KR100531041B1 - Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same - Google Patents
Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same Download PDFInfo
- Publication number
- KR100531041B1 KR100531041B1 KR10-2003-0033608A KR20030033608A KR100531041B1 KR 100531041 B1 KR100531041 B1 KR 100531041B1 KR 20030033608 A KR20030033608 A KR 20030033608A KR 100531041 B1 KR100531041 B1 KR 100531041B1
- Authority
- KR
- South Korea
- Prior art keywords
- polymer
- terephthalic acid
- temperature
- same
- glycol ether
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/84—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/86—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyetheresters
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Polyesters Or Polycarbonates (AREA)
- Artificial Filaments (AREA)
- Coloring (AREA)
Abstract
본 발명은 테레프탈산을 중합 주원료로 하는 폴리에스터 중합 공법으로 제조된 염색이 용이한 폴리에스터 중합물 및 이의 제조 방법에 관한 것이다. 상세하게는 유리전이 온도(Tg)가 절대 온도로 330 ~ 350K이고, 용융 온도(Tm)가 510 ~ 525K이며, Tm과 Tg의 비가 1.51 ≤ Tm/Tg ≤ 1.55를 만족하는 코폴리에스터 중합물 및 이의 제조 방법에 관한 것이며, 보다 상세하게는 수평균 분자량 200 ~ 2,000의 폴리알킬렌 글라이콜 에테르를 1 ~ 10 중량% 공중합한 테레프탈산을 주원료로 하는 테레프탈산 공법으로 제조된 극한점도 0.6 ~ 0.7dl/g인 염색이 용이한 중합물 및 이의 제조 방법에 관한 것이다.The present invention relates to an easy-to-dye polyester polymer produced by a polyester polymerization method using terephthalic acid as a main polymerization polymer and a method for producing the same. Specifically, the glass transition temperature (Tg) is an absolute temperature of 330 ~ 350K, the melting temperature (Tm) of 510 ~ 525K, the copolyester polymer and the ratio of Tm and Tg satisfies 1.51 ≤ Tm / Tg ≤ 1.55 and its It relates to a production method, and more specifically, to the intrinsic viscosity produced by the terephthalic acid method with terephthalic acid copolymerized from 1 to 10% by weight of polyalkylene glycol ethers having a number average molecular weight of 200 to 2,000 as the main raw material, 0.6 to 0.7dl / g It relates to a polymer easily phosphorus dyeing and a method for producing the same.
본 발명에 의해 제조된 염색이 용이한 중합물은 통상의 폴리에틸렌 테레프탈레이트 섬유와 동등한 물성을 가지며, 염색이 통상의 폴리에틸렌 테레프탈레이트 섬유보다 낮은 온도에서 가능한 우수한 특성을 보인다.Easily dyed polymers prepared by the present invention have the same physical properties as conventional polyethylene terephthalate fibers and show excellent properties possible at lower temperatures than conventional polyethylene terephthalate fibers.
Description
본 발명은 테레프탈산(terephthalic acid, 이하 TPA로 약칭)을 원료로 하는 TPA 공법을 이용한 코폴리에스터 중합체, 그 섬유 및 이의 제조 방법에 관한 것이다. 보다 상세하게는 테레프탈산을 주원료로 하는 TPA중합 공법에 있어서, 수평균 분자량이 200 ~ 2000인 폴리알킬렌 글리콜 에테르(polyalkylene glycol ether, 이하 PAG로 약칭)를 중합체 대비 1 ~ 10중량% 공중합하고, 에텔렌 글리콜과 테레프탈산의 몰비를 1.05 ~ 1.51로 조정함으로써 중합중에 생기는 DEG의 함량을 조절함으로써, 분자쇄의 움직임이 시작되는 유리전이 온도(Glass Transition Temperature, 이하 Tg로 약칭)와 용융 온도(Melting Temperature, 이하 Tm으로 약칭)의 비가 1.51 ≤ Tm/Tg ≤ 1.55(단, 온도는 절대온도, Kelvin Temperature)를 만족하는 코폴리에스터 중합물 및 이를 제조하는 방법을 제공하는 데 있다. 그 결과, 본 발명에 의한 중합물은 통상적인 폴리에틸렌 테레프탈레이트[poly(ethylene terephthalate), 이하 PET로 약칭] 고유의 우수한 탄성 등을 유지하면서도, 분산염료에 의해 염색이 가능한 비결정부의 영역을 결정용융열(Heat of fusion, 이하 △Hf로 약칭)로 분석할 때, 통상적인 폴리에틸렌 테레프탈레이트의 67~87%정도이면서 PET 섬유의 염색 온도(통상 130℃)보다 낮은 온도(100℃ 내외)에서 염색이 가능하다.The present invention relates to a copolyester polymer using the TPA method using a terephthalic acid (hereinafter abbreviated as TPA) as a raw material, a fiber thereof, and a method for producing the same. More specifically, in the TPA polymerization method using terephthalic acid as the main raw material, a polyalkylene glycol ether having a number average molecular weight of 200 to 2000 (hereinafter abbreviated as PAG) is copolymerized 1 to 10% by weight with respect to the polymer, and ether By adjusting the molar ratio of ethylene glycol and terephthalic acid to 1.05 ~ 1.51, by controlling the content of DEG generated during polymerization, the glass transition temperature (hereinafter abbreviated as Tg) and the melting temperature (Melting Temperature, It is to provide a copolyester polymer that satisfies the ratio 1.51 ≤ Tm / Tg ≤ 1.55 (where temperature is absolute temperature, Kelvin Temperature) and a method of manufacturing the same. As a result, the polymerized product according to the present invention maintains excellent elasticity and the like inherent in conventional polyethylene terephthalate (hereinafter abbreviated as PET), while determining the area of the amorphous portion that can be dyed with a disperse dye. When analyzed by (Heat of fusion, abbreviated as ΔHf), it is possible to dye at a temperature (about 100 ° C) below the dyeing temperature of PET fiber (usually 130 ° C) while being 67 to 87% of the conventional polyethylene terephthalate. Do.
PET 섬유는 우수한 기계적 성질과 화학 물질 및 환경에 대한 우수한 내성을 지녀 의류용 섬유, 산업용 섬유, 필름 등에 많이 이용되고 있는 고분자 소재이다. 하지만 우수한 특성에도 불구하고 의류용 섬유로 사용할 경우 염색에 관여할 수 있는 작용기(functional group)의 부재로 인하여, 130℃ 내외의 고온에서만 분산 염료에 의한 염색이 가능하다는 문제점이 있다. PET fiber is a polymer material that is widely used in clothing fibers, industrial fibers, films, etc., because of its excellent mechanical properties and excellent resistance to chemicals and the environment. However, in spite of its excellent properties, there is a problem in that dyeing by disperse dyes is possible only at a high temperature of about 130 ° C. due to the absence of a functional group that can be involved in dyeing when used as a garment fiber.
이는 메탈릭얀(metallic yarn)이나 천연 섬유와 같이 고온 고압 조건에서 염색시 손상이 생기는 섬유와는 함께 사용할 수 없다는 용도상의 제약을 가져왔다. This has a limitation in use that can not be used with fibers that damage when dyed at high temperature and high pressure conditions such as metallic yarn (natural yarn) or natural fibers.
폴리에스터의 중합 방법은 출발 원료를 기준으로 크게 두 가지로 나눌 수 있다. 첫째 방법은 TPA를 원료로 하는 방법이다. 현재 대다수의 폴리에스터 업계에서 채택하는 방법으로 TPA와 에틸렌 글리콜(ethylene glycol, 이하 EG로 약칭)을 직접 에스터 반응시켜 비스하이드록시 에틸 테레프탈레이트[bis(hydroxy ethyl terephthalate), 이하 BHET로 약칭]와 이들의 저중합도 올리고머를 제조한 후 이를 고진공하에서 중축합하는 방법이다. 다음으로 DMT(dimethyl terephthalate)를 원료로 하는 방법이 있다. 이 방법은 DMT와 EG를 촉매 존재하에서 에스터 교환 반응을 통하여 비스하이드록시 에틸 테레프탈레이트와 이들의 저중합도 올리고머를 제조한 후 이를 고진공하에서 중축합하는 방법이다. 제조 경비와 생산성 면에서 TPA 중합법이 많이 이용되고 있으며, DMT 중합법은 설비에 의해 제조 경비가 높고 생산성이 낮은 측면이 있다(통상적으로 동일량의 중합물 제조에 DMT가 TPA와 대비하여 17% 더 투입됨). DMT 공법에서는 DMT와 EG간의 에스터 교환 반응을 위하여 초산 아연(zinc acetate), 초산 망간(manganese acetate), 초산 마그네슘(magnesium acetate)등의 금속염을 촉매로 사용하는데 이들 촉매는 중합물 제조 후에는 중합물의 해분해(depolymerization)와 UV등 일광에 대한 활성을 가져 안정제(stabilizer)를 투입해야만 하는 문제가 있다. 하지만 TPA 공법에서는 TPA와 EG의 에스터화 반응에 촉매를 사용하지 않을 뿐만 아니라 중축합 촉매로 주로 사용되는 삼산화 안티몬(antimony trioxide)의 활성이 작아 별도의 안정제가 필요치 않은 장점이 있다.The polymerization method of polyester can be divided into two types based on starting material. The first method is to use TPA as a raw material. Currently, the majority of the polyester industry adopts a direct ester reaction of TPA and ethylene glycol (abbreviated as EG) and bishydroxy ethyl terephthalate (hereinafter abbreviated as BHET) and these. It is a method of preparing a low degree of polymerization oligomer of polycondensation under high vacuum. Next, there is a method using DMT (dimethyl terephthalate) as a raw material. In this method, bishydroxy ethyl terephthalate and their low-polymerization oligomers are prepared by transesterification of DMT and EG in the presence of a catalyst and then polycondensed under high vacuum. In terms of production cost and productivity, TPA polymerization is widely used, and DMT polymerization has high production cost and low productivity by equipment (typically, 17% more DMT is used than TPA to produce the same amount of polymer. Committed). In the DMT process, metal salts such as zinc acetate, manganese acetate, and magnesium acetate are used as catalysts for the transesterification reaction between DMT and EG. There is a problem in that a stabilizer should be added to have deactivation and UV light activity. However, the TPA method does not use a catalyst for the esterification reaction of TPA and EG, and also has the advantage that the activity of antimony trioxide, which is mainly used as a polycondensation catalyst, is small and does not require a separate stabilizer.
본 발명에서는 저온에서의 농염 염색을 위하여 분자량 200 ~ 2000의 PAG를 공중합하여 사용하였으며, 본 발명의 분야에 속하는 종래의 기술 중 PAG를 사용한 기술은 볼 수 있지만 제조 방법, 분자량, 발명의 목적 등이 다름을 알 수 있다. 일본특허 公開平 9-13229에는 분자량 3,000 ~ 25,000의 폴리에틸렌 글리콜 에테르(polyethylene glycol ether, 이하 PEG로 약칭) 0.3 ~ 3중량%와 분자량 500 ~ 3,000의 PEG 0.3 ~ 3중량%를 투입하여 컴파운딩하여 제조하는 방법이 소개되어 있다. 이 방법은 PEG를 추출하여 섬유 표면에 긴 홈을 생성시키는 것을 이용하는 것이나 PEG를 추출하지 않는 본 발명의 목적에는 맞지 않는다. 그리고 일본 특허 特開昭 58-120815에는 염색을 용이하게 하기 위한 방법으로 5-소디움 설포닉산의 디메틸 에스터(5-sodium sulphonic acid dimethyl ester)와 PAG를 동시에 투입하는 방법이 제시되어 있으나 이는 카치온 염료의 가염성에 대한 것으로, 본 발명은 분산 염료에 염색이 용이한 폴리에스터 섬유이므로 목적이 다르다. 또한 TPA 공법이 아닌 DMT 공법을 이용하고 있다. 뿐만 아니라 미국 특허 6,218,007에서는 PEG 0.5 ~ 4중량%를 투입한 중합물을 이용하여 단사섬도 1.2 ~ 2.25dpf(denier per filament)인 섬유의 제조 공법을 설명하고 있으나, PEG 분자량 범위를 알 수 없고 또한 실시예에서 제시하고 있는 중합 공법은 DMT 공법으로 본 발명과 다르다. 미국 특허 5,091,504와 미국 특허 4,975,233에는 분자량 200 ~ 1,500의 PEG를 1.0 ~ 4.0중량% 투입하여 폴리에스터 섬유를 제조하는 방법을 제시하고 있다. 그러나 TPA 공법에서 디에틸렌 글라이콜(diethylene glycol, 이하 DEG로 약칭) 함량이 1중량% 이하의 것이 부반응에 의해 필수적으로 생성되고 이는 중합물의 열안정성을 저하시키므로 본 발명에서는 이를 억제하려 하지만, 상기 미국 특허 5,091,504 및 4,975,233에서는 오히려 DEG를 투입하여 물성 변화를 추구하고 있다. DEG가 생성되면 폴리에스터의 결정성을 저하하고 융점 강하를 유발시켜, 본 발명에서 목적으로 하는 510K ≤ Tm(절대온도) ≤ 525K 범위의 중합물 제조가 곤란해진다. 그리고 미국 특허 4,211,678에서는 PEG 2 ~ 4중량%, 다이머산(dimer acid) 1 ~ 3중량% 투입하여 염색이 용이한 코폴리에스터를 제조하는 방법을 제시하고 있는데, 다이머산의 투입은 중합공정을 복잡하게 할뿐만 아니라 중합물의 제조 경비를 상승시키는 단점이 있다. In the present invention was used to copolymerize PAG having a molecular weight of 200 ~ 2000 for dyeing at low temperature, the technique using the PAG can be seen in the prior art belonging to the field of the invention, but the production method, molecular weight, the purpose of the invention, etc. You can see the difference. Japanese Patent No. 9-13229 is prepared by compounding 0.3 to 3% by weight of polyethylene glycol ether (hereinafter referred to as PEG) with 0.3 to 3% by weight of PEG having a molecular weight of 500 to 3,000. Here's how. This method utilizes the extraction of PEG to create long grooves in the fiber surface, but is not suitable for the purpose of the present invention without PEG extraction. Japanese Patent No. 58-120815 discloses a method of simultaneously injecting 5-sodium sulphonic acid dimethyl ester and PAG as a method for facilitating dyeing. The present invention has a different purpose because it is polyester fiber which is easy to dye in disperse dyes. In addition, it uses the DMT method, not the TPA method. In addition, US Pat. No. 6,218,007 describes a method for preparing fibers having a single yarn fineness of 1.2 to 2.25 dpf (denier per filament) using a polymer in which 0.5 to 4 wt% of PEG is added. The polymerization method proposed in the DMT method is different from the present invention. U.S. Patent 5,091,504 and U.S. Patent 4,975,233 disclose a method for preparing polyester fibers by adding 1.0 to 4.0% by weight of PEG having a molecular weight of 200 to 1,500. However, in the TPA method, diethylene glycol (hereinafter abbreviated as DEG) content of 1 wt% or less is essentially produced by side reactions, which lowers the thermal stability of the polymer, and thus the present invention tries to suppress it. U.S. Patents 5,091,504 and 4,975,233 rather seek to change properties by introducing DEG. When DEG is produced, the crystallinity of the polyester is lowered and the melting point is lowered, making it difficult to prepare a polymer having a range of 510 K ≤ Tm (absolute temperature) ≤ 525 K, which is the object of the present invention. In addition, US Pat. No. 4,211,678 proposes a method for preparing a copolyester that is easy to dye by adding 2 to 4 wt% PEG and 1 to 3 wt% dimer acid, which is complicated by the polymerization process. In addition to this, there is a disadvantage of increasing the production cost of the polymer.
본 발명에서 이루고자 하는 기술적 과제는 제조 경비가 저렴한 TPA 공법을 이용하여 통상적인 폴리에스터 섬유의 고유한 기계적 물성을 유지하면서, 통상적인 폴리에스터 섬유의 염색 온도보다 낮은 온도에서 염색이 가능한 폴리에스터 섬유용 코폴리에스터 중합체를 제조하는 데 있다. The technical problem to be achieved in the present invention is a polyester fiber that can be dyed at a temperature lower than the dyeing temperature of the conventional polyester fiber, while maintaining the inherent mechanical properties of the conventional polyester fiber using a low-cost manufacturing TPA method To preparing a copolyester polymer.
즉, TPA공법으로 수평균 분자량이 200~2000의 폴리앞킬렌 글리콜 에테르를 중합체 대비 1~10중량% 공중합하고, G값(에틸렌 글리콜/테레프탈산의 몰비)을 1.05 ~ 1.15로 조정함으로써 중합 중에 생성되는 DEG함량을 조절하여, 유리전이 온도 (Tg)에 대한 용융 온도(Tm)의 비가 1.51 이상 1.55 이하인 물성을 만족하는 것을 특징으로 하는 코폴리에스터 중합체의 제조 방법에 관한 것이다. 또한 본 발명의 다른 측면은 상기 방법에 의해 제조된 중합체 및 그 섬유에 있다. That is, the TPA method copolymerizes 1-10% by weight of polypyrene ethylene glycol ether having a number average molecular weight of 200-2000 relative to the polymer, and adjusts the G value (molar ratio of ethylene glycol / terephthalic acid) to 1.05-1.15 to produce the polymer during polymerization. The present invention relates to a method for producing a copolyester polymer characterized by satisfying the physical properties of the ratio of the melting temperature (Tm) to the glass transition temperature (Tg) to the glass transition temperature (Tg) of 1.51 to 1.55. Another aspect of the invention is a polymer produced by the process and its fibers.
상기의 과제를 해결하기 위한 본 발명을 상세히 서술하고자 한다. 본 발명자들은 본 발명을 이루기 위해 이론적으로 저온에서 염색 가능한 코폴리에스터의 분자 구조를 설계하였다. 본 발명자들은 공중합 단량체로서 방향족(aromatic)이 아닌 지방족(aliphatic)의 공중합 단량체를 사용한다. 따라서 1, 3-프로판디올(1, 3-propanediol), 1, 4-부탄디올(1, 4-butanediol)등의 탄소수 3 이상의 α, ω-디올, 혹은 폴리에틸렌 글리콜 에테르(PEG), 1, 2 혹은 1, 3-폴리프로필렌 글리콜 에테르(polypropylene glycol ether), 1, 4-폴리부틸렌 글리콜 에테르(polybutylene glycol ether)등의 폴리알킬렌 글리콜 에테르(polyalkylene glycol ether)등의 디올계 공중합 단량체, 그리고 아디프산(adipic acid), 숙신산(succinic acid)등의 디액시드나 이들의 알킬 에스터(alkyl ester), 아실 할라이드(acyl halide)등을 선정하였다. The present invention for solving the above problems will be described in detail. The inventors have designed the molecular structure of copolyesters that are theoretically dyeable at low temperatures to achieve the present invention. The present inventors use aliphatic copolymer monomers which are not aromatic as copolymer monomers. Therefore, α, ω-diol, or polyethylene glycol ether (PEG), 1, 2 or more than 3 carbon atoms, such as 1, 3-propanediol (1, 3-propanediol), 1, 4-butanediol (1, 4-butanediol) Diol copolymer monomers such as 1, 3-polypropylene glycol ether, polyalkylene glycol ethers such as 1, 4-polybutylene glycol ether, and adipe Diacids such as adipic acid and succinic acid, their alkyl esters and acyl halides were selected.
그리고 통상적인 폴리에스터 수준의 기계적인 물성을 유지하고, 융점(528K)을 크게 낮추지 않기 위해서 PAG를 사용하였다. 왜냐하면 탄소수 3 이상의 α, ω-디올을 공중합하면 폴리에스터의 결정화가 어려워져 Tm의 저하가 큰 반면, 지방족 디액시드나 이들의 유도체 등을 사용하게 되면 Tm의 저하가 탄소수 3이상의 α, ω-디올 공중합체보다 더 낮아지기 때문이다. 통상적으로 폴리에스터의 열적 물성을 크게 나타내는 방향족 벤젠의 함량이 낮아지면 Tm의 저하는 급격하게 된다. PAG was used to maintain the mechanical properties of conventional polyester levels and not to lower the melting point (528K) significantly. Copolymerization of α or ω-diol having 3 or more carbon atoms makes it difficult to crystallize the polyester, which leads to a large decrease in Tm.However, when aliphatic diacids or derivatives thereof are used, the decrease in Tm is 3 or more α, ω-diol. Because it is lower than the copolymer. In general, when the content of aromatic benzene, which exhibits large thermal properties of polyester, is low, the decrease in Tm is abrupt.
선정된 PAG의 수평균 분자량을 선정하기 위하여 이들과 Tg, Tm의 관계를 고려하였다. Tm의 저하가 작으려면 블럭 코폴리머(block copolymer)를 형성해야 하고 Tg를 낮추려면 랜덤 코폴리머(random copolymer)가 되어야 한다. 하지만 블록 코폴리머의 형성이 너무 크면 세그멘트화된 블록 코폴리머(segmented block copolymer)가 되어 통상적인 폴리에스터의 물성과는 다른 중합물이 된다. 이를 종합적으로 고려하여 PAG의 분자량을 200 ~ 2,000로 하였다. 수평균 분자량이 200보다 작게 되면 공중합물이 랜덤 코폴리머(random copolymer)가 되어 Tm 저하가 크며, 2,000보다 크게 되면 Tm 저하는 크지 않으나 Tg가 거의 변하지 않게 되어 본 발명의 목적과 맞지 않는다. In order to select the number average molecular weight of the selected PAG, the relationship between them and Tg and Tm was considered. In order to reduce Tm, a block copolymer must be formed, and to lower Tg, a random copolymer must be formed. However, if the formation of the block copolymer is too large, the segmented block copolymer (segmented block copolymer) becomes a polymer different from the physical properties of the conventional polyester. In consideration of this comprehensively, the molecular weight of PAG was set to 200 to 2,000. When the number average molecular weight is less than 200, the copolymer becomes a random copolymer (random copolymer), the Tm decrease is large, and when the number is larger than 2,000, the Tm decrease is not large, but Tg is hardly changed, which is not suitable for the purpose of the present invention.
또한 PAG의 함량은 (중합체 대비) 1 ~ 10중량%로 하였다. 1중량%보다 작으면 양이 너무 적어 공중합물 효과가 없으며, 10중량%보다 크게 되면 PAG 분자량과 관계없이 PET 결정부(crystalline region)가 PAG의 비결정부(amorphous region)에 용해되는 효과로 PET의 물성이 심하게 변한다. In addition, the content of PAG was 1 to 10% by weight (relative to the polymer). If it is less than 1% by weight, the amount is too small to have a copolymer effect. If it is greater than 10% by weight, the PET crystalline region dissolves in the amorphous region of the PAG regardless of the PAG molecular weight. Physical properties change badly.
그리고 TPA 중합 공법에서는 미반응 TPA가 불용불융(不溶不融, non-soluble and non-meltable)이므로 중합기의 올리고머 필터나 중합물 필터가 막히는 일이 발생하거나, 방사시에 팩압 상승의 속도가 커져 작업성이 저하되는 문제가 발생하기 쉽다. 미반응 TPA의 양을 최소로 하기 위해서 에스터화 반응 시간을 늘이거나 에스터화 반응 온도를 높이는 방법이 있다. 하지만 에스터화 반응 시간을 늘이거나 에스터화 반응 온도를 높이면 부반응 생성물인 DEG 생성이 증가하여 중합물의 열안정성을 해치므로 좋지 않다. 따라서 G값(에틸렌 글라이콜과 테레프탈산의 몰비)을 최대한 낮추어 DEG 생성을 억제하는 게 바람직하다. G값의 범위는 1.05 ~ 1.15 범위가 바람직하며 이 조건으로 중합시, 중합물 내 DEG 함량이 0.7 ~ 1.5 중량%가 되어, 본 발명의 목적인 유리전이 온도(Tg)가 330 ~ 350K이고, 용융 온도(Tm)가 510 ~ 525K이며 Tm과 Tg의 비가 1.51 ≤ Tm/Tg ≤1.55를 만족하는 코폴리에스터 중합물의 제조가 가능하다. In addition, in the TPA polymerization method, unreacted TPA is insoluble and non-meltable, so that the oligomer filter or the polymer filter of the polymerizer is clogged or the pack pressure rises at the time of spinning. It is easy to produce the problem of deterioration. In order to minimize the amount of unreacted TPA, there is a method of increasing the esterification time or increasing the esterification temperature. However, increasing the esterification time or increasing the esterification temperature is not good because it increases the formation of side reaction product DEG, which impairs the thermal stability of the polymer. Therefore, it is desirable to suppress DEG production by lowering the G value (molar ratio of ethylene glycol and terephthalic acid) as much as possible. The value of G is preferably in the range of 1.05 to 1.15, and upon polymerization under these conditions, the content of DEG in the polymer is 0.7 to 1.5% by weight, and the glass transition temperature (Tg) of the object of the present invention is 330 to 350K, and the melting temperature ( Tm) is 510 ~ 525K and a copolyester polymer can be produced in which the ratio of Tm and Tg satisfies 1.51 ≦ Tm / Tg ≦ 1.55.
중축합 촉매로는 통상적인 폴리에스터 중축합 촉매의 사용이 가능하다. 안티모니 트리옥사이드나 안티모니 아세테이트 등의 안티몬 계열의 촉매, 게르마늄 다이옥사이드 등의 게르마늄계 촉매, 테트라 부틸 티타네이트나 테트라이소프로필 티타네이트 등의 티타늄 계열의 촉매를 사용할 수 있다. 이들의 함량은 중합물 대비 0.01 ~ 5 중량% 투입하는 게 좋다. As the polycondensation catalyst, a conventional polyester polycondensation catalyst can be used. Antimony-based catalysts such as antimony trioxide and antimony acetate, germanium-based catalysts such as germanium dioxide, and titanium-based catalysts such as tetrabutyl titanate and tetraisopropyl titanate can be used. Their content is preferably added to 0.01 to 5% by weight relative to the polymer.
또한 본 발명에 의한 코폴리에스터 중합물은 의류용 섬유를 목적으로 하므로 통상의 폴리에스터와 마찬가지로 아나타제형(anatase type) 이산화 티탄(titanium dioxide)을 투입할 수 있다. 그 양은 목적으로 하는 섬유의 용도에 따라 슈퍼 브라이트(super bright)용에는 전혀 투입하지 않으며, 브라이트(bright)용에는 중합물 대비 200 ~ 500 ppm, 세미 덜(semi-dull)용에는 1,000 ~ 5,000 ppm, 풀 덜(full-dull)용으로는 10,000 ~ 40,000 ppm 투입이 가능하다. 또한 코폴리에스터의 비중을 높이거나 투명성을 유지하고 마찰 특성을 개선하기 위하여 바륨 설페이트(barium sulfate)등을 목적에 따라 5중량% 이하 투입할 수 있다. In addition, since the copolyester polymer according to the present invention is intended for fibers for clothing, it is possible to inject an anatase type titanium dioxide (anatase type) like conventional polyester. The amount is not added at all to super bright, depending on the purpose of the intended fiber, 200 to 500 ppm for the bright, 1000 to 5,000 ppm for the semi-dull, 10,000 to 40,000 ppm inputs are available for full-dull applications. In addition, in order to increase the specific gravity of the copolyester or to maintain transparency and improve the friction characteristics, barium sulfate or the like may be added in an amount of 5 wt% or less according to the purpose.
PEG의 에테르 결합(ether linkage)은 폴리에스터의 에스터 결합(ester linkage)보다 결합 에너지(binding energy)가 작아 열에 취약한 문제점이 있으나, 이들이 PET 매트릭스 내에 작은 분산상으로 존재하므로 열이나 빛에 약하지는 않다. 다만, 본 발명의 목적을 저해하지 않는 범위내에서 이들의 열과 빛에 대한 내성을 더 높이기 위하여, 트리 메틸 포스페이트, 트리 에틸 포스페이트 등의 인(phosphorus)계 안정제나 시바가이기사의 Irganox 1010, 1098등의 페놀(phenol)계 안정제, 이가포스 168등의 할스(HALS, Hindered Amine Light Stabilizer)등을 폴리머의 중합 촉매의 활성을 저하시키지 않고 중합물의 물성을 크게 해치지 않는 범위에서 사용할 수 있다. Ether linkage of PEG has a problem that the binding energy (binding energy) is less susceptible to heat than the ester linkage of the polyester, but they are not weak to heat or light because they exist in a small dispersed phase in the PET matrix. However, in order to further increase their resistance to heat and light within the scope of not impairing the object of the present invention, phosphorus stabilizers such as trimethyl phosphate and triethyl phosphate, Irganox 1010, 1098, etc. Phenol (phenol) stabilizer, HLS (Hindered Amine Light Stabilizer) such as Iga Force 168 can be used in a range that does not impair the physical properties of the polymer without lowering the activity of the polymer polymerization catalyst.
이하 실시예 등에서 사용할 용어 및 분석법에 대해서 다음과 같이 설명한다. Hereinafter, terms and analysis methods to be used in Examples and the like will be described as follows.
1. IV : 페놀과 1, 1, 2, 2-테트라클로로에탄의 60/40 중량비로 섞여 있는 용액으로 우벨로데 점도계를 사용하여 30℃에서 측정하였다.1. IV: A solution mixed with 60/40 weight ratio of phenol and 1, 1, 2, 2-tetrachloroethane was measured at 30 ° C. using an Ubelode viscometer.
2. DEG 함량 : 제조된 중합물을 모노에탄올아민(monoethanol amine)으로 가수분해 후 기체 크로마토그래피(GC, Gas Chromatography)로 분석하였다.2. DEG content: The prepared polymer was hydrolyzed with monoethanol amine and analyzed by gas chromatography (GC, Gas Chromatography).
3. 용융 온도(Tm) 및 유리전이 온도(Tg) : Perkin Elmer社의 DSC 7을 이용하여 10℃/分으로 승온하여 용융 범위내의 피크로 분석하였다.3. Melting temperature (Tm) and glass transition temperature (Tg): Using a DSC 7 of Perkin Elmer Inc. was heated to 10 ℃ / min and analyzed as a peak in the melting range.
4. 염색성 : 제조된 원사를 환편하여 Kuralon Navy Blue로 100℃에서 염색하여 육안으로 판단하여 염색이 양호한 것은 ○, 오염 수준인 것은 ×로 표시하였으며 염료의 색강도는 스펙트로포토미터(spectrophotometer)를 이용하여 K/S최대값을 측정하였다.4. Dyeability: circular yarns of the prepared yarns were dyed at 100 ° C with Kuralon Navy Blue, and visually judged to have good dyeing, and ○ stained levels were marked with × and color intensity of the dye was measured using a spectrophotometer. K / S maximum value was measured.
이하 실시예로 본 발명을 상세히 설명하고자 한다. 하지만 본 실시예에 의해 본 발명의 범위가 제한되어지는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples. However, the scope of the present invention is not limited by this embodiment.
[실시예 1 - 5, 비교예 1 - 3] [Examples 1-5, Comparative Examples 1-3]
에스터 반응율 96.0%인 올리고머 1.3톤이 들어 있는 에스터화 반응조에 테레프탈산 1270kg과, 이산화티탄이 30% 분산된 에틸렌 글라이콜을 포함하여 중합물 대비 이산화티탄 함량이 표 1에 기재된 양을 투입하게 계량한 전체 에틸렌 글라이콜 양 620kg(G값 1.13)을 교반하여 슬러리를 제조하였다. 올리고머가 들어 있는 에스터 반응조의 온도를 260℃로 유지하며 슬러리를 4시간 동안 투입하여 이론양의 유출수를 유출시킨 후 30분을 더 교반하여 에스터화 반응율이 95.5 ~ 97.5% 범위가 되게 에스터 반응을 진행하였다. 올리고머 중 1.3톤을 제외한 양을 중축합 반응조로 이송하여 표 1에 기재된 것과 같이 PAG를 투입한 후 에틸렌 글라이콜에 1중량%로 녹아 있는 삼산화 안티몬을 중합체 대비 300ppm 투입하고 진공을 가하기 시작하고 반응기 온도를 290℃까지 승온하였다. 최종 진공도는 0.1 토르 미만이 되었다. 교반기에 걸리는 부하가 통상의 폴리에스터 중합할 때 걸리는 부하와 같아졌을 때, 질소로 진공을 파괴하고 질소로 배출시켰다. 중합체 물성은 표 1에 나타내었다. 제조된 중합물을 방사온도 295℃에서 4,200 m/분의 방사연신 공법(Spin Draw)으로 75d/36f를 제조하여 섬유의 물성을 표 2에 나타내었다. Titanium dioxide content compared to the polymerization product, including 1270 kg of terephthalic acid and ethylene glycol having 30% titanium dioxide dispersed in an esterification reaction tank containing 1.3 tons of oligomer having an ester reaction rate of 96.0%, was measured. Slurry was prepared by stirring 620 kg of ethylene glycol (G value 1.13). The temperature of the ester reactor containing the oligomer was maintained at 260 ° C., and the slurry was added for 4 hours to drain the theoretical amount of effluent, followed by further stirring for 30 minutes, so that the esterification rate was in the range of 95.5 to 97.5%. It was. The amount of the oligomer, except 1.3 tons, was transferred to a polycondensation reactor, and PAG was added as shown in Table 1, followed by adding 300 ppm of antimony trioxide dissolved in 1% by weight of ethylene glycol to the polymer and starting to apply a vacuum. The temperature was raised to 290 ° C. The final vacuum was less than 0.1 Torr. When the load on the stirrer became equal to the load on normal polyester polymerization, the vacuum was broken with nitrogen and discharged with nitrogen. Polymer properties are shown in Table 1. 75d / 36f of the prepared polymer was prepared by spin drawing at 4,200 m / min at a spin temperature of 295 ° C., and the physical properties of the fiber are shown in Table 2.
* PTMG : 폴리 1,4-부틸렌 글라이콜PTMG: Poly 1,4-butylene glycol
* K/S값은 높을수록 염색지가 진한 색상을 나타냄.* The higher K / S value, the darker the color of dyed paper.
본 발명은 테레프탈산을 원료로 하여 통상의 PET 섬유의 고유한 기계적 물성은 유지하면서, 통상의 PET보다 낮은 온도에서 분산 염료에 진한 염색이 가능한 코폴리에스터 중합체 및 이의 제조에 관한 것이다. TPA 중합 공법을 이용하여 제조원가가 저렴하면서도 염색성이 양호한 폴리에스터 섬유용 코폴리에스터 중합체의 제조가 가능하다.The present invention relates to copolyester polymers and their preparation which can be concentrated in disperse dyes at lower temperatures than conventional PET while maintaining the inherent mechanical properties of conventional PET fibers using terephthalic acid as a raw material. By using the TPA polymerization method, it is possible to produce a copolyester polymer for polyester fibers having a low manufacturing cost and good dyeability.
Claims (6)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0033608A KR100531041B1 (en) | 2003-05-27 | 2003-05-27 | Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same |
TW093112870A TWI286558B (en) | 2003-05-27 | 2004-05-07 | Easily dyeable copolyester polymer prepared by terephthalic acid process, fiber using the same, and method of preparing the same |
CNB2004100425440A CN1309755C (en) | 2003-05-27 | 2004-05-21 | Chromatophilous polyester copolymer prepared by terephthalic acid process, fiber using the polyester copolymer and preparation method thereof |
DE102004025408.7A DE102004025408B4 (en) | 2003-05-27 | 2004-05-24 | Easily dyeable polyester copolymer made by the terephthalic acid process, fibers using the same, and process for producing the same |
JP2004154160A JP2004352991A (en) | 2003-05-27 | 2004-05-25 | Easily dyeable polyester copolymer produced by terephthalic acid technique, its fiber and its producing method |
ES200401271A ES2246701B2 (en) | 2003-05-27 | 2004-05-26 | COPOLIESTER POLYMER EASILY DYE, PREPARED BY THE TEREFTALIC ACID PROCESS, FIBER USING IT, AND METHOD OF ITS PREPARATION. |
TR2004/01206A TR200401206A2 (en) | 2003-05-27 | 2004-05-26 | Easy-to-dye polyester copolymer prepared by the terephthalic acid process, the fibers prepared therefrom and the method for their preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0033608A KR100531041B1 (en) | 2003-05-27 | 2003-05-27 | Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040101800A KR20040101800A (en) | 2004-12-03 |
KR100531041B1 true KR100531041B1 (en) | 2005-11-24 |
Family
ID=34056773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0033608A KR100531041B1 (en) | 2003-05-27 | 2003-05-27 | Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP2004352991A (en) |
KR (1) | KR100531041B1 (en) |
CN (1) | CN1309755C (en) |
DE (1) | DE102004025408B4 (en) |
ES (1) | ES2246701B2 (en) |
TR (1) | TR200401206A2 (en) |
TW (1) | TWI286558B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112760739B (en) * | 2020-12-31 | 2021-10-29 | 扬州富威尔复合材料有限公司 | Low-melting-point polyester fiber for automotive interior and preparation method thereof |
KR20230143522A (en) * | 2022-04-05 | 2023-10-12 | 에스케이케미칼 주식회사 | Preparation method of bis(glycol) terephthalate and polyester resin using same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2744087A (en) * | 1951-12-11 | 1956-05-01 | Du Pont | Polyester from terephthalic acid, ethylene glycol and polyethylene glycol |
DE1595044A1 (en) * | 1964-02-25 | 1970-04-30 | Nippon Soda Co | Process for the production of polyesters |
JPS553426A (en) * | 1978-06-23 | 1980-01-11 | Toray Ind Inc | Hollow molded polyester article having improved transparency |
JPS5763325A (en) * | 1980-10-02 | 1982-04-16 | Toyobo Co Ltd | Copolyester |
JPH0232123A (en) * | 1988-07-21 | 1990-02-01 | Mitsubishi Rayon Co Ltd | Highly crystalline polyester copolymer |
US4975233A (en) * | 1988-12-09 | 1990-12-04 | Hoechst Celanese Corporation | Method of producing an enhanced polyester copolymer fiber |
ZA903202B (en) * | 1989-05-24 | 1991-02-27 | Amoco Corp | Preparation of polyethylene terephthalate |
KR950008560A (en) * | 1993-09-06 | 1995-04-19 | 박홍기 | Manufacturing method of polyester for fiber excellent in light transmittance |
WO1998056848A1 (en) * | 1997-06-10 | 1998-12-17 | Akzo Nobel N.V. | Method for producing polyesters and copolyesters |
JPH11310629A (en) * | 1998-02-27 | 1999-11-09 | Mitsui Chem Inc | New polyester and production of polyester |
US6067785A (en) * | 1998-04-24 | 2000-05-30 | Wellman, Inc. | Method of producing high quality dark dyeing polyester and resulting yarns and fabrics |
JP3690255B2 (en) * | 2000-08-02 | 2005-08-31 | 三菱化学株式会社 | Polyester resin production method and polyester resin obtained thereby |
JP2002356609A (en) * | 2001-05-31 | 2002-12-13 | Mitsubishi Rayon Co Ltd | Polyester resin composition and its molded product |
JP4529485B2 (en) * | 2003-03-07 | 2010-08-25 | 三菱化学株式会社 | Polyester polymerization catalyst, method for producing the same, and method for producing polyester using the same |
-
2003
- 2003-05-27 KR KR10-2003-0033608A patent/KR100531041B1/en not_active IP Right Cessation
-
2004
- 2004-05-07 TW TW093112870A patent/TWI286558B/en not_active IP Right Cessation
- 2004-05-21 CN CNB2004100425440A patent/CN1309755C/en not_active Expired - Fee Related
- 2004-05-24 DE DE102004025408.7A patent/DE102004025408B4/en not_active Expired - Fee Related
- 2004-05-25 JP JP2004154160A patent/JP2004352991A/en active Pending
- 2004-05-26 TR TR2004/01206A patent/TR200401206A2/en unknown
- 2004-05-26 ES ES200401271A patent/ES2246701B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
TR200401206A2 (en) | 2005-01-24 |
DE102004025408A1 (en) | 2005-02-17 |
ES2246701A1 (en) | 2006-02-16 |
CN1572814A (en) | 2005-02-02 |
TWI286558B (en) | 2007-09-11 |
KR20040101800A (en) | 2004-12-03 |
TW200512225A (en) | 2005-04-01 |
DE102004025408B4 (en) | 2020-02-06 |
ES2246701B2 (en) | 2006-12-01 |
CN1309755C (en) | 2007-04-11 |
JP2004352991A (en) | 2004-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3476833B2 (en) | Process for producing a copolyester of terephthalic acid, ethylene glycol and 1,4-cyclohexanedimethanol, exhibiting a neutral hue, high transparency and increased brightness | |
US4377682A (en) | Copolyesters | |
CN111393620B (en) | Preparation method of degradable polytrimethylene terephthalate copolyester | |
KR100531041B1 (en) | Easily dyeable copolyester polymer prepared by terephthalic acid process, Fibers thereof and Method for preparing the same | |
EP0075527B1 (en) | High melt strength elastomeric copolyesters | |
KR100519164B1 (en) | Deeply dyeable polyester sea-and-island type conjugated fiber and manufacturing thereof | |
KR100506891B1 (en) | Copolyester polymer copolymerized with cyclohexane 1,4-dimethanol and deeply dyeable copolyester fiber made therefrom | |
KR100456729B1 (en) | A Process for manufacturing a cation dyeable polytrimethylene terephthalate copolymer | |
JPH0563506B2 (en) | ||
CA1121544A (en) | Copolyesters of phthalic acids and hydantoins | |
JPH01103650A (en) | Improved polyester composition | |
US3817934A (en) | Sulfodicarboxylic acid caprolactam reaction product modified polyesters | |
TWI782605B (en) | Polyester resion for preparing cation dyeable pet and cation dye-pet composite resin containing the same | |
KR100412183B1 (en) | Copolyester Polymer and process for preparing of it | |
KR20070072010A (en) | Easy dyeable polyethyleneterephthalate modified cross-sectional fiber and its manufacturing method | |
JPH01103623A (en) | Preparation of modified polyester | |
KR20020054440A (en) | Copolyester polymer and copolyester fiber manufactured therefrom | |
KR970004931B1 (en) | Polyester block copolymer and elastic yarn composed thereof | |
KR930005106B1 (en) | Method for preparation of polyester fiber having a high shrink grading | |
KR20050055321A (en) | Polyester microfiber having superior dyeability | |
JP2002371430A (en) | Polyester fiber | |
KR920008973B1 (en) | Polyester yarn with high shrink grading | |
KR100567105B1 (en) | Method for producing polytrimethylene terephthalate resin with improved heat resistance and melt stability | |
JP2002363269A (en) | Polyester polymer | |
JP2002363301A (en) | Polyester molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120619 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131007 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141006 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151012 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |