Nothing Special   »   [go: up one dir, main page]

KR100226503B1 - Manufacturing Method of Semiconductor Device - Google Patents

Manufacturing Method of Semiconductor Device Download PDF

Info

Publication number
KR100226503B1
KR100226503B1 KR1019970034247A KR19970034247A KR100226503B1 KR 100226503 B1 KR100226503 B1 KR 100226503B1 KR 1019970034247 A KR1019970034247 A KR 1019970034247A KR 19970034247 A KR19970034247 A KR 19970034247A KR 100226503 B1 KR100226503 B1 KR 100226503B1
Authority
KR
South Korea
Prior art keywords
region
semiconductor substrate
forming
gate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970034247A
Other languages
Korean (ko)
Other versions
KR19990011233A (en
Inventor
김성진
Original Assignee
김영환
현대반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대반도체주식회사 filed Critical 김영환
Priority to KR1019970034247A priority Critical patent/KR100226503B1/en
Publication of KR19990011233A publication Critical patent/KR19990011233A/en
Application granted granted Critical
Publication of KR100226503B1 publication Critical patent/KR100226503B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • H10D62/292Non-planar channels of IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • H10D30/0227Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • H10D64/518Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

본 발명은 반도체장치의 제조방법에 관한 것으로서 활성영역과 필드영역을 갖는 제 1 도전형의 반도체기판 상의 상기 활성영역 내에 게이트영역을 한정하는 마스크층을 형성하는 공정과, 상기 반도체기판 상의 마스크층이 형성되지 않은 부분에 희생산화막을 형성하는 공정과, 상기 마스크층 및 희생산화막을 제거하여 상기 반도체기판의 표면이 소정 경사각으로 단차를 갖도록 형성하는 공정과, 상기 반도체기판의 필드영역에 필드산화막을 형성하는 공정과, 상기 반도체기판 상의 단차 부분에 경사면을 덮도록 게이트산화막 및 게이트를 형성하는 공정과, 상기 반도체기판내에 소오스 및 드레인 영역으로 이용되는 제 2 도전형의 불순물영역을 형성하는 공정을 구비한다. 따라서, 반도체기판의 게이트영역을 표면이 소정 경사각을 가지면서 단차를 이루므로 채널 길이가 증가되므로 단채널 효과가 발생되는 것을 감소시킬 수 있으며, 또한, 저농도영역과 소오스 및 드레인영역으로 이용되는 제 2 고농도영역을 채널 부근에서 제 1 고농도영역이 포켓 형상으로 에워싸므로 펀치스루우 현상을 방지할 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, comprising: forming a mask layer defining a gate region in an active region on a first conductive semiconductor substrate having an active region and a field region; Forming a sacrificial oxide film on a portion not formed, removing the mask layer and the sacrificial oxide film so that the surface of the semiconductor substrate has a step at a predetermined inclination angle, and forming a field oxide film in the field region of the semiconductor substrate And forming a gate oxide film and a gate so as to cover an inclined surface on the stepped portion on the semiconductor substrate, and forming an impurity region of a second conductivity type used as a source and a drain region in the semiconductor substrate. . Therefore, since the channel length is increased because the surface of the gate region of the semiconductor substrate has a predetermined inclination angle, the short channel effect can be reduced and a second concentration used as a low concentration region and a source and drain region. Since the first high concentration region surrounds the high concentration region in a pocket shape near the channel, the punch-through phenomenon can be prevented.

Description

반도체장치의 제조방법Manufacturing Method of Semiconductor Device

본 발명은 반도체장치의 제조방법에 관한 것으로서, 특히, 펀치 스루우 및 단채널효과 특성을 향상시킬 수 있는 반도체장치의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of improving punch through and short channel effect characteristics.

반도체장치가 고접적화됨에 따라 각각의 셀은 미세해져 내부의 전계강도가 증가된다. 이러한 전계 강도의 증가는 소자 동작시 드레인 부근의 공핍층에서 채널영역의 캐리어를 가속시켜 게이트산화막으로 주입시키는 핫-캐리어 효과(hot-carrier effect)를 일으킨다. 상기 게이트산화막에 주입된 캐리어는 반도체기판과 게이트산화막의 계면에 준위를 생성시켜 드레쉬홀드전압(threshold voltage : VTH)을 변화시키거나 상호 컨덕턴스를 저하시켜 소자 특성을 저하시킨다. 그러므로, 핫-캐리어 효과에 의한 소자 특성의 저하를 감소시키기 위해 LDD(Lightly Doped Drain)등과 같이 드레인 구조를 변화시킨 구조를 하용하여야 한다.As semiconductor devices become highly integrated, each cell becomes finer and the internal electric field strength increases. This increase in electric field strength causes a hot-carrier effect in which the carrier of the channel region is accelerated and injected into the gate oxide layer in the depletion layer near the drain during operation of the device. The carrier injected into the gate oxide film creates a level at the interface between the semiconductor substrate and the gate oxide film, thereby changing the threshold voltage (V TH ) or decreasing the mutual conductance, thereby degrading device characteristics. Therefore, in order to reduce the deterioration of device characteristics due to the hot-carrier effect, a structure in which the drain structure is changed such as LDD (Lightly Doped Drain) or the like should be used.

도 1a 내지 도 1c는 종래 기술에 따른 반도체장치의 제조 공정도이다.1A to 1C are manufacturing process diagrams of a semiconductor device according to the prior art.

도 1a를 참조하면, P형의 반도체기판(11) 표면의 소정부분에 LOCOS(Local Oxidation of Silicon) 등의 통상적인 선택산화방법에 의해 필드산화막(13)을 형성하여 소자의 활성영역 및 필드영역을 한정한다.Referring to FIG. 1A, a field oxide film 13 is formed on a predetermined portion of a surface of a P-type semiconductor substrate 11 by a conventional selective oxidation method such as LOCOS (Local Oxidation of Silicon) to form an active region and a field region of a device. To qualify.

도 1b를 참조하면, 반도체기판(11)의 표면을 열산화하여 게이트산화막(15)을 형성한다. 그리고, 필드산화막(13) 및 게이트산화막(15)의 상부에 다결정실리콘을 화학기상증착(Chemical Vapor Deposition : 이하, CVD라 칭함) 방법으로 증착하고 포토리쏘그래피(photolithography) 방법으로 패터닝하여 게이트(17)를 한정한다. 게이트(17)을 마스크로 사용하여 반도체기판(11)의 노출된 부분에 N형의 불순물을 저농도로 이온주입하여 LDD구조를 형성하기 위한 저농도영역(19)을 형성한다.Referring to FIG. 1B, a gate oxide film 15 is formed by thermally oxidizing the surface of the semiconductor substrate 11. Then, polycrystalline silicon is deposited on the field oxide film 13 and the gate oxide film 15 by chemical vapor deposition (hereinafter, referred to as CVD), and patterned by photolithography to form the gate 17. ). A low concentration region 19 for forming an LDD structure is formed by implanting N-type impurities at low concentration into the exposed portion of the semiconductor substrate 11 using the gate 17 as a mask.

도 1c를 참조하면, 게이트(17)의 측면에 측벽(21)을 형성한다. 상기에서 측벽(21)은 산화실리콘을 증착한 후 게이트(17) 및 반도체기판(11)이 노출되도록 에치백(etchback)하므로써 형성된다. 그리고, 게이트(17)와 측벽(21)을 마스크로 사용하여 반도체기판(11)에 N형의 불순물을 고농도로 이온주입하여 소오스 및 드레인 영역으로 이용되는 고농도영역(23)을 형성한다. 이때, 고농도영역(23)은 저농도영역(19)과 중첩되게 형성된다.Referring to FIG. 1C, the sidewall 21 is formed on the side of the gate 17. In this case, the sidewall 21 is formed by etching back the silicon oxide and the gate 17 and the semiconductor substrate 11 after deposition. N-type impurities are implanted at high concentration into the semiconductor substrate 11 using the gate 17 and the sidewall 21 as a mask to form a high concentration region 23 used as a source and a drain region. In this case, the high concentration region 23 is formed to overlap the low concentration region 19.

그러나, 상술한 바와 같이 종래 기술은 반도체장치가 고집적화되어 소자의 크기가 감소됨에 따라 게이트의 길이가 짧아져 채널의 길이가 감소되므로 단채널효과가 발생될 뿐만 아니라 펀치스루우가 증가되는 문제점이 있었다.However, as described above, the conventional technology has a problem in that a short channel effect is generated and a punch-through is increased because the length of the gate is shortened as the length of the gate is shortened as the size of the device is reduced due to the high integration of the semiconductor device.

따라서, 본 발명의 목적은 소자의 크기가 감소되어도 채널의 길이가 감소되는 것을 억제하여 단채널효과가 발생되는 것을 감소시킬 수 있는 반도체장치의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device which can reduce the occurrence of a short channel effect by suppressing the decrease in the length of the channel even if the size of the device is reduced.

본 발명의 다른 목적은 소자의 크기가 감소되어도 펀치스루우가 증가되는 것을 방지할 수 있는 반도체장치의 제조방법을 제공함에 있다.Another object of the present invention is to provide a method of manufacturing a semiconductor device which can prevent an increase in punch-through even when the size of an element is reduced.

상기 목적들을 달성하기 위한 본 발명에 따른 반도체장치의 제조방법은 활성영역과 필드영역을 갖는 제 1 도전형의 반도체기판 상의 상기 활성영역 내에 게이트영역을 한정하는 마스크층을 형성하는 공정과, 상기 반도체기판 상의 마스크층이 형성되지 않는 부분에 희생산화막을 형성하는 공정과, 상기 마스크층 및 희상산화막을 제거하여 상기 반도체기판의 표면이 소정 경사각으로 단차를 갖도록 형성하는 공정과, 상기 반도체기판의 필드영역에 필드산화막을 형성하는 공정과, 상기 반도체기판 상의 단차 부분에 경사면을 덮도록 게이트산화막 및 게이트를 형성하는 공정과, 상기 반도체기판 내에 소오스 및 드레인 영역으로 이용되는 제 2 도전형의 불순물 영역을 형성하는 공정을 구비한다.A method of manufacturing a semiconductor device according to the present invention for achieving the above objects comprises the steps of forming a mask layer defining a gate region in the active region on a first conductivity type semiconductor substrate having an active region and a field region; Forming a sacrificial oxide film on a portion where the mask layer is not formed on the substrate, removing the mask layer and the oxidized oxide film so that the surface of the semiconductor substrate has a step at a predetermined inclination angle, and a field region of the semiconductor substrate Forming a field oxide film on the semiconductor substrate, forming a gate oxide film and a gate so as to cover an inclined surface on the stepped portion on the semiconductor substrate, and forming a second conductivity type impurity region to be used as a source and a drain region in the semiconductor substrate. It is equipped with the process of doing.

이하 첨부한 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제1a도 내지 제1c도는 종래 기술에 따른 반도체 장치의 제조 공정도1A to 1C are manufacturing process diagrams of a semiconductor device according to the prior art.

제2a도 내지 제2e도는 본 발명에 따른 반도체장치의 제조 공정도2A through 2E are manufacturing process diagrams of a semiconductor device according to the present invention.

도 2a 내지 도 2e는 본 발명에 따른 반도체장치의 제조 공정도이다.2A to 2E are manufacturing process diagrams of a semiconductor device according to the present invention.

도 2a를 참조하면, P형의 반도체기판(31) 상에 열산화 방법에 의해 버퍼산화막(33)을 형성하고, 이 버퍼산화막(33) 상에 CVD 방법으로 질화실리콘을 증착하여 마스크층(35)을 형성한다. 그리고, 마스크층(35) 및 버퍼산화막(33)을 게이트영역에만 잔류하도록 포토리쏘그래피 방법으로 패터닝한다.Referring to FIG. 2A, a buffer oxide film 33 is formed on a P-type semiconductor substrate 31 by a thermal oxidation method, and silicon nitride is deposited on the buffer oxide film 33 by a CVD method to form a mask layer 35. ). The mask layer 35 and the buffer oxide film 33 are patterned by the photolithography method so as to remain only in the gate region.

도 2b를 참조하면, 반도체기판(31)의 마스크층(35)이 형성되지 않은 부분에 보론(B) 등의 P형의 불순물을 고농도로 이온주입하여 제 1 고농도영역(37)을 형성한다. 그리고, 반도체기판(31)의 마스크층(35)이 형성되지 않은 부분을 열산화하여 두꺼운 희생산화막(39)을 형성한다. 이때, 희생산화막(39)은 마스크층(35) 하부로도 성장되어 버즈 빅(bird'd beak)이 형성된다.Referring to FIG. 2B, the first high concentration region 37 is formed by implanting P-type impurities such as boron B at a high concentration in a portion where the mask layer 35 of the semiconductor substrate 31 is not formed. The thick sacrificial oxide film 39 is formed by thermally oxidizing a portion where the mask layer 35 of the semiconductor substrate 31 is not formed. In this case, the sacrificial oxide layer 39 is also grown under the mask layer 35 to form a bird'd beak.

도 2c를 참조하면, 마스크층(35)을 제거하고 버퍼산화막(33) 및 희생산화막(39)을 제거하여 반도체기판(31)을 노출시킨다. 이때, 반도체기판(31)은 희생산화막(39)에 의해 표면이 소정 경사각을 가지면서 단차를 이루므로 표면의 크기가 증가된다. 그리고, 반도체기판(31)의 소정 부분, 즉, 필드영역에 LOCOS(Local Oxidation of Silicon) 등의 선택산화방법에 의해 소자의 활성영역을 한정하는 필드산화막(41)을 형성한다. 상기에서, 필드산화막(41)을 반도체기판(31)에 트렌치를 형성하고 산화실리콘을 채워 형성할 수도 있다.Referring to FIG. 2C, the mask layer 35 is removed and the buffer oxide film 33 and the sacrificial oxide film 39 are removed to expose the semiconductor substrate 31. At this time, the surface of the semiconductor substrate 31 is stepped by the sacrificial oxide film 39 to have a predetermined inclination angle, thereby increasing the size of the surface. A field oxide film 41 is formed in a predetermined portion of the semiconductor substrate 31, that is, in the field region, to define the active region of the device by a selective oxidation method such as LOCOS (Local Oxidation of Silicon). In the above description, the field oxide film 41 may be formed in the semiconductor substrate 31 by filling the trench with silicon oxide.

도 2d를 참조하면, 반도체기판(31) 상의 활성영역 내의 게이트영역에 게이트산화막(43)을 형성하고, 이 게이트산화막(43) 상에 게이트(45)를 형성한다. 상기에서 게이트(45)를 불순물이 도핑된 다결정실리콘 또는 다결정실리콘/실리사이드의 폴리사이드 구조를 형성한 후 패터닝하여 형성한다. 이때, 게이트(45)는 반도체기판(31)의 단차를 이루는 경사면을 덮도록 형성한다. 그리고, 게이트(45)를 마스크로 사용하여 인(P) 또는 에세닉(As) 등의 N형의 불순물을 저농도로 이온주입하여 제 1 고농도영역(37) 내에 포함되도록 LDD 구조를 형성하기 위한 저농도영역(47)을 형성한다. 상기에서 게이트(45) 하부의 저농도영역(47) 사이는 채널로 사용되는 것으로, 이 채널이 단차를 이루는 경사면을 포함하도록 형성되므로 채널 길이가 증가된다. 그러므로, 채널의 길이가 감소되는 것을 억제하여 단채널효과가 발생되는 것을 감소시킬 수 있다.Referring to FIG. 2D, the gate oxide film 43 is formed in the gate region in the active region on the semiconductor substrate 31, and the gate 45 is formed on the gate oxide film 43. The gate 45 is formed by forming and then patterning a polyside structure of polycrystalline silicon or polycrystalline silicon / silicide doped with impurities. In this case, the gate 45 is formed to cover the inclined surface forming the step of the semiconductor substrate 31. In addition, using the gate 45 as a mask, a low concentration for forming an LDD structure to be included in the first high concentration region 37 by ion implantation of N-type impurities such as phosphorus (P) or ethnic (As) at low concentrations. Area 47 is formed. The low concentration region 47 under the gate 45 is used as a channel, and the channel length is increased because the channel is formed to include an inclined surface forming a step. Therefore, it is possible to suppress that the length of the channel is reduced to reduce the occurrence of the short channel effect.

도 2e를 참조하면, 게이트(45)의 측면에 저농도영역(47)의 소정 부분과 중첩되는 측벽(49)을 형성한다. 상기에서 측벽(41)은 산화실리콘을 CVD방법으로 게이트(45)를 덮도록 증착한 후 게이트(45) 및 반도체기판(31)이 노출되도록 반응성이온식각 등의 이방성 식각방법으로 에치백하므로써 형성된다. 그리고 게이트(45)와 측벽(49)을 마스크로 사용하여 반도체기판(31)에 인(P) 또는 아세닉(As) 등의 N형의 불순물을 고농도로 이온주입하여 소오스 및 드레인 영역으로 이용되는 제 2 고농도영역(51)을 형성한다. 이때, 제 2 고농도영역(51)은 제 1 고농도영역(37) 및 저농도영역(47)의 소정 부분과 중첩되게 형성된다. 그러므로, 제 1 고농도영역(37) 은 채널 부근에서 제 2 고농도영역(51) 및 저농도영역(47)을 포켓 형상으로 에워싸므로 펀치스루우 현상을 방지할 수 있다. 그리고 필드산화막(41) 하부의 제 1 고농도영역(37)은 채널스토퍼가 된다.Referring to FIG. 2E, a sidewall 49 is formed on the side of the gate 45 to overlap a predetermined portion of the low concentration region 47. The sidewalls 41 are formed by depositing silicon oxide to cover the gate 45 by CVD and then etching back by anisotropic etching such as reactive ion etching to expose the gate 45 and the semiconductor substrate 31. . N-type impurities, such as phosphorus (P) or arsenic (As), are implanted at high concentration into the semiconductor substrate 31 by using the gate 45 and the sidewalls 49 as masks, which are used as source and drain regions. The second high concentration region 51 is formed. In this case, the second high concentration region 51 is formed so as to overlap a predetermined portion of the first high concentration region 37 and the low concentration region 47. Therefore, since the first high concentration region 37 surrounds the second high concentration region 51 and the low concentration region 47 in the pocket shape near the channel, the punch-through phenomenon can be prevented. The first high concentration region 37 under the field oxide film 41 becomes a channel stopper.

따라서, 본 발명은 반도체기판의 게이트영역을 포면이 소정 경사각을 가지면서 단차를 이루므로 채널 길이가 증가되므로 단채널 효과가 발생되는 것을 감소시킬 수 있는 잇점이 있다. 또한, 저농도영역과 소오스 및 드레인영역으로 이용되는 제 2 고농도영역을 채널 부근에서 제 1 고농도영역이 포켓 형상으로 에워싸므로 펀치스루우 현상을 방지할 수 있는 잇점이 있다.Therefore, the present invention has the advantage that the short channel effect can be reduced because the channel length is increased because the surface of the gate region of the semiconductor substrate has a predetermined angle of inclination. In addition, since the first high concentration region is enclosed in the pocket shape in the vicinity of the channel, the second high concentration region used as the low concentration region and the source and drain regions has an advantage of preventing the punch-through phenomenon.

Claims (4)

활성영역과 필드영역을 갖는 제 1 도전형의 반도체기판 상의 상기 활성영역 내에 게이트영역을 한정하는 마스크층을 형성하는 공정과, 상기 반도체기판 상의 마스크층이 형성되지 않은 부분에 희생산화막을 형성하는 공정과, 상기 마스크층 및 희생산화막을 제거하여 상기 반도체기판의 표면이 소정 경사각으로 단차를 갖도록 형성하는 공정과, 상기 반도체기판의 필드영역에 필드산화막을 형성하는 공정과, 상기 반도체기판 상의 단차 부분에 경사면을 덮도록 게이트산화막 및 게이트를 형성하는 공정과, 상기 반도체기판 내에 소오스 및 드레인 영역으로 이용되는 제 2 도전형의 불순물 영역을 형성하는 공정을 구비하는 반도체장치의 제조방법.Forming a mask layer defining a gate region in the active region on the first conductive semiconductor substrate having an active region and a field region, and forming a sacrificial oxide film on a portion where the mask layer on the semiconductor substrate is not formed And removing the mask layer and the sacrificial oxide film so that the surface of the semiconductor substrate has a stepped angle at a predetermined inclination angle, forming a field oxide film in the field region of the semiconductor substrate, and forming a stepped portion on the semiconductor substrate. Forming a gate oxide film and a gate so as to cover the inclined surface; and forming a second conductive impurity region used as a source and a drain region in the semiconductor substrate. 청구항1에 있어서, 상기 마스크층을 질화실리콘으로 형성하는 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, wherein the mask layer is formed of silicon nitride. 청구항1에 있어서, 상기 마스크층을 형성하고 반도체기판의 상기 마스크층이 형성되지 않은 부분에 제 1 도전형의 고농도영역을 형성하는 공정을 더 구비하는 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, further comprising forming the mask layer and forming a high concentration region of a first conductivity type in a portion of the semiconductor substrate where the mask layer is not formed. 청구항1에 있어서, 상기 제 2 도전형의 불순물영역을 상기 게이트와 인접하는 부분에서 상기 제 1 도전형의 고농도영역이 포켓 형상으로 에워싸이도록 형성하는 반도체장치의 제조방법.The method of manufacturing a semiconductor device according to claim 1, wherein the impurity region of the second conductivity type is formed so as to surround the high concentration region of the first conductivity type in a pocket shape in a portion adjacent to the gate.
KR1019970034247A 1997-07-22 1997-07-22 Manufacturing Method of Semiconductor Device Expired - Fee Related KR100226503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970034247A KR100226503B1 (en) 1997-07-22 1997-07-22 Manufacturing Method of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970034247A KR100226503B1 (en) 1997-07-22 1997-07-22 Manufacturing Method of Semiconductor Device

Publications (2)

Publication Number Publication Date
KR19990011233A KR19990011233A (en) 1999-02-18
KR100226503B1 true KR100226503B1 (en) 1999-10-15

Family

ID=19515291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970034247A Expired - Fee Related KR100226503B1 (en) 1997-07-22 1997-07-22 Manufacturing Method of Semiconductor Device

Country Status (1)

Country Link
KR (1) KR100226503B1 (en)

Also Published As

Publication number Publication date
KR19990011233A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
US5406111A (en) Protection device for an intergrated circuit and method of formation
US20010011759A1 (en) Semiconductor device having a shallow trench isolation structure and a method for fabricating the same
US6001692A (en) Method of fabricating trench MOS
KR100588658B1 (en) Manufacturing method of MOS transistor of semiconductor device
KR100240113B1 (en) Manufacturing Method of Semiconductor Device
KR100236190B1 (en) Method of manufacturing semiconductor device
KR100226503B1 (en) Manufacturing Method of Semiconductor Device
KR100249011B1 (en) Manufacturing method of MOS device of semiconductor device
KR100240095B1 (en) Method for manufacturing semiconductor device
KR100240683B1 (en) Method for manufacturing semiconductor device
KR100269634B1 (en) A method of fabricating transistor
KR100236265B1 (en) Manufacturing Method of Semiconductor Device
KR100247694B1 (en) Manufacturing Method of Semiconductor Device
KR100269622B1 (en) A method of fabricating semiconductor device
KR100231131B1 (en) Manufacturing method of semiconductor
KR100202194B1 (en) Method of manufacturing semiconductor device
KR100304500B1 (en) Method for manufacturing semiconductor device
KR100236264B1 (en) Method of manufacturing semiconductor device
KR100521790B1 (en) Method of forming narrow thermal silicon dioxide side isolation regions in a semiconductor substrate and mos semiconductor device fabricated by this method
KR100202189B1 (en) Method of manufacturing semiconductor device
KR100221620B1 (en) Semiconductor device and the manufacturing method thereof
KR100497221B1 (en) Method For Manufacturing Semiconductor Devices
KR100254045B1 (en) Method for manufacturing semiconductor device
KR100231483B1 (en) Method of fabricating semiconductor device
KR19980066567A (en) Manufacturing Method of Semiconductor Device

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970722

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970722

Comment text: Request for Examination of Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19990628

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19990728

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19990729

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20020618

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20030620

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20040618

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20050621

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20060619

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20070622

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20080619

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20090624

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20100624

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20100624

Start annual number: 12

End annual number: 12

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee