Nothing Special   »   [go: up one dir, main page]

KR100483112B1 - The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite - Google Patents

The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite Download PDF

Info

Publication number
KR100483112B1
KR100483112B1 KR10-2002-0024390A KR20020024390A KR100483112B1 KR 100483112 B1 KR100483112 B1 KR 100483112B1 KR 20020024390 A KR20020024390 A KR 20020024390A KR 100483112 B1 KR100483112 B1 KR 100483112B1
Authority
KR
South Korea
Prior art keywords
weight
parts
flame retardant
unsaturated polyester
expandable graphite
Prior art date
Application number
KR10-2002-0024390A
Other languages
Korean (ko)
Other versions
KR20030086039A (en
Inventor
김행영
손창호
최광식
이영철
Original Assignee
애경화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 애경화학 주식회사 filed Critical 애경화학 주식회사
Priority to KR10-2002-0024390A priority Critical patent/KR100483112B1/en
Publication of KR20030086039A publication Critical patent/KR20030086039A/en
Application granted granted Critical
Publication of KR100483112B1 publication Critical patent/KR100483112B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

본 발명은 열팽창성 흑연을 사용한 난연성 불포화 폴리에스테르의 제조방법에 관한 것으로, 불포화 폴리에스테르 100중량부에 대하여 미분쇄된 실리카 0.5~5중량부를 첨가하여 함께 롤링하여 요변도를 부여한 후, 열팽창성 흑연 3~40중량부; 난연제로서 할로겐계 난연제 1~50중량부, 인계 난연제 0.5~50중량부 및 무기계 난연제 10~300중량부로 이루어진 군에서 선택된 1종 이상의 난연제를 혼합하여 분산시켜 제조한다. The present invention relates to a method for producing a flame-retardant unsaturated polyester using thermally expandable graphite, wherein 0.5 to 5 parts by weight of finely ground silica is added to 100 parts by weight of unsaturated polyester, rolling together to impart thixotropy, and then thermally expandable graphite. 3 to 40 parts by weight; The flame retardant is prepared by mixing and dispersing at least one flame retardant selected from the group consisting of 1 to 50 parts by weight of a halogen flame retardant, 0.5 to 50 parts by weight of a phosphorus flame retardant, and 10 to 300 parts by weight of an inorganic flame retardant.

상기한 방법으로 제조된 난연성 불포화 폴리에스테르는 난연성이 향상되고 연소시 가스발생량이 감소되며 난연제 혼용시 첨가량 절감의 효과를 나타낸다. The flame-retardant unsaturated polyester produced by the above method has the effect of improving the flame retardancy, reducing the amount of gas generated during combustion, and reducing the amount of addition when mixing the flame retardant.

Description

열팽창성 흑연을 사용한 난연성 불포화폴리에스테르의 제조{The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite}The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite

본 발명은 열팽창성 흑연을 사용한 난연성 불포화 폴리에스테르의 제조방법에 관한 것으로, 불포화 폴리에스테르 100중량부에 대하여 미분쇄된 실리카 0.5~5중량부를 첨가하여 함께 롤링하여 요변도를 부여한 후, 열팽창성 흑연 3~40중량부; 난연제로서 할로겐계 난연제 1~50중량부, 인계 난연제 0.5~50중량부 및 무기계 난연제 10~300중량부로 이루어진 군에서 선택된 1종 이상의 난연제를 혼합하여 분산시켜 제조함을 특징으로 한다. The present invention relates to a method for producing a flame-retardant unsaturated polyester using thermally expandable graphite, wherein 0.5 to 5 parts by weight of finely ground silica is added to 100 parts by weight of unsaturated polyester, rolling together to impart thixotropy, and then thermally expandable graphite. 3 to 40 parts by weight; It is characterized in that it is prepared by mixing and dispersing at least one flame retardant selected from the group consisting of 1 to 50 parts by weight of halogen-based flame retardant, 0.5 to 50 parts by weight of phosphorus-based flame retardant and 10 to 300 parts by weight of inorganic flame retardant.

일반적으로 불포화 폴리에스테르 수지는 다가 염기산과 다가 알콜을 축합 중합하고 스틸렌과 같은 반응성 모노머에 용해하여 경화제를 첨가, 주입시키면 가교반응에 의하여 경화되어 제조된다. Generally, unsaturated polyester resins are prepared by condensation polymerization of polybasic basic acids and polyhydric alcohols, dissolving them in reactive monomers such as styrene, and adding and injecting curing agents to cure by crosslinking reaction.

상기의 열경화성수지인 불포화폴리에스테르 수지는 취급이 용이하고 점도가 낮으며 상온이나 고온에서도 휘발물의 발생없이 자유로이 경화성을 조정할 수 있다. 이러한 수지는 일반적으로 양호한 기계적 성질, 전기적 특성, 내수성, 약품에 대한 폭넓은 저항성, 뛰어난 표면상태를 나타내며, 또한 저가라는 장점으로 선박, 자동차, 항공기, 열차 등은 물론 욕조, 정화조, 건축 내외장제 등 각종 FRP 성형품 제작에 사용되고 있다. The unsaturated polyester resin, which is a thermosetting resin, is easy to handle, has a low viscosity, and can freely adjust sclerosis without generation of volatiles at room temperature or high temperature. Such resins generally exhibit good mechanical properties, electrical properties, water resistance, broad resistance to chemicals, and excellent surface conditions. Also, due to their low cost, such resins include not only ships, automobiles, aircraft, trains, but also bathtubs, septic tanks, building interior and exterior agents, etc. It is used to manufacture various FRP molded products.

그러나, 이러한 불포화폴리에스테르를 비롯한 플라스틱 성형품은 일반적으로 불에 쉽게 타는 성질을 갖고 있으며 연소시 많은 유독가스를 발생시킴으로써 피해를 유발시킨다. 따라서, 과거부터 상기 플라스틱의 난연성을 향상시키고 유독가스 발생량을 줄이기 위한 많은 연구가 행해져 왔다.However, plastic molded articles including such unsaturated polyesters are generally burned easily and cause damage by generating a lot of toxic gases upon combustion. Therefore, many studies have been conducted in the past to improve the flame retardancy of the plastic and to reduce the amount of toxic gas generated.

그 구체적인 방법으로는 브롬 및 염소 등의 할로겐 원소를 함유한 화합물을 제조원료 또는 첨가제로 사용하거나 무기계 난연제를 첨가하는 방법, 인 또는 질소계 난연제를 첨가하는 방법 등이 이용되고 있다. 또한, 최근에는 상기의 난연제를 단독으로 사용하는 경우는 드물며, 난연제를 적정 비율로 병용하면서 추가적인 난연첨가제를 혼용하여 사용함으로써 상호작용에 의한 난연성능 향상 및 첨가제 사용량 절감을 달성하는 연구를 시행하고 있다.  As the specific method, a compound containing a halogen element such as bromine and chlorine is used as a raw material or additive, a method of adding an inorganic flame retardant, a method of adding a phosphorus or a nitrogen flame retardant, or the like. In recent years, the above flame retardants are rarely used alone, and research has been conducted to improve the flame retardant performance and the amount of additives by interaction by using a combination of additional flame retardants while using the flame retardant at an appropriate ratio. .

또한, Dorfman 등은 미국 특허 제 4,152,368에서 할로겐 원소를 포함한 불포화폴리에스테르에 철, 구리, 안티몬 또는 그의 화합물을 사용한 제조방법을 개시하였다. 상기는 할로겐 원소를 주 난연제로 사용하여 우수한 난연 효과를 나타내고, 금속화합물을 상승제(synergist)로 사용하여 난연성면에서는 우수성이 있지만, 유해한 연소 가스량이 증가하여 가스유독성에 의한 장치의 부식이 일어나기 쉽고 할로겐족 사용량 절감 효과는 미미하다. 또한, 할로겐 화합물 사용에 의해 내후성이 악화되고, 환경친화적인 면에서 악영향을 끼치는 등의 문제가 발생한다. Dorfman et al. Also discloses a process in which US Pat. No. 4,152,368 uses iron, copper, antimony or compounds thereof in unsaturated polyesters containing halogen elements. It shows excellent flame retardant effect by using halogen element as main flame retardant, and excellent in flame retardancy by using metal compound as synergist, but it is easy to cause corrosion of equipment due to gas toxicity due to increase of harmful combustion gas The effect of reducing halogen usage is minimal. In addition, the use of halogen compounds causes deterioration of weather resistance and adverse effects in terms of environmental friendliness.

또한, Horold 등은 미국 특허 제 6,156,825에서 불포화폴리에스테르 수지에 무기계 난연제인 수산화알루미늄(ATH)과 한가지 이상의 질소화합물 및 적인을 혼용하여 사용함으로써 무기계 난연제 첨가량이 감소하게 되어, 첨가량 증가에 따른 수지 조성물의 점도상승, 성형품 기계적 강도 등의 물성 저하 등의 단점을 개선한 비할로겐 난연수지의 제조방법을 개시하였다. 그러나, 상기의 경우에는 질소화합물의 연소시 시안화수소(HCN)가 발생되어 연소가스의 독성 저감면에서 한계가 있으며, 사용되는 적인은 상대적으로 고가의 난연제이고 저장성 및 작업도중 안전성이 우려되는 단점이 있다.In addition, Horold et al., In the US Patent No. 6,156,825, by using a combination of inorganic flame retardant aluminum hydroxide (ATH) and at least one nitrogen compound and an enemy in the unsaturated polyester resin, the amount of inorganic flame retardant is reduced, the amount of the resin composition Disclosed is a method for producing a non-halogen flame-retardant resin which improves disadvantages such as viscosity increase and physical property degradation such as molded product mechanical strength. However, in the above case, hydrogen cyanide (HCN) is generated during the combustion of nitrogen compounds, which limits the toxicity of the combustion gas, and the enemy used is a relatively expensive flame retardant and concerns about storage stability and safety during operation. have.

이에, 본 발명자들은 상기한 문제점을 해결하기 위해서 난연성 불포화 폴리에스테르의 제조방법을 연구하였고, 이에 다가 알콜 및 다가 염기산을 반응시켜 제조한 불포화 폴리에스테르에 미분쇄된 실리카를 혼합하고 여기에 흑연 및 난연제를 혼합하여 분산시켜 제조할 경우, 미분쇄된 실리카와 함께 사용하여 침강속도를 줄일 수 있고, 불포화 폴리에스테르의 난연성이 향상됨을 확인하고 본 발명을 완성하였다. In order to solve the above problems, the present inventors studied a method for preparing a flame retardant unsaturated polyester, and mixed finely divided silica with an unsaturated polyester prepared by reacting a polyhydric alcohol and a polybasic acid. When prepared by mixing and dispersing the flame retardant, it can be used in combination with pulverized silica to reduce the settling rate, and confirmed that the flame retardancy of the unsaturated polyester is improved and completed the present invention.

따라서, 본 발명의 목적은 난연성이 향상되고 연소시 가스 발생량이 감소되는 난연성 불포화 폴리에스테르를 제공하는 것이다. Accordingly, it is an object of the present invention to provide a flame retardant unsaturated polyester in which the flame retardancy is improved and the amount of gas generated during combustion is reduced.

상기한 목적을 달성하기 위하여, 본 발명에 의한 불포화 폴리에스테르는 다가 알콜 및 다가 염기산을 반응시켜 제조한 불포화 폴리에스테르에 미분쇄된 실리카를 혼합하고 여기에 흑연 및 난연제를 혼합하여 분산시켜 제조한다. In order to achieve the above object, the unsaturated polyester according to the present invention is prepared by mixing finely divided silica with unsaturated polyester prepared by reacting polyhydric alcohol and polybasic acid, and mixing and dispersing graphite and flame retardant thereto. .

보다 상세하게는, 상기 불포화 폴리에스테르의 제조방법은 불포화 폴리에스테르 100중량부에 대하여 미분쇄된 실리카 0.5~5중량부를 첨가하여 함께 롤링하여 요변도를 부여한 후, 열팽창성 흑연 3~40중량부; 난연제로서 할로겐계 난연제 1~50중량부, 인계 난연제 0.5~50중량부 및 무기계 난연제 10~300중량부로 이루어진 군에서 선택된 1종 이상의 난연제를 혼합하여 분산시켜 제조한다. 또한, 제조된 액상 수지는 여러 가지 성형방법에 의해 원하는 성형품을 제작할 수 있다.More specifically, the manufacturing method of the unsaturated polyester is added to 0.5 to 5 parts by weight of finely ground silica with respect to 100 parts by weight of unsaturated polyester and rolling together to give a thixotropy, 3 to 40 parts by weight of thermally expandable graphite; The flame retardant is prepared by mixing and dispersing at least one flame retardant selected from the group consisting of 1 to 50 parts by weight of a halogen flame retardant, 0.5 to 50 parts by weight of a phosphorus flame retardant, and 10 to 300 parts by weight of an inorganic flame retardant. In addition, the produced liquid resin can produce a desired molded article by various molding methods.

본 발명에 사용된 열팽창성 흑연은 플라스틱 성형품에 열이 가해지면 표면으로 팽창하여 연소탄화물(char)과 유사한 형태로 부착됨으로써 성형품을 보호하므로 탁월한 열 차단효과를 보이고 성형품 내부에서도 팽창에 의해 성형품 자체의 열전달을 늦추며 비교적 적은 양으로도 플라스틱의 난연성을 대폭 향상시킬 수 있다. 또한, 상기의 열팽창성 흑연은 기타 다른 난연제와 병용할 경우 그 사용량을 현저히 감소되어 수지물성 및 작업성 저하문제를 줄일 수 있다. 특히, 표면연소가 억제됨으로써 연소가스 발생량 저감 면에서 탁월한 효과를 얻을 수 있다. The heat-expandable graphite used in the present invention expands to the surface when heat is applied to the plastic molded article and adheres in a form similar to combustion carbide (char), thereby protecting the molded article and thus exhibiting excellent heat shielding effect and expanding the inside of the molded article by expansion. It slows down heat transfer and can significantly improve the flame retardancy of plastics in relatively small amounts. In addition, when the thermally expandable graphite is used in combination with other flame retardants, the amount of the thermally expandable graphite can be significantly reduced, thereby reducing problems of resin properties and workability. In particular, since surface combustion is suppressed, an excellent effect can be obtained in terms of reducing the amount of combustion gas generated.

한편, 흑연의 사용량은 불포화 폴리에스테르 100중량부에 대하여 3~40중량부, 바람직하게는 5~20중량부이다. 또한, 본 발명에서 사용된 열팽창성 흑연은 32∼325mesh의 입자크기로 90∼99%의 탄소성분 및 황산 또는 질산성분을 함유하고, 그 pH가 3~7의 범위에 있다. 상기의 열팽창성 흑연은 100~200℃에서 팽창되기 시작하여 그의 팽창부피는 10~400㎖/g이다. On the other hand, the usage-amount of graphite is 3-40 weight part with respect to 100 weight part of unsaturated polyesters, Preferably it is 5-20 weight part. In addition, the thermally expandable graphite used in the present invention contains a carbon component of 90 to 99% and a sulfuric acid or nitric acid component with a particle size of 32 to 325 mesh, and the pH is in the range of 3 to 7. The thermally expandable graphite begins to expand at 100-200 ° C. and its expanded volume is 10-400 ml / g.

본 발명의 제조방법에서 사용될 수 있는 할로겐계 난연제로는 염소계 난연제 및 브롬계 난연제가 있다. 보다 구체적으로, 염소계 난연제로는 테트라클로로무수프탈산, 클로로스티렌 등이 있으며, 브롬계 난연제로는 테트라브로모프탈산, 테트라브로모비스페놀A, 데카브로모디페닐옥사이드, 옥타브로모디페닐옥사이드, 비스트리브로모페녹시에탄, 헥사브로모시클로로도데신, 브롬변성에폭시올리고머 등이 있다.Halogen-based flame retardants that can be used in the production method of the present invention include chlorine-based flame retardants and bromine-based flame retardants. More specifically, examples of the chlorine-based flame retardant include tetrachlorophthalic anhydride and chlorostyrene, and bromine-based flame retardants include tetrabromophthalic acid, tetrabromobisphenol A, decabromodiphenyl oxide, octabromodiphenyl oxide, and bistribromo. Phenoxy ethane, hexabromocyclododocin, bromine modified epoxy oligomers, and the like.

또한, 본 발명의 인계 난연제로는 적인, 트리페닐포스페이트(TPP), 트리자일레닐포스페이트(TXP), 트리부틸포스페이트(TBP), 트리크레실포스페이트(TCP), 크레실디페닐포스페이트(CDPP) 등의 인산에스테르, 트리디클로로프로필포스페이트 (TDCP), 트리클로로에틸포스페이트(TCEP), 트리클로로프로필포스페이트(TCPP), 트리이소페닐포스페이트 등의 할로겐계 함유 유기인산계, 폴리클로로포스포네이트, 폴리인산암모늄(APP) 등의 폴리인산계, 폴리무기 인산계 등이 있다.In addition, as the phosphorus-based flame retardant of the present invention, triphenyl phosphate (TPP), trixylenyl phosphate (TXP), tributyl phosphate (TBP), tricresyl phosphate (TCP), cresyl diphenyl phosphate (CDPP), etc. Halogen-containing organophosphates, such as phosphate esters, tridichloropropyl phosphate (TDCP), trichloroethyl phosphate (TCEP), trichloropropyl phosphate (TCPP) and triisophenyl phosphate, polychlorophosphonates, and polyammonium phosphates Polyphosphoric acids such as (APP), polyinorganic phosphoric acids, and the like.

또한, 본 발명의 무기계 난연제로는 수산화알루미늄, 수산화마그네슘, 삼산화안티몬, 오산화안티몬, 삼산화몰리브덴, 설파민산구아니딘, 인산구아니딘, 인산구아닐요소 등 구아니딘계, 주석산아연, 산화붕소산아연, 실리케이트, 멜라민, pentaerithritol 등이 있다.Further, the inorganic flame retardant of the present invention includes aluminum hydroxide, magnesium hydroxide, antimony trioxide, antimony pentoxide, molybdenum trioxide, guanidine sulfamate, guanidine phosphate, guanidine phosphate, zinc stannate, zinc oxide, silicate, melamine and pentaerithritol.

한편, 상기 제조방법에서 상기의 할로겐계 난연제, 인계 난연제, 무기계 난연제에서 1종 이상을 선택하여 혼합하여 사용하며, 난연첨가제 이외에 촉진제, 소포제, 요변제, 지연제, 자외선흡수제, 소포제, 이형제, 저수축제 등의 기타 첨가제를 사용할 수 있으며, 상기의 불포화폴리에스테르 수지를 에폭시, 아크릴, 이소시아네이트, 디시클로펜타디엔 등 기타원료에 의해 변성시켜 사용할 수 있다.On the other hand, in the production method, one or more selected from the above halogen-based flame retardant, phosphorus-based flame retardant, inorganic flame retardant is mixed and used, in addition to the flame retardant additives, accelerators, defoamers, thixotropic agents, retardants, ultraviolet absorbers, antifoaming agents, mold release agents, water Other additives such as a festival can be used, and the unsaturated polyester resin can be modified by other raw materials such as epoxy, acrylic, isocyanate, dicyclopentadiene and the like.

이하, 실시예 및 비교예를 들어 본 발명을 상세히 설명하지만, 본 발명이 이들 예로만 한정되는 것은 아니다.Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited only to these examples.

[실시예 1] Example 1

브롬화비닐에스테르 수지(DION-9300, 애경화학주식회사제) 100중량부에 미분쇄된 실리카 1.2중량부, 할로겐계 난연제인 테트라브로모비스페놀A(TBBPA) 올리고머 25중량부, 열팽창성 흑연 10중량부를 첨가한 후, 촉진제로 8% 코발트옥테이트 또는 디메틸아닐린(DMA) 1중량부, 경화제로 메틸에틸케톤퍼옥사이드(MEKPO)를 1중량부 혼합하여 유리섬유에 함침시켜 상온에서 경화시켜 성형품을 제조하였다.1.2 parts by weight of finely divided silica, 25 parts by weight of tetrabromobisphenol A (TBBPA) oligomer which is a halogen flame retardant, and 10 parts by weight of thermally expandable graphite are added to 100 parts by weight of vinyl bromide ester resin (DION-9300, manufactured by Aekyung Chemical Co., Ltd.). Then, 1 part by weight of 8% cobalt octateate or dimethylaniline (DMA) as an accelerator and 1 part by weight of methyl ethyl ketone peroxide (MEKPO) were mixed with a curing agent, impregnated with glass fibers, and cured at room temperature, thereby preparing a molded product.

[실시예 2]Example 2

오르소불포화폴리에스테르 수지(OS-980, 애경화학주식회사제) 80중량부에 할로겐을 분자쇄에 포함하는 오르소불포화폴리에스테르(NA-104, 애경화학주식회사제)를 20중량부, 미분쇄된 실리카 0.7중량부, 열팽창성 흑연 5중량부, 저수축제 40중량부, 무기계 난연제인 수산화알루미늄(BW-153, 일본경금속제) 200중량부, 필러로 탄산칼슘(OMYA 2, OMYA제) 50중량부, 촉매인 터어셔리부틸퍼벤조에이트 2중량부, 유리섬유 50중량부를 혼합시킨 후, 120~150℃에서 경화시켜 성형품을 제조하였다.80 parts by weight of ortho-unsaturated polyester resin (OS-980, manufactured by Aekyung Chemical Co., Ltd.), 20 parts by weight of ortho-unsaturated polyester (NA-104, manufactured by Aekyung Chemical Co., Ltd.) 0.7 parts by weight of silica, 5 parts by weight of thermally expandable graphite, 40 parts by weight of low shrinkage agent, 200 parts by weight of aluminum hydroxide (BW-153, made of Nippon Light Metal), an inorganic flame retardant, 50 parts by weight of calcium carbonate (made by OMYA 2, OMYA) with filler After mixing 2 parts by weight of tertiary butyl perbenzoate as a catalyst and 50 parts by weight of glass fiber, the product was cured at 120 to 150 ° C to prepare a molded article.

[실시예 3]Example 3

상기 실시예 2와 동일한 오르소불포화폴리에스테르 수지 80 중량부에 할로겐을 분자쇄에 포함하는 오르소불포화폴리에스테르를 20중량부, 미분쇄된 실리카 0.5 중량부, 열팽창성 흑연 5중량부, 저수축제 40중량부, 무기계 난연제인 수산화알루미늄 150중량부, 탄산칼슘 50중량부, 터어셔리부틸퍼벤조에이트 2중량부, 유리섬유 50중량부를 혼합시킨 후, 120~150℃에서 경화시켜 성형품을 제조하였다.80 parts by weight of the same ortho-unsaturated polyester resin as in Example 2 20 parts by weight of ortho-unsaturated polyester containing a halogen in the molecular chain, 0.5 parts by weight of finely divided silica, 5 parts by weight of thermally expandable graphite, low shrinkage agent 40 parts by weight, 150 parts by weight of aluminum hydroxide, an inorganic flame retardant, 50 parts by weight of calcium carbonate, 2 parts by weight of tertiary butyl perbenzoate and 50 parts by weight of glass fiber were mixed and cured at 120 to 150 ° C. to prepare a molded article. .

[실시예 4]Example 4

오르소불포화폴리에스테르 수지 100중량부에 열팽창성 흑연 10중량부, 미분쇄된 실리카 1.0 중량부, 저수축제 40중량부, 수산화알루미늄 150중량부, 탄산칼슘 50중량부, 터어셔리부틸퍼벤조에트 2중량부, 유리섬유 50중량부를 혼합시킨 후, 120~150℃에서 경화시켜 성형품을 제조하였다.10 parts by weight of thermally expandable graphite, 1.0 part by weight of pulverized silica, 40 parts by weight of low shrinkage agent, 150 parts by weight of aluminum hydroxide, 50 parts by weight of calcium carbonate, tertiary butyl perbenzoate 2 parts by weight and 50 parts by weight of glass fibers were mixed and cured at 120 to 150 ° C. to produce a molded article.

[비교예 1]Comparative Example 1

브롬화비닐에스테르 수지(DION-9300, 애경화학주식회사제) 100중량부에 촉진제 1중량부, 메틸에틸퍼옥사이드 1중량부를 혼합한 후, 유리섬유에 함침시켜 상온에서 경화시켜 성형품을 제조하였다.100 parts by weight of a vinyl bromide ester resin (DION-9300, manufactured by Aekyung Chemical Co., Ltd.) was mixed with 1 part by weight of an accelerator and 1 part by weight of methyl ethyl peroxide, and then impregnated with glass fiber to cure at room temperature to produce a molded article.

[비교예 2]Comparative Example 2

오르소불포화폴리에스테르 수지 80 중량부에 할로겐을 분자쇄에 포함하는 오르소불포화폴리에스테르를 20중량부, 열팽창성 흑연 2중량부, 저수축제 40중량부, 수산화알루미늄 150중량부, 탄산칼슘 50중량부, 터어셔리부틸벤조에이트 2중량부, 유리섬유 50중량부를 혼합시킨 후, 120~150℃에서 경화시켜 성형품을 제조하였다.20 parts by weight of ortho-unsaturated polyester resin containing halogen in the molecular chain of 80 parts by weight of the ortho-unsaturated polyester resin, 2 parts by weight of thermally expandable graphite, 40 parts by weight of low shrinkage agent, 150 parts by weight of aluminum hydroxide, 50 parts by weight of calcium carbonate 2 parts by weight of butyl benzoate and 50 parts by weight of glass fiber were mixed and cured at 120 to 150 ° C. to produce a molded article.

[비교예 3]Comparative Example 3

오르소불포화폴리에스테르 수지 80중량부에 할로겐을 분자쇄에 포함하는 오르소불포화폴리에스테르를 20중량부, 열팽창성 흑연 50중량부, 저수축제 40중량부, 수산화알루미늄 150중량부, 탄산칼슘 50중량부, 터어셔리부틸벤조에이트 2중량부, 유리섬유 50중량부를 혼합시킨 후, 120~150℃에서 경화시켜 성형품을 제조하였다.20 parts by weight of ortho-unsaturated polyester resin containing halogen in the molecular chain of 80 parts by weight of the ortho-unsaturated polyester resin, 50 parts by weight of thermally expandable graphite, 40 parts by weight of low shrinkage agent, 150 parts by weight of aluminum hydroxide, 50 parts by weight of calcium carbonate 2 parts by weight of butyl benzoate and 50 parts by weight of glass fiber were mixed and cured at 120 to 150 ° C. to produce a molded article.

시험예Test Example

상기 실시예 1~4 및 비교예 1~3에서 제조된 성형품의 연소시험 및 기계적 물성시험의 결과를 표 1 및 표 2에 나타내었다.The results of the combustion test and the mechanical property test of the molded products prepared in Examples 1 to 4 and Comparative Examples 1 to 3 are shown in Table 1 and Table 2.

[시험예 1][Test Example 1]

LPG GAS를 화원으로 한 불꽃의 크기를 5㎝로 하여 상기 실시예 1~4 및 비교예 1~3에서 만들어진 성형품을 45°각도로 직접 가열하는 방법을 행하였으며, 가열시간은 실시예 1 및 비교예 1은 2분간, 이외의 예는 10분간으로 하였다. 그후, 플라니메타를 이용하여 연소길이 및 연소면적을 측정하였으며, 자기소화시간은 육안으로 측정하였다. 그 결과를 표 1에 나타내었다. LPG GAS as a fire source was 5 cm in size and the method of direct heating the molded article made in Examples 1 to 4 and Comparative Examples 1 to 3 with a 45 ° angle, the heating time was compared with Example 1 and Example 1 was 2 minutes, and the other examples were made into 10 minutes. Thereafter, the combustion length and the combustion area were measured using a planetarometer, and the self-extinguishing time was visually measured. The results are shown in Table 1.

[시험예 2][Test Example 2]

발연계수 및 잔류불꽃시간의 항목은 KS M 2271규격에 의한 것으로, 상기 실시예 1~4 및 비교예 1~3에서 제조된 성형품을 원칙적으로 정전압 장치를 갖춘 전열을 열원으로 하는 정열원으로 3분간, 원칙적으로 LP가스를 열원으로 하는 부열원으로 3분간 가열하였다. 그 후, 15초마다 연기를 투과하는 광량을 측정하여 하기 수학식 1에 의해 발연계수를 결정하였다. 또한, 잔류불꽃시간은 육안으로 측정하여 그 결과를 표 1에 나타내었다. The coefficients of smoke and residual flame time are based on KS M 2271 standard, and the molded products manufactured in Examples 1 to 4 and Comparative Examples 1 to 3 are, in principle, a heat source having a constant voltage device as a heat source for 3 minutes. In principle, it was heated for 3 minutes with an auxiliary heat source using LP gas as a heat source. Thereafter, the amount of light passing through the smoke was measured every 15 seconds, and the smoke emission coefficient was determined by Equation 1 below. In addition, the residual flame time was measured visually and the results are shown in Table 1.

Io : 가열 시험 개시시의 빛의 세기(lx)I o : Light intensity at the start of the heating test (lx)

I : 가열 시험 중의 빛 세기의 최저값I: minimum value of light intensity during heating test

[시험예 3][Test Example 3]

산소지수은 KS M 3032규격에 의한 것으로, 상기 실시예 1~4 및 비교예 1~3에서 제조된 성형품을 산소와 질소의 혼합가스를 열원으로 하여 가열하고 초기 산소농도를 임의로 선택한 후, 시험편의 연소 시간이 3분을 초과하는 경우 또는 연소 길이가 5cm를 초과하는 경우에는 산소 농도를 낮춰 다시 실험하기를 반복하여 재료가 연소를 지속하기에 필요한 산소의 부피%를 나타내는 최저 산소 농도의 수치를 측정하여 하기 수학식 2에 의해 산소지수를 결정하였다. 그 결과를 표 1에 나타내었다. Oxygen index is based on KS M 3032 standard, the molded article prepared in Examples 1 to 4 and Comparative Examples 1 to 3 is heated using a mixed gas of oxygen and nitrogen as a heat source, and after selecting the initial oxygen concentration arbitrarily, burning the test piece If the time exceeds 3 minutes or if the combustion length exceeds 5 cm, repeat the experiment with a lower oxygen concentration to determine the value of the lowest oxygen concentration that represents the volume percentage of oxygen required for the material to sustain combustion. Oxygen index was determined by the following equation (2). The results are shown in Table 1.

[O2] : 산소의 유량, [N2] : 질소의 유량[O 2 ]: flow rate of oxygen, [N 2 ]: flow rate of nitrogen

내연성 실험결과Flame resistance test result 실시예Example 비교예Comparative example 1One 22 33 44 1One 22 33 연소길이(mm) Combustion length (mm) 127127 162162 176176 170170 174174 215215 175175 연소면적(mm2)Combustion area (mm 2 ) 12441244 21902190 23052305 22202220 22672267 33193319 22702270 자기소화시간(sec) Self-extinguishing time (sec) 00 00 00 00 22 00 00 발연계수(CA)Coefficient of Smoke (C A ) -- 50.350.3 56.756.7 44.844.8 -- 131.1131.1 129.4129.4 잔류불꽃시간(sec) Residual Flame Time (sec) -- 4848 5353 4545 -- 112112 110110 산소지수 Oxygen index -- -- -- 48이상48 or more -- 3535 3535

상기 표 1에서 알 수 있는바와 같이, 열팽창성 흑연을 사용한 경우 연소길이, 연소면적, 자기소화시간, 발연계수 및 잔류불꽃시간이 줄어들고 산소지수는 상승하는 등 난연성능이 향상되는 것을 확인할 수 있었다. 특히, 실시예 2 및 실시예 4에서는 할로겐 족이 함유된 비교예에 비하여 열팽창성 흑연을 사용하여 발연계수가 현저히 감소함을 알 수 있었다. As can be seen in Table 1, it was confirmed that the use of thermally expandable graphite improves the flame retardant performance by reducing the combustion length, the combustion area, the self-extinguishing time, the combustion coefficient and the residual flame time, and the oxygen index. In particular, in Example 2 and Example 4, it was found that the coefficient of smoke reduction was significantly reduced by using thermally expandable graphite as compared with the comparative example containing halogen group.

[시험예 4] [Test Example 4]

상기 실시예 1~4 및 비교예 1~3의 기계적 물성을 특정하기 위해 굴곡강도 및 굴곡탄성률은 ASTM D 790에 의해 측정하였다. 또한, 인장강도 및 인장탄성률은 ASTM D 638에 의해 측정하여 그 결과를 표 2에 나타내었다. Flexural strength and flexural modulus were measured by ASTM D 790 to specify the mechanical properties of Examples 1 to 4 and Comparative Examples 1 to 3. In addition, the tensile strength and tensile modulus was measured by ASTM D 638 and the results are shown in Table 2.

적층판의 기계적 물성 실험결과Mechanical property test results of laminate 실시예Example 비교예Comparative example 1One 22 33 44 1One 22 33 굴곡강도(Kgf/㎟) Flexural Strength (Kgf / ㎡) 19.519.5 11.711.7 12.012.0 12.512.5 18.218.2 11.511.5 11.411.4 굴곡탄성률 (Kgf/㎟) Flexural modulus (Kgf / ㎡) 700.5700.5 131500131500 132500132500 133000133000 643.7643.7 131000131000 130000130000 인장강도(Kgf/㎟) Tensile Strength (Kgf / ㎡) 12.712.7 5.35.3 5.85.8 5.55.5 11.611.6 5.55.5 5.35.3 인장탄성률 (Kgf/㎟) Tensile Modulus (Kgf / ㎡) 750.3750.3 -- -- -- 714.1714.1 -- --

상기 표 2에서 알 수 있는 바와 같이, 열팽창성 흑연이 첨가된 경우에도 기계적 물성에는 불리한 영향을 미치지 않고 우수함을 확인할 수 있었다. As can be seen in Table 2, even when thermally expandable graphite is added, it was confirmed that the mechanical properties are excellent without adversely affecting.

이상에서 설명한 바와 같이, 본 발명에 의한 불포화폴리에스테르 액상수지에 열팽창성 흑연을 미분쇄된 실리카와 함께 첨가한 후, 이를 이용해 제작한 성형품은 열에 노출되었을 때 열팽창성 흑연의 팽창으로 인한 표면의 탄화보호층(char) 형성과 성형품 내부에서의 공간형성에 의해 우수한 난연성능을 갖게된다. As described above, after the thermally expandable graphite is added to the unsaturated polyester liquid resin according to the present invention together with the pulverized silica, the molded article produced by the same is carbonized on the surface due to expansion of the thermally expandable graphite when exposed to heat. Excellent flame retardant performance is achieved by forming a char layer and forming a space inside a molded article.

Claims (5)

삭제delete 다가알콜 및 다가 염기산을 반응시켜 제조한 불포화 폴리에스테르 100중량부에 대하여 미분쇄된 실리카 0.5~5중량부를 첨가하여 함께 롤링하여 요변도를 부연한 후, After adding 0.5 to 5 parts by weight of finely ground silica to 100 parts by weight of unsaturated polyester prepared by reacting polyhydric alcohol and polyvalent basic acid, rolling together to further expand thixotropy, 열팽창성 흑연 3~40중량부; 및 3 to 40 parts by weight of thermally expandable graphite; And 할로겐계 난연제 1~50중량부, 인계 난연제 0.5~50중량부 및 무기계 난연제 10~300중량부로 이루어진 군에서 선택된 1종 이상의 난연제를 혼합하여 분산시켜 제조함을 특징으로 하는 난연성 불포화 폴리에스테르의 제조방법. 1 to 50 parts by weight of halogen-based flame retardant, 0.5 to 50 parts by weight of phosphorus-based flame retardant and 10 to 300 parts by weight of inorganic flame retardant is prepared by mixing and dispersing at least one flame retardant selected from the group consisting of. . 제 2항에 있어서, 상기 열팽창성 흑연은 32∼325mesh의 입자크기로 90∼99%의 탄소성분 및 황산 또는 질산성분을 함유하고, 그 pH가 3~7의 범위에 있음을 특징으로 하는 난연성 불포화 폴리에스테르의 제조방법. The flame-retardant unsaturated according to claim 2, wherein the thermally expandable graphite contains 90 to 99% of carbon and sulfuric acid or nitric acid in a particle size of 32 to 325 mesh, and its pH is in the range of 3 to 7. Method for producing polyester. 제 2항에 있어서, 상기 열팽창성 흑연은 100∼200℃에서 팽창되기 시작하며, 그의 팽창부피가 10∼400㎖/g임을 특징으로 하는 난연성 불포화 폴리에스테르의 제조방법.The method of claim 2, wherein the thermally expandable graphite begins to expand at 100 to 200 ° C, and has an expansion volume of 10 to 400 ml / g. 제 2항에 있어서, 상기 불포화 폴리에스테르는 불포화 폴리에스테르 외에 에폭시(Epoxy), 아크릴(Acryl), 이소시아네이트(Isocyanate), 디시클로펜타디엔(Dicyclopentadiene) 등 기타 원료에 의해 변성된 불포화 폴리에스테르수지를 사용함을 특징으로 하는 난연성 불포화폴리에스테르의 제조방법.The method of claim 2, wherein the unsaturated polyester is an unsaturated polyester resin modified by other raw materials such as epoxy, acryl, isocyanate, dicyclopentadiene in addition to the unsaturated polyester. Method for producing a flame retardant unsaturated polyester, characterized in that.
KR10-2002-0024390A 2002-05-03 2002-05-03 The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite KR100483112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0024390A KR100483112B1 (en) 2002-05-03 2002-05-03 The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0024390A KR100483112B1 (en) 2002-05-03 2002-05-03 The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite

Publications (2)

Publication Number Publication Date
KR20030086039A KR20030086039A (en) 2003-11-07
KR100483112B1 true KR100483112B1 (en) 2005-04-14

Family

ID=32381408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0024390A KR100483112B1 (en) 2002-05-03 2002-05-03 The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite

Country Status (1)

Country Link
KR (1) KR100483112B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582356A (en) * 1981-06-30 1983-01-07 Nippon Synthetic Chem Ind Co Ltd:The Butyl rubber based coating compound
KR970042824A (en) * 1995-12-08 1997-07-26 전성원 Hybrid Sheet Molding Composition
WO2000034342A2 (en) * 1998-12-09 2000-06-15 Basf Aktiengesellschaft Method for producing expandable polystyrene particles
KR20000057222A (en) * 1996-11-27 2000-09-15 고다마 순이치로, 아마노 히로시 Polyarylene sulfide resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582356A (en) * 1981-06-30 1983-01-07 Nippon Synthetic Chem Ind Co Ltd:The Butyl rubber based coating compound
KR970042824A (en) * 1995-12-08 1997-07-26 전성원 Hybrid Sheet Molding Composition
KR20000057222A (en) * 1996-11-27 2000-09-15 고다마 순이치로, 아마노 히로시 Polyarylene sulfide resin composition
WO2000034342A2 (en) * 1998-12-09 2000-06-15 Basf Aktiengesellschaft Method for producing expandable polystyrene particles

Also Published As

Publication number Publication date
KR20030086039A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
Wang et al. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties
Hörold Phosphorus flame retardants in thermoset resins
US4438028A (en) Fire retardant and compounds based thereon
EP1916286B1 (en) Flame retardant, hardening moulding materials
EP1616924A1 (en) Fire retardant composition
TWI579294B (en) Mixtures of at least one dialkylphosphinic acid with at least one other, different dialkylphosphinic acid, process for preparation thereof and use thereof
Weil et al. Commercial flame retardancy of unsaturated polyester and vinyl resins
JP2004115797A (en) Flame-retardant thermosetting composition
CN107778638B (en) Halogen-free flame-retardant ultra-high molecular weight polyethylene material and preparation method thereof
CN104629238A (en) Halogen-free flame retardant basalt fiber reinforced unsaturated polyester resin composite material and preparation method thereof
KR101896898B1 (en) Silicone rubber composition with fire resistant
Spasojevic Thermal and rheological properties of unsaturated polyester resins-based composites
JPH10204276A (en) Flame resistant unsaturated polyester resin
KR101772761B1 (en) Flame retardant master batch of expanded polystyrene with enhanced cell uniformity and flame-resistance, and a method of the manufacturing
CN113429770A (en) Preparation method of efficient flame-retardant modified unsaturated polyester resin
US20050004278A1 (en) Flame-retardant thermoset compositions, their use and process for their preparation
US3981832A (en) Fire-protecting epoxy resins
KR20150039750A (en) High heat resistant composition
US4085247A (en) Fire-protecting epoxy resin reinforced with glass fiber
KR100483112B1 (en) The Preparation of Flame Resisting Unsaturated Polyester Including Heat Expandable Graphite
Soni et al. A review on flame retardants used in polyurethane foam
Mouritz et al. Flame retardant composites
Häublein et al. Fire behavior and flame-retardant properties of application-oriented fiber-reinforced polymers (FRPs)
JPH10204275A (en) Flame resistant unsaturated polyester resin
KR100367826B1 (en) Method for preparing flame resistant bulk molding compound based on unsaturated polyester

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20120403

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130520

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140904

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150428

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160212

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180607

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190903

Year of fee payment: 15