Nothing Special   »   [go: up one dir, main page]

KR100325706B1 - High stress steel for suspension spring and manufacture method thereof - Google Patents

High stress steel for suspension spring and manufacture method thereof Download PDF

Info

Publication number
KR100325706B1
KR100325706B1 KR1019970073725A KR19970073725A KR100325706B1 KR 100325706 B1 KR100325706 B1 KR 100325706B1 KR 1019970073725 A KR1019970073725 A KR 1019970073725A KR 19970073725 A KR19970073725 A KR 19970073725A KR 100325706 B1 KR100325706 B1 KR 100325706B1
Authority
KR
South Korea
Prior art keywords
spring
high stress
steel
vanadium
low alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970073725A
Other languages
Korean (ko)
Other versions
KR19990053994A (en
Inventor
최해창
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970073725A priority Critical patent/KR100325706B1/en
Publication of KR19990053994A publication Critical patent/KR19990053994A/en
Application granted granted Critical
Publication of KR100325706B1 publication Critical patent/KR100325706B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 화학조성이 중량%로 탄소 0.4-0.6%, 실리콘 2.8-4.0%, 망간 0.1-0.3%, 크롬 0.3-0.6%, 산소 0.0015%이하, 질소 0.005-0.01%, 인 및 황 0.01% 이하를 함유하고, 여기서 바나듐 또는 니요븀 0.01-0.1%, 니켈 0.1-0.3%를 1종 또는 2종을 첨가하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 저합금형 고응력 스프링용강 및 상기 화학조성의 강의 오스테나이트 열처리는 900-1050℃의 온도범위에서 가열하고 10-60분 유지한 다음 유냉하여 350-430℃ 범위에서 30-60분 템퍼링하는 것을 특징으로 하는 저합금형 고응력 스프링용강의 제조방법을 제공하는 것을 요지로 한다.In the present invention, the chemical composition is 0.4-0.6% carbon, 2.8-4.0% silicon, 0.1-0.3% manganese, 0.3-0.6% chromium, 0.0015% or less oxygen, 0.005-0.01% nitrogen, 0.01% or less sulfur. Low alloy type high stress spring steel, wherein the vanadium or niobium 0.01-0.1%, nickel 0.1-0.3% is added one or two kinds, and is composed of the balance Fe and other unavoidable impurities. Austenitic heat treatment of the chemical composition of the steel is a low alloy high stress spring, characterized in that the heating in a temperature range of 900-1050 ℃ and maintained for 10-60 minutes and then oil-cooled and tempered 30-60 minutes in the range 350-430 ℃ It is a main idea to provide a method for producing molten steel.

Description

저합금형 고응력 스프링용강 및 그 제조방법Low alloy high stress spring steel and its manufacturing method

본 발명은 자동차 현가용 코일 및 판 스프링등에 사용되는 스프링용강에 관한 것으로, 보다 상세하게는 저합금화가 가능한 고응력 스프링용강에 관한 것이다.The present invention relates to a spring steel used in automobile suspension coils and leaf springs, and more particularly, to a high stress spring steel capable of low alloying.

'90년 초반에 들어오면서 대기오염의 심각성이 전세계적으로 대두되고, 잇다른 대형 유조선의 기름 유출사고가 발생됨에 따라 미국내 우려의 목소리가 고조되기 시작하여 석유소비 및 배기가스를 줄이기 위하여 자동차 산업에서는 자동차 경량화를 위하여 많은 노력을 기울이고 있으며, 그중 현가용 스프링은 경량화 기여도가 큰 부품중의 하나이기 때문에 스프링경량화가 시급한 문제로 부각되었다.In the early '90s, the severity of air pollution rose around the world, and oil spills from other large tankers began to raise the voice of concern in the United States, reducing the consumption of oil and emissions. Efforts have been made to reduce the weight of automobiles. Among them, suspension springs are one of the components that contribute to the reduction of weight.

이러한 배경으로 스프링 설계 최대응력 130kg/mm2(통상재 대비 경량화률 25% 가능)이 가능한 고응력 스프링강들을 개발하여 실용화 단계에 이르렀으나 최근 고응력 스프링강 개발 철학은 '90년초 와는 몇가지 상이한 내용을 담고 있는데 이는제조원가를 무시한 경량화 우선주위에서 제조원가를 고려한 가격 우선주위를 추구하는데 있다. 따라서 현실적으로는 반드시 스프링 경량화를 추구하여야 하나, 통상재 대비 가격적인 측면에서 경쟁력이 없을 경우 실용화는 불가능하다고 볼 수 있다.Against this backdrop, the high stress spring steels with the maximum design stress of 130kg / mm 2 (25% lighter than ordinary materials) have been developed and put into practical use. This is in pursuit of price priority considering manufacturing cost in light weight priority that ignores manufacturing cost. Therefore, in reality, it is necessary to pursue spring weight reduction, but it can be considered that it is impossible to use it if it is not competitive in terms of price compared to conventional materials.

기 개발된 고응력 스프링용강의 실용화시 문제점으로는 합금설계 측면에서 고합금화를 추구하는 이유로 제조원가가 크게높다는 것과 고합금화에 따른 선재 제조시 서냉능 부족에 기인하는 저온조직(베이나이트+마르텐사이트 복합조직)이 발생한다. 이와 같은 조직이 형성되면, 선재 표면경도가 증가하게 되고 이로 인하여 스프링 성형전 선재의 선경조정 및 표면품질 개선을 위한 필링(peeling) 가공(스프링을 선재의 표면품질 개선 및 사용자 용도별 선경 조정을 위한 공정)이 불가능하여 필링가공시 요구되는 표면경도를 확보하기 위하여 연화열처리를 불가피하게 부여하여야 한다. 이는 부가적인 열처리 비용부담으로 제조원가의 상승요인이 된다는 의미이여 실용화시 가격 경쟁력 저하를 초래한다.Problems in the commercialization of the high-stress spring steel developed in advance include the high cost of manufacturing due to the high alloying in terms of alloy design, and the low temperature structure due to the lack of slow cooling ability in the manufacture of wire rods due to high alloying (bainite + martensite complex). Tissue) occurs. When such a structure is formed, the surface hardness of the wire is increased, and thus, a peeling process for adjusting the wire diameter and improving the surface quality of the wire before forming the spring (a process for improving the surface quality of the wire and adjusting the wire diameter for each user's use) ), Softening heat treatment should be inevitably given to secure the surface hardness required for peeling processing. This means that the additional cost of heat treatment increases the manufacturing cost, which leads to a decrease in price competitiveness when commercialized.

이러한 배경에 근거하여 통상재(SAE 9254, 스프링 설계최대응력 110 kg/mm2) 대비 스프링 경량화가 가능하면서 기개발 고응력 스프링강(스프링 설계 최대응력 130kg/mm2) 보다 가격적인 경쟁력이 있는 저 코스트형 스프링용강의 개발 필요성이 크게 대두되기 시작하였다.Based on these backgrounds, it is possible to reduce the weight of the spring compared to conventional materials (SAE 9254, spring design maximum stress 110 kg / mm2) and cost-competitive low cost type compared to previously developed high stress spring steel (spring design maximum stress 130kg / mm2). The need for the development of spring steel has begun to emerge.

고응력 소재에 대한 종래의 기술로는 미국 특허공보 5575973A호, 4795609 A,독일 특허공보 EP 265 273 A2호, 일본국 특허공보 평 5-59431호, 평 4-88123호, 평 4-247824호, 평 1-184259호, 소 64-39353호등을 들 수 있다.Conventional techniques for high stress materials include U.S. Patent Nos. 5575973A, 4795609 A, German Patent Publications EP 265 273 A2, Japanese Patent Application Laid-Open Nos. 5-59431, 4-4-88123, 44-247824, Hei 1-184259, So 64-39353.

상기 미국 특허공보 5575973A 호에는 스프링 특성에 유효한 실리콘 성분을 다량 함유하고, 고 실리콘 함유에 따른 제조공정상의 탈탄 문제점을 니켈을 첨가함으로서 해결하고, 바나듐 첨가에 따른 석출강화 효과로 스프링 고응력화를 달성하였으나 기존재 대비 고합금첨가에 따른 가격상승의 문제점이 있다. 미국특허공보 4795609A에는 몰리브덴, 바나듐 성분을 첨가하여 고온에서 안정한 석출물을 분포시켜 스프링 특성중 특히 영구변형저항성 개선효과과 니켈첨가에 의한 인성개선 및냉간성형성을 개선하여 스프링 고응력화를 달성한 바 있고, 독일특허공보 EP 0 265 273 A2호, 일본국 특허공보 평 5-59431호, 평 4-88123호, 평 1-184259호, 소 64-39353호, 소 60-89553호 또한 스프링 고응력화는 가능하나 합금성분계 특징상 고합금처리에 의하여 스프링 경량화를 달성하여도 기존재 대비 제조원가가 증가하는 단점이 있다.The U.S. Patent No. 5575973A contains a large amount of silicon components effective for the spring characteristics, solves the problem of decarburization in the manufacturing process according to the high silicon content by adding nickel, and achieves high spring stress by the precipitation strengthening effect by the addition of vanadium. However, there is a problem of price increase due to the addition of high alloy to existing materials. In U.S. Patent No. 4795609A, molybdenum and vanadium were added to distribute stable precipitates at high temperature, and thus, the spring stress was improved by improving the permanent strain resistance effect, the toughness improvement by the addition of nickel, and the cold forming. , German Patent Publication No. EP 0 265 273 A2, Japanese Patent Publication No. Hei 5-59431, Hei 4-88123, Hei 1-184259, So 64-39353, So 60-89553 Although it is possible, however, the manufacturing cost is increased compared to the existing material even if the spring weight is achieved by high alloy treatment due to the characteristics of the alloy component.

본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명자는 스프링 경량화가 30% 가능한 설계최대응력 130kg/mm2 급 고응력 스프링강을 제조함에 있어서 스프링 특성의 저하없이 저합금설계에 의한 고응력 스프링강을 제조할수 있는 방법에 대하여 다각도로 연구한 결과, 실리콘 함량을 2.8-4.0% 첨가할 경우, 스프링 고응력화에 요구되는 스프링특성을 만족하면서, 미량 합금원소 및 고가의 합금원소 첨가량을 생략 또는 상당히 감소시킬 수 있다는 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 저합금형 고응력 스프링용강의 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, the present inventors in the manufacture of the design maximum stress 130kg / mm2 class high stress spring steel capable of reducing the weight of the spring 30% high stress by low alloy design without deterioration of the spring characteristics As a result of various studies on the method for producing spring steel, when the silicon content is added 2.8-4.0%, the addition of trace alloy elements and expensive alloy elements is omitted while satisfying the spring characteristics required for high spring stress. Another object of the present invention is to propose a method for producing a low alloy type high stress spring steel.

상기 목적을 달성하기 위하여 본 발명은 화학조성이 중량%로 탄소 0.4-0.6%, 실리콘 2.8-4.0%, 망간 0.1-0.3%, 크롬 0.3-0.6%, 산소 0.0015%이하,질소 0.005-0.01%, 인 및 황 0.01% 이하를 함유하고, 여기서 바나듐 또는 니오븀 0.01-0.1%,니켈 0.1-0.3%를 1종 또는 2종을 첨가하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 저합금형 고응력 스프링용강을 제공하는 것을 특징으로 한다.In order to achieve the above object, the present invention has a chemical composition of 0.4-0.6% carbon, 2.8-4.0% silicon, 0.1-0.3% manganese, 0.3-0.6% chromium, 0.0015% or less oxygen, 0.005-0.01% nitrogen, Low alloy type high stress spring steel containing 0.01% or less of phosphorus and sulfur, wherein 0.01-0.1% of vanadium or niobium, 0.1-0.3% of nickel are added, and are composed of balance Fe and other unavoidable impurities. It characterized in that to provide.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 화학조성은 중량%로 탄소 0.4-0.6%, 실리콘 2.8-4.0%, 망간 0.1-0.3%, 크롬 0.3-0.6%, 산소 0.0015%이하, 질소 0.005-0.01%, 인 및 황 0.01% 이하를 함유하고, 여기서 바나듐 또는 니요븀 0.01-0.1%, 니켈 0.1-0.3%를 1종 또는 2종을 첨가하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 저합금형 고응력 스프링용강의 제조방법에 관한 것이다.The chemical composition of the present invention is 0.4% by weight of carbon, 2.8-4.0% of silicon, 0.1-0.3% of manganese, 0.3-0.6% of chromium, 0.0015% or less of oxygen, 0.005-0.01% of nitrogen, 0.01% or less of sulfur and sulfur. Containing 0.01-0.1% vanadium or niobium, 0.1-0.3% nickel and one or two kinds thereof, and relates to a method for producing a low-alloy type high stress spring steel composed of remainder Fe and other unavoidable impurities will be.

이하 상기 성분 및 성분범위의 한정이유에 대하여 설명한다.Hereinafter, the reason for limitation of the component and the component range will be described.

탄소(C)의 함량을 중량%로 0.4-0.6%로 한 것은 0.4% 이하에서는 소입,소려에 의한 스프링강으로서의 요구되는 강도, 피로특성, 영구변형저항성, 석출물제어, 잔류 오스테나이트양, 절삭가공성 개선을 위한 흑연화 조직을 확보하기 어렵기 때문이며, 0.6% 이상에서는 고강도화에 따른 인성확보의 어려움과 선재 냉각시 페라이트 분율 증가로 필링가공에 적합한 선재 표면경도를 확보하기 어렵고 소입시 플레이트 마르텐사이트 생성에 따른 소입균열의 발생을 피하기 어렵기 때문이다.When the carbon content is 0.4-0.6% by weight, the required strength, fatigue characteristics, permanent deformation resistance, precipitate control, residual austenite content, and machinability of the spring steel by quenching and annealing at 0.4% or less. This is because it is difficult to secure graphitized structure for improvement, and it is difficult to secure the wire surface hardness suitable for peeling process due to difficulty in securing toughness due to high strength and increase of ferrite fraction during wire cooling at 0.6% or more. This is because it is difficult to avoid the occurrence of hardening cracks.

실리콘(Si)의 함량을 2.8-4.0%로 한 것은 2.8% 이하에서는 저합금화 고응력 스프링용강으로서의 스프링 특성 즉 피로특성및 영구변형 저항성을 확보하기 어렵고, 탈탄억제원소인 니켈, 크롬원소를 저감시킬 경우 선재가열로 장입시 소재 표면탈탄이 심화될 가능성이 높고, 잔류 오스테나이트 분해시기, 템퍼취성 제어, 석출물(입실론 시멘타이트, 바나듐 또는 니요붐계 석출물)제어의 어려움으로 저합금형 고응력 스프링강 제조시 스프링 특성확보가 불가능하고 절삭가공 개선을 위한 연화 열처리시 조직 연화속도가 감소하고, 또한 선재냉각시 페라이트 생선율 저하로 선재 표면경도 증가를 초래하여 연화열처리가 불가피해지기 때문이다. 4.0% 이상에서는 제강시 표면결함 발생율이 높고 스프링 특성을 부여하는 열처리시 구상화 또는 흑연화 고용시간 지연에 따른 열처리 시간이 장시간 요구되는 단점이 있고, 표층하 내부 산화물의 생성량 증가로 표면품질이 저하되고, 피로특성을 개선하기 위한 숏 피닝(shot-peening)부여시 압축잔류응력 분포에 영향을 미치기 때문이다.The silicon content of 2.8-4.0% is less than 2.8%, which makes it difficult to secure spring characteristics, namely fatigue characteristics and permanent deformation resistance, as low alloying high stress spring steel, and reduce nickel and chromium elements, which are decarbonization inhibitors. In case of wire rod heating, the surface decarburization is likely to be intensified, and low alloy type high stress spring steel is produced due to difficulty in controlling residual austenite decomposition time, temper brittleness control, and precipitates (epsilon cementite, vanadium or niyoboom-based precipitates). This is because it is impossible to secure the spring characteristics, the softening rate of the structure decreases during softening heat treatment to improve the cutting process, and the softening heat treatment is inevitable due to the decrease of ferrite fish rate during wire cooling, which increases the wire hardness. At 4.0% or more, there is a disadvantage that high surface defects occur during steelmaking and heat treatment time is required for a long time due to spheroidization or graphitization solid-solution delay in heat treatment to impart spring characteristics. This is because the compression residual stress distribution affects the shot peening to improve the fatigue characteristics.

본 발명에서의 보다 바람직한 실리콘 성분범위는 3.2-3.6%로 피로특성의 경우 이 성분 범위에서 최대치를 보이는 성분상의 임계 사수구간이며, 영구변형 저항성(잔류전단변형률)의 경우, 첨가량이 증가함에 따라 지속적으로 개선의 효과가 있고, 모재의 강도, 석출물 분포(입실론 카바이트 석출물, 바나듐 또는 니요불 석출물), 표면탈탄, 페라이트 생성시기, 피로특성, 영구변형성, 심가공에 따른 절삭가공성, 템퍼취성, 잔류 오스테나이트 분해시기, 제강시 표면결함, 열처리시 흑연화 분율등을 매우 효과적으로 제어할 수 있기 때문이다.The more preferable silicone component range in the present invention is 3.2-3.6%, which is the critical shooter section of the component phase showing the maximum value in this component range in the case of fatigue characteristics, and in the case of permanent strain resistance (resistance shear strain), it is continuously It is effective in improving the strength of the base material, the distribution of precipitates (epsilon carbide precipitates, vanadium or niyobul precipitates), surface decarburization, ferrite formation time, fatigue characteristics, permanent deformation, machinability according to deep processing, temper brittleness, residual austerity This is because the nit decomposition time, surface defects during steelmaking, and graphitization fraction during heat treatment can be controlled very effectively.

망간(Mn)의 함량을 0.1-0.3%로 한 것은 0.1% 이하에서는 소입성, 탈산, 고용강화 효과가 없기 때문이고, 0.3% 이상에서는 오스테나이트 영역의 확장(펄라이트 변태온도 상승)으로 선재 냉각시 초석 페라이트 분율에 영향을 미쳐 선재 표면경도 제어가 어렵고, 고용강화 효과 보다는 망간편석에 의한 조직 불균질이 스프링 특성에 더 유해한 영향저항성을 미친다. 따라서 망간의 함량을 0.1-0.3%로 한정하는 것은 모재의 강도, 탈산, 고용강화, 선재냉각시 미세조직 제어, 스프링 특성(피로특성, 영구변형 저항성), 편석대 생성에 따른 유해한 영향등을 고려한 범위이다.The content of manganese (Mn) in the range of 0.1-0.3% is less than 0.1% because it has no effect of quenching, deoxidation, and solid solution, and in 0.3% or more, when wire rod is cooled due to expansion of austenite region (raising pearlite transformation temperature). It affects the cornerstone ferrite fraction, which makes it difficult to control the wire surface hardness, and the tissue heterogeneity caused by manganese segregation is more harmful to the spring characteristics than the solid solution strengthening effect. Therefore, limiting the content of manganese to 0.1-0.3% takes into account the strength, deoxidation, solid solution strengthening, microstructure control of wire rod cooling, spring characteristics (fatigue characteristics, permanent deformation resistance), and harmful effects of segregation zones. Range.

크롬(Cr)의 함량을 0.3-0.6%로 한 것은 0.3% 이하에서는 부식저항성에 대한 개선효과가 적으며, 스프링 특성을 부여하는열처리시 표면 탈탄제어가 어렵고, 펄라이트의 시멘타이트 두께 제어가 어려워 구상화 열처리시 구상화 시간에 영향을 미치기 때문이다. 0.6% 이상에서는 미세조직 연화속도를 증가시켜 강도확보의 어려움이 있고, 템퍼링시 시멘타이트 조기석출로 스프링특성에 유해하기 때문이다.The content of chromium (Cr) in the range of 0.3-0.6% is less than 0.3% in improving the corrosion resistance, it is difficult to control the surface decarburization during heat treatment that imparts the spring characteristics, and it is difficult to control the cementite thickness of pearlite. This is because it affects the visualization time. If it is more than 0.6%, it is difficult to secure the strength by increasing the softening rate of the microstructure, and it is detrimental to the spring characteristics due to early deposition of cementite during tempering.

바나듐(V) 또는 니요븀(Nb)은 석출경화에 의한 스프링 특성 개선원소로 그 함량을 0.01-0.1%로 한 것은 0.01% 이하에서는 바나듐 및 니요븀계 석출물들이 적게 분포하여 스프링 특성(피로특성 및 영구변형저항성)의 개선효과가 충분하지 못하기 때문이며, 0.1% 이상에서는 석출물들에 의한 스프링 특성 개선효과가 포화하고 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금탄화물양이 증가하여 비금속 개재물과 같은 작용을 하기 때문에 피로특성의 저하를 초래한다.Vanadium (V) or niobium (Nb) is an element that improves the spring characteristics due to precipitation hardening, and its content is 0.01-0.1%, and the vanadium and niobium-based precipitates are distributed less than 0.01%. (Strain resistance) is not sufficient, the effect of improving the spring characteristics due to precipitates is more than 0.1%, and the coarsened alloy carbide that does not dissolve in the base material increases during austenite heat treatment, such as non-metal inclusions Because of this, the fatigue characteristics are lowered.

니켈(Ni)의 함량을 0.1-0.3%로 한 것은 0.1% 이하에서는 피로하중하에서의 부식피로저항성을 개선하기 어려우며, 스프링 특성을 부여하는 열처리시 탈탄제어와 인성 및 냉간가공성 개선, 잔류 오스테나이트 제어, 또한 절삭성 개선을 위한 흑연화 열처리시 흑연화 촉진효과가 없기 때문이다. 0.3% 이상에서는 선재냉각시 초석 페라이트 생성에 영향을 미쳐 선재 표면경도 제어가 어렵고, 선재 가열로에서 빌렛 재가열시 페라이트 석출온도 영향을 미쳐 탈탄방지를 위한 표면의 페라이트층 형성온도를 상승시킴으로서 오히려 탈탄제어에 유해한 영향을 미치기 때문이다.The Ni content of 0.1-0.3% makes it difficult to improve the corrosion fatigue resistance under fatigue load at 0.1% or less, and improves decarburization control, toughness and cold workability, residual austenite control, It is also because there is no graphitization promoting effect during the graphitization heat treatment to improve the machinability. Above 0.3%, it is difficult to control the surface hardness of wire rod because it affects the formation of cornerstone ferrite during wire cooling, and the ferrite layer formation temperature on the surface to prevent decarburization is increased by increasing the ferrite layer formation temperature to prevent decarburization. This is because it has a harmful effect on.

산소(O)의 함량을 0.0015% 이하로 한 것은 0.0015% 이상에서는 조대한 산화물계 비금속 개재물이 용이하게 형성되어 피로수명이 저하되기 때문이다.The content of oxygen (O) is 0.0015% or less because coarse oxide-based nonmetallic inclusions are easily formed at 0.0015% or more, and fatigue life is reduced.

질소(N)의 함량을 0.005-0.01%로 한 것은 0.005% 이하에서는 바나듐 및 니요븀계질화물 형성에 따른 탄화물 생성율이 매우 작기 때문이며, 0.01% 이상에서 그 효과가 포화되기 때문이다.The content of nitrogen (N) in the range of 0.005-0.01% is because carbide production rate due to the formation of vanadium and niobium-based nitride is very small at 0.005% or less, and the effect is saturated at 0.01% or more.

인(P) 및 황(S)의 함량을 0.01% 이하로 한 것은 인은 결정입계에 편석되어 인성을 저하시키므로 그 상항은 0.01%로 제한하는 것이며, 황은 저융점 원소로 입계에 편석되어 인성을 저하시키고 유화물을 형성시켜 스프링 특성에 유해한 영향을 미치므로 그 상한은 0.01%로 제한하는 것이 바람직하다.The content of phosphorus (P) and sulfur (S) of 0.01% or less is limited to 0.01% because phosphorus segregates at grain boundaries and degrades toughness, and sulfur is segregated at grain boundaries as a low melting point element. It is preferable to limit the upper limit to 0.01% because it lowers and forms an emulsion, which adversely affects the spring characteristics.

본 발명에서 스프링 특성을 부여하는 열처리 조건(소입,소려)을 한정하는 이유는 다음과 같다.The reason for limiting heat treatment conditions (hardening, consideration) imparting spring characteristics in the present invention is as follows.

오스테나이트 온도 및 시간을 900-950℃ 범위에서 10-15분으로 한정하는 것은 900℃ 이하에서는 충분한 오스테나이트화가 이루어지지 않아 소입시 충분한 마르텐사이트 조직의 확보가 어렵고, 선재 제조시 조대하게 석출된 바나듐계 또는 니요븀계 석출물에 대한 모재내 재고용이 어려워 고용강화 효과를 기대하기 어렵기 때문이며, 950℃ 이상에서는 선재제조시 조대하게 석출된 바나듐계 또는 니요븀계 석출물들은 모재내로 완전 고용되어 고용강화 효과를 기대할 수 있으나 석출물 완전 고용으로 석출강화 효과를 기대하기 어렵기 때문이다. 한편 열처리 시간을 10-15분으로 한정하는 것은 이 범위내에서는 완전 오스테나이트화가 가능하고 15분 이상에서는 가열로 탈탄촉진 및 재로시간 증가에 따른 생산성 저하가 초래되기때문이다.Limiting the austenite temperature and time to 10-15 minutes in the 900-950 ° C range is not sufficient austenitization below 900 ° C, making it difficult to secure sufficient martensite structure during quenching, and coarse precipitated vanadium during wire fabrication. This is because it is difficult to expect the employment strengthening effect due to the difficulty in reusing the base or niobium-based precipitates in the base metal. Above 950 ° C, the vanadium-based or niobium-based precipitates that are coarsened during wire rod manufacturing are fully employed in the base material, and the employment strengthening effect is expected. This is because the precipitation strengthening effect cannot be expected with full employment of precipitates. On the other hand, the heat treatment time is limited to 10-15 minutes because complete austenitization is possible within this range, and productivity deterioration is caused by decarburization promotion and increase of rework time by heating over 15 minutes.

템퍼링 온도 및 시간을 350-430℃ 범위에서 60-90분 범위로 한정하는 것은 350℃이하에서는 인성, 적정 잔류 오스테나이트양(4-7%), 피로특성등을 확보하기 어렵고, 또한 영구변형 저항성 개선을 위한 프리셋팅(pre-setting:스프링 제조공법임) 부여효과를 기대하기 어렵고, 스프링 특성에 유효한 입실론 카바이드의 분포가 불출분하여 영구변형 저항성이 저하되기 때문이다. 430℃ 이상에서는 템퍼취성을 일으켜 인성이 저하되며, 소입시 생성된 잔류 오스테나이트의 완전 분해로 피로특성 개선효과를 기대하기 어렵고, 항복강도의 감소 및 구상 시멘타이트의 석출에 의한 영구변형 저항성의 저하를 초래하기 때문이다. 한편 열처리 시간은 작업성을 고려한 시간이다.Limiting the tempering temperature and time from the range of 350-430 ° C to the range of 60-90 minutes is difficult to secure toughness, proper amount of retained austenite (4-7%), fatigue characteristics, etc. at 350 ° C or lower, and permanent deformation resistance. It is difficult to expect the effect of imparting a pre-setting for improvement, and the distribution of epsilon carbide effective for the spring characteristics is indiscriminate, leading to deterioration of the permanent deformation resistance. At 430 ℃ or higher, the toughness is lowered and the toughness is lowered.It is difficult to expect the effect of improving fatigue characteristics due to the complete decomposition of residual austenite produced during quenching, and it is possible to reduce the yield strength and decrease the permanent deformation resistance due to spheroidal cementation. Because it causes. On the other hand, the heat treatment time is a time in consideration of workability.

다음 본 발명을 실시예를 통하여 구체적으로 설명한다.Next, the present invention will be described in detail with reference to Examples.

(실시예)(Example)

본 발명이 효과를 보이기 위한 본 발명재들과 비교재들의 화학성분을 표 1에 나타내었다. 본 발명재들은 표 1의 강들을 시료로 하여 50kg 잉고트로 주조후 1250℃에서 48시간 균질화 열처리하여 60×60mm의 단면으로 열간단조 가공하였으며 이때 마무리 온도는 950℃이상으로 하여 열간단조후 공냉하였다. 이후 가열온도 1100℃에서 3시간 유지 후 지름 13mm의 선재환봉(round bar)으로 열간압연을 실시하였다.Table 1 shows the chemical composition of the present invention and the comparative materials for the effect of the present invention. The present invention materials were cast in 50kg ingot and the steels of Table 1 were homogenized and heat treated at 1250 ° C. for 48 hours, and then hot forged into a cross section of 60 × 60 mm. At this time, the finishing temperature was 950 ° C. or higher, followed by air cooling. Thereafter, after maintaining the heating temperature at 1100 ° C. for 3 hours, hot rolling was performed using a round bar having a diameter of 13 mm.

본 발명재들의 스프링 특성을 부여하는 열처리는 930℃ 범위에서 20분간 가열 후 하기의 표 2와 같은 스프링 설계 제원으로 스프링을 열간성형 후 유냉하고,390℃에서 템퍼링 처리하였다. 이후 250℃이상에서 0.8mm 크기의 스틸볼들을 사용하여 온간 숏 피닝(shot peening)한 다음, 0.6mm 스틸볼들을 이용하여 냉간 숏 피닝하였다. 이후 140kg/mm2 의 응력으로 냉간 압축(cold setting)하고 이후 도장처리하여 스프링을 제조하였다.Heat treatment for imparting the spring characteristics of the present invention was heated for 20 minutes in the range of 930 ℃ and hot-cooled after hot forming the spring to the spring design specifications as shown in Table 2, and then tempered at 390 ℃. After the shot peening warm using a steel ball of 0.8mm size at 250 ℃ or more, and then cold shot peening using 0.6mm steel balls. After the cold compression (cold setting) to a stress of 140kg / mm 2 and then to the coating to prepare a spring.

상기와 같이 제조된 스프링에 대하여 하기의 표 3과 같은 조건으로 피로시험을 행하여 피로특성을 평가하였으며 이때 시험속도는 1.3Hz이었으며, 피로수명값은 강종당 10회의 걸친 시험을 행하여 평가하였다.Fatigue tests were performed on the springs prepared as described above under the conditions shown in Table 3 below, and the fatigue properties were evaluated. The test speed was 1.3 Hz, and the fatigue life values were evaluated by performing ten tests per steel grade.

이때 스프링 시험응력의 계산은 아래와 같다.The calculation of the spring test stress is as follows.

τ=(8PD/πd3)Kτ = (8PD / πd3) K

τ : 스프링 시험응력(kg/mm2)τ: Spring test stress (kg / mm2)

P : 부하하중(kg)P: Load Load (kg)

D : 코일의 평균지름(mm)D: mean diameter of coil (mm)

d : 선지름(mm)d: wire diameter (mm)

K : 코일의 응력 보정계수K: stress correction coefficient of coil

여기서, K=[(4C-1)/(4C-4)]+[0.615/C], (C=D/d)Where K = [(4C-1) / (4C-4)] + [0.615 / C], (C = D / d)

잔류전단변형률 측정시험을 상기의 표 4의 시험조건에서 실시하였으며 측정 응력하의 상온에서 72시간 유지후 측정하였다. 이때 고온 잔류전단 변형률 측정온도는 80℃에서 시험하였다.The residual shear strain measurement test was carried out under the test conditions of Table 4 above, and measured after 72 hours at room temperature under the measured stress. The high temperature residual shear strain measurement temperature was tested at 80 ℃.

잔류전단변형률의 측정기준은 스프링을 시험 전,후의 동일 자유고(스프링의 높이)로 압축하였을 때 요구되어지는 하중 변화량(△P : 시험 전 하중-시험 후 하중)을 기준으로 하여 잔류전단 변형률을 산출하였으며 이에 대한 계산식을 아래와 같다.The criterion for measuring the residual shear strain is based on the amount of load change required when the spring is compressed to the same free height (spring height) before and after the test (△ P: load before test-load after test). The calculation is made as follows.

γ=(8D/πd3G)△Pγ = (8D / πd 3 G) △ P

γ : 잔류전단변형률γ: residual shear strain

D : 코일의 지름경(mm)D: diameter of coil (mm)

d : 선 지름(mm)d: wire diameter (mm)

G : 횡탄성계수(8000kg/mm2)G: Lateral modulus of elasticity (8000kg / mm2)

△P: 하중감소량(kg)ΔP: Load reduction (kg)

상기와 같이 제조된 본 발명재들 및 비교재들의 스프링에 대하여 피로특성 및 영구변형 저항성(잔류전단 변형률)을 측정하고, 그 결과를 표 5에 나타내었다. 표 5에 나타낸 바와 같이 본 발명재들은 저합금강이면서 비교재들 대비 피로수명 및영구변형저항성(잔류전단 변형률)이 동등 이상의 스프링 특성을 나타내고 있다. 한편, 실리콘 함량이 증가함에 따라 잔류전단 변형률은 점차적으로 개선되는 경향을 보이며, 피로특성의 경우 3.2-3.6% 범위의 실리콘 함유시 가장 우수한 피로수명치를 확보할 수 있음을 알 수 있다.Fatigue characteristics and permanent strain resistance (residual shear strain) were measured for the springs of the inventive materials and the comparative materials manufactured as described above, and the results are shown in Table 5. As shown in Table 5, the present invention materials are low alloyed steels and exhibit spring characteristics equal to or greater than the fatigue life and the permanent strain resistance (residual shear strain) compared to the comparative materials. On the other hand, as the silicon content increases, the residual shear strain tends to be gradually improved, and in the case of the fatigue properties, it can be seen that the most excellent fatigue life value can be obtained when the silicon content is in the range of 3.2-3.6%.

[표 1]TABLE 1

Figure pat00001
Figure pat00001

[표 2]TABLE 2

Figure pat00002
Figure pat00002

[표 3]TABLE 3

Figure pat00003
Figure pat00003

[표 4]TABLE 4

Figure pat00004
Figure pat00004

[표 5]TABLE 5

Figure pat00005
Figure pat00005

이상에서 나타낸 결과를 종합하여 볼 때 본 발명은 저합금계로 구성된 스프링 합금성분계로 스프링의 고응력화를 달성하여 제조원가 측면에서 현저한 가격절감을 기대할 수 있는 바 저합금형 고응력 스프링용강을 제공할 수 있는 것이다.In view of the above results, the present invention can provide a low alloy type high stress spring steel bar that can achieve a significant cost reduction in terms of manufacturing cost by achieving a high stress of the spring alloy system composed of a low alloy system. It is.

Claims (3)

화학조성이 중량%로 탄소 0.4-0.6%, 실리콘 2.8-4.0%, 망간 0.1-0.3%, 크롬 0.3-0.6%, 산소 0.0015%이하, 질소 0.005-0.01%, 인 및 황 0.01% 이하를 함유하고, 여기서 바나듐 0.01-0.1%, 니켈 0.1-0.3%를 1종 또는 2종을 첨가하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 저합금형 고응력 스프링용강.Chemical composition contains 0.4-0.6% of carbon, 2.8-4.0% of silicon, 0.1-0.3% of manganese, 0.3-0.6% of chromium, 0.0015% of oxygen, 0.005-0.01% of nitrogen, 0.01% of phosphorus and sulfur , 0.01-0.1% vanadium, 0.1-0.3% nickel is added one or two kinds, low alloy type high stress spring steel, characterized in that the composition is composed of the remaining Fe and other unavoidable impurities. 화학조성이 중량%로 탄소 0.4-0.6%, 실리콘 2.8-4.0%, 망간 0.1-0.3%, 크롬 0.3-0.6%, 산소 0.0015%이하, 질소 0.005-0.01%, 인 및 황 0.01% 이하를 함유하고, 여기서 바나듐 0.01-0.1%, 니켈 0.1-0.3%를 1종 또는 2종을 첨가하고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강의 오스테나이트 열처리는 900-950℃의 온도범위에서 가열하고 10-15분 유지한 다음 유냉하여 350-430℃ 범위에서 60-90분 템퍼링하는 것을 특징으로 하는 저합금형 고응력 스프링용강의 제조방법.Chemical composition contains 0.4-0.6% of carbon, 2.8-4.0% of silicon, 0.1-0.3% of manganese, 0.3-0.6% of chromium, 0.0015% of oxygen, 0.005-0.01% of nitrogen, 0.01% of phosphorus and sulfur , Where one or two of 0.01-0.1% vanadium and 0.1-0.3% nickel are added, and the austenitic heat treatment of steel composed of the balance Fe and other unavoidable impurities is heated in a temperature range of 900-950 ° C. and 10-15 The process for producing a low alloy high stress spring steel, characterized in that the oil is cooled and then tempered for 60-90 minutes in the range of 350-430 ° C. 제1항에 있어서, 상기 실리콘 함량이 중량%로 3.2-3.6%인 것을 특징으로 하는 저합금형 고응력 스프링용강.The low alloy high stress spring steel according to claim 1, wherein the silicon content is 3.2-3.6% by weight.
KR1019970073725A 1997-12-24 1997-12-24 High stress steel for suspension spring and manufacture method thereof Expired - Fee Related KR100325706B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970073725A KR100325706B1 (en) 1997-12-24 1997-12-24 High stress steel for suspension spring and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970073725A KR100325706B1 (en) 1997-12-24 1997-12-24 High stress steel for suspension spring and manufacture method thereof

Publications (2)

Publication Number Publication Date
KR19990053994A KR19990053994A (en) 1999-07-15
KR100325706B1 true KR100325706B1 (en) 2002-06-28

Family

ID=37478251

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970073725A Expired - Fee Related KR100325706B1 (en) 1997-12-24 1997-12-24 High stress steel for suspension spring and manufacture method thereof

Country Status (1)

Country Link
KR (1) KR100325706B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060753A (en) * 1999-12-28 2001-07-07 이구택 Method for manufacturing low alloy type spring having high strength
CN110760656A (en) * 2019-09-18 2020-02-07 南京钢铁股份有限公司 Heat treatment method for producing high-strength SiCrV spring steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833051B1 (en) * 2006-12-20 2008-05-27 주식회사 포스코 High-strength spring steel wire, manufacturing method of the steel wire
KR100825598B1 (en) * 2006-12-20 2008-04-25 주식회사 포스코 Manufacturing method of high strength, high toughness spring and high strength, high toughness spring
KR100825597B1 (en) * 2006-12-20 2008-04-25 주식회사 포스코 Manufacturing method of high strength, high toughness spring and high strength, high toughness spring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301541A (en) * 1989-05-16 1990-12-13 Daido Steel Co Ltd Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH07157846A (en) * 1993-12-03 1995-06-20 Kobe Steel Ltd Steel for high strength spring
JPH11152519A (en) * 1997-11-19 1999-06-08 Mitsubishi Seiko Muroran Tokushuko Kk Method of manufacturing suspension springs resistant to chloride corrosion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301541A (en) * 1989-05-16 1990-12-13 Daido Steel Co Ltd Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH07157846A (en) * 1993-12-03 1995-06-20 Kobe Steel Ltd Steel for high strength spring
JPH11152519A (en) * 1997-11-19 1999-06-08 Mitsubishi Seiko Muroran Tokushuko Kk Method of manufacturing suspension springs resistant to chloride corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060753A (en) * 1999-12-28 2001-07-07 이구택 Method for manufacturing low alloy type spring having high strength
CN110760656A (en) * 2019-09-18 2020-02-07 南京钢铁股份有限公司 Heat treatment method for producing high-strength SiCrV spring steel

Also Published As

Publication number Publication date
KR19990053994A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP5064060B2 (en) Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof
US5286312A (en) High-strength spring steel
WO2012153831A1 (en) Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
EP2397571A1 (en) Steel for high-strength vehicle stabilizer with excellent corrosion resistance and low-temperature toughness, and process for the production of same, and stabilizer
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
KR100985357B1 (en) High strength, high toughness springs with excellent fatigue life, steel wires and steel wires for springs and methods of manufacturing the steel wires and springs
KR100328087B1 (en) A steel for high strength suspension spring with excellent machinability and a method of manufacturing spring by using it
CN112840058B (en) Wire rod and steel wire for spring having enhanced toughness and corrosion fatigue properties, and methods for manufacturing same
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
KR100325706B1 (en) High stress steel for suspension spring and manufacture method thereof
JP2001303172A (en) Case hardening boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
CN112342463A (en) high-Ti high-strength high-toughness bainite non-quenched and tempered steel for high-power engine crankshaft and preparation method thereof
JP2022541813A (en) High-strength spring wire and steel wire, and method for producing the same
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
KR20010060753A (en) Method for manufacturing low alloy type spring having high strength
JP2860789B2 (en) Spring steel with excellent hardenability and durability
KR100311795B1 (en) Spring steel and its manufacturing method
JP2004002994A (en) Steel wire for hard drawn spring excellent in fatigue strength and set resistance, and hard drawn spring
KR0146799B1 (en) Manufacturing method of high strength steel pipe stabilizer with excellent corrosion resistance
JP3912186B2 (en) Spring steel with excellent fatigue resistance
JP2003055741A (en) Oil-tempered wire for cold-formed coil springs
KR100352607B1 (en) Manufacturing method of high stress spring steel wire
JPH06128689A (en) Spring steel with excellent set resistance

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19971224

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19991130

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19971224

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20010827

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20020131

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20020208

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20020209

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20050203

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20060203

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20070208

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20080212

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20081208

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20100208

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20110208

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20120119

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20130129

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20130129

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20140129

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20150205

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20160202

Start annual number: 15

End annual number: 15

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20171119