100697840B1 (en) SOx, VOx and NOx reduction system at furnace
RU2469949C2 (en) Method of purifying smoke gases, containing nitrogen oxides
CN109316941A (en) The equipment for denitrifying flue gas and its method of denitration of ozone combination urea combination SNCR
KR102099885B1 (en) NOx and SOx removal device and removal process in wet scrubber using pyrolysis of hydrogen peroxide
CN104785092A (en) An SNCR flue gas denitration device
US10458650B2 (en) Methods and systems for flue gas denitrification
CN103657400A (en) Integrated engineering system for purifying flue gas by LSCO (low-temperature selectivity catalytic oxygen)
KR100551881B1 (en) Additives for reducing agent used in selective non-catalytic reduction reaction of nitrogen oxide, injection-in-duct type selective non-catalytic reduction process using the same and system thereof
KR102698441B1 (en) Exhaust gas process system including desulfurization and denitrification process
KR100876161B1 (en) Total nox control process
KR100739124B1 (en) Nox reduction system based on selective catalytic reduction
KR102116352B1 (en) System and method for simultaneous NOx and N2O removal process using reducing agent
KR100451285B1 (en) The reduction method of nitrogen oxides and sulfur oxides using hydrogen peroxide solution and calcium oxide solution
CN204275786U (en) A kind of flue gas desulfurization and denitrification device
Wu The development and application of SCR denitrification technology in power plant

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150306

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160310

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 12