Nothing Special   »   [go: up one dir, main page]

KR100266132B1 - A method for preparing anode plate of lead storage battery - Google Patents

A method for preparing anode plate of lead storage battery Download PDF

Info

Publication number
KR100266132B1
KR100266132B1 KR1019970060970A KR19970060970A KR100266132B1 KR 100266132 B1 KR100266132 B1 KR 100266132B1 KR 1019970060970 A KR1019970060970 A KR 1019970060970A KR 19970060970 A KR19970060970 A KR 19970060970A KR 100266132 B1 KR100266132 B1 KR 100266132B1
Authority
KR
South Korea
Prior art keywords
sulfuric acid
lead
organic
alcohol
anode plate
Prior art date
Application number
KR1019970060970A
Other languages
Korean (ko)
Other versions
KR19990040538A (en
Inventor
박연수
임동민
Original Assignee
조충환
한국타이어주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조충환, 한국타이어주식회사 filed Critical 조충환
Priority to KR1019970060970A priority Critical patent/KR100266132B1/en
Publication of KR19990040538A publication Critical patent/KR19990040538A/en
Application granted granted Critical
Publication of KR100266132B1 publication Critical patent/KR100266132B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A method for manufacturing an anode plate of the lead storage battery is provided to reduce production costs by employing alcohol and diluted sulfuric acid instead of expensive organic sulfuric acid, yet obtaining the same effect with that of organic sulfuric acid. CONSTITUTION: The method for manufacturing the anode plate anode is comprised of the first step for molding the mixture of crushed lead and lead oxide, water and sulfuric acid; the second step for coating an electricity collecting body, maturing and drying for a certain period of time; and the third step for converting an active material to lead dioxide by applying electricity. Further, in the first step, the organic sulfuric acid is made of alcohol with C8 or less and diluted sulfuric acid at a mole ratio of 1:2-4, and mixed with sulfuric acid by 3-10cc per 1kg of the crushed lead.

Description

납축전지 양극판의 제조방법Manufacturing method of lead acid battery positive plate

본 발명은 납축전지 양극판의 제조방법에 관한 것이다. 더욱 상세하게는 비용이 저렴한 방식으로 고온숙성에 의하여 생성되는 사염기황산납의 입자크기를 줄여 우수한 성능의 납축전지 양극판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a lead acid battery positive plate. More particularly, the present invention relates to a method for producing a lead acid battery positive electrode plate having excellent performance by reducing the particle size of lead tetrachloride sulfate produced by high temperature aging in a low-cost manner.

일반적으로, 납축전지의 양극판은 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합하여 반죽하고, 이를 납 또는 납합금으로 이루어진 격자형태의 집전체에 도포한 후, 일정시간 숙성 및 건조하고, 전기를 흘려서 이산화납으로 변환시키는 화성공정에 의하여 제조된다.In general, the positive electrode plate of a lead acid battery is kneaded by mixing lead powder composed of fine powders of lead and lead oxide together with water and sulfuric acid, and then applying it to a grid-shaped current collector made of lead or lead alloy, It is manufactured by a chemical conversion process that is dried and converted to lead dioxide by flowing electricity.

상기에서 숙성하는 방법에는 60℃ 이하에서 실행하는 저온숙성과 80℃ 이상에서 실행하는 고온숙성의 두가지 방법이 있다.There are two methods of aging in the above-described low temperature aging to be carried out at 60 ℃ or less and high temperature aging to be carried out at 80 ℃ or more.

이중 저온숙성의 경우는 삼염기황산납(Tribasic lead sulfate; 3PbO·PbSO4·H2O)이 형성되고, 고온숙성의 경우는 사염기황산납(tetrabasic lead sulfate; 4PbO·PbSO4)이 주로 형성된다.In the low temperature aging, tribasic lead sulfate (3PbO · PbSO 4 · H 2 O) is formed, and in the high temperature aging, tetrabasic lead sulfate (4PbO · PbSO 4 ) is mainly formed. do.

보편적으로, 현재까지는 저온숙성법이 많이 사용되어 왔으나, 삼염기황산납의 입자크기가 5㎛ 안팍으로 아주 작기 때문에 이로부터 화성되어 생성되는 활물질의 표면적은 높은 반면 입자간 결합력이 약하여 수명이 짧고, 숙성기간이 적어도 15시간 이상으로 매우 길기 때문에 차츰 고온숙성법으로 대체되어 가는 추세이다.In general, the low temperature aging method has been used so far, but since the particle size of lead tribasic sulfate is very small, within 5 μm, the surface area of the active material formed from it is high, but the bonding strength between particles is low, and thus the life is short. As the period is very long, at least 15 hours, it is gradually being replaced by high temperature aging.

그러나, 고온숙성에 의해 형성된 사염기황산납은 40㎛ 이상의 큰 입자가 형성되어, 화성과정에서 이산화납으로 변하는 비율(이하, 화성효율이라 함)이 낮아서, 사용 초기 성능이 떨어지는 문제가 있다.However, the lead tetrabasic sulfate formed by high temperature aging has a large particle size of 40 μm or more, and the rate of change to lead dioxide in the chemical conversion process (hereinafter referred to as chemical conversion efficiency) is low, resulting in a problem of poor performance at the initial stage of use.

특히, 자동차 시동용으로 사용하는 경우에 이런 현상은 큰 약점이 되기 때문에 아직까지 이 용도의 전지에는 저온숙성법으로 제조된 양극판이 사용되고 있다.In particular, since this phenomenon is a great weak point when used for starting a car, a positive electrode plate manufactured by a low temperature aging method is still used in batteries for this purpose.

사염기황산납의 화성효율을 높이기 위한 방법으로는 첨가물을 사용하여 사염기황산납의 입자크기를 줄이는 방법과 화성전류 공급방식을 변경하는 방법이 있다.As a method for increasing the chemical conversion efficiency of lead tetrachloride, there is a method of reducing the particle size of lead tetrachloride by using additives and a method of changing the current supplying method.

상기 첨가물로는 금속염 또는 유기물을 사용하는데, 다양한 알킬기를 갖는 유기황산염 또는 유기황산을 첨가할 경우 뛰어난 입자크기 감속 효과가 있고, 특히 탄소수가 8개 미만인 알킬기를 갖는 유기황산을 첨가물로 사용하면 그 효과가 뛰어나지만, 가격이 매우 높다는 단점이 있다.As the additives, metal salts or organic substances are used. When adding organic sulfates or organic sulfates having various alkyl groups, there is an excellent particle size deceleration effect. Especially, when organic sulfuric acids having alkyl groups having less than 8 carbon atoms are used as additives Is excellent, but the price is very high.

탄소수가 12개인 도데실황산 또는 도데실황산나트륨은 범용 계면활성제로 싼 가격에 구입하여 사용할 수 있으나, 납축전지에 사용할 경우 수명을 단축시키고 화성시 다량의 거품이 발생하는 문제가 있다. 반면, 같은 효과를 보이면서 이상의 단점들이 없는 탄소수 8개 미만인 알킬기를 포함하는 유기황산은 용도가 많지 않고 합성 및 정제가 어려운 등의 이유로 매우 고가이다.Dodecyl sulfate or sodium dodecyl sulfate having 12 carbon atoms can be purchased and used at a low price as a general-purpose surfactant, but when used in lead acid batteries, there is a problem of shortening the life and generating a large amount of foam when forming Mars. On the other hand, the organic sulfuric acid containing an alkyl group having less than 8 carbon atoms without the above disadvantages while showing the same effect is very expensive due to the lack of use and difficult synthesis and purification.

그러나, 유기황산을 납축전지에 첨가물로 사용할 경우 반드시 고순도이어야 할 필요는 없다.However, when organic sulfuric acid is used as an additive in a lead acid battery, it does not necessarily have to be high purity.

따라서, 본 발명자들은 황산이 원래의 혼합공정의 원료로 사용된다는 점에 착안하여 황산과 유기황산과의 혼합물을 고순도의 유기황산을 제조하는 것보다 훨씬 저렴하게 제조할 수 있다는 사실을 알아냈다.Accordingly, the inventors have found that sulfuric acid is used as a raw material for the original mixing process, and thus it is possible to produce a mixture of sulfuric acid and organic sulfuric acid much cheaper than to produce high purity organic sulfuric acid.

이에 본 발명은 저렴하게 제조된 유기황산을 사용하여 고온숙성이 생성되는 사염기황산납의 입자크기를 줄여 우수한 성능의 납축전지 양극판을 제조하는 방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for producing a lead acid battery positive electrode plate having excellent performance by reducing the particle size of lead tetrabasic sulfate produced by high temperature aging using organic sulfuric acid produced at low cost.

본 발명은 납과 산화납의 미세한 분말로 구성된 연분을 물 및 황산과 함께 혼합 및 반죽하는 단계, 이를 집전체에 도포한 후 일정시간 숙성 및 건조하는 단계, 전기를 흘려서 활물질을 이산화납으로 변환시키는 화성단계로 이루어진 납축전지의 제조공정에 있어서, 상기 혼합 및 반죽하는 단계에서 탄소수가 8개 미만인 알콜과 희석황산을 반응시켜 얻은 유기황산과 황산의 혼합물을 연분 1㎏당 3 내지 10㏄를 첨가하는 것을 특징으로 하는 납축전지 양극판의 제조방법이다.The present invention is a step of mixing and kneading the lead powder composed of fine powder of lead and lead oxide together with water and sulfuric acid, applying it to a current collector and then aging and drying for a predetermined time, converting the active material into lead dioxide by flowing electricity In the manufacturing process of the lead-acid battery consisting of the steps, adding 3 to 10 kPa per kilogram of the organic sulfuric acid and sulfuric acid obtained by reacting a dilute sulfuric acid with an alcohol having less than 8 carbon atoms in the mixing and kneading step It is a manufacturing method of the lead acid battery positive electrode plate characterized by the above-mentioned.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

유기황산과 황산의 혼합물은 원하는 탄소배열구조를 갖는 알콜과 황산을 간단히 혼합하여 얻을 수 있다. 이 반응은 산촉매에 의하여 알콜의 -OH기가 떨어져 나가고 여기에 주변의 황산이온이 결합하는 반응으로 다음의 화학식 1과 같다.The mixture of organic sulfuric acid and sulfuric acid can be obtained by simply mixing sulfuric acid with an alcohol having a desired carbon arrangement. This reaction is a reaction in which the -OH group of the alcohol is separated by an acid catalyst and the surrounding sulfate ions are bonded thereto, as shown in Formula 1 below.

ROH + H2SO4→ ROSO3H + H2OROH + H 2 SO 4 → ROSO 3 H + H 2 O

상기에서, 사용하는 황산은 물과 섞여있는 희석황산으로 50 내지 90중량%정도 범위의 농도가 적절하다. 50중량% 미만이면 반응속도가 매우 느려지고, 90중량% 이상이면 물에 해리된 황산이온의 양이 너무 적어 -OH기가 떨어진 상태의 알킬기가 바로 황산과 반응하지 못하고, 알켄으로 변하는 등의 여러 가지 부반응이 일어날 수 있다.In the above, the sulfuric acid to be used is diluted sulfuric acid mixed with water, and a concentration in the range of about 50 to 90% by weight is appropriate. If it is less than 50% by weight, the reaction rate becomes very slow, and if it is more than 90% by weight, the amount of sulfate ions dissociated in water is so small that the alkyl group in which the -OH group is dropped does not immediately react with sulfuric acid and turns into alkenes. This can happen.

반응에 사용하는 황산과 알콜의 양의 비는 몰비로 2:1 내지 4:1 정도, 즉 이 비율에서 좋은 결과를 얻을 수 있어서 바람직하고, 이후 납축전지 공정상에서 사용하는 황산의 일부를 이 첨가물이 공급할 수 있다면 20:1정도까지 사용하여도 무방하다. 이는 황산이 많을수록 투입한 알콜이 충분히 반응할 수 있고, 남은 황산은 혼합 과정에서 연분과 반응하여 삼염기황산납 등으로 변하기 때문에, 별도로 투입하는 황산의 양만 조절하면 고순도의 유기황산을 사용하는 것과 동일한 효과를 거둘 수 있기 때문이다.The ratio of the amount of sulfuric acid and alcohol used in the reaction is preferably molar ratio of 2: 1 to 4: 1, that is, good results can be obtained at this ratio. Then, a part of sulfuric acid used in the lead acid battery process is added to this additive. If it can be supplied, it can be used up to 20: 1. This means that the more sulfuric acid, the more the alcohol can react, and the remaining sulfuric acid reacts with lead in the mixing process to lead tribasic sulfate, which is the same as using high-purity organic sulfuric acid. Because it can work.

반응은 알콜과 희석황산을 빠른 속도로 혼합하는 방법과, 둘 중의 하나를 서서히 첨가하는 방법이 있다. 두 방법 모두 납축전지 양극 첨가물로 사용하여 좋은 효과를 거둘 수 있으나, 두 물질을 급격히 혼합하는 방법이 더 좋다.The reaction can be carried out by mixing alcohol and dilute sulfuric acid at a high speed and slowly adding one of them. Both methods can be used as a lead-acid battery positive additive to achieve a good effect, but the method of rapidly mixing the two materials is better.

상기 방법으로 제조된 유기황산과 황산의 혼합물은 연분 1㎏당 1㏄ 내지 50㏄ 사용할 수 있고, 바람직하게는 3㏄ 내지 10㏄의 정도가 적합하다.The mixture of the organic sulfuric acid and sulfuric acid prepared by the above method can be used from 1 kPa to 50 kPa per kg of lead, preferably about 3 kPa to 10 kPa.

이하, 실시예를 들어 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

바톤 포트(Barton Pot)방식으로 제조한 연분에 물과 비중 1.4의 황산을 자동차용 축전지의 제조에 사용하는 배합비로 혼합하고, 여기에 80중량%의 희석황산과 n-부틸알콜을 몰비로 2.5:1이 되도록 빠른 속도로 혼합하고 약 3시간 동안 방치하여 얻은 유기황산 화합물과 황산의 혼합물을 양극 페이스트 혼합단계에서 연분 1㎏당 4㏄ 투입한 다음, 이후 반죽하여 페이스트를 제조하였다. 이 페이스트를 1.5% 안티몬을 함유하는 납합금으로 된 격자형의 집전체에 도포하여 얻은 극판을 92℃, 99% 상대습도에서 3시간 동안 숙성하고, 3일간 대기중에서 건조하였다. 이상의 극판중 하나의 활물질을 주사전자현미경으로 관찰하고, 나머지 극판은 이론 전류량의 140%로 화성하고, 이를 이용하여 양극 2매와 음극 3매, 그리고 다공성의 폴리에틸렌 격리판으로 구성되고, 비중 1.28의 황산을 전해액으로 하는 20Ah(5시간율 기준)-2V의 전지를 조립하였다. 이 전지는 5시간율(4.0A)로 3회 용량시험을 하였다. 그 결과를 표 1에 나타내었다.Water and sulfuric acid having a specific gravity of 1.4 are mixed with a mixture prepared by a Barton Pot method at a compounding ratio used for manufacturing an automotive battery, and 80 wt% of dilute sulfuric acid and n-butyl alcohol are mixed at a molar ratio of 2.5: A mixture of the organic sulfuric acid compound and sulfuric acid obtained by mixing at a high speed to 1 and left for about 3 hours was added 4 당 per kg of lead per 1 kg in the positive electrode paste mixing step, and then kneaded to prepare a paste. The paste was applied to a lattice-shaped current collector made of a lead alloy containing 1.5% antimony, aged at 92 ° C. and 99% relative humidity for 3 hours, and dried in air for 3 days. One active material of the above electrode plates was observed with a scanning electron microscope, and the other electrode plate was formed at 140% of the theoretical current amount, and was formed of two positive and negative electrodes, and a porous polyethylene separator, using a specific gravity of 1.28. A battery of 20 Ah (5-hour rate) -2V using sulfuric acid as an electrolyte was assembled. This battery was subjected to three capacity tests at a rate of 5 hours (4.0A). The results are shown in Table 1.

실시예 2Example 2

n-부틸알콜 대신 이소프로필 알콜을 동일한 양(몰 기준)만큼 사용하고, 기타사항은 실시예 1과 동일하게 하였다. 그 결과를 표 1에 나타내었다.Isopropyl alcohol was used in the same amount (based on molar basis) instead of n-butyl alcohol, and the others were the same as in Example 1. The results are shown in Table 1.

비교예Comparative example

첨가물로서 n-부틸알콜과 희석황산을 첨가하지 않는 것만 제외하고, 실시예 1과 동일하게 하였다. 그 결과를 표 1에 나타내었다.It carried out similarly to Example 1 except not adding n-butyl alcohol and dilute sulfuric acid as an additive. The results are shown in Table 1.

표 1Table 1

특성characteristic 입자길이(㎛)Particle Length (㎛) 입자두께(㎛)Particle Thickness (㎛) PbO2생성률(%)PbO 2 Formation Rate (%) 초기용량(Ah)Initial capacity (Ah) 실시예 1Example 1 3030 55 9292 27.327.3 실시예 2Example 2 3030 44 9090 26.326.3 비교예Comparative example 8080 1515 4848 14.714.7

표에 나타난 바와 같이 본 발명에 따른 실시예 1 및 2의 경우 고온숙성 과정에서 생성되는 사염기황산납의 입자크기가 감소하였고, 이에 따라 이산화납의 생성률 및 이 극판을 이용하여 제작한 전지의 초기용량이 증가하였다.As shown in the table, in Examples 1 and 2 according to the present invention, the particle size of the lead tetrachloride sulfate produced during the high temperature aging process was reduced, and thus the production rate of lead dioxide and the initial capacity of the battery manufactured using the electrode plate were decreased. Increased.

본 발명에 따른 납축전지 양극판의 제조방법은 고온숙성에 의해 성성되는 사염기황산납의 입자크기를 줄이는 방법인 탄소수가 8개 미만인 알킬기를 갖는 유기황산을 첨가하는 과정에서 고가로 제조되는 유기황산 대신 상기 납축전지 양극판의 제조공정중에 탄소수가 8개 미만인 알콜과 희석황산을 사용하므로서 비용을 절감할 수 있고, 고가의 유기황산을 사용함으로써 얻은 효과와 동일한 효과를 얻을 수 있다.The method for manufacturing a lead-acid battery positive electrode plate according to the present invention is an alternative to organic sulfuric acid produced at a high cost in the process of adding an organic sulfuric acid having an alkyl group having less than 8 carbon atoms, which is a method of reducing the particle size of lead tetrachloride sulfate formed by high temperature aging. In the manufacturing process of the lead-acid battery positive electrode plate, it is possible to reduce the cost by using alcohol having less than 8 carbon atoms and dilute sulfuric acid, and the same effect as that obtained by using an expensive organic sulfuric acid can be obtained.

Claims (2)

납과 산화납의 미세한 분말로 구성된 연분을 물 및 황산과 함께 혼합 및 반죽하는 단계, 이를 집전체에 도포한 후 일정시간 숙성 및 건조하는 단계, 전기를 흘려서 활물질을 이산화납으로 변환시키는 화성단계로 이루어진 납축전지의 제조공정에 있어서, 상기 혼합 및 반죽하는 단계에서 탄소수가 8개 미만인 알콜과 희석황산을 반응시켜 얻은 유기황산과 황산의 혼합물을 연분 1㎏당 3 내지 10㏄를 첨가하는 것을 특징으로 하는 납축전지 양극판의 제조방법.Mixing and kneading the lead powder composed of fine powder of lead and lead oxide together with water and sulfuric acid, applying it to the current collector, aging and drying for a certain time, and converting the active material into lead dioxide by flowing electricity. In the manufacturing process of the lead acid battery, the mixture of the organic sulfuric acid and sulfuric acid obtained by reacting the alcohol having less than 8 carbon atoms and dilute sulfuric acid in the mixing and kneading step is added 3 to 10 kPa per kg per year Manufacturing method of lead acid battery positive plate. 제 1항에 있어서, 상기 유기황산과 황산의 혼합물의 제조시 사용되는 황산과 알콜의 몰비가 2:1 내지 4:1인 납축전지 양극판의 제조방법.The method of claim 1, wherein the molar ratio of sulfuric acid and alcohol used in the preparation of the mixture of organic sulfuric acid and sulfuric acid is 2: 1 to 4: 1.
KR1019970060970A 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery KR100266132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970060970A KR100266132B1 (en) 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970060970A KR100266132B1 (en) 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery

Publications (2)

Publication Number Publication Date
KR19990040538A KR19990040538A (en) 1999-06-05
KR100266132B1 true KR100266132B1 (en) 2000-09-15

Family

ID=19525023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970060970A KR100266132B1 (en) 1997-11-19 1997-11-19 A method for preparing anode plate of lead storage battery

Country Status (1)

Country Link
KR (1) KR100266132B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100468957B1 (en) * 2000-11-17 2005-01-29 한국타이어 주식회사 Method for the formation of positive plate of a lead storage battery
KR100448017B1 (en) * 2002-09-18 2004-09-08 한국타이어 주식회사 An electrode composition for lead storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938063A (en) * 1957-12-06 1960-05-24 Nat Lead Co Storage battery active material
US3969141A (en) * 1973-11-01 1976-07-13 Aktiebolaget Tudor Powder mixture for production of lead storage battery electrodes and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938063A (en) * 1957-12-06 1960-05-24 Nat Lead Co Storage battery active material
US3969141A (en) * 1973-11-01 1976-07-13 Aktiebolaget Tudor Powder mixture for production of lead storage battery electrodes and method

Also Published As

Publication number Publication date
KR19990040538A (en) 1999-06-05

Similar Documents

Publication Publication Date Title
US7459140B2 (en) Production of tetrabasic lead sulfate from solid state reactions for the preparation of active plates to be used in lead-acid batteries
US5660600A (en) Batteries and materials useful therein
CN107735889A (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
US5273554A (en) Process for fabricating a battery
Zhang et al. Lead sulfate used as the positive active material of lead acid batteries
KR100266132B1 (en) A method for preparing anode plate of lead storage battery
KR101775335B1 (en) Manufacturing method of positive grid for lead-acid battery
KR100266133B1 (en) A method for preparing anode plate of lead storage battery using activated material cured at high temperature
KR100250866B1 (en) A method for preparing anode plate of lead storage battery
CN114883553B (en) Alkaline solution selective corrosion preparation of porous nano Li 2 FeSiO 4 Method of/C
US3259522A (en) Manufacture of active mass for leadacid storage battery plates, active masses so produced, and plates with such masses
EP4064386A1 (en) Core-shell particles based on red lead for lead-acid batteries
KR20080055533A (en) Method for manufacturing positive plate 0f storage battery
JP2553624B2 (en) Paste type cadmium negative electrode
JPS6030054A (en) Manufacture of plate for paste type lead-acid battery
CN112753114B (en) Negative electrode for lead storage battery and lead storage battery
JP3328332B2 (en) Batteries and useful materials for the batteries
JPH0414760A (en) Lead-acid accumulator
CN1337751A (en) Manufacture of lead accumulator modified by nanometer silicon-base oxide
KR19990003203A (en) Manufacturing method of lead acid battery positive plate
CA1210807A (en) Active material for cathode of lead storage battery
CN111009657A (en) Lead-antimony oxide and preparation method and application thereof
JPS6226148B2 (en)
JPS62150653A (en) Positive electrode plate of cladding type lead cell
JPS62103974A (en) Positive electrode plate for clad lead battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060612

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee