Nothing Special   »   [go: up one dir, main page]

KR0180859B1 - Processing method of dietary fiber - Google Patents

Processing method of dietary fiber Download PDF

Info

Publication number
KR0180859B1
KR0180859B1 KR1019960001586A KR19960001586A KR0180859B1 KR 0180859 B1 KR0180859 B1 KR 0180859B1 KR 1019960001586 A KR1019960001586 A KR 1019960001586A KR 19960001586 A KR19960001586 A KR 19960001586A KR 0180859 B1 KR0180859 B1 KR 0180859B1
Authority
KR
South Korea
Prior art keywords
starch
dextrin
indigestible
plant fiber
whiteness
Prior art date
Application number
KR1019960001586A
Other languages
Korean (ko)
Other versions
KR970014604A (en
Inventor
이현수
김철신
우동호
방세운
Original Assignee
김경환
주식회사삼양제넥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김경환, 주식회사삼양제넥스 filed Critical 김경환
Priority to KR1019960001586A priority Critical patent/KR0180859B1/en
Publication of KR970014604A publication Critical patent/KR970014604A/en
Application granted granted Critical
Publication of KR0180859B1 publication Critical patent/KR0180859B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/5114Dextrins, maltodextrins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/50Polysaccharides, gums
    • A23V2250/51Polysaccharide
    • A23V2250/5116Other non-digestible fibres

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

본 발명은 백도와 난소화성 성분의 함량의 높은 식물섬유의 제조방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 전분소재를 이용하여 백도가 우수한 열처리 덱스트린(dextrin)을 제조한 다음, 여기에 난소화성의 식품용 고분자물질을 건식으로 혼합하여, 백도와 난소화성 성분의 함량이 높은 식물섬유를 제조하는 방법에 관한 것이다. 본 발명의 방법에 의해 제조되는 식물섬유소재는 지하전분, 특히 감자전분을 소재로 만든 식물섬유 소재보다 백도면에서 다소 유리하며, 난소화 상태로 대장에 도달하여 정장작용을 하고, 혈청중의 콜레스테롤 및 중성지방치를 낮추며 혈당치 및 인슐린 분비 상승을 억제하는 등의 효능이 있는 것으로 밝혀졌으므로, 이를 통해 응용할 수 있는 음료, 아이스크림, 빵, 과자 등을 비롯한 각종식품의 분야도 더욱 확대되리라 기대된다.The present invention relates to a method for producing plant fibers having a high content of whiteness and indigestible components. More specifically, the present invention is to prepare a heat treated dextrin (dextrin) with excellent whiteness by using a starch material, and then mixed with an indigestible food polymer material to dry, high content of whiteness and indigestible components It relates to a method for producing plant fibers. The plant fiber material produced by the method of the present invention is somewhat more advantageous in white cotton than the plant fiber material made of underground starch, especially potato starch, and reaches the large intestine in an ovarian state, and has a formal function, and cholesterol in serum. And since it has been found to be effective in lowering the triglyceride value and inhibiting the increase in blood sugar and insulin secretion, it is expected that the field of various foods including beverages, ice cream, bread, sweets, etc. that can be applied through this.

Description

[발명의 명칭][Name of invention]

백도와 난소화성 성분의 함량이 높은 식물섬유의 제조방법Method for producing plant fiber with high content of whiteness and indigestible components

[발명의 상세한 설명]Detailed description of the invention

본 발명은 백도와 난소화성 성분의 함량이 높은 식물섬유의 제조방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 전분소재를 이용하여 백도가 우수한 열처리 덱스트린(dextrin)을 제조한 다음, 여기에 난소화성의 식품용 고분자물질을 건식으로 혼합하여, 백도와 난소화성 성분의 함량이 높은 식물섬유를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing plant fiber having a high content of whiteness and indigestible components. More specifically, the present invention is to prepare a heat treated dextrin (dextrin) with excellent whiteness by using a starch material, and then mixed with an indigestible food polymer material to dry, high content of whiteness and indigestible components It relates to a method for producing plant fibers.

일반적으로, 열처리 덱스트린은 일정한 비율의 수분을 함유하는 전분을 산이 존재하거나 혹은 존재하지 않는 상태로 고온 열처리하여 제조한다. 이때, 전분분자는 가수분해 및 임의로 재중합하여 비소화성 부분이 어느 정도 포함된 수용성의 복잡한 구조를 띠게 되며, 기본 구성인 포도당이 1→4, 1→6 글리코시드결합(glycosidic linkage)된 것을 주성분으로 하고, 미량의 1→3, 1→2 글리코시드결합도 존재한다.In general, the heat treatment dextrin is prepared by high temperature heat treatment of starch containing a certain proportion of water in the presence or absence of acid. At this time, the starch molecule is hydrolyzed and optionally repolymerized to have a water-soluble complex structure containing a certain amount of non-digestible moieties, and the main component is glucose having 1 → 4, 1 → 6 glycosidic linkage as a main component. And trace amounts of 1 → 3 and 1 → 2 glycoside bonds are also present.

최근에는 생활수준이 향상됨에 따라 식생활이 서구적으로 변하면서, 섬유소의 섭취량이 감소하고 있는 설정에 있다. 따라서, 섬유소의 결핍은 성인병을 성인병을 야기시키는 원인의 하나로 들 수 있으며, 이로 인해 섬유소의 필요성이 새롭게 주목받고 있다. 이 중에서 생체조절 기능을 갖는 식품소재의 예로서 식물섬유나 각종 올리고당이 변비개선 등 식품의 기능성을 높이는 소재로 널리 이용되고 있다. 또한, 가공식품, 조리식품, 패스트푸드 등의 소비가 급격히 늘고 있어, 영양소 충족형의 식생활로부터 음식습관에 기인하는 영양장애나 각종 성인병 예방을 목적으로 하는 건강지향형 식품으로 소비자의 욕구가 변하고 있으며, 그 중에서도 저칼로리 식품에 대한 요구는 성인, 특히 젊은 여성들사이에 강하게 나타나고 있다.In recent years, as the standard of living improves, the dietary lifestyle is changed westernly, and the intake of fiber is decreasing. Therefore, the deficiency of fibrin may be one of the causes of the adult disease, causing new attention due to the fiber. Among them, plant fiber and various oligosaccharides are widely used as materials for improving the functionality of foods such as constipation improvement as examples of food materials having a bioregulatory function. In addition, consumption of processed foods, cooked foods, and fast foods is rapidly increasing, and consumers' desires are changing from nutrient-filled diets to health-oriented foods aimed at preventing nutritional disorders and various adult diseases caused by food habits. Among them, the demand for low-calorie foods is strong among adults, especially young women.

일반적으로, 식물섬유는 식물성 및 동물성으로 분류할 수있으며, 물에 대한 용해성에 따라 수용성 또는 불용성으로 나눌 수도 있다. 또한, 합성식물섬유로서 폴리덱스트로스도 이에 포함된다. 이들 섬유소류는 포도당 및 그 유도체 또는 포도당이외의 당류가 다수 결합한 형태의 섬유상을 갖는 구조로 되어 있으므로, 구조가 복잡하여 체내에 섭취되어도 소화가 어렵거나(난소화성) 체외로 배출되기 때문에, 섬유소로서의 효과가 있는 것으로 알려져 있다.In general, plant fiber can be classified into vegetable and animal, and may be divided into water-soluble or insoluble depending on solubility in water. Also included herein are polydextrose as synthetic plant fiber. Since these fibers have a structure of fibrous form in which glucose and its derivatives or sugars other than glucose are bound to each other, they are complex and difficult to digest even if consumed in the body (digestible) or are released into the body. It is known to be effective.

한편, 이들 식물섬유나 올리고당과 같은 난소화성 물질은 소화관내에서 각종의 작용을 나타내고 생체에 대해 생리효과를 발휘하는데, 예를 들면, 수용성식물섬유는 상부소화관에 있어서, 식물(食物)의 이동속도저하 및 영양소의 흡수지연 등의 효과를 발휘한다. 당의 흡수지연은 혈당치의 상승을 억제함에 따라 인슐린 절감 등의 효과를 발휘함은 물론, 답즙산의 분비를 촉짐함으로써 체내의 콜레스테롤이 감소하여 혈청 중의 콜레스테롤을 저하시키는 등의 효과도 나타낸다. 또한, 이들 난소화성 물질의 특징은 소장에서 소화 흡수되지 않고, 대장에 도달하여 식물섬유의 일부는 장내세균에 의해 분해되어 짧은 사슬의 지방산을 생성한다. 짧은 사슬의 지방산에 의한 장내환경의 산성화는 정장작용 및 대장암 예방의 효과가 있으며, 흡수된 짧은 사슬의 지방산은 대사되어 에너지로 전환됨과 동시에 콜레스테롤 합성을 저해한다.On the other hand, these indigestible substances such as plant fibers and oligosaccharides exhibit various effects in the digestive tract and exert a physiological effect on the living body. For example, the water-soluble plant fibers in the upper digestive tract, the rate of plant movement It is effective in lowering and delaying absorption of nutrients. The delay in the absorption of sugar exhibits the effect of reducing insulin levels by suppressing the increase in blood glucose levels, and also reduces the cholesterol in the body by lowering the cholesterol in the serum by promoting the secretion of bile acids. In addition, the characteristics of these indigestible substances are not digested and absorbed in the small intestine, but reach the large intestine so that some of the plant fibers are degraded by enterobacteriaceae to produce short chain fatty acids. Acidification of the intestinal environment by short chain fatty acids has the effect of intestinal action and colon cancer prevention, and the absorbed short chain fatty acids are metabolized and converted into energy and inhibit cholesterol synthesis.

이러한 식물섬유는 사람의 소화효소로 소화되지 않는 식물 중의 난소화성 성분의 총체라고 정의되고 있으며, 특히 수용성 식물섬유는 상술한 바와 같은 강한 생리작용을 갖기 때문에 기능성 식품소재로서 주목받고 있다. 이들 수용성 식물섬유로서는 구아검(guar gum), 글루코만난(glucomannan), 펙틴(pectin)등의 천연검류를 들 수 있으나, 대부분 고점성이며 단독으로 다량을 섭취하기는 곤란하다. 또한, 가공식품에 첨가하기에는 식품제조상에 문제가 생길 수 있고, 가공면에서도 여러 가지 어려운 점이 많다.These plant fibers are defined as the total of indigestible components in plants that are not digested by human digestive enzymes, and in particular, water-soluble plant fibers have attracted attention as functional food materials because they have a strong physiological action as described above. These water-soluble plant fibers include natural gums such as guar gum, glucomannan, and pectin, but most of them are highly viscous and difficult to consume in large quantities alone. In addition, there is a problem in the food manufacturing to add to the processed food, there are many difficulties in terms of processing.

또한, 전분소재의 경우 전분의 가공품인 알파-전분, 전분유도체, 포도당, 분말엿, 말토덱스트린 등이 식품소재로서 각종 가공식품에 상당량 사용되고 있다. 그러나, 이들 전분가공품의 대부분은 난소화성 성분의 함량이 5% 이하이며 칼로리값은 3.9kcal/g 이상을 나타내고 있어, 전분계 중에서는 식물섬유소 및 저칼로리 식품소재로서 기대할 수 있는 것은 열처리 덱스트린에 한정된다.In addition, in the case of starch material, alpha-starch, starch derivative, glucose, powdered starch, maltodextrin, etc., which are processed products of starch, are used in various processed foods as food materials. However, most of these starch processed products have an indigestible component content of 5% or less and a calorie value of 3.9 kcal / g or more. In starch systems, what can be expected as a plant fiber and a low calorie food material is limited to heat-treated dextrins. .

이러한 식물섬유는 각종 기능성식품, 즉, 식물섬유음료, 발효유제품, 제빵, 제과용 첨가제로 이용되는 건강식품 소재로서 주목받고 있으며, 향후보다 폭넓은 응용이 기대되고 있다. 한편, 식물섬유를 전분소재를 이용하여 제조하는 방법에 대해서는 다음과 같은 여러 가지 제한이 있어 왔다:The plant fiber is attracting attention as a functional food material used as various functional foods, that is, plant fiber beverages, fermented milk products, baking, confectionery additives, and is expected to be widely applied in the future. On the other hand, there have been a number of limitations to the method of making plant fibers using starch materials:

EP 368451B1에는 배소덱스트린을 물에 용해하고 알파-아밀라제를 착용시켜 식물섬유를 함유한 덱스트린을 제조하고, 알파-아밀라제를 작용시키고 수소를 첨가하는 것을 특징으로 하는 제조방법, 배소덱스트린에 알파-아밀라제를 착용시키고 글루코시드전달효소(transglucosidase) 단독 및 베타-아밀라제와 공동작용시켜 제조하는 방법, 알파-아밀라제 및 글루코아밀라제 (glucoamylase)를 작용시키고 여과, 탈취, 탈염한 다음, 강산성 양이온교환수지를 사용하는 크로마토그래피에 의해 식물섬유분을 채취하는 방법 및 배소덱스트린을 제조하기전 전분단독 또는 단당류 및 올리고당류 등을 전분과 혼합하고 배소시켜 식물섬유를 제조하는 방법 등을 개시하고 있다.EP 368451B1 discloses a process for producing dextrins containing plant fibers by dissolving sodium dextrin in water and wearing alpha-amylase, and acting on alpha-amylase and adding hydrogen. Method prepared by wearing and co-glucosidase alone and co-working with beta-amylase, chromatography with alpha-amylase and glucoamylase, filtration, deodorization and desalting, followed by strong acidic cation exchange resin The present invention discloses a method for collecting plant fiber powder by chromatography, and a method for producing plant fiber by mixing and roasting starch alone or monosaccharides and oligosaccharides with starch before producing roasted dextrin.

또한, EP 477089A1에는 감자전분을 염산의 존재하에서 배소한 다음, 알파-아밀라제를 작용시키고 글루코아밀라제와 반응시킨 후, 여과정제하여 이온교환수지 크로마토그래피 또는 유기용매를 처리하여 반응물로부터 식물 섬유분을 분리 제조하는 방법을 개시하고 있다.In addition, EP 477089A1 roasts potato starch in the presence of hydrochloric acid, and then reacts with alpha-amylase, reacts with glucoamylase, and then filters and removes plant fiber powder from the reactants by treatment with ion exchange resin chromatography or organic solvents. Disclosed is a method of manufacturing.

EP 487187A1 및 USP 5,430,141에는 감자전분에 무기산을 첨가하고 가열한 덱스트린을 물에 용해하고 알파-아밀라제를 작용시켜 얻어진 저칼로리 말토덱스트린을 함유하는 것을 특징으로 하는 저칼로리 식품의 제조방법을 개시하고 있다.EP 487187A1 and USP 5,430,141 disclose a process for producing low calorie foods, comprising low calorie maltodextrin obtained by adding inorganic acid to potato starch, dissolving the heated dextrin in water and applying alpha-amylase.

USP 5,264,568에는 제조된 배소덱스트린의 수용액을 pH 7.0 내지 8.5로 조절하고, 그 용액에 바실러스 리케니포미스(B. licheniformis)로부터 유래된 알파-아밀라제를 첨가하여 예비가수분해한 후, pH를 5.5 내지 6.5로 조절하고 온도를 올려 다시 가수분해한 다음, 이 액의 비등점 이상의 온도에서 오토클레이브처리하고 냉각하여 다시 상기의 알파-아밀라제를 첨가하고, 가수분해약의 비등점 이상의 온도에서 다시 오토클레이브처리하여 배소덱스트린의 가수분해액을 제조하는 방법을 개시하고 있다.In USP 5,264,568, the aqueous solution of Basodextrin prepared is adjusted to pH 7.0 to 8.5, and the solution is prehydrolyzed by adding alpha-amylase derived from B. licheniformis, followed by pH of 5.5 to Adjust to 6.5, hydrolyze again by raising the temperature, autoclave at the temperature above the boiling point of this solution, cool, add the above alpha-amylase again, and autoclave again at the temperature above the boiling point of the hydrolysate and roast. A method for preparing a hydrolyzate of dextrin is disclosed.

USP 5,358,729에는 전분에 염산을 첨가하고, 압출기를 사용하여 120 내지 200℃로 가열하여, 난소화부의 함량이 60%이상으로서의 착색물질이나 자극취가 적은 난소화성 덱스트린을 제조하는 방법을 개시하고 있다.US Pat. No. 5,358,729 discloses a method for producing an indigestible dextrin with less coloring matter or an irritant odor with 60% or more of an indigestible portion by adding hydrochloric acid to starch and heating it to 120 to 200 캜 using an extruder.

EP 535627A1, EP 535627A1 및 USP 5,364,652에는 전분에 염산을 첨가하여 제조한 배소덱스트린을 알파-아밀라제와 글루코아밀라제로 가수분해시킨 후 생성된 글루코오스의 1/2이상을 분리 제거하여, 난소화성 성분이 함량이 75%이상으로서 착색물질이나 자극취가 적은 신규의 난소화성 덱스트린을 제조하는 방법을 개시하고 있다.In EP 535627A1, EP 535627A1 and USP 5,364,652, hydrolysis of starch dextrin prepared by adding hydrochloric acid to starch is hydrolyzed with alpha-amylase and glucoamylase, and at least half of the resulting glucose is separated and removed. A method for producing a novel indigestible dextrin with 75% or more and less coloring matter or irritant smell is disclosed.

그러나, 상술한 선행기술의 방법들은 반응이 균일하게 일어나지 않음은 물론, 전분의 변색이 야기되어 제조된 식물섬유의 상품성이 저하되고, 아울러 난소화성 성분의 함량이 낮다는 등의 문제점이 노출되어 왔다.However, the above-described methods of the prior art have not only caused the reaction not to occur uniformly, but also have a problem that the discoloration of the starch causes the commercialization of the manufactured plant fiber, and the content of the indigestible component is low. .

결국, 본 발명은 전술한 선행기술의 문제점을 획기적으로 개선한 것으로, 이들 선행기술과 본 발명을 비교하면 다음과 같다.As a result, the present invention significantly improves the above-described problems of the prior art, and the present invention is as follows when the present invention is compared with the prior art.

EP 368451B1에는 감자전분에 액상 염산을 분무한 다음, 혼합물을 예비건조하고 배소시켜 전분의 변색이 야기된데 반하여, 본 발명에서는 옥수수전분을 건조기에 넣고 고온의 열풍과 함께 염산을 가스의 형태로 투입하여 전분의 변색을 최대한 방지하면서 제조한 열처리 덱스트린을 식물섬유 제조에 이용하였다. 또한, 선행기술에서는 배소덱스트린을 제조하기 전에 전분에 단당류 및 올리고당 등을 전분과 혼합하였으나, 본 발명에서는 열처리된 덱스트린에 일정량의 기능성 첨가제를 브이-믹서(V-mixer)등으로 간단히 건식으로 혼합한 후 효소반응을 실시하였다.EP 368451B1 sprays potato starch with liquid hydrochloric acid, and then predrys and roasts the mixture to cause discoloration of the starch. In the present invention, corn starch is placed in a dryer and hydrochloric acid is added in the form of a gas with hot air. The heat-treated dextrin prepared while preventing discoloration of the starch to the maximum was used for the production of plant fibers. In addition, in the prior art, monosaccharides and oligosaccharides were mixed with starch before preparing the roasted dextrin, but in the present invention, a dry amount of a functional additive was simply mixed with a V-mixer or the like in a heat-treated dextrin. After the enzymatic reaction was carried out.

또한, EP 477089A1에는 감자전분에 염산용액 일정량을 분무하면서 숙성시키고 플래쉬건조기로 예비건조를 거친 다음, 배소시켜, 알파-아밀라제로 가수분해하고 글루코아밀라제로 당화시킨 후, pH를 조절하여 글루코아밀라제를 불활성화시키고 알칼리금속형 강산성 양이온 교환수지를 통과시키거나 에탄올을 이용하여 형성된 침견을 진공건조하여 식물섬유를 제조하였거나 에탄올을 이용하여 형성된 침전을 진공건조하여 식물섬유를 제조하였다. 그러나 본 발명에서는 균일한 반응 및 최대한 전분의 변색을 방지하기 위해 고온의 열풍으로 반응시킨 백색 덱스트린을 효소반응에 이용하고, 글루코아밀라제의 반응후 식물섬유의 난소화성 성분의 함량을 증대시키기 위해 트란스글루코시다제를 일정량 첨가하며, 반응액 중의 단당류를 분리하기 위해 균일입경의 분리수지를 이용하는 등의 공정개선을 통하여, 난소화성 성분의 함량을 더욱 높일 수 있었다.In addition, EP 477089A1 is aged by spraying a certain amount of hydrochloric acid solution on potato starch, pre-dried by flash dryer, roasted, hydrolyzed with alpha-amylase, glycosylated with glucoamylase, and then adjusted to pH to control glucoamylase. Activated and passed through an alkali metal-type strong acid cation exchange resin or vacuum-dried the needle formed by using ethanol to prepare a plant fiber or by vacuum drying the precipitate formed by using ethanol to prepare a plant fiber. However, in the present invention, white dextrin reacted with high temperature hot air in the enzymatic reaction in order to prevent uniform reaction and discoloration of starch as much as possible, and transglucose to increase the content of indigestible component of plant fiber after the reaction of glucoamylase The content of the indigestible component could be further increased through process improvement such as adding a certain amount of a sidase and using a separation resin having a uniform particle size to separate monosaccharides in the reaction solution.

EP 487187A1 및 USP 5,430,141에는 전분에 1% 염산용액을 분무하고 혼합한 후 예비건조하고 가열처리한 것에 알파-아밀라제를 첨가하여 반응시키고 탈색 여과공정으로 진행시키며, 상기 배소덱스트린 수용액에 알파-아밀라제 및 글루코아밀라제를 반응시키고 여과 정제후 알칼리금속형 이온 교환수지 또는 에탄올을 이용하여 소화성 부분을 분리하여 저칼로리 덱스트린을 제조하였다. 그러나, 본 발명에서는 반응의 균일성 및 전분의 변색방지를 위해 가스상의 염산을 고온의 열풍과 함께 전분에 투입하여 제조한 백색의 덱스트린을 효소반응에 이용하고, 식물섬유의 난소화성 성분의 함량을 더욱 증대시키기위해 효소반응전에 난소화성의 기능성 첨가제를 백색의 덱스트린과 건식으로 간단히 혼합하고, 이 혼합물에 각종 효소를 반응시킨 후 다시 균일입경의 분리수지칼럼 및 유기용매를 이용하였다.EP 487187A1 and USP 5,430,141 are sprayed and mixed with starch hydrochloric acid solution in starch, mixed with pre-drying and heat treatment, followed by addition of alpha-amylase, followed by decolorization filtration and alpha-amylase and glucose to the aqueous solution of Basodextrin. After reacting amylase and filtering and purification, low calorie dextrin was prepared by separating the digestible portion using an alkali metal ion exchange resin or ethanol. However, in the present invention, white dextrin prepared by injecting gaseous hydrochloric acid into starch together with high temperature hot air in the starch is used for enzymatic reaction in order to uniformize the reaction and prevent discoloration of starch. In order to further increase, an indigestible functional additive was simply mixed dry with white dextrin before the enzymatic reaction, and various enzymes were reacted with the mixture, and then a separated resin column having a uniform particle size and an organic solvent were used again.

또한, USP 5,264,568에서는 감자전분에 염산용액을 분무한 다음, 숙성시키고 예비건조시켜 가열처리한 배소덱스트린에 알파-아밀라제를 넣고 저온에서 장시간 1차 가수분해한 다음, 이 반응액을 오토클레이브에 넣고 2,3차에 걸쳐 가수분해하여 반응액을 얻었으나, 본 발명에서는 고온의 열품을 통해 균일한 반응을 거쳐 제조된 백색 덱스트린에 식물섬유의 난소화성 성분의 함량을 증대시키기 위해 각종 기능성 첨가제를 건식으로 혼합하고 이를 알파-아밀라제로 가수분해하고, 글루코아밀라제 및 트랜스글루토시다제를 이용하여 반응한 다음, 단당류를 제거시키기 위해 균일입경의 이온교환수지와 유기용매를 이용하였다.In addition, USP 5,264,568 sprayed hydrochloric acid solution on potato starch, aged, pre-dried and alpha-amylase in heat-treated basodextrin, which was first hydrolyzed at low temperature for a long time, and then the reaction solution was placed in an autoclave. In the present invention, various functional additives were dried to increase the content of the indigestible component of plant fiber in the white dextrin prepared through the homogeneous reaction through high temperature heat products. After mixing and hydrolyzing with alpha-amylase, reacting with glucoamylase and transglutosidase, an ion exchange resin and an organic solvent of uniform particle size were used to remove monosaccharides.

한편, USP 5,358,729에서는 옥수수전분을 리본형 믹서에 넣고 1% 염산요액을 분무하여 혼합한 다음, 플래쉬건조기로 예비건조하고 트윈익스트루더(twin extruder)를 이용하여 120 내지 200℃로 압출하였으나, 본 발명에서는 고온의 열풍을 통하여 제조한 백색 덱스트린을 각종 효소와 반응시켰다.Meanwhile, in USP 5,358,729, corn starch was mixed in a ribbon mixer, sprayed with 1% hydrochloric acid, and then pre-dried with a flash dryer and extruded at 120 to 200 ° C. using a twin extruder. In the present invention, white dextrin prepared through hot air is reacted with various enzymes.

EP 535627A1, EP 535627A1 및 USP 5,364,652에서는 전분에 염산용액을 분무하여 8시간 정도 숙성시킨 다음, 예비건조하고 회전식 킬른배소기로 처리한 배소덱스트린을 이용하여 알파-아밀라제로 처리하고, 글루코아밀라제를 첨가 후 당화하여 pH를 낮춰 효소의 작용을 정지시킨 다음, 강산성 양이온교환수지 칼럼을 이용하여 글루코스부분을 50% 이상 분리제거하였다. 이에 반해, 본 발명에서는 덱스트린자체의 난소화성 성분을 최대한 생성시키고 전분의 변색을 방지하기 위해 전분에 가스상의 염산을 고온의 열풍과 함께 투입하고, 또한, 알파-아밀라제의 반응 pH로 덱스트린을 미리 중화시켜 pH를 조절하는 단계를 생략하였다, 또한, 이 열처리 덱스트린에 난소화성의 기능성 첨가제를 혼합한 후 알파-아밀라제를 처리하고 pH를 낮춰 불활성화시킨 다음, 글루코아밀라제를 작용시키고 반응액의 난소화성 성분함량을 증가시키기 위해 트란스글루코시다제를 추가로 반응하여 활성탄 정제 및 여과후 균일입경의 이온교환수지 및 에탄올을 비롯한 유기용매로 단당류 등의 소화성부분을 제거하였다.In EP 535627A1, EP 535627A1 and USP 5,364,652, starch is sprayed with hydrochloric acid and aged for about 8 hours. The pH was lowered to stop the action of the enzyme, and then the glucose portion was separated by 50% or more using a strong acid cation exchange resin column. On the contrary, in the present invention, gaseous hydrochloric acid is added to the starch together with high temperature hot air in order to produce the indigestible component of the dextrin itself and prevent discoloration of the starch, and also neutralize the dextrin in advance with the reaction pH of alpha-amylase. The step of adjusting the pH was omitted, and in addition, the heat-treated dextrin was mixed with an indigestible functional additive, treated with alpha-amylase and inactivated by lowering the pH, followed by glucoamylase and the indigestible component of the reaction solution. In order to increase the content, transglucosidase was further reacted to remove digestible parts such as monosaccharides with organic solvents such as ion exchange resin and ethanol of uniform particle size after activated carbon purification and filtration.

또한, 일반 회전식 배소기를 통해 제조된 덱스트린은 반응의 균일성 및 전분특유의 백도가 떨어져 효소반응 후 당액의 탈색공정 등 정제공정에서 상당한 과부하가 걸릴 수 있으나, 본 발명에 사용된 열처리 덱스트린은 고온의 열풍을 이용하고 산화반응에 의한 전분의 변색을 막기 위해 기체상의 염산을 전분과 반응시킴으로써 소기의 목적을 달성할 수 있었다. 아울러, 덱스트린 제조시 마지막 공정에서 알파-아밀라제의 작용 pH 수준으로 미리 중화하여 덱스트린 수용액의 pH를 재조정하지 않고 바로 가수분해를 진행시킬 수 있었다.In addition, the dextrin prepared through the general rotary roaster may take a considerable overload in the purification process such as decolorization of the sugar solution after the reaction uniformity and starch-specific whiteness fall, but the heat treatment dextrin used in the present invention is a high temperature The desired purpose could be achieved by using hot air and reacting gaseous hydrochloric acid with starch to prevent discoloration of the starch by oxidation. In addition, in the last step in the preparation of dextrin, it was possible to advance the hydrolysis immediately without neutralizing the pH of the aqueous solution of dextrin by pre-neutralizing to the pH level of alpha-amylase.

결국, 본 발명의 주된 목적은 백도와 난소화성 성분의 함량이 높은 식물섬유의 제조방법에 관한 것이다.After all, the main object of the present invention relates to a method for producing a plant fiber having a high content of whiteness and indigestible components.

본 발명의 또 다른 목적은 전기 방법에 의해 제조된 백도와 난소화성 성분의 함량이 높은 식물섬유를 제공하는 것이다.Still another object of the present invention is to provide a plant fiber having a high content of whiteness and indigestible components produced by the electric method.

이하, 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 식물섬유음료 및 각종 기능성 건강식품소재로 사용되는 부원료로서의 전분을 원료로 고온에서 열처리하여 제조한 덱스트린에 각종 기능성 첨가제를 혼합하고, 효소반응을 통하여 당액에서 소화성 단당류 등을 분리제거하여 식물섬유를 제조한다.In the present invention, various functional additives are mixed with dextrin prepared by heat-treating starch as a raw material used as plant fiber beverage and various functional health food materials at high temperature as a raw material, and separating and removing digestible monosaccharides from sugar solution through enzymatic reaction. Prepare the fibers.

즉, 일반전분을 열풍으로 예비건조시킨 다음, 일정량의 가스상 염산(anhydrous hydrochloric acid)을 고온의 열풍과 함께 전분입자와 균일하게 반응시키고 일정시간 열처리한 다음, 이 열처리 덱스트린에 난소화성의 기능성 첨가제를 혼합한다. 여기에, 온수를 투입하여 열처리 덱스트린 혼합물을 용해시키고 알파-아밀라제, 베타-아밀라제, 글루코아밀라제 및 트란스글루코시다제 등을 작용시킨 다음, 활성탄 여과 및 이온교환수지를 통해 탈염시키고, 균일입경의 분리수지 및 에탄올 등의 유기용매를 이용하여 단당류 등의 소화성부분을 분리제거하여 식물섬유를 제조한다.In other words, after pre-drying the general starch with hot air, a certain amount of anhydrous hydrochloric acid is reacted with starch particles with high temperature hot air uniformly and heat-treated for a certain time, and then the heat-treated dextrin is added with an indigestible functional additive. Mix. Here, hot water is added to dissolve the heat-treated dextrin mixture, alpha-amylase, beta-amylase, glucoamylase and transglucosidase, and the like are then desalted through activated carbon filtration and ion exchange resin, and the separation resin having a uniform particle size. And by using an organic solvent such as ethanol to remove the digestible parts such as monosaccharides to prepare plant fibers.

본 발명에 사용되는 전분은 상업적으로 용이하게 입수할 수 있는 일반전분으로, 옥수수전분, 찰옥수수전분 및 소맥전분 등과 같은 지상전분과 감자전분, 고구마전분 및 타피오카전분 등과 같은 지하전분을 사용할 수있으며, 바람직하게는 비교적 값이 싼 옥수수전분을 사용할 수 있다. 원료전분의 품질수준은 시중에 유통되고 있는 것이면 대체로 무난하다.The starch used in the present invention is a commercially available general starch, and may use ground starch such as corn starch, waxy corn starch and wheat starch, and underground starch such as potato starch, sweet potato starch and tapioca starch. For example, relatively low-cost corn starch may be used. The quality level of raw starch is generally acceptable if it is on the market.

이하에서는, 본 발명의 식물섬유를 제조하는 방법을 공정에 따라 기술한다.Hereinafter, a method for producing the plant fiber of the present invention will be described according to the process.

[공정 1][Step 1]

열처리 덱스트린의 제조Preparation of Heat Treated Dextrin

수분 10±2% 수준의 일반전분을 건조기에 넣고 열풍으로 80 내지 100℃, 바람직하게는 85 내지 95℃에서 예비건조시키는데, 4 내지 7% 정도, 바람직하게는 5 내지 6%의 수분함량을 가질 때, 투입되는 열풍과 함께 가스상의 염산을 0.04 내지 0.1중량%, 바람직하게는 0.05 내지 0.07%를 투입한다. 열원으로서는 스팀을 사용하여 110 내지 180℃, 바람직하게는 130 내지 140℃에서 열처리하며, 60 내지 90분, 바람직하게는 70 내지 80분간 반응시킨다. 또한 덱스트린으로의 전환반응이 적절한지를 확인하기 위해 시료를 취애 유동도, 가용성 물질의 함량 등을 분석하는데, 이때 유동도는 50 내지 55ml정도가 바람직하며, 가용성 물질의 함량은 최소한 86%이상이어야 한다.General starch of 10 ± 2% moisture level is placed in a dryer and pre-dried at 80 to 100 ° C., preferably 85 to 95 ° C. by hot air, and has a water content of about 4 to 7%, preferably 5 to 6%. At the time, 0.04 to 0.1% by weight, preferably 0.05 to 0.07%, of gaseous hydrochloric acid is added together with the hot air introduced. As a heat source, it heat-processes at 110-180 degreeC, Preferably it is 130-140 degreeC using steam, and makes it react for 60 to 90 minutes, Preferably it is 70 to 80 minutes. In addition, the sample is taken to analyze the flow rate, the content of soluble substances, etc. in order to determine whether the conversion to dextrin is appropriate, the flow rate is preferably about 50 to 55ml, the content of soluble substance should be at least 86%. .

이어서, 공정의 확인이 완료되면 반응물을 냉각시키고, 중화제로서 암모니움 바이카보네이트(ammonium bicarbonate) 또는 무수 소디움 바이설파이트(anhydrous sodium bisulfice)를 첨가하여 건식상태에서 혼합하여, pH를 5.5 내지 6.5으로 유지시키고, 다시 30분정도 냉각시킨다. 이때, 중화제의 첨가량은 암모니움 바이카보네이트의 경우, 전분에 대해 0.01 내지 0.10중량%, 무수 소디움 바이설파이트의 경우, 0.1 내지 0.5중량%가 바람직하며, 6메쉬 스크린을 통해 사별하여 식물섬유의 제조에 이용한다. 표1은 본 발명의 공정에 따라 제조된 열처리 덱스트린의 분석방법 및 분석결과를 요약하여 나타내었다.Subsequently, upon confirmation of the process, the reaction is cooled and mixed in a dry state by adding ammonium bicarbonate or anhydrous sodium bisulfice as a neutralizing agent to maintain a pH of 5.5 to 6.5. And cool for another 30 minutes. In this case, the amount of the neutralizing agent is preferably 0.01 to 0.10% by weight relative to starch in the case of ammonium bicarbonate, 0.1 to 0.5% by weight in the case of anhydrous sodium bisulfite, and separated through a six mesh screen to prepare plant fibers We use for. Table 1 summarizes the analysis method and analysis results of the heat-treated dextrin prepared according to the process of the present invention.

* D.E.(dextrose equivalent)는 크리오스코프(Fiske Co., Ltd., U.S.A)를 이용하여 분석* D.E. (dextrose equivalent) was analyzed using Fiske Co., Ltd., U.S.A.

** 참조:식품공전 분석법(식품공업협회, pp675-677, 1994)** Reference: Food Code Analysis (Food Industry Association, pp675-677, 1994)

[공정 2][Step 2]

난소화성 성분 함량이 높은 식물섬유의 제조Preparation of plant fiber with high content of indigestible component

먼저, 열처리한 백색 덱스트린에 대해 난소화성의 기능성 첨가제를 혼합한다. 이때, 사용하는 첨가제로서는 아라비아검, 아라비아검의 가수분해물, 휘트브란(wheat bran), 오트브란(oat bran), 옥수수파이버, 대두식물섬유, 미강 헤미셀룰로스, 클루코만난(glucomannan), 구아검, 구아검 효소 분해물, 로카스트빈검(locuat bean gum), 잔탄검(xanthan gum), 펙틴(pectin), 카라기난(carrageenan), 알긴산소다, 커드란(curdlan) 및 풀루란(pullulan) 등을 사용하며, 바람직하게는 물에 용해시 비교적 점도가 낮은 아라비아검류, 구아검 효소분해물, 갈락토만난, 미강 헤미셀룰로스, 대두식물섬유, 옥수수파이버 등을 백색덱스트린에 대해 1 내지 20 중량%, 바람직하게는 5 내지 10중량%를 혼합한다. 첨가방법은 브이믹서, 리본-브렌더 및 니더(kneader) 등에 덱스트린 및 기능성 첨가제를 넣고 단순한 브렌딩으로 10 내지 30분정도 균일하게 혼합시켜 준다.First, an indigestible functional additive is mixed with the heat-treated white dextrin. At this time, the additives used are gum arabic, hydrolyzate of gum, wheat bran, oat bran, corn fiber, soybean plant fiber, rice bran hemicellulose, glucomannan, guar gum, Guar gum enzyme digests, locuat bean gum, xanthan gum, pectin, carrageenan, sodium alginate, curdlan and pullulan, Preferably, 1 to 20% by weight of arabic gums, guar gum enzymatic products, galactomannan, rice bran hemicellulose, soybean plant fiber, corn fiber, etc., which have relatively low viscosity when dissolved in water, are preferably 5 to 20% by weight. Mix 10% by weight. Addition method is to add the dextrin and functional additives to the v-mixer, ribbon- blender and kneader (kneader) and mix uniformly for 10 to 30 minutes by simple blending.

그런 다음, 이 혼합물을 미리 가열하여 둔 온수를 이용하여 30 내지 50중량%, 바람직하게는 40 내지 45%의 농도로 용해시키고 pH를 확인한다. 이때, 본 발명에 사용된 덱스트린은 제조공정에서 미리 중화를 거쳐 pH 5.5 내지 6.5로 조절되어 있어, 따로 pH를 조절할 필요가 없다. 여기에 상업적으로 입수가능한 알파-아밀라제를 열처리 덱스트린에 대해 0.05 내지 0.5중량%, 바람직하게는 0.1 내지 0.2중량% 첨가하며, 이때 용액의 온도는 80 내지 100℃, 바람직하게는 90 내지 95℃로 유지하며, 이 온도에서 30 내지 120분, 바람직하게는 60 내지 120분간 가열한다. 이같은 효소처리에 의해 열처리 덱스트린 특유의 자극적인 냄새 및 바람직하지 않은 미각을 제거할 수 있다. 이렇게 해서 얻은 당액에 활성탄을 첨가하고 가열하여 효소를 불활성화시키고, 양이온 및 음이온을 일정비율로 섞은 혼합수지를 이용하여 여과,탈색 및 탈염 등의 일반적인 정제공정을 거치고 진공농축기로 농축한 다음, 분무건조기로 건조하여 식물섬유소재를 얻을 수 있다.The mixture is then dissolved in a concentration of 30 to 50% by weight, preferably 40 to 45%, using preheated hot water and the pH is checked. At this time, the dextrin used in the present invention is adjusted to pH 5.5 to 6.5 through neutralization in advance in the manufacturing process, there is no need to adjust the pH separately. To this is added commercially available alpha-amylase from 0.05 to 0.5% by weight, preferably from 0.1 to 0.2% by weight relative to the heat treated dextrin, wherein the temperature of the solution is maintained at 80 to 100 ° C, preferably 90 to 95 ° C. At this temperature, it is heated for 30 to 120 minutes, preferably 60 to 120 minutes. Such enzymatic treatment can remove the irritating odor and undesirable taste peculiar to the heat treatment dextrin. Activated carbon was added to the sugar solution thus obtained and heated to inactivate the enzyme. The mixture was mixed with cations and anions at a predetermined ratio, followed by general purification processes such as filtration, decoloration, and desalting, and then concentrated in a vacuum concentrator. It can be dried in a dryer to obtain a plant fiber material.

또한, 본 발명에 있어서는 식물섬유의 난소화성 성분의 함량을 더욱 증대시키기 위해, 상기 알파-아밀라제를 작용하고 다시 효소처리를 할 수도 있다. 즉, 알파-아밀라제의 작용 후 트란스글루코시다제 및 베타-아밀라제를 반응시키는 공정이 추가로 포함될 수도 있다. 트란스글루코시다제 및 베타-아밀라제는 알파-아밀라제의 작용후 pH를 3이하로 낮추고 95℃이상에서 10분정도 방치하여 효소를 실활시킨 다음, 1N 수산화나트륨용액으로 pH를 5.5 내지 6.5으로 조절하고, 당액의 온도는 55 내지 60℃으로 조절한 후, 백색 덱스트린에 대해 0.05 내지 0.5중량% 첨가하여 24 내지 72시간 반응시키는데, 바람직하게는 0.05 내지 0.2중량% 첨가하여 36 내지 48시간 작용시킨다. 이 반응은 생성된 포도당과 같은 작은 분자가 첨가도니 기능성 고분자 및 효소로 더 이상 분해되지 않는 한계 덱스트린으로 재중합됨과 동시에, 식물섬유의 분자구조를 더욱 복잡하게 만든다. 일정시간이 지나면 활성탄처리를 통해 트란스글루코시다제 및 베타-아밀라제를 실활시킨다. 또한, 상기 두 효소를 각각 반응시키는 것보다는, 동시에 처리하는 것이 다소 바람직하다. 이렇게 하여 얻어진 당액을 활성탄처리후 여과하여 이온교환수지를 통해 탈염 및 탈색을 행하고, 50%농도로 농축한 다음 분무건조기로 건조하여 식물섬유소재를 제조한다.In addition, in the present invention, in order to further increase the content of the indigestible component of the plant fiber, the alpha-amylase may be acted and subjected to enzymatic treatment again. That is, a process of reacting transglucosidase and beta-amylase after the action of alpha-amylase may further be included. After transglucosidase and beta-amylase, the pH was lowered to 3 or less after the action of alpha-amylase and left for 10 minutes at 95 ° C or higher to deactivate the enzyme, and then the pH was adjusted to 5.5 to 6.5 with 1N sodium hydroxide solution. The temperature of the sugar solution is adjusted to 55 to 60 ° C, and then 0.05 to 0.5% by weight of the white dextrin is added to react for 24 to 72 hours. Preferably, 0.05 to 0.2% by weight is added for 36 to 48 hours. The reaction further complicates the molecular structure of the plant fiber, while the small molecules, such as glucose produced, are repolymerized into limiting dextrins, which are no longer degraded by functional polymers and enzymes. After a certain period of time, activated carbon treatment inactivates transglucosidase and beta-amylase. Also, rather than reacting the two enzymes separately, it is rather desirable to process them simultaneously. The sugar solution thus obtained is treated with activated carbon, filtered, desalted and decolorized through an ion exchange resin, concentrated to 50% concentration, and dried with a spray dryer to prepare a plant fiber material.

본 발명에서는 상기에서 정제된 당액중 소화성 물질의 대부분을 이루고 있는 단당류를 제거하여, 한층 더 난소화성 성분의 함량이 증가된 식물섬유를 제조하는 공정도 포함된다. 먼저 50%농도로 농축된 당액을 강산성 양이온의 분리수지탑에 통액하면 분자량이 보다 크고 난소화성인물질이 먼저 빠져나오게 되며, 이를 통해 소화성을 갖는 단당류와 분리가 가능하다. 사용가능한 강산성 양이온 교환수지는 일반적으로 시판중인 것을 사용할 수 있으며, 구체적인 수지의 예로서는 엠버라이트(Amberlite) IR-118, IR-120B(Organo Co., Ltd., JAPAN), XFS-43281.00, 43278.00(Dow Chemical Co., Ltd., U.S.A.), 다이아이온(Diaion) UBK-530K, 다이아이온 UBK-530, 다이아이온 UBK-535, 다이아이온 FRK-111, 다이아이온 FRK-121, 및 다이아이온 FRK-131(Mitsubishi Kasei Technoengineers Ltd., JAPAN) 등을 들 수 있는데, 바람직하게는 분리수지로 많이 이용되고 있는 다이아이온 UBK시리즈 및 FRK시리즈를 사용하는데, 이 수지는 염산 등과 같은 강산의 약품을 사용하지 않고 증류수만을 통액시키면 되므로 취급상 훨씬 유리하다. 난소화성의 고분자 물질부분과 단당류와의 분리를 좋게 하기 위하여, 사용되는 수지에 따라, 컬럼 통액시의 속도를 조정하는 것이 바람직하다. 통액도는 SV=0.1-0.5의 범위가 바람직한데, 보다 분리효율을 좋게 하기 위해 0.3 내지 0.4의 범위로 조절하며, 너무 빠르면 고분자물질과 단당류의 분리가 용이하게 되지 않는다. 통액시 컬럼의 온도는 30 내지 70℃, 바람직하게는 50 내지 60℃로 조절하는데, 이때 온도가 너무 낮으면 분리가 어렵고 액의 점도가 증가하여 수지에 나쁜 영향을 초래하며, 온도가 너무 높으면 용액의 품질에 영향을 주게 된다.The present invention also includes a process for preparing plant fibers having an increased content of indigestible components by removing monosaccharides which form most of the digestible substances in the above-mentioned sugar solution. First, when the sugar solution concentrated at 50% concentration is passed through the separation column of the strong acid cation, the larger molecular weight and the indigestible substance come out first, and thus it is possible to separate from the monosaccharide having digestibility. The strongly acidic cation exchange resin that can be used may be generally commercially available, and examples of specific resins include Amberlite IR-118, IR-120B (Organo Co., Ltd., JAPAN), XFS-43281.00, 43278.00 (Dow). Chemical Co., Ltd., USA), Diaion UBK-530K, Diaion UBK-530, Diaion UBK-535, Diaion FRK-111, Diaion FRK-121, and Diaion FRK-131 ( Mitsubishi Kasei Technoengineers Ltd., JAPAN) and the like. Preferably, the diion UBK series and the FRK series, which are widely used as separation resins, are used, and this resin does not use strong acid chemicals such as hydrochloric acid. It is much more advantageous in handling because it is liquid. In order to improve the separation between the indigestible polymer material portion and the monosaccharide, it is preferable to adjust the speed at the time of column passing, depending on the resin used. The liquid permeability is preferably in the range of SV = 0.1-0.5, in order to improve the separation efficiency more preferably in the range of 0.3 to 0.4, if too fast it is not easy to separate the polymer and monosaccharides. When passing through, the temperature of the column is adjusted to 30 to 70 ℃, preferably 50 to 60 ℃, if the temperature is too low, it is difficult to separate and the viscosity of the liquid increases, causing a bad effect on the resin, if the temperature is too high This will affect the quality of the product.

한편, 난소화성의 고분자물질과 단당류와의 분리를 통해 식물섬유의 난소화성 성분의 함량을 한층 더 증가시키기 위하여, 당액에 유기용매를 첨가하여 고분자물질의 침전을 유도하여 회수할 수도 있다. 이때, 사용할 수 있는 유기용매는 식품소재인 관계로 에탄올로 한정된다. 상기에서 제조된 50%농도인 효소반응액에 95%에탄올을 첨가하는데, 바람직하게는 당액의 중량 대비 2 내지 3배 정도 첨가하며, 이때, 당액에 비해 에탄올이 너무 적으면 고분자물질의 침전이 용이하게 발생하지 않는다. 에탄올 가용성물질(단당류부분)과 발생된 침전의 분리효율을 좋게 하기위해 하룻밤정도 정치시킨다. 상동액부분을 제거하고 남은 침전물을 일정량의 물에 다시 용해시킨 다음, 잔여의 에탄올을 진공농축기를 통해 완전히 제거한다. 이렇게 얻어진 당액을 50%농도로 조정한 후, 분무 건조기를 통해 건조하여 분말상태의 식물섬유를 제조한다.On the other hand, in order to further increase the content of the indigestible component of the plant fiber through the separation of the indigestible polymer and monosaccharides, it may be recovered by inducing precipitation of the polymer material by adding an organic solvent to the sugar solution. At this time, the organic solvent that can be used is limited to ethanol because it is a food material. 95% ethanol is added to the 50% concentration of the enzyme reaction solution prepared above, preferably 2 to 3 times the weight of the sugar solution, and when the ethanol is too small compared to the sugar solution, the precipitation of the polymer material is easy. Does not occur. Allow to stand overnight to improve the separation efficiency of ethanol solubles (monosaccharide fraction) and the precipitate produced. After removing the portion of the supernatant and dissolving the remaining precipitate in a certain amount of water, the remaining ethanol is completely removed through a vacuum concentrator. The sugar solution thus obtained is adjusted to 50% concentration, and then dried through a spray dryer to prepare powdered plant fibers.

또한, 본 발명에서는 백색 덱스트린과 각종 기능성 첨가제의 혼합물을 용해시키고 알파-아밀라제를 처리한 후 글루코아밀라제 및 트란스굴루코시다제를 작용시킨다음, 존재하는 단당류를 분리수지 및 에탄올로 분리하는 방법도 포함된다. 즉, 알파-아밀라제의 반응 후 pH를 3.0이하로 낮춰 실활시키고, 다시 pH를 4.5정도로 재조정한 다음, 용액의 온도가 약 55℃정도일 때 글루코아밀라제를 0.05 내지 0.5중량%, 바람직하게는 0.05 내지 0.2중량% 투입하고 24 내지 48시간정도 반응시킨다. 이 반응은 용액중에 존재하는 소화성부분을 포도당으로 분해시키는 것이며, 반응이 끝난 후 90℃정도로 온도를 올려 글루코아밀라제의 작용을 중지시킨다. 그런 다음, pH를 다시 5.5정도, 용액의 온도를 55℃정도로 각각 조절한 후, 트란스글루코시다제를 0.05 내지 0.5중량%, 바람직하게는 0.05 내지 0.2중량% 투입하고 24 내지 48시간 반응시킨다. 이 반응으로 인해 상기 글루코아밀라제로 생성된 소화성의 글루코스가 첨가된 기능성 고분자 및 효소 저항성을 갖는 한계 덱스트린부분과 재중합하여 복잡한 분자구조를 띠게 되므로, 난소화성 성분의 함량이 더욱 증가하게 된다. 상기와 같은 반응으로 제조된 당액을 활성탄으로 처리하여 효소를 실활시키고 글라스필터 등으로 여과한 다음, 이온교환수지컬럼을 통해 탈염등 일련의 정제공정을 거친 후, 진공농축기를 통해 50중량% 정도로 농축한다. 본 발명에 의하면, 이 용액의 난소화성 성분을 더욱 증가시키기 위해, 언급한 바와 같이 다이아이온 UBK 및 FRK시리즈 분리수지를 이용하거나, 에탄올 침전법을 이용하여 소화성 단당류를 난소화성 고분자물질과 분리하고, 유용성분을 농축한 다음 분무건조하므로써 식물섬유를 제조할 수도 있다.In addition, the present invention also includes a method of dissolving a mixture of white dextrin and various functional additives, treating alpha-amylase followed by glucoamylase and transgulcosidase, and separating the existing monosaccharides into a separation resin and ethanol. . That is, after the reaction of alpha-amylase, the pH was lowered to 3.0 or lower, and the pH was again adjusted to 4.5, and then 0.05 to 0.5% by weight of glucoamylase, preferably 0.05 to 0.2, when the temperature of the solution was about 55 ° C. Add weight percent and react for 24 to 48 hours. This reaction breaks down the digestive part present in the solution into glucose and stops the action of glucoamylase by raising the temperature to about 90 ° C after the reaction. Then, after adjusting the pH again to about 5.5 and the temperature of the solution to about 55 ° C., respectively, 0.05 to 0.5% by weight of transglucosidase, preferably 0.05 to 0.2% by weight, and reacted for 24 to 48 hours. This reaction results in a complex molecular structure by repolymerization with the functional polymer added with the digestible glucose produced by the glucoamylase and the limit dextrin portion having enzyme resistance, thereby increasing the content of the indigestible component. The sugar solution prepared by the above reaction was treated with activated carbon to deactivate the enzyme, filtered through a glass filter, etc., and then subjected to a series of purification processes such as desalination through an ion exchange resin column, and then concentrated to about 50% by weight using a vacuum concentrator. do. According to the present invention, in order to further increase the indigestible component of this solution, as mentioned, the digestible monosaccharides are separated from the indigestible polymer by using diion UBK and FRK series separation resins or by ethanol precipitation. Plant fibers can also be prepared by concentrating the useful components and then spray drying.

본 발명의 방법에 의해 제조되는 식물섬유소재는 음료, 아이스크림, 빵, 과자 등을 비롯한 각종식품에 널리 이용될 수 있다. 아울러, 본 발명으로 제조된 식물섬유는 지하전분, 특히 감자전분을 소재로 만든 식물섬유 소재보다 백도면에서 다소 유리하며, 이를 통해 응용할 수 있는 식품의 분야도 더욱 확대되리라 기대된다.Plant fiber material produced by the method of the present invention can be widely used in various foods, including beverages, ice cream, bread, sweets and the like. In addition, the plant fiber produced by the present invention is somewhat advantageous in the back road than the plant fiber material made of underground starch, in particular potato starch material, it is expected that the field of food can be further expanded through this.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 상세히 설명하고자 하는 것으로, 이들 실시예에 의해 본 발명의 범위가 한정되지 않는다는 것은 본 발명이 속하는 분야에서 통상의 지식을 가진 자들에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only intended to explain the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples.

[실시예 1]Example 1

수분 12%의 옥수수전분을 유동층 건조기(Glatt GmbH GERMANY)에 넣고 열풍으로 유동화하면서 93℃로 예비건조시켰다. 그런 다음, 수분함량이 5%일 때 가스상의 염산을 열풍에 실어 전분대비 0.056중량% 첨가하고, 135℃에서 75분동안 열처리하였다. 덱스트린화가 원활히 진행되었는지를 확인하기 위해 시료를 취하여 물성을 측정한 결과, 유동도 55㎖, 가용성물질 95%, 백도 88을 나타내었다. 공정확인 후, 반응물을 냉각하고 중화시키는데, 중화제로서 암모니움 바이카보네이트를 사용하는 경우, 전분대비 0.067중량%, 무수 소디움 바이설파이트를 사용하는 경우에는 전분대비 0.3중량%를 첨가하여 건식상태에서 혼합하여 pH를 5.8로 유지시키고 30분간 냉각시킨 다음, 6메쉬 스크린을 통해 사별하여 난소화성 성분의 함량이 47%수준인 덱스트린을 제조하고, 이를 기능성 첨가제와 혼합하는데 사용하였다.Corn starch of 12% moisture was placed in a fluid bed dryer (Glatt GmbH GERMANY) and pre-dried at 93 ° C. while fluidizing with hot air. Then, when the water content is 5%, gaseous hydrochloric acid was added to the hot air, added 0.056% by weight relative to starch, and heat-treated at 135 ° C for 75 minutes. In order to confirm that dextrinization proceeded smoothly, a sample was taken and measured for physical properties. As a result, the fluidity was 55 ml, 95% soluble substance, and whiteness 88. After the process is confirmed, the reaction product is cooled and neutralized. When ammonium bicarbonate is used as a neutralizing agent, 0.067% by weight of starch and 0.3% by weight of starch when anhydrous sodium bisulfite are added are mixed in a dry state. The pH was maintained at 5.8, cooled for 30 minutes, and then separated through a 6 mesh screen to prepare a dextrin having an indigestible content of 47%, and used to mix it with a functional additive.

제조된 열처리 덱스트린 3㎏을 니더(kneader, Littleford Bros., Inc., GERMANY)에 넣고 아라비아검(Colloides Naturels International, FRANCE)을 열처리 덱스트린에 대해 5중량% 첨가하고 30분동안 혼합하였다. 이 혼합물 1㎏에 미리 가열하여 둔 90℃의 온수를 첨가하여 40중량%의 열처리 덱스트린의 용액을 얻었다. 덱스트린 제조시 미리 알파-아밀라제의 최적 pH인 5.8정도로 조절하였기 때문에, 단순히 pH만 확인하고 가수분해반응을 진행하였다. 용액의 온도를 95℃로 올리고, 여기에 시판되는 알파-아밀라제(Novo Nordisk Bioindustry Ltd., 터마밀 120엘에스, DENMARK)를 열처리 덱스트린에 대해 0.2중량% 첨가하고 1시간동안 반응시켰다. 효소반응액에 분말 활성탄을 덱스트린대비 1중량% 첨가하고 가열하여 효소를 불활성화시키고 여과지(Whatman International Ltd., GF/B, GF/F, U.K.)를 이용해 여과시킨 다음, 양이온 및 음이온 교환수지를 혼합한 혼합수지 컬럼에 통액하는 일반적인 당정제 공정을 거쳐 탈색 및 탈염을 행하였다. 이어서 진공농축기를 이용해 50%농도로 농축한 다음, 분무 건조기로 건조하여 백도가 우수한 식물섬유를 제조하였다. 이렇게 하여 얻어진 식물섬유 중의 난소화성 성분의 함량은 식품공전에 기재된 HPLC법으로 정량하였을 때 60%이고, 색도계에 의한 백도는 85를 나타내었다. 참고로, 감자전분소재 식물섬유의 백도는 70이었으며, 난소화성 성분의 함량은 50%이다.3 kg of the prepared heat treated dextrin was placed in a kneader (Kneader, Littleford Bros., Inc., GERMANY), and 5% by weight of gum Arabic (Colloides Naturels International, FRANCE) was added to the heat treated dextrin and mixed for 30 minutes. Hot water at 90 ° C. previously heated to 1 kg of this mixture was added to obtain a solution of 40% by weight of heat treated dextrin. Since dextrin was previously adjusted to about 5.8, which is the optimum pH of alpha-amylase, the pH was simply confirmed and hydrolysis was performed. The temperature of the solution was raised to 95 ° C, and commercially available alpha-amylase (Novo Nordisk Bioindustry Ltd., Thermomil 120 L, DENMARK) was added 0.2% by weight relative to the heat treated dextrin and allowed to react for 1 hour. 1 wt% of powdered activated carbon compared to dextrin was added to the enzyme reaction solution, and the enzyme was inactivated by heating and filtered using a filter paper (Whatman International Ltd., GF / B, GF / F, UK), followed by cation and anion exchange resin. Decolorization and desalting were carried out through a general sugar crystal process which is passed through the mixed resin column. Subsequently, the resultant was concentrated to 50% concentration using a vacuum concentrator, and then dried in a spray dryer to prepare plant fibers having excellent whiteness. The content of the indigestible component in the plant fiber thus obtained was 60% as determined by the HPLC method described in the Food Code, and the whiteness of the colorimeter was 85. For reference, the whiteness of the potato starch material plant fiber was 70, the content of the indigestible component is 50%.

[실시예 2]Example 2

수분 12%의 옥수수전분을 유동층 건조기에 넣고 열풍으로 유동화하면서 90℃로 예비건조시켰다. 수분함량이 4.5%일 때 가스상의 염산을 전분에 가해지는 열풍에 실어 전분대비 0.067중량% 첨가하고, 130℃에서 75분동안 열처리하였다. 반응정도를 확인하기 위해 시료를 취하고 물성을 측정한 결과, 유동도 67㎖(덱스트린 75g을 증류수 107㎖에 용해시켜 표준화된 펀넬로 분석), 가용성물질 80%, 백도 89을 나타내었다. 공정확인 후, 반응물을 냉각시키고 중화시키는데, 중화제로서 암모니움 바이카보네이트를 전분대비 0.067중량% 첨가하여 건식상태에서 균일하게 혼합하고 다시 30분동안 냉각시킨 다음, 6메쉬 스크린을 통해 사별하여 난소화성 성분의 함량이 45%인 덱스트린을 얻고, 이를 기능성 첨가제와 혼합하는데 사용하였다. 제조된 열처리 덱스트린 2㎏을 니더에 넣고 아라비아검의 가수분해물(Colloides Naturels International, FRANCE)을 열처리 덱스트린에 대해 10중량% 첨가하고 30분동안 혼합하였다.Corn starch of 12% of water was placed in a fluidized bed dryer and pre-dried at 90 ° C. while fluidizing with hot air. When the water content was 4.5%, gaseous hydrochloric acid was added to hot air applied to starch, added 0.067% by weight relative to starch, and heat-treated at 130 ° C. for 75 minutes. Samples were taken to determine the degree of reaction and the physical properties were measured. As a result, a flow rate of 67 ml (dissolved 75 g of dextrin in 107 ml of distilled water and analyzed with a standardized funnel), 80% soluble matter, and whiteness 89 was shown. After the process is confirmed, the reactant is cooled and neutralized.Ammonium bicarbonate is added as a neutralizing agent to 0.067% by weight of starch, uniformly mixed in the dry state, cooled for 30 minutes, and then separated through a 6 mesh screen to indigestible components. Dextrin having a content of 45% was obtained and used to mix it with the functional additive. 2 kg of the prepared heat treated dextrin was placed in a kneader, and 10% by weight of hydrolyzate of Arabian gum (Colloides Naturels International, FRANCE) was added to the heat treated dextrin and mixed for 30 minutes.

이 혼합물 1㎏에 미리 가열하여 둔 90℃의 온수를 첨가하여 40중량%의 열처리 덱스트린의 용액을 얻고 pH가 5.8인지를 확인한 후, 용액의 온도를 95℃로 올리고, 여기에 실시예 1에서 사용한 알파-아밀라제를 열처리 덱스트린에 대해 0.1중량% 첨가하고 2시간동안 반응시켰다. 효소의 작용을 중지시키기 위해 1N 염산용액으로 pH를 3.0이하로 낮추고 용액을 55℃로 냉각시킨 후, 1N 수산화나트륨용액으로 pH를 5.5로 조절한 다음, 베타-아밀라제(Genencor International, BBA 1500, FINLAND)를 덱스트린에 대해 0.1중량% 첨가하는 동시에 트란스글루코시다제(Amano Pharmaceutical Co., Ltd., JAPAN)를 덱스트린에 대해 0.2중량% 첨가하여 48시간동안 반응하였다.To 1 kg of this mixture was added hot water at 90 ° C. previously heated to obtain a solution of 40% by weight of heat-treated dextrin and confirming that the pH was 5.8. Then, the temperature of the solution was raised to 95 ° C. and used in Example 1 herein. Alpha-amylase was added 0.1% by weight relative to the heat treated dextrin and allowed to react for 2 hours. To stop the action of the enzyme, lower the pH to 3.0 or less with 1N hydrochloric acid solution, cool the solution to 55 ° C, adjust the pH to 5.5 with 1N sodium hydroxide solution, and then adjust the pH to 5.5 (Genencor International, BBA 1500, FINLAND). ) Was added to the dextrin by 0.1% by weight, while transglucosidase (Amano Pharmaceutical Co., Ltd., JAPAN) was added by 0.2% by weight to the dextrin and reacted for 48 hours.

효소반응액에 분말활성탄을 덱스트린에 대해 1중량% 첨가하고 가열하여 효소를 실활시키고, 글래스필터를 이용하여 여과하고, 이온교환수지를 거쳐 탈색 및 탈염하고, 진공농축기로 50%농도로 농축하였다. 여기에 용액 중량의 2배가 되도록 에탄올을 첨가한 다음, 상온에서 하룻밤 정치시켜 상등액과 침전을 분리하였다. 얻어진 침전물에 증류수를 첨가하여 용해시키고 50%농도로 농축하여 잔여의 에탄올을 제거한 후, 분무건조하여 백도가 우수하며 소화성의 단당류 및 이당류가 90%이상 제거되어 난소화성 성분의 함량이 한층 증가된 식물섬유를 제조하였다. 이렇게 하여 얻어진 식물섬유의 백도는 84이었으며, HPLC법에 의한 난소화성 성분의 함량은 90%로 확인되었다.1 wt% of powdered activated carbon was added to the enzyme reaction with dextrin, and the enzyme was inactivated by heating, filtered using a glass filter, decolorized and desalted through an ion exchange resin, and concentrated to a concentration of 50% by a vacuum concentrator. Ethanol was added to twice the weight of the solution, and then allowed to stand overnight at room temperature to separate the supernatant and the precipitate. Distilled water was added to the obtained precipitate to dissolve it, concentrated to 50% concentration to remove residual ethanol, and then spray-dried to have excellent whiteness, and more than 90% of digestive monosaccharides and disaccharides were removed to further increase the content of indigestible components. Fibers were prepared. The plant fiber obtained in this manner was 84, and the content of the indigestible component was found to be 90% by HPLC method.

[실시예 3]Example 3

실시예 2에서 얻은 정제된 50%농도의 효소처리당액 500g을 41의 다이아이온 유비케이-530수지(Mitsubishi Kasei Technoengineers Ltd., JAPAN)를 담은 쟈켓 컬럼에 통액시켰다. 이 때 쟈켓을 통해 온수를 펌프로 순환시켜 컬럼의 온도를 60℃로 조절하였고 통액속도는 SV=0.37로 하였다. 이렇게 하여 얻어진 식물섬유의 백도는 85이었으며, 난소화성 성분의 함량은 95%로 확인되었다.500 g of the purified 50% enzyme-treated sugar solution obtained in Example 2 was passed through a jacket column containing 41 Diion Ubikei-530 resin (Mitsubishi Kasei Technoengineers Ltd., JAPAN). At this time, the hot water was circulated to the pump through the jacket to adjust the temperature of the column to 60 ℃ and the flow rate was SV = 0.37. The plant fiber obtained in this way was 85 and the content of indigestible components was 95%.

[실시예 4]Example 4

실시예 1에서 얻어진 백색 덱스트린을 니더에 넣고 아라비아검을 덱스트린에 대해 10중량% 첨가하여 30분동안 균일하게 혼합하였다. 실시예 1에서와 같은 방법으로 알파-아밀라제를 작용시키고, pH를 낮춰 효소를 실활시키고 온도를 55℃로 조절한 다음 pH를 4.5로 재조정하였다. 덱스트린에 대해 0.2중량%의 글루코아밀라제(Novo Nordisk Bioindustry Ltd., AMG 300L, DENMARK)를 첨가하고 36시간동안 반응시킨 후, 활성탄처리를 비롯한 일반적인 당정제 공정을 거친 다음 농축하여 50농도%의 용액을 얻었다. 여기에 당액중량의 2배에 해당하는 95%에탄올을 첨가하여 침전을 형성시킨 다음, 2시간 상온에서 정치시켜 상등액을 원심분리하여 제거하고, 침전물에 증류수를 넣고 진공농축기로 50%농도로 농축하여 잔여의 에탄올을 제거한 다음, 분무건조하여 백도가 우수하고 난소화성 성분의 함량이 증가된 식물섬유를 제조하였다. 이렇게 얻어진 식물섬유의 백도는 85이었고, 난소화성 성분의 함량은 93%이었다.The white dextrin obtained in Example 1 was placed in a kneader, and 10% by weight of gum arabic was added to the dextrin and mixed uniformly for 30 minutes. Alpha-amylase was applied in the same manner as in Example 1, the pH was lowered to inactivate the enzyme, the temperature was adjusted to 55 ° C. and the pH was readjusted to 4.5. To the dextrin, 0.2% by weight of glucoamylase (Novo Nordisk Bioindustry Ltd., AMG 300L, DENMARK) was added and allowed to react for 36 hours. Got it. The precipitate was formed by adding 95% ethanol, which is twice the weight of the sugar solution, and then allowed to stand at room temperature for 2 hours to remove the supernatant by centrifugation. Then, distilled water was added to the precipitate and concentrated to 50% by a vacuum concentrator. The residual ethanol was removed and then spray dried to prepare plant fibers having excellent whiteness and increased content of indigestible components. The plant fiber obtained in this way was 85 and the content of indigestible components was 93%.

[실시예 5]Example 5

실시예 4에서 얻어진 글루코아밀라제를 처리한 50%농도의 당액 500g을 다이아이온 유비케이-530수지를 담은 컬럼에 통액시켰다. 이 때 컬럼의 온도를 60℃로 유지시켰으며 통액속도는 SV=0.4로 하였다. 이렇게 하여 얻어진 난소화성의 고분자물질을 50%농도로 농축하고, 분무건조기를 통해 건조하여 백도가 우수하고 난소화성 성분의 함량이 높은 식물섬유를 제조하였다. 이 식물섬유의 백도는 83이었고, 난소화성 성분의 함량은 90%로 이었다.500 g of a 50% concentration of sugar solution treated with glucoamylase obtained in Example 4 was passed through a column containing Diion Ubikei-530 resin. At this time, the temperature of the column was maintained at 60 ° C. and the flow rate was SV = 0.4. Thus obtained fire-retardant polymer material was concentrated to 50% concentration, and dried through a spray dryer to produce a plant fiber having excellent whiteness and a high content of the indigestible component. The plant fiber had a whiteness of 83 and the content of indigestible components was 90%.

[실시예 6]Example 6

실시예 4에서 얻어진 백색 덱스트린과 아라비아검의 혼합물에 동일한 방법으로 알파-아밀라제 및 글루코아밀라제를 작용시킨 후 효소를 실활시키고 트란스글루코시다제(Amano Pharmaceutical Co., Ltd., JAPAN)를 덱스트린에 대해 0.2중량% 첨가하고 pH 5.5, 온도 55℃에서 48시간동안 반응시켰다. 활성탄처리 및 일반적인 당정제공정을 거친 후 50%농도로 농축하고, 실시예 4와 동일한 방법으로 당액중량의 2배에 해당하는 에탄올을 첨가하여 분말화시켰다. 이렇게 하여 얻어진 식물섬유의 백도는 85이었고, 난소화성 성분의 함량은 97%이었다.Alpha-amylase and glucoamylase were applied to the mixture of white dextrin and gum arabic obtained in Example 4, followed by inactivation of the enzyme and transglucosidase (Amano Pharmaceutical Co., Ltd., JAPAN) 0.2 to dextrin. By weight percent was added and reacted for 48 hours at pH 5.5 and a temperature of 55 ° C. After the activated carbon treatment and general sugar refining process, and concentrated to 50% concentration, in the same manner as in Example 4 was added to ethanol corresponding to twice the weight of the sugar solution and powdered. The plant fiber obtained in this way was 85 and the content of the indigestible component was 97%.

[실시예 7]Example 7

실시예 6에서 얻어진 50%농도의 효소처리 당액 1000g을 81의 다이아이온 유비케이-530수지를 채운 컬럼에 통액시켰다. 실시예 5와 같은 방법으로 컬럼의 조건을 유지하고 분할화시켰으며, 이렇게 얻어진 식물섬유의 백도는 83, 난소화성 성분의 함량은 95%로 이었다. 참고로, 글루코스, 솔비톨 및 구연산의 축중합반응으로 만든 합성식물섬유인 폴리덱스트로스의 백도는 75이었고, 난소화성 성분의 함량은 67%이었다.1000 g of the 50% enzyme-treated sugar solution obtained in Example 6 was passed through a column filled with 81 DIION UBI-530 resins. In the same manner as in Example 5, the conditions of the column were maintained and partitioned, and the obtained plant fibers had a whiteness of 83 and an indigestible component content of 95%. For reference, the whiteness of polydextrose, a synthetic plant fiber made by condensation polymerization of glucose, sorbitol, and citric acid was 75, and the content of indigestible components was 67%.

[실시예 8]Example 8

장내 정장효과의 확인Confirmation of Intestinal Dress Effect

초기체중이 50g인 스프라그 다우리계 수취를 23±2℃로 조절되는 소동물 사육실에 설치한 개별우리에 5마리를 1그룹으로 수용하여 시판의 배합사료로 1주간 예비사육한 후, 표2에 제시한 바와 같은 성분 및 조성을 가진 기본사료, 기본사료에 실시예 1 내지 7에서 제조한 식물섬유를 각 5%(v/v) 첨가한 것, 기본사료에 셀룰로오스를 5%(v/v) 첨가한 것으로 각각 7일간 사육하였다. 물 및 사료는 자유로이 섭취시키고, 사료 섭취량과 체중 변화를 매일 기록하였다. 7일째에 카르민(색소)을 사료에 혼합해서 투여하고, 카르민이 변중에 나타날 때까지의 시간을 측정하고, 이를 배설시간으로 하였다. 그후 도살하여 맹장을 적출하고 맹장의 중량과 내용물의 pH 및 부티르산의 양을 측정하였다. 이상에서 얻어진 결과를 평균치를 하기 표3에 나타내었다.Five dogs were housed in a group of individual cages in a small animal breeding room with an initial weight of 50g and the Sprague-Dawley system was adjusted to 23 ± 2 ° C. Basic feed having the ingredients and composition as shown in the addition of 5% (v / v) of the plant fiber prepared in Examples 1 to 7 to the basic feed, 5% (v / v) of cellulose to the basic feed Each was bred for 7 days. Water and feed were taken freely, and feed intake and weight changes were recorded daily. On the 7th day, carmine (pigment) was mixed and administered to the feed, and the time until carmine appeared in the feces was measured, and this was made into excretion time. The slaughter was then slaughtered to remove the cecum, and the weight of the cecum, the pH of the contents and the amount of butyric acid were measured. The average obtained above is shown in Table 3 below.

상기 표 3에서 보듯이, 실시예 1 내지 7로부터 제조된 식물섬유는 난소화 상태로 대장에 도달하고, 장내 세균의 활동에 의해 유기산으로 대사되어 장내의 pH를 저하시키는 것이 확인되었다. 배설시간은 실시예 1 내지 7로부터 제조된 식물섬유의 섭취에서 어느 것이나 단축되었으나, 변동개선효과가 명백한 셀룰로오스 섭취군과 비교해서, 실시예 3과 6으로부터 제조된 식물섬유의 섭취가 유효한 것이 확인되었다. 따라서, 이하의 실시예에서는 실시예 6로부터 제조된 식물섬유에 대해 임상실험을 실시하여 효과를 확인하기로 하였다.As shown in Table 3, the plant fibers prepared in Examples 1 to 7 reached the large intestine in an ovarian state, and was metabolized into organic acids by the activity of intestinal bacteria to lower the pH of the intestine. Excretion time was shortened in any of the intakes of the plant fibers prepared from Examples 1 to 7, but it was confirmed that the intake of the plant fibers prepared from Examples 3 and 6 was effective compared to the cellulose intake group in which the variation improvement effect was apparent. . Therefore, in the following examples, the clinical experiments were conducted on the plant fibers prepared in Example 6 to confirm the effects.

[실시예 9]Example 9

[혈청 콜레스테롤 및 중성지방 저하효과의 확인][Identification of Serum Cholesterol and Triglyceride Lowering Effect]

실시예 1 내지 7로부터 제조된 식물섬유의 혈청지질 개선작용을 검토하였다: 초기체중이 50g인 스프라그 다우리계 수쥐를 표 2에 나타내는 고당식(기본사료)으로 2주간 예비사육후 5군(10마리/그룹)으로 나누어, 제1군에는(조정군) 기본사료를, 제2군(실시예1), 제3군(실시예2), 제4군(실시예3), 제5군(실시예4), 제6군(실시예5), 제7군(실시예6), 제8군(실시예7)에는 기본사료 95부에 사료를 각각 5부 첨가한 시험사료를 공급하고 9주간 사육하였다. 이때, 사료 및 음료수는 자유로이 섭취시키고, 9주일째에 4시간 절식 후 채혈하여 혈청 총 콜레스테롤치 및 중성지방치를 효소법으로 측정하고, 얻어진 결과를 하기 표 4에 나타내었다.The serum lipid-improving effect of the plant fibers prepared from Examples 1 to 7 was examined: Sprague-Dawley rats having an initial body weight of 50 g were fed with a high-sugar diet (basic feed) shown in Table 2 after 5 weeks of pre-breeding. 10 animals per group), the first group (adjusted group) basic feed, the second group (Example 1), the third group (Example 2), the fourth group (Example 3), the fifth group (Example 4), Group 6 (Example 5), Group 7 (Example 6), and Group 8 (Example 7) were supplied with a test feed containing 5 parts of feed each added to 95 parts of basic feed. Breeding for 9 weeks. At this time, the feed and beverages were freely ingested, and after 4 hours of fasting at 9 weeks, blood was collected and the serum total cholesterol and triglyceride levels were measured by enzyme method, and the results obtained are shown in Table 4 below.

결과는 모두 각 시험군에 대해 평균치로 나타내었으며, 사료효율은 하기 식에 의해 산출되었다.The results were all averaged for each test group, and feed efficiency was calculated by the following equation.

상기 표4에서 보는 바와 같이, 8군간에서 체중증가 및 사료효율에는 차이가 없었다. 한편, 실시예 1 내지 7로부터 제조된 식물섬유를 배합한 사료로 사육한 쥐의 혈청 총 콜레스테롤 및 중성지방치는 각각 조정군에 비해 명백히 낮은 값으로 확인되었다. 특히, 실시예 3과 실시예 6의 효과가 현저한 것이 증명되었다.As shown in Table 4, there was no difference in weight gain and feed efficiency among the eight groups. On the other hand, the serum total cholesterol and triglyceride values of rats fed with feed containing plant fiber prepared in Examples 1 to 7 were confirmed to be clearly lower than the control group, respectively. In particular, it was proved that the effect of Example 3 and Example 6 was remarkable.

[실시예 10]Example 10

혈당치 및 인슐린 분비억제효과의 확인Confirmation of blood glucose level and insulin secretion effect

쥐 36마리를 사용한 실험결과에서는, 공복시의 혈당치가 평균 78.0㎎/dl 인슐린 분비가 평균 17.3μU/㎖이었으나, 체중 ㎏당 1.5g이 설탕을 경구투여한 바, 혈당치 및 인슐린 분비는 상승하고, 30분 후에는 평균 164㎎/dl 및 49.9μU/㎖로 최고치를 나타낸 다음, 120분후에는 정상치로 회복되었다. 그러나, 상기한 설탕에 0.15-1.5g(설탕의 1/10-1/1)의 실시예 6으로부터 제조된 식물섬유를 1/10비율로 섭취한 경우, 30분후의 혈당치는 평균 144㎎/dl로, 인슐린 분비는 평균 32.3μU/㎖로 1/1비율로 섭취한 경우에는 138㎎/dl, 31.1μU/㎖로 되었다.In the experimental results using 36 rats, the fasting blood sugar level was 78.0 mg / dl, and the average insulin secretion was 17.3 μU / ml. However, 1.5 g / kg of body weight was orally administered with sugar, and the blood glucose level and insulin secretion were increased. After minutes, peaks were reached at an average of 164 mg / dl and 49.9 μU / ml, and after 120 minutes, they returned to normal. However, when the sugar intake of the plant fiber prepared from Example 6 of 0.15-1.5 g (1 / 10-1 / 1 of sugar) in 1/10 ratio of the above-mentioned sugar, the blood glucose level after 30 minutes averaged 144 mg / dl As a result, insulin secretion was 32.3 µU / ml on average and 138 mg / dl and 31.1 µU / ml when ingested at a 1/1 ratio.

이러한 결과로부, 설탕에 의한 혈당치 및 인슐린 분비의 상승은 난소화성 덱스트린에 의해 중요차이로 억제되는 것이 판명되었다. 같은 방법으로 실시예 6으로부터 제조된 식물섬유를 상기한 설탕에 0.15g을 첨가한 때의 30분후의 혈당치는 평균 160㎎/dl로서 설탕을 경구투여한 때와 차이가 없는 것으로 확인되었다.As a result, it has been found that the increase in blood sugar level and insulin secretion by sugar is suppressed by a significant difference by the indigestible dextrin. In the same manner, the blood glucose level after 30 minutes when 0.15 g was added to the above-described sugar in the plant fiber prepared in Example 6 was found to be no difference from that of orally administered sugar.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 전분소재를 이용하여 백도가 우수한 열처리 덱스트린(dextrin)을 제조한 다음, 여기에 난소화성의 식품용 고분자물질을 건식으로 혼합하여, 백도와 난소화성 성분의 함량이 높은 식물섬유를 제조하는 방법을 제공한다. 아울러 본 발명으로 제조된 식물섬유는 지하전분, 특히 감자전분을 소재로 만든 식물섬유 소재보다 백도면에서 다소 유리하며, 난소화 상태로 대장에 도달하여 정장작용을 하고, 혈청중의 콜레스테롤 및 중성지방치를 낮추며 혈당치 및 인슐린 분비 상승을 억제하는 등의 효능이 있는 것으로 밝혀졌으므로, 이를 통해 응용할 수 있는 식품의 분야도 더욱 확대되리라 기대된다.As described and demonstrated in detail above, the present invention prepares a heat treatment dextrin (excellent whiteness) using a starch material, and then mixed with a fire-resistant food polymer material dry, the whiteness and indigestible components It provides a method for producing a high content of plant fibers. In addition, the plant fiber produced by the present invention is somewhat more advantageous in the white cotton than the plant fiber material made of underground starch, in particular potato starch material, reaches the large intestine in the state of ovarian function, and the cholesterol and triglyceride level in serum Since it has been found to be effective in lowering blood sugar and increasing insulin secretion, it is expected that the field of foods that can be applied through this will be further expanded.

Claims (6)

(i) 원료전분을 80 내지 100℃의 온도로 예비건조하여 수분을 4 내지 7% 수준으로 유지시킨 다음, 전분에 고온의 열풍과 함께 가스상의 염산을 전분대비 0.04 내지 0.1중량% 첨가하고, 110 내지 180℃의 온도에서 60 내지 90분동안 열처리하는 공정; (ii) 중화제를 건식상태로 혼합하여 pH 5.5 내지 6.5으로 조절하고 사별하여 열처리한 백색 덱스트린을 수득하는 공정; 및, (iii) 전기 열처리 덱스트린에 난소화성의 기능성 고분자를 덱스트린 대비 1내지 20중량%로 첨가하여 혼합하고, 내열성 알파-아밀라제를 0.05 내지 0.5중량% 작용시키며 여과, 탈색 및 탈염을 행하는 공정을 포함하는 백도와 난소화성 성분의 함량이 높은 전분소재 식물섬유의 제조방법.(i) pre-drying the raw starch to a temperature of 80 to 100 ℃ to maintain moisture at a level of 4 to 7%, and then to the starch is added 0.04 to 0.1% by weight of gaseous hydrochloric acid with high temperature hot air compared to starch, 110 Heat treatment at a temperature of from about 180 ° C. for 60 to 90 minutes; (ii) mixing the neutralizing agent in a dry state to adjust the pH to 5.5 to 6.5, and fractionating to obtain a heat treated white dextrin; And (iii) adding 1 to 20% by weight of an indigestible functional polymer to the electrothermally treated dextrin and mixing it with 0.05% by weight of the heat-resistant alpha-amylase, and performing filtration, decolorization and desalting. Method for producing a starch material plant fiber with a high content of whiteness and indigestible ingredients. 제1항에 있어서, 중화제는 암모니움 바이카보네이트 또는 무수 소디움 바이설파이트를 사용하는 것을 특징으로 하는 백도와 난소화성 성분의 함량이 높은 전분소재 식물섬유의 제조방법.The method according to claim 1, wherein the neutralizing agent is ammonium bicarbonate or anhydrous sodium bisulfite. 제1항에 있어서, 열처리 덱스트린의 유동도가 50 내지 60㎖이고, 가용성 물질이 86%이성이며, 전분의 당화율이 4 내지 7이고, 난소화성 성분의 함량이 35 내지 50%가 되도록 유지시키는 것을 특징으로 하는 백도와 난소화성 성분의 함량이 높은 전분소재 식물섬유의 제조방법.The method according to claim 1, wherein the heat treated dextrin has a fluidity of 50 to 60 ml, a soluble substance of 86% isomerized, a starch saccharification of 4 to 7 and an indigestible component content of 35 to 50%. A method for producing starch material plant fiber having a high content of whiteness and indigestible component, characterized in that. 제1항에 있어서, 내열성 알파-아밀라제는 pH가 5.5 내지 6.5으로 조절된 열처리 덱스트린 및 기능성 고분자의 혼합용액에 바로 투입하는 것을 특징으로 하는 백도와 난소화성 성분의 함량이 높은 전분소재 식물섬유의 제조방법.The method of claim 1, wherein the heat-resistant alpha-amylase prepared in a starch material plant fiber with a high content of whiteness and indigestible components, characterized in that directly added to the mixed solution of the heat-treated dextrin and functional polymer adjusted to pH 5.5 to 6.5 Way. 제1항에 있어서, 내열성 알파-아밀라제 작용 후, 베타-아밀라제와 트란스글루코시다제의 혼합액 또는 글루코아밀라제와 트란스글루코시다제의 혼합액을 덱스트린 대비 각각 0.05 내지 0.5중량%로 반응시키는 공정을 추가로 포함하는 것을 특징으로 하는 백도와 난소화성 성분의 함량이 높은 전분소재 식물섬유의 제조방법.The method of claim 1, further comprising, after the heat-resistant alpha-amylase action, reacting a mixture of beta-amylase and transglucosidase or a mixture of glucoamylase and transglucosidase at 0.05 to 0.5% by weight relative to dextrin, respectively. Method for producing a starch material plant fiber high in whiteness and indigestible components, characterized in that. 제1항에 있어서, 내열성 알파-아밀라제의 효소반응 후 여과, 탈색 및 탈염을 거친 당용액은 50%의 농도로 농축한 다음, 이온교환수지컬럼을 통과하게 하거나 또는 에탄올을 첨가하여 발생된 침전을 상온에서 정치함으로써, 용액으로부터 단당류를 95%이상 분리하는 공정을 추가로 포함하는 것을 특징으로 하는 백도와 난소화성 성분의 함량이 높은 전분소재 식물섬유의 제조방법.The sugar solution according to claim 1, wherein the sugar solution, which has been filtered, decolorized, and desalted after the enzymatic reaction of the heat resistant alpha-amylase, is concentrated to a concentration of 50%, and then passed through an ion exchange resin column or ethanol is added to precipitate the precipitate. A method of producing starch material plant fiber having a high content of whiteness and indigestible component, further comprising the step of separating at least 95% of the monosaccharides from the solution by standing at room temperature.
KR1019960001586A 1995-09-30 1996-01-25 Processing method of dietary fiber KR0180859B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960001586A KR0180859B1 (en) 1995-09-30 1996-01-25 Processing method of dietary fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR95-33472 1995-09-30
KR19950033472 1995-09-30
KR1019960001586A KR0180859B1 (en) 1995-09-30 1996-01-25 Processing method of dietary fiber

Publications (2)

Publication Number Publication Date
KR970014604A KR970014604A (en) 1997-04-28
KR0180859B1 true KR0180859B1 (en) 1999-02-18

Family

ID=66220403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960001586A KR0180859B1 (en) 1995-09-30 1996-01-25 Processing method of dietary fiber

Country Status (1)

Country Link
KR (1) KR0180859B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100243525B1 (en) * 1997-07-10 2000-02-01 박종헌 Process for producing non-digestive dextrin
JP4753588B2 (en) * 2005-01-28 2011-08-24 松谷化学工業株式会社 Method for producing starch degradation product and white dextrin

Also Published As

Publication number Publication date
KR970014604A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
KR0135075B1 (en) Preparation process of dextrin containing food fiber
KR0181312B1 (en) Food composite for performing function of large bowl regulation
JP3240102B2 (en) Phosphorylated sugar and method for producing the same
FI104431B (en) Process for the preparation of selectively hydrogenated digestible polysaccharides
US5410035A (en) Food composition having hypotensive effect
CN107997178B (en) Method for preparing resistant starch with high dietary fiber content in extrusion mode
KR20000062182A (en) Branched maltodextrins and method of preparing them
JP2639726B2 (en) Water-soluble dietary fiber and method for producing the same
US20050282777A1 (en) Dextrinized, Saccharide-Derivatized Oligosaccharides
JPH02145169A (en) Preparation of dextrin containing food fiber
JPH02154664A (en) Production of dextrin having high dietary fiber content
KR100243525B1 (en) Process for producing non-digestive dextrin
JPH0443624B2 (en)
JP5349744B2 (en) Mineral absorption promoter, food and feed
US20050048191A1 (en) Dextrinized, saccharide-derivatized oligosaccharides
JPH082270B2 (en) Method for producing dextrin containing dietary fiber
KR0180859B1 (en) Processing method of dietary fiber
JPH0773481B2 (en) Low calorie food and drink
CN108191987B (en) Preparation method of resistant starch
US20060149053A1 (en) Dextrinized, saccharide-derivatized oligosaccharides
JP2002037796A (en) Phosphorylated sugar and method for producing the same
JP4673753B2 (en) Serum lipid improving agent containing mannooligosaccharide
JPH0213356A (en) Edible fiber composition
JP2002020398A (en) Phosphorylated sugar and method for producing the same
JPH04335872A (en) Specific food for health

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140919

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20150903

Year of fee payment: 18

EXPY Expiration of term