KR100489547B1 - Diamond grits with good sintering properties in copper-based matrix alloy and production method thereof and the sintering tool using the same - Google Patents
Diamond grits with good sintering properties in copper-based matrix alloy and production method thereof and the sintering tool using the same Download PDFInfo
- Publication number
- KR100489547B1 KR100489547B1 KR10-2003-0039985A KR20030039985A KR100489547B1 KR 100489547 B1 KR100489547 B1 KR 100489547B1 KR 20030039985 A KR20030039985 A KR 20030039985A KR 100489547 B1 KR100489547 B1 KR 100489547B1
- Authority
- KR
- South Korea
- Prior art keywords
- coating layer
- diamond grit
- copper
- grit
- diamond
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B9/00—Arrangements of the bristles in the brush body
- A46B9/02—Position or arrangement of bristles in relation to surface of the brush body, e.g. inclined, in rows, in groups
- A46B9/04—Arranged like in or for toothbrushes
- A46B9/045—Arranged like in or for toothbrushes specially adapted for cleaning a plurality of tooth surfaces simultaneously
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- A—HUMAN NECESSITIES
- A46—BRUSHWARE
- A46B—BRUSHES
- A46B2200/00—Brushes characterized by their functions, uses or applications
- A46B2200/10—For human or animal care
- A46B2200/1066—Toothbrush for cleaning the teeth or dentures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
본 발명은 공구나 휠 공구 등에 사용되는 다이아몬드 그릿에 관한 것으로, The present invention relates to a diamond grit used in tools, wheel tools, etc.
Ti, Cr, Zr 중에서 선택되는 하나 이상을 포함하여 구성되는 제1코팅층과, 30 wt% 이하의 Cr을 포함하고 잔부는 Cu 및 기타 불가피한 불순물로 이루어져 상기 제1코팅층 위에 코팅되는 제2코팅층을 가지는 것을 특징으로 하며, 청동이나 황동 등의 구리계 합금 매트릭스와의 소결성이 우수하다는 장점이 있다.It has a first coating layer comprising at least one selected from Ti, Cr, Zr, and a second coating layer containing 30 wt% or less of Cr and the balance is made of Cu and other unavoidable impurities coated on the first coating layer It is characterized in that the sinterability with the copper-based alloy matrix, such as bronze or brass.
또한, 본 발명의 다이아몬드 그릿을 사용하여 제작된 구리계 합금 소결공구는 그릿 보유력이 우수하여 장시간 사용하여도 그릿 탈락율이 작으므로, 공구 수명이 연장되고 절단 효율 등의 공구 성능도 우수하다는 효과가 있다.In addition, the copper-based alloy sintering tool produced using the diamond grit of the present invention has excellent grit retention and thus has a low grit dropping rate even when used for a long time, thereby extending the tool life and providing excellent tool performance such as cutting efficiency. .
Description
본 발명은 공구나 휠 공구 등에 사용되는 다이아몬드 그릿에 관한 것으로, 특히 청동이나 황동 등의 구리계 합금 매트릭스와의 소결성이 우수한 다이아몬드 그릿에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to diamond grit used in tools, wheel tools, and the like, and more particularly, to diamond grit excellent in sinterability with copper-based alloy matrices such as bronze and brass.
다이아몬드는 지구상에서 가장 경도와 열전도율이 높은 물질이며, 석재, 콘크리트, 아스팔트, 세라믹 제품 등의 절단 및 연마에 광범위하게 사용되고 있다. 이러한 목적을 위하여, 통상 상기 다이아몬드 그릿은, Co, Cu, Ni, Fe, W, Sn 등의 매트릭스 금속과 소결된 소결공구의 형태로 이용되고 있다. Diamond is the hardest and most thermally conductive material on earth, and is widely used for cutting and polishing stone, concrete, asphalt, and ceramic products. For this purpose, the diamond grit is usually used in the form of sintered tools sintered with matrix metals such as Co, Cu, Ni, Fe, W, Sn and the like.
그러나, Cu는 다이아몬드와 반응하여 탄화물을 형성하지 못하는 원소이므로, 청동이나 황동과 같은 구리계 매트릭스의 경우, 다이아몬드 그릿과 매트릭스와의 결합력이 떨어지는 단점이 있다. 이로 인하여, 소결공구 제조시 다이아몬드 그릿과 매트릭스 금속과의 소결성이 현저히 떨어지고, 매트릭스 금속의 다이아몬드 그릿 보유력(retention force)도 저하되는 문제가 있었다. However, Cu is an element that does not react with diamond to form carbides, and thus, in the case of copper-based matrices such as bronze or brass, bonding strength between diamond grit and the matrix is inferior. For this reason, the sinterability of diamond grit and matrix metal is remarkably inferior in manufacturing a sintering tool, and the diamond grit retention force of matrix metal also falls.
상기의 문제점을 해소하기 위하여, 다이아몬드 그릿에 Ti, Cr, Zr 등과 같은 금속원소를 코팅하여, 구리계 매트릭스와의 결합력을 향상시키려는 연구가 진행되고 있다. In order to solve the above problems, research is being conducted to improve the bonding force with the copper matrix by coating metal elements such as Ti, Cr, Zr, etc. on the diamond grit.
상기와 같은 방식에 의하면, 코팅하지 않은 다이아몬드 그릿에 비하여 분명 구리계 매트릭스와의 결합력이 향상되는 것은 사실이나, 그 결합력 향상효과는 한계가 있다. 왜냐하면, 구리계 매트릭스 금속의 소결조건은 800℃를 넘을 수 없는데 대하여, 예컨대 Ti의 경우 Cu와 안정적으로 결합되기 위해서는 진공분위기 하에서 800℃ 이상의 온도로 장시간 열처리할 것이 요구되므로, 만약 구리계 매트릭스 금속을 상기 온도범위로 소결할 경우, 매트릭스 금속이 최적소결율 이상으로 과잉용융소결될 뿐 아니라, 입자가 지나치게 성장하게 되어 공구의 성능이 나빠지기 때문이다.According to the above method, it is true that the bonding force with the copper matrix is improved as compared with the diamond grit not coated, but the bonding force improving effect is limited. Since the sintering condition of the copper matrix metal cannot exceed 800 ° C, for example, in order to stably bond with Cu, the copper matrix metal is required to be heat-treated at a temperature of 800 ° C or higher in a vacuum atmosphere for a long time. When sintering at the above temperature range, not only the matrix metal is excessively melted and sintered above the optimum sintering rate, but also because the particles grow excessively, thereby deteriorating the performance of the tool.
따라서, 이러한 종래의 코팅층을 형성한 다이아몬드 그릿 역시, 구리계 매트릭스 금속과의 소결성을 향상시키는 데에는 한계가 있었다.Therefore, the diamond grit in which such a conventional coating layer was formed also had a limit in improving the sinterability with the copper matrix metal.
본 발명은 상기의 과제를 해결하기 위하여 안출된 것으로서, Cu 및 Cr을 포함하는 제2코팅층을 추가적으로 구비함으로써, 구리계 합금 매트릭스와의 소결성이 향상되는 다이아몬드 그릿 및 그 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a diamond grit and a method for manufacturing the same, which are devised to solve the above problems, and further comprising a second coating layer containing Cu and Cr, thereby improving sinterability with a copper-based alloy matrix. do.
또한, 상기 다이아몬드 그릿을 포함하여 제조됨으로써, 공구 성능과 수명이 향상되는 구리계 합금 소결공구을 제공하는 것을 또 다른 목적으로 한다. Further, another object of the present invention is to provide a copper-based alloy sintering tool which is manufactured by including the diamond grit, thereby improving tool performance and lifespan.
상기 목적을 달성하기 위해서, 본 발명의 다이아몬드 그릿은,In order to achieve the above object, the diamond grit of the present invention,
Ti, Cr, Zr 중에서 선택되는 하나 이상을 포함하여 구성되는 제1코팅층과, 30 wt% 이하의 Cr을 포함하고 잔부는 Cu 및 기타 불가피한 불순물로 이루어져 상기 제1코팅층 위에 코팅되는 제2코팅층을 가지는 것을 특징으로 한다.It has a first coating layer comprising at least one selected from Ti, Cr, Zr, and a second coating layer containing 30 wt% or less of Cr and the balance is made of Cu and other unavoidable impurities coated on the first coating layer It is characterized by.
상기 제2코팅층의 Cr함량은 0.3~10wt%인 것이 바람직하다.The Cr content of the second coating layer is preferably 0.3 ~ 10wt%.
또한 상기 다이아몬드 그릿의 평균입경은 10~1000㎛인 것이 바람직하다.In addition, it is preferable that the average particle diameter of the said diamond grit is 10-1000 micrometers.
이하에서는, 본 발명에 대하여 자세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.
Ti, Cr, Zr 등의 금속 성분들은 다이아몬드 표면에 탄화물을 형성하여 결합하며, 매트릭스 금속과의 결합성이 우수하므로, 소결공구에 요구되는 다이아몬드 그릿 보유력을 유지하기 위하여 첨가되고 있다. Metal components, such as Ti, Cr, and Zr, form carbides on the diamond surface and bond, and have excellent binding property with the matrix metal, and are added to maintain diamond grit retention required for sintering tools.
그러나, 상술한 바와 같이, Ti, Cr, Zr 등과 같은 성분의 종래의 코팅층을 구비한 다이아몬드 그릿의 경우, 구리계 매트릭스 합금과의 소결성을 향상시키는 데에는 한계가 있다.However, as described above, in the case of the diamond grit having a conventional coating layer of components such as Ti, Cr, Zr, etc., there is a limit in improving the sinterability with the copper-based matrix alloy.
본 발명자들은 이러한 문제점을 해결하기 위하여 예의연구한 결과, 상기와 같은 종래의 코팅층 위에 Cu와 Cr을 포함하는 제2코팅층을 형성하면, 구리계 합금 매트릭스에서의 소결성을 한층 더 향상시킬 수 있다는 것을 알아내었다.The present inventors have studied diligently to solve this problem, and found that forming a second coating layer containing Cu and Cr on the conventional coating layer as described above can further improve the sinterability of the copper-based alloy matrix. Came out.
Cu는 구리계 매트릭스 합금의 베이스가 되는 성분이므로, 제2코팅층을 Cu가 베이스가 되도록 구성하면, 동종의 물질을 포함하고 있는 다이아몬드 그릿과 구리계 합금 매트릭스간의 결합력이 더욱 향상될 수 있다.Since Cu is a base component of the copper matrix alloy, when the second coating layer is configured such that Cu is the base, the bonding force between the diamond grit and the copper alloy matrix containing the same material may be further improved.
또한, Cr은 Cu보다 증발엔탈피가 커서 Cu보다 안정된 핵을 생성하므로, Cu에 적절한 양의 Cr을 첨가하면, 상기 Cr 핵을 중심으로 Cu층이 성장하여 보다 치밀한 코팅층을 형성할 수 있다. 이 때, Cr함량이 30wt%를 초과하면, 구리계 매트릭스 금속과의 결합력이 떨어지게 되므로, 제2코팅층의 적절한 Cr함량은 30wt% 이하이어야 한다. 그리고, 보다 치밀한 코팅층 형성을 위해서는, 제2코팅층의 Cr함량이 최소한 0.3 wt.%이상일 필요가 있다. In addition, since Cr has a larger evaporation enthalpy than Cu and produces a more stable nucleus, when Cu is added in an appropriate amount of Cr, the Cu layer grows around the Cr nucleus to form a more dense coating layer. At this time, if the Cr content is more than 30wt%, since the bonding strength with the copper-based matrix metal falls, the appropriate Cr content of the second coating layer should be 30wt% or less. In addition, in order to form a more dense coating layer, the Cr content of the second coating layer needs to be at least 0.3 wt.% Or more.
사용될 수 있는 다이아몬드 그릿의 크기는, 상용되는 다이아몬드 그릿의 평균입경인 10~1000㎛ 범위 내이면 충분하다.The size of the diamond grit which can be used is sufficient if it is in the range of 10-1000 micrometers which is the average particle diameter of the commercially available diamond grit.
한편, 본 발명의 다이아몬드 그릿 제조방법은, 다이아몬드 그릿의 표면에 Ti, Cr, Zr 중에서 선택되는 하나 이상을 포함하여 구성되는 제1코팅층을 형성하는 단계와;On the other hand, the diamond grit manufacturing method of the present invention comprises the steps of: forming a first coating layer comprising at least one selected from Ti, Cr, Zr on the surface of the diamond grit;
상기 제1코팅층의 표면에, 30 wt% 이하의 Cr을 포함하며 잔부는 Cu 및 기타 불가피한 불순물로 이루어지는 제2코팅층을 형성하는 단계와;Forming a second coating layer on the surface of the first coating layer, the second coating layer comprising 30 wt% or less of Cr and the balance being made of Cu and other unavoidable impurities;
상기 제1 및 제2코팅층이 형성된 다이아몬드 입자를 진공분위기 하에서 800~900℃의 온도범위로 열처리하는 단계와;Heat-treating the diamond particles having the first and second coating layers formed therein under a vacuum atmosphere at a temperature ranging from 800 ° C. to 900 ° C .;
를 포함하여 구성될 수 있다.It may be configured to include.
상기 제1코팅층 및 제2코팅층은, 일반적으로 사용되는 스퍼터링법, 화학기상법(chemical vapor deposition) 또는 PVD(physical vapor deposition)법 등에 의하여 형성시킬 수 있다.The first coating layer and the second coating layer may be formed by a sputtering method, a chemical vapor deposition method, or a physical vapor deposition (PVD) method that is generally used.
또한, 코팅층 형성 후에는, 코팅층에 포함된 금속 성분과 다이아몬드 그릿이 탄화물을 형성하여 보다 확실하게 결합되고, 금속 성분들 간의 상호확산 및 결합을 유도하여 코팅층 간의 결합을 강화하기 위하여, 소정온도 범위에서 열처리를 실시한다.In addition, after the coating layer is formed, the metal component and the diamond grit included in the coating layer form carbide to bond more reliably, and induce a mutual diffusion and bonding between the metal components to strengthen the bond between the coating layers, in a predetermined temperature range. Heat treatment is performed.
상기 열처리온도범위는, 800~950℃인 것이 바람직하다. 금속 성분 간의 상호확산을 위해서 최소한 800℃ 이상의 가열온도가 요구되며, 950℃를 초과하면, 다이아몬드 그릿 내부의 금속 불순물에 의한 재흑연화반응이 활발해지므로, 상기의 범위로 할 필요가 있다. It is preferable that the said heat processing temperature range is 800-950 degreeC. A heating temperature of at least 800 ° C. or higher is required for mutual diffusion between metal components, and if it exceeds 950 ° C., the regraphitization reaction caused by metal impurities in the diamond grit becomes active, and thus it is necessary to set the above range.
또한, 불순물의 혼입을 막고, 만족할 수준의 코팅층을 얻기 위해서 열처리 단계시의 진공분위기는 10-1torr 이하로 유지하는 것이 바람직하다.In addition, in order to prevent incorporation of impurities and to obtain a coating layer having a satisfactory level, it is preferable to keep the vacuum atmosphere at the time of the heat treatment step at 10 −1 torr or less.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다. 그러나, 아래의 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 아래의 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to the following examples according to the gist of the present invention.
[실시예] EXAMPLE
평균입도가 400㎛ (40/50 mesh)인 다이아몬드 그릿 표면에 DC 마그네트론 스퍼터링법으로 무게비가 다이아몬드 그릿의 0.3 wt%가 되도록 Ti으로 구성된 제1코팅층을 형성한 다음, 그 위에 동일한 방법으로 Cu-0.3wt%Cr 조성의 제2코팅층을 무게비가 다이아몬드 그릿의 0.2 wt.%가 되도록 형성하였다. On the diamond grit surface having an average particle size of 400 μm (40/50 mesh), a first coating layer made of Ti was formed by DC magnetron sputtering so that the weight ratio was 0.3 wt% of the diamond grit, and then Cu-0.3 was formed thereon. A second coating layer of wt% Cr composition was formed such that the weight ratio was 0.2 wt.% of the diamond grit.
구체적으로는, 티타늄 타게트를 타게트 홀더에 장착하고 다이아몬드 그릿을 스퍼터기에 넣은 다음, 기계적 펌프와 확산 펌프를 사용하여 진공도 5 x 10-6Torr 이하로 배기한 후, 순도 99.999%인 고순도 Ar을 1 X 10-3Torr까지 주입하였다. 그 다음, DC 전력(1.2A x 400V)을 인가함으로써, 제1코팅층을 스퍼터 증착 형성시켰다.Specifically, the titanium target is mounted on the target holder, the diamond grit is put into the sputter, and then exhausted using a mechanical pump and a diffusion pump to a vacuum degree of 5 x 10 -6 Torr or lower, and high purity Ar having a purity of 99.999% is 1 X. Inject to 10 -3 Torr. Then, by applying DC power (1.2 A x 400 V), the first coating layer was formed by sputter deposition.
이어서, Cu-0.3wt%Cr 조성의 타게트를 타게트 홀더에 장착한 다음 위와 같은 방법으로 Cu-Cr 합금의 제2코팅층을 증착 형성하였다. Subsequently, a target of Cu-0.3 wt% Cr composition was mounted on the target holder, and then a second coating layer of Cu—Cr alloy was deposited by the above method.
상기와 같이 제1코팅층 및 제2코팅층이 증착 형성된 다이아몬드 그릿을, 진공도 5 x 10-6Torr 이하의 고진공 분위기, 900 ℃에서 1시간동안 열처리하여 다이아몬드 그릿을 제조하였다.As described above, the diamond grit having the first coating layer and the second coating layer deposited thereon was heat-treated at 900 ° C. for 1 hour in a high vacuum atmosphere having a vacuum degree of 5 × 10 −6 Torr or less, thereby preparing diamond grit.
또한, Cr 함량이 각각 2wt%, 10wt%, 30wt%가 되도록 제2코팅층을 형성시키는 타게트의 조성을 달리하여, 상기와 동일한 방법으로 다이아몬드 그릿을 제조하였다. In addition, by changing the composition of the target to form a second coating layer so that the Cr content is 2wt%, 10wt%, 30wt%, respectively, diamond grit was prepared in the same manner as described above.
제조된 다이아몬드 그릿을, 60%청동-40%코발트 분말과 혼합한 다음, 770 ℃에서 고온 가압하여 세그먼트를 만든 후, 이 세그먼트를 직경 16인치의 생크(shank)에 용접하여 공구(휠)를 제작하였다. The manufactured diamond grit is mixed with 60% bronze-40% cobalt powder, and then hot pressed at 770 ° C. to form a segment, and the segment is welded to a shank of 16 inches in diameter to produce a tool (wheel). It was.
한편, 비교예로서 코팅층이 형성되지 않은 다이아몬드 그릿과, Ti-0.3 wt.%Cr조성의 코팅층(제1코팅층)만 형성된 다이아몬드 그릿을 사용하여, 상기와 동일한 방법으로 공구를 제작하였다.On the other hand, as a comparative example, a tool was manufactured in the same manner as above using a diamond grit having no coating layer formed thereon and a diamond grit having only a Ti-0.3 wt.% Cr composition coating layer (first coating layer) formed thereon.
상기의 각 공구를 사용하여, 주속 28 m/s, 절입 30mm, 이송속도 3m/min의 작업 조건으로 화강암을 절단하였을 때의 공구 수명과 공구의 그릿 탈락율을 측정한 결과를 도 1 및 도 2에 각각 나타내었다. 1 and 2 show the results of measuring the tool life and the grit dropout rate when the granite is cut under the working conditions of circumferential speed 28 m / s, infeed 30 mm and feed speed 3 m / min using the above tools. Respectively.
도 1 및 도 2에 나타난 바와 같이, 본 발명의 코팅층이 형성된 다이아몬든 그릿을 사용하여 제작된 공구가, 비교예보다 공구 수명이 길고, 그릿 탈락율이 작은 것을 알 수 있다.As shown in Fig. 1 and 2, it can be seen that the tool manufactured using the diamond grit formed with the coating layer of the present invention has a longer tool life and a smaller grit dropout rate than the comparative example.
이상에서 설명한 바와 같이, 본 발명에 의한 다이아몬드 그릿은, 청동이나 황동 등의 구리계 합금 매트릭스와의 소결성이 우수하다는 장점이 있다. As described above, the diamond grit according to the present invention has an advantage of excellent sintering ability with copper-based alloy matrices such as bronze and brass.
또한, 본 발명의 다이아몬드 그릿을 사용하여 제작된 구리계 합금 소결공구는 다이아몬드 그릿과 매트릭스 금속과의 결합력(즉, 그릿 보유력)이 우수하여 장시간 사용하여도 그릿 탈락율이 작으므로, 공구 수명이 연장되고 절단 효율 등의 공구 성능도 우수하다는 효과가 있다. In addition, the copper alloy sintering tool manufactured using the diamond grit of the present invention has excellent bonding force (i.e., grit retention force) between the diamond grit and the matrix metal, so that the grit dropout rate is small even when used for a long time, thereby extending the tool life. There is an effect that tool performance such as cutting efficiency is also excellent.
도 1은 본 발명과 종래의 다이아몬드 그릿을 사용하여 제조된 공구(휠)의 수명을 비교한 그래프이고, 1 is a graph comparing the life of a tool (wheel) manufactured using the present invention and a conventional diamond grit,
도 2은 본 발명과 종래의 다이아몬드 그릿을 사용하여 제조된 공구의 그릿 탈락율을 비교한 그래프이다.2 is a graph comparing grit dropout rates of tools manufactured using the present invention and a conventional diamond grit.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0039985A KR100489547B1 (en) | 2003-06-20 | 2003-06-20 | Diamond grits with good sintering properties in copper-based matrix alloy and production method thereof and the sintering tool using the same |
PCT/KR2004/001337 WO2004113583A1 (en) | 2003-06-20 | 2004-06-04 | Diamond grit having high sintering properties, method of manufacturing the same and sintered tool using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0039985A KR100489547B1 (en) | 2003-06-20 | 2003-06-20 | Diamond grits with good sintering properties in copper-based matrix alloy and production method thereof and the sintering tool using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040110607A KR20040110607A (en) | 2004-12-31 |
KR100489547B1 true KR100489547B1 (en) | 2005-05-16 |
Family
ID=33536175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0039985A KR100489547B1 (en) | 2003-06-20 | 2003-06-20 | Diamond grits with good sintering properties in copper-based matrix alloy and production method thereof and the sintering tool using the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR100489547B1 (en) |
WO (1) | WO2004113583A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110337347B (en) | 2017-02-28 | 2022-07-12 | 3M创新有限公司 | Metal bond abrasive article and method of making a metal bond abrasive article |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4373934A (en) * | 1981-08-05 | 1983-02-15 | General Electric Company | Metal bonded diamond aggregate abrasive |
JPH072307B2 (en) * | 1988-09-13 | 1995-01-18 | 旭ダイヤモンド工業株式会社 | Metal bond diamond whetstone |
US5049164A (en) * | 1990-01-05 | 1991-09-17 | Norton Company | Multilayer coated abrasive element for bonding to a backing |
US5585176A (en) * | 1993-11-30 | 1996-12-17 | Kennametal Inc. | Diamond coated tools and wear parts |
US6039641A (en) * | 1997-04-04 | 2000-03-21 | Sung; Chien-Min | Brazed diamond tools by infiltration |
-
2003
- 2003-06-20 KR KR10-2003-0039985A patent/KR100489547B1/en active IP Right Grant
-
2004
- 2004-06-04 WO PCT/KR2004/001337 patent/WO2004113583A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2004113583A1 (en) | 2004-12-29 |
KR20040110607A (en) | 2004-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0004177B2 (en) | A method of metal coating of diamond or cubic boron nitride particles and an abrasive tool containing the particles thus coated | |
US5250086A (en) | Multi-layer metal coated diamond abrasives for sintered metal bonded tools | |
US6540800B2 (en) | Abrasive particles with metallurgically bonded metal coatings | |
EP0586683B1 (en) | Multi-layer metal coated diamond abrasives with an electrolessly deposited metal layer | |
KR100371979B1 (en) | Abrasive tool, dressing tool and method of manufacturing the dressing tool | |
JPH04232282A (en) | Diamond having multilayer coating and its manufacture | |
CA2076110A1 (en) | Process for making coated abrasives for grinding wheels | |
EP0400322A1 (en) | Refractory metal oxide coated abrasives and grinding wheels made therefrom | |
JPH072307B2 (en) | Metal bond diamond whetstone | |
JP4790630B2 (en) | Coated abrasive | |
JPH02229878A (en) | Coated diamond abrasive grain and production thereof | |
KR100489547B1 (en) | Diamond grits with good sintering properties in copper-based matrix alloy and production method thereof and the sintering tool using the same | |
KR101106884B1 (en) | Boron coated abrasives | |
JP2580168B2 (en) | Nitrogen-containing tungsten carbide based sintered alloy | |
JP2000219931A (en) | Cemented carbide and its production | |
KR102714305B1 (en) | Superalloys with alternative binders | |
JPH04202490A (en) | Coated diamond abrasive grain | |
KR100472642B1 (en) | Diamond particles for sintering tool and production method thereof and the sintering tool using the same | |
JP2556086B2 (en) | A-l and A-l alloy surface cutting tip with a breaker for cutting alloys | |
JPH09104939A (en) | Cobalt binder metal alloy of high-hardness alloy used for high-hardness metal tool, especially cutting tool and high-hardness tool containing this alloy | |
JP2002080964A (en) | Titanium-chromium alloy coated diamond crystal used in saw blade and method for producing the same | |
JP2001179508A (en) | Cutting tool | |
KR890004488B1 (en) | Sintered material for cutting tool having excellent high temperature characteristics and its priduction | |
JP2002187008A (en) | Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting | |
JPH10265263A (en) | Ceramics for cutting tool excellent in high-speed cutting performance and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130329 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140313 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150312 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160311 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170403 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20180403 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20190401 Year of fee payment: 15 |