KR100337594B1 - Photo-functional epoxy compound containing liquid display panel end shield agent - Google Patents
Photo-functional epoxy compound containing liquid display panel end shield agent Download PDFInfo
- Publication number
- KR100337594B1 KR100337594B1 KR1019990063501A KR19990063501A KR100337594B1 KR 100337594 B1 KR100337594 B1 KR 100337594B1 KR 1019990063501 A KR1019990063501 A KR 1019990063501A KR 19990063501 A KR19990063501 A KR 19990063501A KR 100337594 B1 KR100337594 B1 KR 100337594B1
- Authority
- KR
- South Korea
- Prior art keywords
- group
- formula
- epoxy compound
- epoxy
- display panel
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 50
- 239000004593 Epoxy Substances 0.000 title claims abstract description 45
- 239000003795 chemical substances by application Substances 0.000 title description 2
- 239000007788 liquid Substances 0.000 title 1
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 7
- 238000007259 addition reaction Methods 0.000 claims abstract description 5
- 239000004973 liquid crystal related substance Substances 0.000 claims description 13
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical group C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 claims description 11
- 239000008393 encapsulating agent Substances 0.000 claims description 8
- -1 cinnamoyl group Chemical group 0.000 claims description 3
- 239000000463 material Substances 0.000 description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 8
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005538 encapsulation Methods 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- TXFPEBPIARQUIG-UHFFFAOYSA-N 4'-hydroxyacetophenone Chemical compound CC(=O)C1=CC=C(O)C=C1 TXFPEBPIARQUIG-UHFFFAOYSA-N 0.000 description 6
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 6
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- BUDQDWGNQVEFAC-UHFFFAOYSA-N Dihydropyran Chemical compound C1COC=CC1 BUDQDWGNQVEFAC-UHFFFAOYSA-N 0.000 description 5
- 238000004566 IR spectroscopy Methods 0.000 description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 238000002329 infrared spectrum Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000002411 thermogravimetry Methods 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000012952 cationic photoinitiator Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000007142 ring opening reaction Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000007707 calorimetry Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000006352 cycloaddition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 1
- PMPVIKIVABFJJI-UHFFFAOYSA-N Cyclobutane Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 235000005513 chalcones Nutrition 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000011907 photodimerization Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005409 triarylsulfonium group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Epoxy Resins (AREA)
- Epoxy Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 다음 식으로 표시되는 광가교 분자단을 주쇄에 포함하는 에폭시 화합물에 관한 것으로서 높은 접착력 및 낮은 열팽창 계수를 가지며 우수한 열안정성 및 박막화 가공성을 겸비한다.The present invention relates to an epoxy compound comprising a photocrosslinked molecular group represented by the following formula in the main chain, which has high adhesion and low coefficient of thermal expansion and combines excellent thermal stability and thinning processability.
상기 식에서 X는 자외선 조사에 의해 내부에 존재하는 이중결합 부분에서 환상 부가 반응을 일으킬 수 있는 분자단이고 n은 0에서 40이다.In the above formula, X is a molecular group capable of causing a cyclic addition reaction at a double bond portion present inside by ultraviolet irradiation, and n is 0 to 40.
Description
본 발명은 높은 접착력, 낮은 열팽창 계수, 우수한 열안정성 및 치수안정성이 우수한 박막화 가공성을 갖는 에폭시 화합물을 액정디스플레이 패널 봉지제로서의 이용에 관한 것이다.The present invention relates to the use of an epoxy compound having a high adhesion, low thermal expansion coefficient, excellent thermal stability and thin film formability excellent in dimensional stability as a liquid crystal display panel encapsulant.
접착제 또는 봉지제 재료로서 과거에 사용되어 왔던 가교제 투입에 의해 경화를 유도하는 방법은 많은 연구 및 응용성이 잘 알려져있다. 또한 광조사에 의한 저분자 화합물의 고분자화는 광중합 반응기구에 의해 많은 연구와 제품개발이 이루어져있다.Many studies and applications are well known for inducing curing by crosslinking agent injection, which has been used in the past as an adhesive or encapsulant material. In addition, polymerization of low molecular weight compounds by light irradiation has been carried out a lot of research and product development by the photopolymerization reactor.
광중합은 주로 자외선을 조사함으로서 라디칼 또는 양이온이 생성되어 단량체의 이중 결합이나 환을 개열시켜 고분자 매질로 변환시키는 방법이 주를 이루어왔다.Photopolymerization is mainly performed by irradiating ultraviolet rays to generate radicals or cations to cleave double bonds or rings of monomers and convert them into polymer media.
특히 광조사에 의해 양이온을 발생시켜 중합하는 방법은 광라디칼 중합에 비해 공기중의 산소에 의한 중합이 종결되는 가능성을 배제 할 수 있고, 생성 중합체의 분자량이 높고, 분자량 분포도 좁아서 열에 의한 자유부피의 큰 변화를 억제 할 수 있다는 장점을 지닌다. 이와 같은 기능성 에폭시 화합물의 최근 사용범위는 매우 다양해져 구조재료의 접착, 봉지뿐만 아니라 극한의 치수 안정성을 요구하는 장비에서도 그 응용성을 볼 수 있다.그 예로서 액정 모니터의 제조공정에서 패널 접착 및 봉지재료는 전부 열 경화성 물질에 열을 가한 후 압력을 주어 봉지를 하는 공정이 주를 이루었다. 그러나 이러한 열경화성 재료는 액정물질과 그 배향이 열에 매우 민감한 특성상 열을 가하는 도중 봉지 물질 내부의 열팽창계수나 열수축률의 변화에 의해 액정의 배향이 분균일해지는 문제점과 액정 화면의 완제품에서 액정이 자리잡는 내부 공간의 면적이 불균일해질 가능성이 높고 그에 따라 실제 완제품에서 뚜렷한 색상이나 명도를 구현하기 어려운 문제점이 발생한다. 또한 박막트랜지스터(thin film transistor: TFT)층과 컬러필터 층간의 정렬이 열을 가하고 압력을 주었을 때 어긋나는 현상은 제조 공정 상의 제품 불량률을 증가시키는 요인으로 들 수 있다.In particular, the method of polymerizing by generating cations by light irradiation can eliminate the possibility of terminating the polymerization by oxygen in the air, compared to optical radical polymerization, and has high molecular weight and narrow molecular weight distribution of the free polymer due to heat. It has the advantage of being able to suppress large changes. In recent years, such functional epoxy compounds have been widely used, and their applicability can be seen not only in the adhesion and encapsulation of structural materials but also in equipment requiring extreme dimensional stability. All materials were mainly heat-curable material and then pressurized and encapsulated. However, the thermosetting material is a liquid crystal material and its orientation is very sensitive to heat. Thus, the liquid crystal is unevenly aligned due to a change in the coefficient of thermal expansion or thermal contraction inside the encapsulating material, and the liquid crystal is placed in the finished product of the liquid crystal display. There is a high possibility that the area of the internal space becomes uneven, and thus, it is difficult to realize a clear color or brightness in the actual finished product. In addition, the misalignment when the alignment between the thin film transistor (TFT) layer and the color filter layer is applied with heat and pressure may be a factor of increasing a product defect rate in the manufacturing process.
종래 미세 치수안정성을 가지도록 설계되고 합성된 공지의 열경화형 에폭시 수지는 고분자 또는 올리고머 형태를 띄고 있는데, 이 물질들의 말단에 2개, 3개씩의 에폭시 관능기가 있어 열을 가할 경우 가교제 화합물이 에폭시 환과 반응하며 히드록시기를 생성시키면서 망상 중합이 진행되어 경화가 이루어진다. 그러나 이 경우에는 물질 반복 단위당 2개 또는 3개의 에폭시 기가 사슬 말단에 위치하고 있어 중합도가 높을 경우 낮은 에폭시 환의 밀도로 말미암아 경화의 효율도 떨어질 뿐만 아니라 분자량의 조절도 용이하지 않은 결정적인 단점이 발생하게 된다.Conventionally known thermosetting epoxy resins designed and synthesized to have fine dimensional stability have a polymer or oligomer form, and two or three epoxy functional groups are formed at the ends of these materials. The reaction proceeds while the network polymerization proceeds to produce a hydroxyl group, thereby curing. In this case, however, two or three epoxy groups per material repeating unit are located at the chain end, and when the degree of polymerization is high, the low epoxy ring density lowers the curing efficiency and the molecular weight is not easily controlled.
따라서 본 발명은 기존의 패널 봉지제로 사용되던 열경화성 물질 사용시 제조 공정 상에서 일어날 수 있는 단점들을 해소할 수 있는, 즉 고도의 치수안정성을 발현하는 새로운 물질을 제공하는 것을 기술적 과제로 한다.Therefore, the present invention is to provide a new material that can solve the disadvantages that may occur in the manufacturing process when using a thermosetting material used as a conventional panel encapsulation, that is, to express a high dimensional stability.
상기한 과제를 해결하기 위한 연구에서 본 발명자들은 기존의 측쇄형 광배향막 재료 또는 포토레지스트(Photoresist)에서 이용되었던 환상 부가 광반응 메카니즘에 의해 광가교 현상을 유도하고 동시에 양이온 개시에 의한 에폭시 화합물의 망상 중합을 유도할 수 있는 물질이 액정디스플레이 패널봉지제로 응용시 고도의 치수안정성을 나타낸다는 사실을 알게 되었다.In the research to solve the above problems, the present inventors induce the photocrosslinking phenomenon by the annular addition photoreaction mechanism used in the existing side chain type photoalignment film material or photoresist, and at the same time reticular epoxy compound by cation initiation. It has been found that a material capable of inducing polymerization exhibits high dimensional stability when applied as a liquid crystal display panel encapsulant.
도 1은 본 발명에 따르는 광기능성 에폭시 화합물이 광중합후 이중결합이 사라지는 것을 보여주는 가시자외선 흡수 스펙트럼 그래프이다.1 is a visible ultraviolet absorption spectrum graph showing that a double functional bond disappears after photopolymerization of a photofunctional epoxy compound according to the present invention.
도 2는 본 발명에 따르는 광기능성 에폭시 화합물이 광조사후 이중결합이 사라지는 것을 보여주는 적외선 흡수스펙트럼 그래프이다.Figure 2 is an infrared absorption spectrum graph showing that the double functional bond disappears after the light functional epoxy compound according to the present invention.
도 3은 실시예 1의 에폭시화합물과 비교예 1의 에폭시화합물을 자외선 조사후 시차열량 분석(DSC) 결과를 나타낸 그래프이다.FIG. 3 is a graph illustrating differential calorimetry (DSC) results of ultraviolet irradiation of an epoxy compound of Example 1 and an epoxy compound of Comparative Example 1. FIG.
도 4는 실시예 1의 에폭시화합물과 비교예 1의 에폭시화합물을 자외선 조사후 열중량 분석(TGA) 결과를 나타낸 그래프이다.Figure 4 is a graph showing the thermogravimetric analysis (TGA) results of the epoxy compound of Example 1 and the epoxy compound of Comparative Example 1 after ultraviolet irradiation.
그러므로 본 발명에 의하면 화학식 1의 구조를 갖는 화합물을 함유하는 액정디스플레이 패널 봉지제가 제공된다:Therefore, according to the present invention, there is provided a liquid crystal display panel encapsulant containing a compound having the structure of Formula 1:
[화학식 1][Formula 1]
화학식 1에서 X는 자외선 조사에 의해 내부에 존재하는 이중결합 부분에서 환상 부가 반응을 일으킬 수 있는 분자단이고 n은 반복단위로서 0 내지 40의 정수이다.In Formula 1, X is a molecular group capable of causing a cyclic addition reaction in a double bond portion present inside by ultraviolet irradiation, and n is an integer of 0 to 40 as a repeating unit.
이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
본 발명에 있어서, 화학식 1의 광기능성 에폭시 화합물은 기존의 자외선을 조사하여 양이온 개시에 의한 중합방법에 이용되던 화합물과 차별화되는 물질이다. 즉, 화학식 1의 화합물은 양 말단에 에폭시기가 존재하고, 주쇄내에 자외선에 의해 환상 부가 반응이 일어 날 수 있는 이중결합이 있는 분자단(이하, "환상부가반응성 불포화분자단"이라 함)이 존재하는 구조를 갖는다. 이 화합물은 양이온 광개시제(cationic photoinitiator)와 같은 광개시제의 존재하에 광중합에 사용되는 광원을 조사받게 되면 주쇄내의 이중결합분자단(X)이 환상부가반응을 일으켜 가교를 일으키게 되고, 말단의 에폭시화합물이 광개시제에 의한 중합과 동시에 매질 내에 광이량화를 유도하게되어 기존의 에폭시 화합물이 나타내고 있던 열에 의한 경화매질의 특성 보다 뛰어난 치수안정성을 나타내는 경화매질의 특성을 나타낸다.In the present invention, the photo-functional epoxy compound of Formula 1 is a material that is different from the compound used in the polymerization method by the start of the cation by irradiation of conventional ultraviolet light. That is, the compound of Formula 1 has an epoxy group at both ends and a molecular group having a double bond (hereinafter referred to as a "cyclic addition reactive unsaturated molecule group") in which the cyclic addition reaction can be caused by ultraviolet rays in the main chain. It has a structure. When the compound is irradiated with a light source used for photopolymerization in the presence of a photoinitiator such as a cationic photoinitiator, a double bond molecule group (X) in the main chain causes a ring addition reaction to cause crosslinking, and the terminal epoxy compound is a photoinitiator. The photopolymerization is induced in the medium at the same time as the polymerization by the polymer, thereby exhibiting the properties of the curing medium exhibiting superior dimensional stability than the properties of the heat curing medium exhibited by the conventional epoxy compound.
화학식 1에서 반복단위 n은 0 내지 40 정도가 적당한데, 만일 n이 너무 크면 점성이 지나치게 높게 되어 접착제 또는 패널봉지제로 사용하는데 적합하지 않게 된다.In Formula 1, the repeating unit n is suitably 0 to 40. If n is too large, the viscosity is too high, making it unsuitable for use as an adhesive or panel encapsulant.
특별히 한정하기 위한 것은 아니지만, 환상 부가반응성 불포화분자단(X)의 예로는 시나모일기, 찰콘기, 안트라신기 등이 있다.Although not particularly limited, examples of the cyclic addition-reactive unsaturated molecular group (X) include cinnamoyl group, chalcone group, anthracene group and the like.
본 발명의 바람직한 일 구현에 의하면 화학식 1의 광가교성 화합물(1)은 다음과 같은 방법으로 제조할 수 있다.According to one preferred embodiment of the present invention, the photocrosslinkable compound (1) of Formula 1 may be prepared by the following method.
위의 반응시 에피클로로히드린을 디올에 비해 몇 배의 몰 비율로 넣어 주느냐에 따라서 이 물질이 고분자화 될 때 매우 점도가 높은 물질이 되느냐 아니면 낮은 점도만을 가진 올리고머 형태의 유동성이 큰 물질이 합성되느냐가 결정되는데 이는 반복단위 n으로 표현된 숫자의 크기와 비례하며 이 숫자를 잘 조절해야만 현장에서 실질적인 봉지를 위한 작업 성능이 결정될 수 있다. 큰 광반응성을 지니고 우수한 물성을 나타내지만 실제로는 응용 방법에 따라 사용이 불가능한 물질이 생성 될 수 있으므로 중합도를 조절하는 것이 매우 중요하다.Depending on the molar ratio of epichlorohydrin compared to diol in the above reaction, it becomes a highly viscous material when polymerized, or an oligomer-type fluid material having only low viscosity is synthesized. This is proportional to the size of the number represented by the repeating unit n, and only when the number is adjusted well can the work performance for the actual encapsulation in the field be determined. It is very important to control the degree of polymerization because it can produce materials that have great photoreactivity and exhibit excellent physical properties but are not practical depending on the application method.
특별히 한정하기 위한 것은 아니지만, 상기 반응식에서 화학식 1의 화합물을 생성하기 위하여 에피클로로하이드린과 반응시키는 출발물질, 즉 환상부가반응성 불포화분자단(X)의 양 말단에 수산기를 갖는 출발물질(HO-X-OH)의 예로는 화학식 2 및 3의 구조를 갖는 화합물이 있다.Although not particularly limited, the starting material reacted with epichlorohydrin to generate the compound of Formula 1 in the above reaction scheme, that is, a starting material having hydroxyl groups at both ends of the cycloaddition reactive unsaturated molecule group (X). X-OH) is a compound having a structure of formula (2) and (3).
[화학식 2][Formula 2]
[화학식 3][Formula 3]
화학식 4의 화합물은 에피클로로하이드린과 화학식 2의 화합물 간의 반응생성물을 나타낸 것이고, 화학식 5의 화합물은 에피클로로하이드린과 화학식 3의 화합물 간의 반응생성물을 나타낸 것이다.The compound of formula 4 shows a reaction product between epichlorohydrin and the compound of formula 2, the compound of formula 5 shows a reaction product between epichlorohydrin and the compound of formula 3.
[화학식 4][Formula 4]
[화학식 5][Formula 5]
화학식 5의 광기능성 에폭시화합물은 화학식 4의 에폭시화합물보다 반복단위당 이중 결합 수가 2배 많으므로 같은 광량의 자외선 조사에 의한 광이량화에 의한 분자 가교밀도의 증가로 인해 매질에 있어서의 경화효과가 높게 나타난다.Since the optical functional epoxy compound of Formula 5 has twice the number of double bonds per repeat unit than the epoxy compound of Formula 4, the curing effect in the medium is high due to the increase of molecular crosslink density by photodimerization by irradiation of the same amount of ultraviolet light. appear.
화학식 1의 광경화성 화합물은 양이온 광개시제를 이용하여 광중합 매커니즘을 이용한 광경화 반응으로 봉지공정을 진행하여 열경화형 액정디스플레이 패널봉지 공정에서 발생할 수 있는 고분자 매질의 열팽창 계수에 의한 열수축률의 큰 변화를 배제하고 공정을 단순화시키면서도 향상된 봉지 성능을 지니고 있고, 취급이 간편하여 공정비용을 최소화하며, 액정 모니터 간극과 같은 미세 치수안정성을 요구하는 완제품의 기능도 향상시킬 수 있는 등의 유용한 효과가 있다.The photocurable compound of Formula 1 is subjected to the encapsulation process by photocuring reaction using a photopolymerization mechanism using a cationic photoinitiator to exclude a large change in thermal contraction rate due to the thermal expansion coefficient of the polymer medium that can occur in the thermosetting liquid crystal display panel encapsulation process In addition, the present invention has a useful effect of improving the performance of the finished product requiring fine dimensional stability such as the liquid crystal monitor gap, minimizing the process cost by simplifying the process and having an improved encapsulation performance.
상기한 바와 같은 본 발명의 특징 및 기타의 장점은 후술되는 실시예로부터 보다 명백하게 될 것이다.Features and other advantages of the present invention as described above will become more apparent from the following examples.
[실시예 1]Example 1
화학식 2의 구조를 갖는 반응물의 제조Preparation of Reactant Having Structure of Formula 2
파라-히드록시아세토페논 3.8g(0.028mole)을 클로로포름 50㎖에 용해시켜 3,4-디히드로-2H-파이란 6.5ml (0.071mole)을 결합시켜 줌으로써 메틸기 끝의 수소 보다 반응성이 큰 히드록시기의 수소를 제거하여 준 후, 다시 파라-히드록시벤즈알데히드 3.5g (0.028mole)과 반응시켜 찰콘기를 가진 화학식 2의 화합물을 제조한다.3.8 g (0.028 mole) of para-hydroxyacetophenone was dissolved in 50 ml of chloroform to bind 6.5 ml (0.071 mole) of 3,4-dihydro-2H-pyran to the hydrogen of the hydroxy group which is more reactive than the hydrogen at the end of the methyl group. After the removal, the reaction was again performed with 3.5 g (0.028 mole) of para-hydroxybenzaldehyde to prepare a compound of formula 2 having a chalcone group.
이때, 파라-히드록시벤잘데히드도 역시 히드록시기를 가지므로 이 물질도 3,4-디히드로-2H-파이란(6.5ml, 0.071mole)을 결합시키는 반응(이 과정은 '프로텍션' 반응이라 부르며 흔히 반응성이 높은 관능기의 반응을 억제해야 할 필요가 있을 때 사용되는 과정이다)을 거친 다.At this time, since para-hydroxybenzaldehyde also has a hydroxyl group, this substance also binds 3,4-dihydro-2H-pyran (6.5ml, 0.071mole) (this process is called a 'protection' reaction and is often reactive. This process is used when it is necessary to suppress the reaction of this high functional group.
파라-히드록시아세토페논과 파라-히드록시벤잘데히드의 반응은 이 들을 에탄올(100ml) 용매에 넣어 가성소다(1.04g, 0.026mole)를 소량의 물(10ml)에 녹인 후적가하여 상온에서 수행한다. 반응생성물은 에탄올 용매(100ml)에 용해시켜 3,4-디히드로-2H-파이란을 떼어내고, 얻어지는 생성물은 진공 건조 오븐 내에서 잘 건조시켜 유기용매를 완전히 제거한 후 찰콘 분자구조에 말단에 2개의 히드록시기를 가진 화학식 2의 화합물을 얻었다.The reaction between para-hydroxyacetophenone and para-hydroxybenzaldehyde is carried out at room temperature by adding caustic soda (1.04 g, 0.026 mole) in a small amount of water (10 ml) in ethanol (100 ml) solvent and then adding it. . The reaction product is dissolved in ethanol solvent (100 ml) to remove 3,4-dihydro-2H-pyrane, and the resulting product is dried well in a vacuum drying oven to completely remove the organic solvent, and then two at the end of the chalcone molecular structure. A compound of formula 2 having a hydroxy group was obtained.
화학식 4의 구조를 갖는 광기능성 에폭시 화합물의 제조Preparation of Photofunctional Epoxy Compounds Having Structure of Formula 4
화학식 2의 화합물 2.4g(0.01몰)과 에피클로로히드린 74.1g(0.8몰)을 에탄올 100㎖에 넣어 완전히 용해한 후 40% 가성소다수용액(0.4g, 0.01몰)을 적가하고 110℃에서 반응시켜서 말단에 두개의 에폭시기와 주쇄에 찰콘기를 포함하는 광기능성 에폭시 화합물(화학식 4)을 제조하였다.2.4 g (0.01 mol) of the compound of formula 2 and 74.1 g (0.8 mol) of epichlorohydrin were completely dissolved in 100 ml of ethanol, and 40% caustic soda solution (0.4 g, 0.01 mol) was added dropwise and reacted at 110 ° C. A photofunctional epoxy compound (Formula 4) including two epoxy groups at the end and a chalcone group at the main chain was prepared.
제조된 화합물의 구조는 핵자기공명(NMR) 스펙트럼과 적외선(IR) 분광 분석법에의해 확인하였다.The structure of the prepared compound was confirmed by nuclear magnetic resonance (NMR) spectra and infrared (IR) spectroscopy.
NMR 스펙트럼 분석결과를 살펴보면, 광조사 전의 NMR 스펙트럼의 분석결과는 양 말단에 위치한 에폭시 환 내부의 수소 피크가 2.9ppm과 3.2ppm에서 나타났으며, 에폭시기가 개환되어 반복단위당 1개씩 위치하는 히드록시기 옆에 위치한 2개와 1개, 또 2개의 수소에 의한 피크가 각각 3.9ppm, 4.2ppm, 그리고 4.4ppm에서 나타났다. 또한 중합체 내부의 벤젠환에 위치한 수소들의 피크가 각각 7.0ppm, 7.6ppm, 8.1ppm에서 나타났고, 찰콘기에 위치한 수소가 각기 7.4ppm과 7.8ppm에서 나타났다.In the NMR spectrum analysis results, the NMR spectrum before light irradiation showed hydrogen peaks at 2.9ppm and 3.2ppm inside the epoxy ring located at both ends, and the epoxy group was ring-opened and placed next to one hydroxyl group per repeating unit. Peaks by two positions, one and two hydrogens were found at 3.9 ppm, 4.2 ppm and 4.4 ppm, respectively. In addition, the peaks of the hydrogens located in the benzene ring inside the polymer were found at 7.0ppm, 7.6ppm and 8.1ppm, respectively, and the hydrogen located at the chalcone group at 7.4ppm and 7.8ppm, respectively.
광조사 후의 NMR 스펙트럼의 분석결과는 매질의 불용성으로 NMR 스펙트럼을 얻을 수 없었다.As a result of analyzing the NMR spectrum after light irradiation, the NMR spectrum could not be obtained due to the insolubility of the medium.
적외선(IR) 분광 분석법에 의한 분석결과를 살펴보면, 광조사 전의 IR 스펙트럼 분석결과는 에폭시환의 특성피크가 910cm-1부근에서 나타났으며, 찰콘기의 이중결합(C=C)의 특성피크가 1600cm-1부근에서 나타나며, 히드록시기의 특성피크가 3500cm-1부근에서 나타나며, 카르보닐기(C=O)의 특성피크가 찰콘기의 이중결합의 공명현상으로 1680cm-1부근에서 나타난다.Infrared (IR) spectroscopy showed that the IR spectra before light irradiation showed that the characteristic peak of the epoxy ring was around 910cm -1 and that of the double bond (C = C) of the chalcone group was 1600cm. It appears in the vicinity of -1 , and the characteristic peak of the hydroxy group appears in the vicinity of 3500cm -1 , and the characteristic peak of the carbonyl group (C = O) appears in the resonance phenomenon of the double bond of the chalcone group in the vicinity of 1680cm -1 .
광조사 후의 IR 스펙트럼 분석결과는 광조사 전에 발견되었던 910cm-1근처의 에폭시환의 특성피크가 광조사 후 사라졌으므로 에폭시 환의 개환이 이뤄졌음을 확인 할 수 있으며 또 3500cm-1에서 발견되는 히드록시기의 급격한 증가도 에폭시의 개환을 의미하고, 1600cm-1근처의 이중결합 피크가 줄어드는 현상과, 1650cm-1의 불포화결합에 인근한 카르보닐기의 피크가 광조사 후 찰콘기 내부의 이중결합이 깨어진 후 새로이 형성되는 포화결합에 인근한 카르보닐기로 바뀌며 피크가 왼쪽으로 이동하는 현상을 발견 할 수 있다. 위와 같은 특성기의 분석에 의해 반응이 진행되었음을 확인 할 수 있다.IR spectrum analysis results after irradiation are characteristic of the detected epoxy ring was 910cm -1 near the peak can jyeoteumeuro disappeared after the light irradiation to confirm that you have been made, and an epoxy ring is ring more rapid increase of the hydroxyl groups are also found at 3500cm -1 before irradiation FIG saturation is meant the ring-opening of epoxy and, 1600cm -1 double bond peak is reduced and development, a peak is a double bond within the police kongi after light irradiation of a group near the unsaturation of 1650cm -1, near the newly formed and then broken The carbonyl group adjacent to the bond changes and the peak shifts to the left. It can be confirmed that the reaction proceeded by the analysis of the above characteristic group.
[실시예 2]Example 2
화학식 2의 구조를 갖는 반응물의 제조Preparation of Reactant Having Structure of Formula 2
파라-히드록시아세토페논 3.8g (0.028mole)을 클로로포름100㎖에 녹여서 3,4-디히드로-2H-파이란 6.5ml (0.071mole)을 붙여 줌으로써 메틸기 끝의 수소 보다 반응성이 큰 히드록시기의 수소를 제거하여 준 후 테레프탈디카르복시알데히드 1.87g (0.014mole)과 반응시켰다. 여기서 테레프탈디카르복시알데히드는 양쪽에 모두 알데히드기를 관능기로 가지므로 '프로텍션' 반응을 해 줄 필요가 없고 파라-히드록시아세토페논만 프로텍션 시킨 후 바로 두 물질을 반응시킬 수 있다.3.8 g (0.028 mole) of para-hydroxyacetophenone is dissolved in 100 ml of chloroform and 6.5 ml (0.071 mole) of 3,4-dihydro-2H-pyran is added to remove hydrogen of the hydroxy group that is more reactive than hydrogen at the end of the methyl group. And then reacted with 1.87 g (0.014 mole) of terephthaldicarboxyaldehyde. Here, terephthaldicarboxyaldehyde has an aldehyde group on both sides, so there is no need for a 'protection' reaction, and only two para-hydroxyacetophenones can be reacted immediately.
반응생성물을 에탄올 용매 200㎖에 녹여서 3,4-디히드로-2H-파이란을 떼어내고 진공 건조 오븐 내에서 잘 건조시켜 화학식 3의 물질을 합성하였다.The reaction product was dissolved in 200 ml of ethanol solvent to remove 3,4-dihydro-2H-pyrane and dried well in a vacuum drying oven to synthesize the material of formula (3).
화학식 5의 구조를 갖는 광기능성 에폭시 화합물의 제조Preparation of Photofunctional Epoxy Compounds Having the Structure of Formula 5
화학식 3의 화합물 3.7g(0.01몰)과 에피클로로히드린 74.02g(0.8몰)을 에탄올 100㎖에 넣어 완전히 용해한 후 40% 가성소다수용액(0.4g, 0.01몰)을 적가하고 110℃에서 반응시켜서 말단에 두개의 에폭시기와 주쇄에 찰콘기를 포함하는 광기능성 에폭시 화합물(화학식 5)을 제조하였다.3.7 g (0.01 mol) of the compound of formula 3 and 74.02 g (0.8 mol) of epichlorohydrin were completely dissolved in 100 ml of ethanol, and 40% caustic soda solution (0.4 g, 0.01 mol) was added dropwise and reacted at 110 ° C. A photofunctional epoxy compound (Formula 5) including two epoxy groups at the end and a chalcone group at the main chain was prepared.
제조된 화합물의 구조는 핵자기공명(NMR) 스펙트럼과 적외선(IR) 분광 분석법에의해 확인하였다.The structure of the prepared compound was confirmed by nuclear magnetic resonance (NMR) spectra and infrared (IR) spectroscopy.
NMR 스펙트럼 분석결과를 살펴보면, 광조사 전의 NMR 스펙트럼의 분석결과는양 말단에 위치한 에폭시 환 내부의 수소 피크가 2.9ppm과 3.2ppm에서 나타났으며, 에폭시기가 개환되어 반복단위당 1개씩 위치하는 히드록시기 옆에 위치한 2개와 1개, 또 2개의 수소에 의한 피크가 각각 3.8ppm, 4.0ppm, 그리고 4.2ppm에서 나타났다. 또한 중합체 내부의 벤젠환에 위치한 수소들의 피크가 각각 7.0ppm, 7.3ppm, 7.6ppm, 그리고 8.2ppm에서 나타났다.In the NMR spectrum analysis results, the NMR spectrum analysis results before light irradiation showed hydrogen peaks at 2.9 ppm and 3.2 ppm inside the epoxy ring located at both ends, and the epoxy group was opened next to the hydroxy group which is located one per repeat unit. Peaks with two positions, one and two hydrogens were found at 3.8 ppm, 4.0 ppm and 4.2 ppm, respectively. In addition, the peaks of the hydrogens located in the benzene ring inside the polymer were found at 7.0ppm, 7.3ppm, 7.6ppm and 8.2ppm, respectively.
광조사 후의 NMR 스펙트럼의 분석결과는 매질의 불용성으로 NMR 스펙트럼을 얻을 수 없었다.As a result of analyzing the NMR spectrum after light irradiation, the NMR spectrum could not be obtained due to the insolubility of the medium.
적외선(IR) 분광 분석법에 의한 분석결과를 살펴보면, 광조사 전의 IR 스펙트럼 분석결과는 에폭시환의 특성피크가 910cm-1부근에서 나타났으며, 찰콘기의 이중결합(C=C)의 특성피크가 1600cm-1부근에서 나타나며, 히드록시기의 특성피크가 3500cm-1부근에서 나타나며, 카르보닐기(C=0)의 특성피크가 찰콘기의 이중결합의 공명현상으로 1680cm-1부근에서 나타났다.Infrared (IR) spectroscopy showed that the IR spectra before light irradiation showed that the characteristic peak of the epoxy ring was around 910cm -1 and that of the double bond (C = C) of the chalcone group was 1600cm. It appeared in the vicinity of -1 , the characteristic peak of the hydroxy group appeared in the vicinity of 3500cm -1 , the characteristic peak of the carbonyl group (C = 0) appeared in the vicinity of 1680cm -1 as a resonance phenomenon of the double bond of the chalcone group.
광조사 후의 IR 스펙트럼 분석결과는 광조사 전에 발견되었던 910cm-1근처의 에폭시환의 특성피크가 광조사 후 사라졌으므로 에폭시 환의 개환이 이뤄졌음을 확인 할 수 있으며, 또 3500cm-1에서 발견되는 히드록시기의 급격한 증가도 에폭시의 개환을 의미하고, 1600cm-1근처의 이중결합 피크가 줄어드는 현상과, 1650cm-1의 불포화결합에 인근한 카르보닐기의 피크가 광조사 후 찰콘기 내부의 이중결합이 깨어진 후 새로이 형성되는 포화결합에 인근한 카르보닐기로 바뀌며 피크가 왼쪽으로 이동하는 현상을 발견 할 수 있다. 위와 같은 특성기의 분석에 의해 반응이 진행되었음을 확인 할 수 있다.The IR spectrum analysis result after light irradiation showed that the ring of epoxy was opened because the characteristic peak of the epoxy ring near 910cm -1 disappeared after light irradiation and the hydroxyl group found at 3500cm -1 was sudden. increase which means that the ring-opening of epoxy and, 1600cm of a group near the unsaturated bond of the symptoms is reduced double bond peak, 1650cm -1 -1 near the peak is broken after a double bond within the police kongi after light irradiation newly formed The carbonyl group adjacent to the saturation bond is shifted and the peak shifts to the left. It can be confirmed that the reaction proceeded by the analysis of the above characteristic group.
실시예 1 및 2의 에폭시 화합물 각각에 300-330nm에서 양이온을 광조사에의해 생성시키는 트리아릴술포늄 헥사플루오로안티모네이트(triarylsulfonium hexafluoroantimonate) 계열의 양이온 광개시제를 에폭시 화합물 중량의 1-5%를 첨가하여 광중합시켰다. 사용된 자외선 광원은 고압의 수은램프로 365nm 부근의 파장영역만을 투과시키는 필터를 설치해서 사용하였다. 광중합 후 가시자외선 흡수 분광 분석법 및 적외선 분광 분석법을 이용하여 분석하였다. 그 결과는 도 1 및 도 2에 제시된다.Triarylsulfonium hexafluoroantimonate-based cationic photoinitiators, which generate cations at 300-330 nm in each of the epoxy compounds of Examples 1 and 2, were subjected to 1-5% of the epoxy compound weight. It was added and photopolymerized. The ultraviolet light source used was installed by using a filter that transmits only a wavelength region around 365 nm with a high-pressure mercury lamp. After photopolymerization it was analyzed using visible ultraviolet absorption spectroscopy and infrared spectroscopy. The results are shown in FIGS. 1 and 2.
도 1의 흡수스펙트럼에서 볼 수 있듯이 X 분자단 내의 이중 결합에서의 파이-파이 전이 흡수 밴드의 강도가 자외선 조사에 따라 감소하는 현상으로부터 이중 결함의 농도가 감소하는 것을 알 수 있다. 이는 상기 자외선 파장에서 환상부가반응성 불포화분자단(X) 화학 구조내의 탄소-탄소간의 2중 결합이 개열되어 환상부탄(cyclobutane)이 형성되기 때문이다. 이는 이론적으로 2+2 환상 부가반응(2+2 cycloaddition)이라는 이름의 반응으로 잘 알려져 있다.As can be seen from the absorption spectrum of Figure 1 it can be seen that the concentration of the double defects from the phenomenon that the intensity of the pi-pi transition absorption band at the double bond in the X molecule group decreases with ultraviolet irradiation. This is because the double bond between carbon and carbon in the cyclic addition reactive unsaturated molecule group (X) chemical structure is cleaved at the ultraviolet wavelength to form cyclobutane. This is theoretically well known as a reaction named 2 + 2 cycloaddition.
또한 도 2의 적외선 스펙트럼을 보면 1680cm-1근처의 피크가 광조사 후 흡수밴드가 넓어지며 왼쪽으로 이동하는 것이 바로 2중 결합이 단일 결합으로 되는 것을 의미하며 910cm-1근처의 피크가 에폭시 기를 나타내는 피크로 이것이 줄어드는 것은 광 조사로 인해 에폭시 기가 개환되어 중합이 일어나는 것을 확인할 수 있다. 동시에 3500cm-1부근의 흡수 강도가 증가하는 것으로부터 에폭시 환의 개환에 의하여 히드록시기가 형성되는 것을 의미한다. 또한 1600cm-1의 큰 피크는 카르보닐기 옆의 탄소-탄소 간 이중결합 및 페닐환내의 이중결합의 신축진동에 의해 나타나는 흡수밴드로 광을 조사하면 이 피크가 줄어듦으로써 찰콘기 화합물의 카르보닐기 옆의 이중결합의 밀도가 감소한다는 것을 재확인 할 수 있다.In addition, in the infrared spectrum of FIG. 2, the peak near 1680 cm −1 is widened in the absorption band after light irradiation, and moving to the left means that the double bond becomes a single bond, and the peak near 910 cm −1 indicates an epoxy group. This decrease to the peak can confirm that the polymerization is caused by the ring opening of the epoxy group due to light irradiation. At the same time, it means that the hydroxyl group is formed by the ring-opening of the epoxy ring because the absorption strength near 3500 cm -1 is increased. Also, the large peak of 1600cm -1 is absorbed by the absorption band which is caused by the carbon-carbon double bond next to the carbonyl group and the elastic vibration of the double bond in the phenyl ring. It can be reconfirmed that the density of is reduced.
[비교예 1]Comparative Example 1
본 발명은 주쇄의 반복단위에서 광가교를 일으킬 수 있는 관능기를 포함하는 에폭시 화합물을 기존의 비스페놀-에이(bisphenol A)형의 잘 알려진 에폭시 화합물과 동일한 양이온 광개시제를 부가하여 자외선 조사에 의한 광조사 후 매질간의 특성을 비교하기 위하여 화학식 6의 에폭시 화합물을 합성하였다.The present invention is added to the epoxy compound containing a functional group capable of causing photo-crosslinking in the repeating unit of the main chain and the same cationic photoinitiator as the well-known epoxy compound of the conventional bisphenol A type, after light irradiation by ultraviolet irradiation Epoxy compounds of formula 6 were synthesized to compare the properties between the media.
[화학식 6][Formula 6]
실시예 1의 에폭시화합물과 비교예 1의 에폭시화합물을 자외선 조사후 시차열량 분석법(DSC) 및 열 중량 분석법(TGA)을 통해 비교하였다. 그 결과는 도 3 및 도 4의 그래프에 각각 제시된다.The epoxy compound of Example 1 and the epoxy compound of Comparative Example 1 were compared by differential calorimetry (DSC) and thermogravimetric analysis (TGA) after UV irradiation. The results are shown in the graphs of FIGS. 3 and 4, respectively.
열중량 분석법의 결과에 따라 900℃ 이상의 온도에서도 실시예 1의 에폭시 화합물은 50% 이상의 잔류 중량이 확인되므로 그 물질의 열에 대한 경화강도 등은 충분히 확인된 것이라 할 수 있겠다(도 3 참조). 그리고 자외선 조사 후 매질의 유리 전이 온도를 DSC로 측정 해본 결과 비교예 1의 에폭시 화합물인 경우 120℃에서 나타나는데 반하여 본 발명에 따르는 실시예 1의 에폭시 화합물은 경화 후 매질의 경우 200℃까지 뚜렷한 유리 전이 온도가 관찰되지 않아 매질의 자유 부피의 변화가 고온에서도 매우 작은 것으로 확인되었다.또한 열기계적 특성분석을 통해 열팽창계수를 측정해본 결과 자외선 조사후 실시예 1과 비교예 1을 혼합한 시료의 경우 57.39×10-6/K로 열팽창계수가 측정되었지만 비교예 1만을 이용해서 제작된 시료의 경우 76.4710-6/K로 나타나 실시예 1을 함유한 시료가 경화후 열적안정성이 우수함을 확인하였다.As a result of the thermogravimetric analysis, the epoxy compound of Example 1 was confirmed to have a residual weight of 50% or more even at a temperature of 900 ° C. or higher, and thus the curing strength of the material was sufficiently confirmed (see FIG. 3). In addition, when the glass transition temperature of the medium after UV irradiation was measured by DSC, the epoxy compound of Comparative Example 1 appeared at 120 ° C, whereas the epoxy compound of Example 1 according to the present invention had a clear glass transition up to 200 ° C in the case of the medium after curing. It was confirmed that the change in free volume of the medium was very small even at high temperature because the temperature was not observed. In addition, when the coefficient of thermal expansion was measured by thermomechanical analysis, the sample mixed with Example 1 and Comparative Example 1 after UV irradiation was 57.39. The coefficient of thermal expansion of × 10 -6 / K was measured, but the sample prepared using only Comparative Example 1 was found to be 76.4710 -6 / K to confirm that the sample containing Example 1 was excellent in thermal stability after curing.
이상의 설명으로부터 명백하게 되는 바와 같이 본 발명에 따라 화학식 1의 광기능성 에폭시 화합물을 함유하는 액정디스플레이 패널봉지제는 광조사에 의해 용이하게 경화하여 높은 접착력, 낮은 열팽창 계수, 우수한 열안정성 및 치수안정성이 우수한 박막화 가공성을 제공하는 등의 장점이 있는 것이다.As will be apparent from the above description, the liquid crystal display panel encapsulation agent containing the photo-functional epoxy compound of the formula (1) according to the present invention is easily cured by light irradiation, and thus has high adhesive strength, low thermal expansion coefficient, excellent thermal stability and dimensional stability. There are advantages such as providing thin film processability.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990063501A KR100337594B1 (en) | 1999-12-28 | 1999-12-28 | Photo-functional epoxy compound containing liquid display panel end shield agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990063501A KR100337594B1 (en) | 1999-12-28 | 1999-12-28 | Photo-functional epoxy compound containing liquid display panel end shield agent |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010061025A KR20010061025A (en) | 2001-07-07 |
KR100337594B1 true KR100337594B1 (en) | 2002-05-23 |
Family
ID=19630830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990063501A KR100337594B1 (en) | 1999-12-28 | 1999-12-28 | Photo-functional epoxy compound containing liquid display panel end shield agent |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100337594B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030013879A (en) * | 2001-08-09 | 2003-02-15 | 최동훈 | Photo-reactive di(meth)acrylate derivative and its preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4074008A (en) * | 1975-08-13 | 1978-02-14 | Ciba-Geigy Corporation | Epoxide resins |
US4594291A (en) * | 1984-07-17 | 1986-06-10 | The Dow Chemical Company | Curable, partially advanced epoxy resins |
US5024785A (en) * | 1989-01-17 | 1991-06-18 | The Dow Chemical Company | Liquid crystal/rigid rodlike polymer modified epoxy/vinyl ester resins |
-
1999
- 1999-12-28 KR KR1019990063501A patent/KR100337594B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4074008A (en) * | 1975-08-13 | 1978-02-14 | Ciba-Geigy Corporation | Epoxide resins |
US4594291A (en) * | 1984-07-17 | 1986-06-10 | The Dow Chemical Company | Curable, partially advanced epoxy resins |
US5024785A (en) * | 1989-01-17 | 1991-06-18 | The Dow Chemical Company | Liquid crystal/rigid rodlike polymer modified epoxy/vinyl ester resins |
Also Published As
Publication number | Publication date |
---|---|
KR20010061025A (en) | 2001-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106397752B (en) | Photoresist, preparation method containing fluorenes and the Photocurable composition and photoresist with it | |
Crivello | UV and electron beam-induced cationic polymerization | |
Crivello et al. | Photoinitiated cationic polymerization of epoxy alcohol monomers | |
US6593388B2 (en) | Oligomeric and polymeric photosensitizers comprising a polynuclear aromatic group | |
US5463084A (en) | Photocurable silicone oxetanes | |
KR101114694B1 (en) | Photobase generator and photocurable resin composition | |
KR101896727B1 (en) | Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, manufacturing method for liquid crystal display element, and polymerisable compound | |
Sangermano et al. | Phenolic hyperbranched polymers as additives in cationic photopolymerization of epoxy systems | |
Rajaraman et al. | Novel hybrid monomers bearing cycloaliphatic epoxy and 1-propenyl ether groups | |
KR20060132922A (en) | Calixarene compound, process for producing the same, intermediate therefor, and composition thereof | |
Crivello et al. | The synthesis and study of the photoinitiated cationic polymerization of novel cycloaliphatic epoxides | |
CN102471430A (en) | Preparation and use of polymers containing hydroxyl groups and acrylate groups | |
JPS6026030A (en) | Curable resin composition | |
Fan et al. | Thermo-curable and photo-patternable polysiloxanes and polycarbosiloxanes by a facile Piers–Rubinsztajn polycondensation and post-modification | |
KR100337594B1 (en) | Photo-functional epoxy compound containing liquid display panel end shield agent | |
JP2009249605A (en) | Photopolymerizable composition | |
CN101906114A (en) | Cation ultraviolet curing group-containing silicon oxide compound and preparation method thereof | |
US5989627A (en) | Vinyl ether terminated oligomers and polymers | |
Choi et al. | Photochemical reactions of a dimethacrylate compound containing a chalcone moiety in the main chain | |
Nishikubo et al. | Synthesis of photoreactive calixarene derivatives containing pendant cyclic ether groups | |
Bratychak et al. | Synthesis and prperties of peroxy derivatives of epoxy resins based on Bisphenol A. 1. Effects of the presence of inorganic bases | |
KR20140070434A (en) | Acrylate compound having photoreactive group, photoreactive acrylate polymer and photo-alignment layer comprising the same | |
KR20030013879A (en) | Photo-reactive di(meth)acrylate derivative and its preparation method thereof | |
JP2006510798A (en) | Photopolymerizable composition and photopolymerizable film produced therefrom | |
Hien et al. | Influence of some vegetable oils on the photocrosslinking of coatings based on an o-cresol novolac epoxy resin and a bis-cycloaliphatic diepoxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080421 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |