Nothing Special   »   [go: up one dir, main page]

JPWO2020241676A1 - 3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム - Google Patents

3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム Download PDF

Info

Publication number
JPWO2020241676A1
JPWO2020241676A1 JP2021522805A JP2021522805A JPWO2020241676A1 JP WO2020241676 A1 JPWO2020241676 A1 JP WO2020241676A1 JP 2021522805 A JP2021522805 A JP 2021522805A JP 2021522805 A JP2021522805 A JP 2021522805A JP WO2020241676 A1 JPWO2020241676 A1 JP WO2020241676A1
Authority
JP
Japan
Prior art keywords
data
bending
punching
unit
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021522805A
Other languages
English (en)
Other versions
JP7337154B2 (ja
Inventor
龍 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020241676A1 publication Critical patent/JPWO2020241676A1/ja
Application granted granted Critical
Publication of JP7337154B2 publication Critical patent/JP7337154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/12Geometric CAD characterised by design entry means specially adapted for CAD, e.g. graphical user interfaces [GUI] specially adapted for CAD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Architecture (AREA)
  • Human Computer Interaction (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Numerical Control (AREA)

Abstract

3次元モデル復元システム(1)は、展開データ復元部(2)と3次元モデル復元部(3)とを備える。展開データ復元部(2)は、抜き加工NCデータ(120)から抜き加工情報(200)を作成する抜き加工NCデータ分析部(21)と、抜き加工情報(200)に基づいて、金型配置図(29)を作成する金型配置部(22)と、金型配置図(29)に基づいて展開データ(28a)を作成する展開データ作成部(23)とを備える。3次元モデル復元部(3)は、曲げ加工NCデータ(130)から、曲げ加工情報(300)を作成する曲げ加工NCデータ分析部(31)と、曲げ加工情報(300)と曲げ線とを、展開データ(28a)に結合する曲げ加工情報結合部(33)と、曲げ加工情報(300)と曲げ線とが付与された展開データ(28b)に基づいて3次元モデルを作成する3次元モデル作成部(34)と、を備える。

Description

本開示は、3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラムに関する。
製品の設計には、通常、CAD(Computer Aided Design)が用いられる。このCADを用いて設計された3次元の完成形状モデルのCADデータを活用することにより、設計から製造、検査に至る作業の合理化が図られている。
例えば、特許文献1は、3次元物体検査装置を開示している。この3次元物体検査装置は、CADにより作成された設計データと検査対象物の計測データを比較して検査対象物を同定し、同定した検査対象物に割り当てられている検査方法により、検査対象物を検査する。
特開平7−98217号公報
ところで、板金加工の現場では、次の工程で、成形品を得る。まず、CADにより作成された設計データが表す3次元の完成形状モデルから展開図を作成する。その後、展開図に基づいて抜き加工、曲げ加工等を行うためのNC(Numerical Control:数値制御)データを作成する。作成したNCデータに基づいてNC工作機械で板金を実加工し、成形品を得る。その後、成形品の外観検査を行う。
NCデータは、加工条件が加味されて作成される。例えば、NCデータ作成者は、設計図面において指示された形状通りにワークを加工ができない場合、設計者に問い合わせをし、設計データで指定された金型を別の金型に変更してNCデータを作成することがある。このため、設計者が修正された設計図面を発行するまでの間、成形品の形状と設計段階の完成形状に差異が生じることがある。
一方、特許文献1に記載の3次元物体検査装置は、設計データに基づいて、成形品の自動検査を行う。このため、成形品の形状と設計データに基づく完成形状に差異がある場合には、3次元物体検査装置による検査ができない。この場合、設計者が、完成形状モデルを設計し直すまで検査を待つか、あるいは、人手によって、成形品が展開図通りに実加工されているか否かを確認する工数が発生する。
このように、設計データに基づく完成形状と実際に製造された成形品の形状に差異が生じた場合に、設計段階のCADデータを作業の合理化のために有効に活用できなくなる場合がある。
本開示は、上記実情に鑑みてなされたものであり、実際の成形品により近い3次元モデルを生成可能とすることを目的とする。
上記目的を達成するために、本開示に係る3次元モデル復元システムは、抜き加工NCデータに基づいて、展開データを作成する展開データ復元部と、曲げ加工NCデータと展開データとに基づいて、3次元モデルを作成する3次元モデル復元部と、を備える。展開データ復元部は、抜き加工NCデータから抜き加工情報を作成し、抜き加工情報に基づいて、抜き金型を座標位置に配置した金型配置図を作成し、金型配置図に基づいて展開データを作成する。3次元モデル復元部は、曲げ加工NCデータから、曲げ加工情報を作成し、曲げ加工情報と曲げ線とを展開データに結合し、曲げ加工情報と曲げ線とが付与された展開データに基づいて3次元モデルを作成する。
本開示によれば、抜き加工NCデータから成形品の展開データが作成され、曲げ加工NCデータと復元された展開データとに基づいて3次元の完成形状モデルが作成される。NC工作機械を制御するためのNCデータから3次元モデルを生成するので、実際の成形品により近い3次元モデルを生成することができる。従って、例えば、得られた3次元モデルを成形品の検査工程に使用すれば、成形品の3次元測定機データと3次元モデルとを自動で比較でき、NCデータ作成者が意図的に変更した形状の差異を、人手で再確認する工数を削減することができる。
本開示の実施の形態に係る3次元モデル復元システムの物理的構成を示す図 本開示の実施の形態に係る3次元モデル復元システムの機能構成図 本開示の実施の形態に係る3次元モデル復元処理を含む、板金加工の工程を説明する図 図2に示す抜き加工NCデータ分析部が行う処理を説明する図 図2に示す曲げ加工NCデータ分析部が行う処理を説明する図 実施の形態における曲げ伸び値マスタの一例を示す図 図2に示す金型配置部が作成する金型配置図の説明図 図2に示す展開データ復元部が行う展開データ復元処理を説明する図 図2に示す流し方向基準補正部が行う加工原点に対する曲げ線の向きの説明図 図2に示す曲げ加工情報結合部が行う曲げ線を作図する処理の説明図 本開示の実施の形態に係る3次元モデル復元システムが使用される環境を例示する図
以下、本開示の実施の形態に係る3次元モデル復元システム、3次元モデル復元方法、及びプログラムについて、図面を参照して説明する。
本実施の形態に係る3次元モデル復元システム1は、抜き加工と曲げ加工のNC(Numerical Control:数値制御)データから、抜き加工と曲げ加工の影響を考慮した、実際に成形される成形品の3次元モデルを復元するシステムである。本開示において、復元するとは、実際に成形される成形品に対応する展開データおよび3次元モデルを生成することを意味する。ここで、NCデータとは、工作機械の動作を制御するために、使用する工具、工具が移動する座標位置、速度等を指定する数値データである。NCデータは、CADにより作成された3次元モデルに曲げ加工によって発生する曲げ伸び値を考慮して作成された展開図データに基づき、加工条件を加味して作成される。
抜き加工NCデータは、成形品の輪郭形状を作る外形抜き加工、穴を形成する穴抜き加工、穴周辺を塑性変形させてバーリング形状を作る成形加工等の抜き加工を行う工作機械に入力されるNCデータである。曲げ加工NCデータは、曲げ加工を行う工作機械に入力されるNCデータである。
3次元モデル復元システム1は、例えば、図11に例示するような、製造環境で使用される。図11において、製造システム400は、抜き加工用工作機械410と曲げ加工用工作機械420を含み、ワークを加工して成形品を製造する。製造システム400には、NCデータが供給される。NCデータは、本来的には、設計情報が指定する仕様で生成される。ただし、設計情報の指定そのままの仕様では製造できない場合等の予め設定された場合には、設計情報の指定とは異なる仕様で生成される。
抜き加工用工作機械410は、NCデータに含まれる抜き加工NCデータに従って、成形品の輪郭形状を作る外形抜き加工、穴を形成する穴抜き加工、穴周辺を塑性変形させてバーリング形状を作る成形加工等の抜き加工をワークに対して行う。
曲げ加工用工作機械420は、NCデータに含まれる曲げ加工NCデータに従って、ワークを指定された位置で指定された向きに指定された角度だけ曲げる加工を行う工作機械である。
計測装置430は、製造装置により製造された成形品の寸法、形状などを計測する装置である。
検査装置440は、成形品の3次元モデルと、計測装置430の出力する計測データとを比較して、製造システム400により製造された成形品の良否を判別する。検査装置440は、NCデータが設計情報に従った仕様で生成された際には、設定データに指定された仕様で基づいて生成された成形品の3次元モデルを良否判定の基準に使用し、NCデータが設計情報とは異なる仕様で生成された際には、3次元モデル復元システム1がNCデータに基づいて生成した3次元モデルを良否判定の基準に使用する。
次に、3次元モデル復元システム1の物理的構成について図1を参照して説明する。
3次元モデル復元システム1は、汎用のコンピュータであって、CPU(Central Processing Unit)11と記憶部12と通信部13と入出力部14とを備える。CPU11と記憶部12と通信部13と入出力部14とは、内部バス99を介して相互に接続されている。
CPU11は、記憶部12の不揮発性メモリに記憶されたプログラムを、揮発性メモリをワークエリアとして実行することにより、後述する各種処理を実行する。
記憶部12は、揮発性メモリと不揮発性メモリとを備える。揮発性メモリは、CPU11のワークエリアとして使用され、不揮発性メモリはCPU11が実行するプログラムを記憶する。
通信部13は、ネットワーク110を介して、CADシステム60とデータベース40とに3次元モデル復元システム1を接続する。CADシステム60は成形品の設計データを生成するシステムである。データベース40については、後述する。
入出力部14は、表示装置50と、入力装置51と、出力装置52と、外部記憶装置53とに接続される。表示装置50は、3次元モデル復元システム1により生成された情報を表示するユーザインタフェイスである。入力装置51は、キーボード、マウス等の情報入力装置を含むユーザインタフェイスである。出力装置52は、印刷装置を含み、3次元モデル復元システム1で生成された情報を紙媒体に印刷する。外部記憶装置53は、ハードディスクドライブ装置、ソリッドステートドライブ装置などを含み、3次元モデル復元システム1で生成された情報等を記憶する。なお、データベース40を外部記憶装置53に配置してもよい。
次に、3次元モデル復元システム1の機能構成について図2を参照しながら説明する。
前述のように、3次元モデル復元システム1は、板金加工用のNCデータから、抜き加工と曲げ加工の影響を考慮した、実際に成形される成形品の3次元モデルの3次元データを復元または生成するシステムである。この3次元モデル復元システム1には、板金加工用のNCデータとして、抜き加工NCデータ120と曲げ加工NCデータ130とが供給される。
抜き加工NCデータ120は、ワークの一部を取り除く抜き加工に関し、工作機械の動作を制御するために、加工順、金型ID、加工位置座標位置、打ち抜き速度等を指定する数値データである。抜き加工NCデータ120は、展開図データ28から、CAM(Comuputor Aided Manufacturing)ソフトウウェア、NCデータ作成ソフトウェア等により、抜き加工の加工条件を加味して作成されたものである。展開図データ28は、CADシステム60により生成された設計情報10、すなわち、3次元設計データから、曲げ加工による伸びの大きさを示す伸び値を考慮して生成され、成形品の展開図を表すデータである。抜き加工NCデータ120は、図4に例示するように、加工順、抜き加工に使用される金型の識別情報(以下、単にID)、加工位置の座標情報、打ち抜き速度、加工種別のID等の情報を含む。
一方、曲げ加工NCデータ130は、ワークを折り曲げる曲げ加工に関し、工作機械の動作を制御するために、加工順、使用する金型のNCコード、金型の位置座標、加工原点を基準とする曲げの向き、曲げ角度等を指定する数値データである。なお、金型の位置座標は、加工始点の位置座標(Xs,Ys)と加工終点の位置座標(Xe,Ye)を含む。曲げ加工NCデータ130は、展開図データ28に基づいて、CAMソフトウェア、NCデータ作成ソフトウェア等により、曲げ加工の加工条件を加味して作成される。曲げ加工NCデータ130は、図5に例示するように、曲げ加工に使用される曲げ金型のID、加工位置の座標情報、曲げ角度、加工原点に対する曲げの向き等の情報を含む。
3次元モデル復元システム1は、抜き加工NCデータ120に基づいて板金製品の展開データ28aを復元する展開データ復元部2と、復元された展開データ28aと曲げ加工NCデータ130とに基づいて板金製品の3次元モデルを復元する3次元モデル復元部3と、を備える。
また、3次元モデル復元システム1に接続されているデータベース40は、抜き金型マスタ140、曲げ金型マスタ150、曲げ伸び値マスタ160、抜き許容誤差テーブル170、曲げ許容誤差テーブル180、成形加工形状マスタ190を備える。
抜き金型マスタ140は、図4に例示するように、抜き加工に使用する抜き金型の諸元情報を記憶する。諸元情報は、例えば、抜き金型の型番、金型ID、抜き金型の形状と寸法、その抜き金型を用いて実行される加工の加工種別等の情報等を含む。
曲げ金型マスタ150は、図5に例示するように、曲げ加工に使用する曲げ金型の諸元情報を記憶する。諸元情報は、例えば、金型ID,NCコード、ダイV幅、曲げ半径R、加工種別、を含む。
曲げ伸び値マスタ160は、図6に例示するように、ワークの材質と板厚、使用する金型の型番、曲げ角度別に伸び値を記憶する。
抜き許容誤差テーブル170は、抜き加工別に許容誤差を記憶する。曲げ許容誤差テーブル180は、曲げ加工別に許容誤差を記憶する。成形加工形状マスタ190は、成形加工の種別とその成形加工により得られる3次元の形状とを対応付けて記憶する。
図2に示す展開データ復元部2は、抜き加工NCデータ120を分析して抜き加工情報200を作成する抜き加工NCデータ分析部21と、抜き金型をワーク上に配置した金型配置図29を作図する金型配置部22と、成形品の展開データ28aを作成する展開データ作成部23と、を備える。
抜き加工NCデータ分析部21は、図4に示す抜き加工NCデータ120に含まれている金型IDをキーに抜き金型マスタ140を検索し、抜き加工に使用する抜き金型の諸元情報を抽出する。また、抜き加工NCデータ分析部21は、図4に示す抜き加工NCデータ120から、展開データ28aを作成するのに必要な情報、例えば、加工位置の座標、加工の種別等の情報を抽出する。抜き加工NCデータ分析部21は、金型の諸元情報、加工位置の座標、加工の種別等の情報を統合して、図4に例示する抜き加工情報200を生成する。抜き加工情報200は、例示するように、加工順、金型型番、加工種別、金型の形状と寸法、加工位置座標などの情報を含む。
図2に示す金型配置部22は、抜き加工NCデータ分析部21によって作成された抜き加工情報200に含まれる加工位置座標、金型の形状、金型の寸法等に基づいて、ワーク上に抜き金型を配置した金型配置図29を作成する処理を行う。金型配置図29の一例を図7に示す。この金型配置図は、平面視で長方形のワーク24の上に外形抜き金型25aと3つの穴抜き金型25bを配置された状態を示す。
図2に示す展開データ作成部23は、金型配置部22により作成された金型配置図29に基づいて成形品の展開データ28aを作成する処理を行う。展開データ作成部23は、外形抜き加工により形成される成形品の外形を表す外形線図を作図する外形線作図部231と、穴加工によって形成される穴の形状を示す穴形状図を作図する穴形状作図部232と、成形加工の種別、成形形状等を含む成形加工情報を展開データ28aに結合する成形加工情報結合部233を備える。
外形線作図部231は、図8に例示するように、金型配置部22により作成された金型配置図29上に、外形線26を作図する外形線作図処理S301を行う。なお、外形線26は、外形抜き加工によって形成される成形品の外形を表す線である。具体的には、外形線作図部231は、外形抜き加工に使用される外形抜き金型25aによって形成される閉じられた領域の内側輪郭線を、外形線26として金型配置図29に作図する処理を行う。
穴形状作図部232は、図8に例示すように、外形線作図部231により外形線26が作図された金型配置図29に穴形状線27を作図する穴形状作図処理S302を行う。具体的には、穴形状作図部232は、金型配置図29に配置された穴加工に使用される穴抜き金型25bの外周を穴形状線27として、金型配置図29に作図する。なお、穴形状線27が複数存在する場合は、全ての穴形状線27を作図する。
成形加工情報結合部233は、作図された外形線26と穴形状線27に基づいて、抜き加工により成形品の2次元の展開図を表す展開データ28aを作成する。さらに、成形加工情報結合部233は、作成した展開データ28aに、成形金型の識別番号、加工位置座標、成形加工の種別、寸法等の成形加工情報30を付加する成形加工情報結合処理S303を行う。成形加工には、バーリング加工、タップ加工等があるが、2次元の展開データ28aに、成形加工により形成される3次元の成形形状を図示することはできない。このため、展開データ28aに成形加工情報30を付加する形態を採用する。成形加工情報30は、後述する3次元モデル復元部3が3次元の成形形状を復元するために使用される。
次に、図2に示す3次元モデル復元部3の機能構成について説明する。
3次元モデル復元部3は、曲げ加工NCデータ130を分析して、曲げ加工情報300を作成する曲げ加工NCデータ分析部31と、抜き加工NCデータ120と曲げ加工NCデータ130とでそれぞれ定義される加工原点を一致させる流し方向基準補正部32と、展開データ28aに曲げ加工情報300と曲げ線とを付加する曲げ加工情報結合部33と、3次元モデルを作成する3次元モデル作成部34と、を備える。
曲げ加工NCデータ分析部31は、図5に示す曲げ加工NCデータ130に含まれている金型IDをキーに曲げ金型マスタ150を参照して、曲げ加工に使用する曲げ金型の諸元情報を取得する。また、曲げ加工NCデータ分析部31は、曲げ加工NCデータ130から3次元モデルを復元するために必要な情報、例えば、曲げ加工の曲げ順、加工位置座標、曲げ角度等の加工情報を抽出する。曲げ加工NCデータ分析部31は、これらのデータを統合して、図5に例示する曲げ加工情報300を作成する。曲げ加工情報300は、3次元モデルを復元するために必要な情報、例えば、曲げ金型の情報、曲げ加工の曲げ順、加工位置の始点座標と終点座標、曲げ角度等を含む。
図2に示す流し方向基準補正部32は、抜き加工NCデータ120と曲げ加工NCデータ130に定義されたそれぞれの加工原点の座標値を比較して、加工原点の座標値が異なる場合、曲げ加工情報300の加工位置座標値を抜き加工NCデータ120の加工原点に合わせる補正をする処理を行う。
具体的に説明すると、抜き加工NCデータ120と曲げ加工NCデータ130には、工作機械の機械原点からの距離を予め設定することにより、それぞれの加工原点が定義されている。抜き加工NCデータ120と曲げ加工NCデータ130との加工原点が異なっている場合には、座標系を統一する必要が生じる。そこで、流し方向基準補正部32は、抜き加工NCデータ120に加工原点として定義された機械原点からの距離の値と曲げ加工NCデータ130に加工原点として定義された機械原点からの距離の値を抜き出す。流し方向基準補正部32は、抜き出した2つの距離の値を比較し、値が異なっている場合は、曲げ加工情報300の加工位置座標を補正して、抜き加工NCに定義された加工原点と一致させる。
曲げ加工情報結合部33は、展開データ28aが示す展開図に、曲げ加工情報300に基づいて曲げ線を追加し、曲げ線を含む展開図を示す展開図データ28bを生成する処理を行う。曲げ線を追加した展開図を図10に例示する。また、曲げ加工情報結合部33は、展開データ28bに曲げ加工情報300を付与する。
3次元モデル作成部34は、データベース40に格納された曲げ伸び値マスタ160と成形加工形状マスタ190とを参照し、展開データ28bに基づいて、3次元モデルを作成する処理を行う。
図6に例示するように、曲げ伸び値マスタ160には、被加工物の材質と板厚、曲げ金型の型番、曲げ角度等の曲げ条件に対応した被加工物の伸び値が予め登録されている。また、成形加工形状マスタ190には、バーリング加工、タップ加工等の成形加工の種別に対応する3次元の形状が予め登録されている。
図2に示す3次元モデル作成部34は、成形加工形状マスタ190を参照し、成形加工情報30に基づいて3次元の成形加工形状を作成し、曲げ加工情報300と曲げ線とに基づいて曲げ形状を作成し、最後に穴形状を作成して、3次元モデルを作成する。
以上が、3次元モデル復元システム1の機能構成である。続いて、3次元モデル復元システム1の動作について説明する。なお、3次元モデル復元システム1は、NCデータが作成された後に動作する。このため、まず、板金加工に関し、設計情報10から展開図データ28を作成し、さらに、展開図データ28から抜き加工NCデータ120と曲げ加工NCデータ130とを作成する処理について図3を参照して説明する。
製品の3次元モデルの設計が完了すると、生成された設計情報10に基づいて、展開図データ28を作成する展開図データ作成処理を実行する(ステップS101)。展開図データ作成処理は、設計情報10の形態によって、次のようにして実行される。
設計情報10が3次元CADデータの場合、CADシステムの展開図自動作成機能によって、3次元CADデータから展開図データ28が作成される。設計情報10が2次元三面図のCADデータの場合は、展開図作成ソフトウェアによって、三面図の各面が合成されて、展開図データ28が作成される。設計情報10が紙媒体の2次元三面図の場合は、人手によって、CADを操作して展開図データ28が作成される。
曲げ加工によって板金に伸びが発生するため、展開図データ28を作成する際は、図6に例示した曲げ伸び値マスタ160に格納される伸び値を考慮して展開図データ作成処理を行う。
図3に戻り、次に、ステップS101により作成された展開図データ28に基づいて、抜き加工NCデータ120と曲げ加工NCデータ130を作成するNCデータ作成処理を行う。抜き加工NCデータ作成処理は、まず、抜き金型マスタ140に登録されている保有している抜き金型の情報と、保有している板金材料の情報等の加工条件を参照し、抜き金型を適当なワーク上に配置する。抜き金型マスタ140に登録されている情報で、抜き金型を板金材料の上に適切に配置できた場合(ステップS102;Yes)、NCプログラム作成機能によって、抜き加工NCデータ120を作成する(ステップS103)。
抜き金型マスタ140に登録された情報では、抜き金型を板金材料の上に配置できない場合(ステップS102;No)、設計情報10の設計形状通りに成形品を加工することができない。このため、設計情報10に含まれる寸法公差、幾何公差の範囲内に収まる他の抜き金型を選択し、抜き金型を板金材料上に配置する(ステップS201)。その後、NCプログラム作成機能によって、抜き加工NCデータ120が作成される(ステップS202)。
抜き加工NCデータ120を作成すると、曲げ加工のNCデータ作成処理を行う。曲げ加工NCデータの作成方法については、インプット情報の形態により次のような方法がある。
設計情報10が3次元CADデータの場合は、NCデータ作成プログラムによって、曲げ工程に関する属性情報が抽出され、曲げ加工NCデータ130が自動作成される。設計情報10が2次元CADの三面図の場合は、人手によって、曲げ順に沿って、使用する曲げ金型、曲げフランジ寸法、曲げ角度、曲げに対する曲げ回数等が入力され曲げ加工NCデータ130が作成される。
なお、抜き加工NCデータ120と曲げ加工NCデータ130とが作成されると、これらのNCデータがNC工作機械に入力され、NC工作機械は、抜き加工と曲げ加工の実加工を行う(ステップS104)。この時、実加工の前に、まず試し加工が行われ、試し加工の結果によって、抜き加工NCデータ120と曲げ加工NCデータ130とを修正してもよい。この場合、修正後の抜き加工NCデータ120と曲げ加工NCデータ130とがNC工作機械に入力され、実加工が行われる。
次に、成形品が正しく製造されているか否かをチェックするため、成形品の外観を3次元計測装置により計測する(ステップS105)。
続いて、ステップS105で計測された値と成形品の3次元モデルとを比較することにより、外観検査を行う(ステップS106)。より具体的には、外観検査装置は、データベース40に格納されている抜き加工工程、曲げ加工工程に対応する抜き許容誤差テーブル170、曲げ許容誤差テーブル180を参照し、計測データが示す成形品と3次元モデルとの差がこれらの許容誤差の範囲内か否かを判別する。差が許容誤差の範囲内の場合には、合格と判別し、差が許容誤差の範囲外の場合には、欠陥品と判別する。
ここで、検査の基準となる3次元モデルは、NCデータがステップS103で生成されたときには、設計情報10に基づいて生成される。一方、NCデータがステップS202で生成されたときには、製造される成形品は、設計情報10が示すものとは異なる。このため、検査の基準モデルとして、3次元モデル復元システム1が、ステップS202で生成されたNCデータに基づいてステップS203で復元した3次元モデルを使用する。
次に、3次元モデル復元システム1が、実際に製造される製品を正確に表している3次元モデルを復元あるいは作成する3次元モデル復元処理(ステップS203)について図3を参照して説明する。
3次元モデル復元処理(ステップS203)は、抜き加工NCデータ120と曲げ加工NCデータ130とが作成された(ステップS202)後に実行される処理であり、展開データ復元処理(ステップS211)と3次元モデル復元処理(ステップS212)を含む。
まず、展開データ復元処理(ステップS211)について図4を参照して説明する。
展開データ復元部2は、抜き加工NCデータ120が入力されると、これを記憶部12に保存する。また、展開データ復元部2は、抜き加工NCデータ120を保存したことを抜き加工NCデータ分析部21に通知する。
抜き加工NCデータ分析部21は、記憶部12に保存された抜き加工NCデータ120を取得し、データベース40に格納されている抜き金型マスタ140を読み込み、抜き加工情報200を生成する処理を開始する。
詳細に説明すると、抜き金型マスタ140には、抜き金型を識別するための金型型番及び金型ID、抜き金型の形状と寸法、成形加工の種別等の情報等が予め登録されている。一方、抜き加工NCデータ120には、使用する抜き金型の金型ID、加工位置の座標情報、打ち抜き速度、加工の種別ID等の情報が記述されている。
抜き加工NCデータ分析部21は、抜き加工NCデータ120から必要な情報を抽出し、抜き金型マスタ140に登録された情報と対応させることによって、加工順、使用される抜き金型の型番、加工種別、形状と寸法、加工位置座標(X,Y)等の抜き加工情報200を作成し、記憶部12に保存する。
抜き加工情報200が作成されると、金型配置部22が、金型配置図作成処理を開始する。金型配置部22は、抜き加工情報200の加工位置座標(X,Y)と金型の寸法とに基づき、抜き金型25をワーク24上に配置し、金型配置図29を作成する。金型配置図29の例を図7に示す。図7において、斜線部が配置された抜き金型を示す。なお、ユーザが入力装置51を操作することにより、抜き金型25をワーク24上に配置してもよい。図7は、平面視で長方形のワーク24の上に外形抜き金型25aと3つの穴抜き金型25bを配置された状態を示す。
金型配置図29が作成されると、展開データ作成部23が展開データ作成処理を行う。展開データ作成処理は、図8に示す通り、成形品の外形形状を表す外形線26を作図する外形線作図処理(ステップS301)と、穴加工によって形成される穴形状線27を作図する穴形状作図処理(ステップS302)と、成形加工の種別、成形金型の識別番号、加工位置座標等の成形加工情報30を展開データ28aに付加する成形加工情報結合処理(ステップS303)とを備える。
外形線作図処理(ステップS301)において、外形線作図部231は、金型配置図29を記憶部12から読み込み、外形線26を作図する。外形線26は、成形品の外形を表す線である。具体的に、外形線作図部231は、外形抜き加工に使用される単一もしくは複数の外形抜き金型25aによって形成される閉じられた領域の内側輪郭線を外形線26として描く処理を行う。
次に、穴形状作図部232は、外形線が作図された金型配置図29に穴形状線27を描く処理を行う(ステップS302)。穴形状線27は、ワーク24上に配置された穴抜き金型25bの外形線である。具体的に、穴形状作図部232は、金型配置図29に配置された穴抜き金型25bの座標情報、形状情報及び寸法情報に基づいて、穴抜き金型25bの外形線を穴形状線27としてワーク24上に作図する。なお、穴抜き金型25bが複数存在する場合は、全てについて、穴形状線27として作図する処理を行う。
最後に、成形加工情報結合部233は、外形線26と穴形状線27とから展開図を生成し、この展開図を示す展開データ28aを作成する。次に、成形加工情報結合部233は、抜き加工NCデータ分析部21によって作成された抜き加工情報200から、成形金型の識別番号、成形加工の種別、成形金型の加工位置座標等の情報を抽出して成形加工情報30を作成し、成形加工情報30を展開データ28aに付加する成形加工情報結合処理(ステップS303)を実行する。
以上の処理により、成形加工情報30を付与した展開データ28aが作成される。展開データ復元部2は成形加工情報30を付与した展開データ28aを記憶部12に記憶させる。
次に、図3に示す3次元モデル復元処理(ステップS212)について図5を参照して説明する。
3次元モデル復元部3は、曲げ加工NCデータ130が入出力部14に入力されると、これを記憶部12に保存する。また、3次元モデル復元部3は、曲げ加工NCデータ130を保存したことを曲げ加工NCデータ分析部31に通知する。
曲げ加工NCデータ分析部31は、記憶部12に保存された曲げ加工NCデータ130を取得し、データベース40に格納される曲げ金型マスタ150を読み込み、曲げ加工情報300を生成する処理を開始する。
曲げ金型マスタ150には、NCコードに対応する曲げ金型のID、ダイV幅、曲げ半径R、加工種別等の情報が登録されている。曲げ加工NCデータ130には、使用される曲げ金型のNCコード、曲げ金型の加工位置座標、曲げ角度、加工原点に対する曲げの向き等の情報が、曲げの工程分含まれる。ここで、加工原点に対する曲げの向きとは、図9に示す通り、始点座標から終点座標を結ぶ曲げ線のX軸に対する向きをいう。
具体的に、曲げ加工NCデータ分析部31は、曲げ加工NCデータ130から必要な情報を抽出し、曲げ金型マスタ150に登録された情報と対応させることによって、図5に示すような曲げ加工情報300を作成する。図示するように、曲げ加工情報300は、曲げ順、曲げ加工に使用される曲げ金型の型番、曲げパターン、加工位置の始点座標と終点座標、曲げ角度等を含む。曲げ加工NCデータ分析部31は、曲げ加工情報300を記憶部12に保存し、流し方向基準補正部32に通知する。
流し方向基準補正部32は、曲げ加工NCデータ分析部31から通知を受けると、抜き加工NCデータ120、曲げ加工NCデータ130、曲げ加工情報300を記憶部12から取得し、流し方向基準補正処理を開始する。
前提として、抜き加工NCデータ120と曲げ加工NCデータ130には、工作機械の機械原点からの距離を予め設定することにより、それぞれの加工原点が定義されている。
流し方向基準補正部32は、抜き加工NCデータ120と曲げ加工NCデータ130からそれぞれの加工原点の座標値を比較する。加工原点の座標値が異なっている場合、流し方向基準補正部32は、抜き加工NCデータ120と曲げ加工NCデータ130との加工原点の座標の差分値を計算し、曲げ加工情報300の加工位置座標を抜き加工NCの加工位置座標と統一する処理を行う。具体的に、流し方向基準補正部32は、曲げ加工NCデータ130の加工原点の座標(X1、Y1)から抜き加工NCデータ120の加工原点の座標(X2,Y2)を減算し、差分(XD,YD)=(X1−X2,Y1−Y2)を求める。流し方向基準補正部32は、曲げ加工情報300の加工始点位置座標(Xs,Ys)と終点位置座標(Xe、Ye)に、それぞれ、差分(XD,YD)を加算して、抜き加工NCの加工座標と統一する処理を行う。流し方向基準補正部32は、加工位置の始点座標と終点座標を補正した曲げ加工情報300(以下、区別のため300A)を記憶部12に記憶させる。
曲げ加工情報結合部33は、展開データ復元部2にて作成された展開データ28aと、曲げ加工NCデータ分析部31により作成された曲げ加工情報300Aとを結合する。具体的には、曲げ加工情報結合部33は、展開データ28aが示す展開図に、曲げ加工情報300Aに従って曲げ線を追加し、その曲げ線に曲げ金型の型番、曲げ角度等の情報を付加する処理を行う。
展開図に曲げ線を追加する処理を説明する。曲げ加工情報結合部33は、まず、図9に示すように、展開データ28aが表す展開図に、曲げ向き0°の曲げ線を追加する。なお、曲げ向き0°の曲げ線とは、X軸に平行な曲げ線に相当する。
より具体的には、曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と終点座標(Xe,Ye)をプロットする。例えば、図5示す曲げ加工情報の曲げ順1の曲げ加工であれば、曲げ金型の加工始点座標(50,50)と終点座標(480,50)をプロットする。
曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と曲げ金型の加工終点座標(Xe,Ye)を繋いだ線が外形線26と交差する複数の交点のうち、曲げ金型の加工始点のX座標Xsより大きく、X値が最小となる交点の座標を、曲げ線の始点座標とする。また、曲げ金型の加工終点のX座標Xeより小さく、X値が最大となる交点の座標を、曲げ線の終点座標とする。曲げ向き0°の曲げ加工が複数回ある場合は、曲げ回数分、本処理を繰り返し、曲げ線を図示する。
次に、曲げ加工情報結合部33は、曲げ向き90°の曲げ線を描く。なお、曲げ向き90°の曲げ線とは、Y軸に平行な曲げ線に相当する。より具体的には、曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と終点座標(Xe,Ye)をプロットする。例えば、図4に示す曲げ加工情報の曲げ順2の曲げ加工であれば、曲げ金型の加工始点座標(40,50)と終点座標(40,90)をプロットする。曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と曲げ金型の加工終点座標(Xe,Ye)を繋いだ線が外形線26と交差する複数の交点のうち、曲げ金型の加工始点Y座標Ysより大きく、Y値が最小となる座標を、曲げ線座標始点とする。曲げ金型の加工終点Y座標Yeより小さく、Y値が最大となる座標を、曲げ線の加工終点座標とする。曲げ向き90°の曲げ加工が複数回ある場合は、曲げ回数分、本処理を繰り返す。
曲げ加工情報結合部33は、他の曲げ向き曲げ線がある場合は、その曲げ線にも、同様の処理を行う。
曲げ加工情報結合部33は、各曲げ線に曲げ加工に使用される金型の型番、曲げ線の位置座標、曲げ角度等の曲げ加工情報300を付加する。
以上の処理をすることで、曲げ線が追加された展開図を示し且つ曲げ加工情報300が付加された展開データ28bが得られる。曲げ加工情報結合部33は、作成した展開データ28bを記憶部12に保存し、3次元モデル作成部34にその旨を通知する。
3次元モデル作成部34は、曲げ加工情報結合部33から通知を受けると、展開データ28bを取得し、データベース40に格納されている曲げ伸び値マスタ160と成形加工形状マスタ190を読み込み、3次元モデルを作成する処理を開始する。
最初に、3次元モデル作成部34は、展開データ28bから、成形加工情報結合部233により結合された成形加工情報30を読み込み、成形加工の種別情報を取得する。次に、成形加工形状マスタ190から、取得した成形加工の種別に対応する3次元の成形形状を取得して、その成形加工形状を展開データ28bの展開形状に付加する。
次に、3次元モデル作成部34は、曲げ加工情報結合部33で作成された曲げ加工情報300に基づき、データベース40に格納される曲げ伸び値マスタ160を参照して、展開形状を立体化する処理を行う。
図6に例示するように、曲げ伸び値マスタ160には、被加工物の材質情報、曲げ金型の型番、板厚情報、曲げ角度の条件セットに対応した伸び値が登録されている。3次元モデル作成部34は、曲げ加工の各座標位置に対して、曲げ伸び値マスタ160から伸び値を取得し、曲げのフランジ長さを減算することによって、寸法を計算し、曲げ形状を付加し、3次元モデルを作成する。
最後に、3次元モデル作成部34は、外形線26の中にある穴形状線27を3次元モデルに付加し、3次元モデルを作成する。
以上説明した3次元モデル復元処理に従い出力された3次元モデルは、ステップS102で、設計情報10の通りに抜き金型25を配置できないと判別された場合に、製造に実際に使用された抜き金型の情報及び配置情報を用いて生成されている。すなわち、実際の加工条件を加味して生成されているため、成形品の形状に、加工条件を加味していない設計情報10で定義される3次元モデルよりもより一致する。従って、例えば、図3に示すように、実加工によって得られた成形品の3次元計測を行い(ステップS105)、3次元モデルと成形品の計測データとを対比する検査を行う場合(ステップS106)に、正常な成形品であるにもかかわらず、3次元モデルと異なると判断される等の動作を防止できる。
従って、例えば、特許文献1に記載の3次元物体検査装置を用いて、復元された3次元モデルと検査対象物の計測データを比較し、検査対象物を同定する処理、検査対象物に対して行うべき検査法を決定する処理、センサおよび照明系の位置、姿勢等を制御する処理などをより適切に実施することが可能となる。
但し、本処理にて出力された3次元モデルには、設備の加工誤差が含まれている。よって、実際に検査する際は、抜き許容誤差テーブル、曲げ許容誤差テーブルを定義しておき、これらの誤差の範囲内にあるか否かによって、成形品の検査をすることが望ましい。
なお、上記の説明では、3次元モデル復元システム1が一つの装置に実装されている場合について説明したが、実装形態はこれに限定されることはない。例えば、3次元モデル復元システム1の各部が別々の装置に実装され、ネットワークで接続されていても良い。
また、3次元モデル復元システム1の3次元モデル復元処理(ステップS203)は、抜き金型を設計情報通りに配置できない場合に行う処理として説明したが、抜き金型を設計情報通りに配置できた場合にも(ステップS102:YES)、実施されてもよい。
また、3次元モデル復元システム1の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。例えば、上記実施の形態で例示した3次元モデル復元システム1による各機能構成を実現させるためのプログラムを、例えば磁気ディスク、光ディスク、光磁気ディスク、半導体メモリ等の記憶媒体に書き込んで、既存のコンピュータ、情報端末機器等は、記憶媒体に記憶されたプログラムを読み込み、CPUがこれを実行することで、3次元モデル復元システムとして機能させることができる。また、本開示に係る3次元モデル復元方法は、3次元モデル復元システム1を用いて実施できる。
また、このようなプログラムの適用方法は任意である。プログラムを、例えば、コンピュータが読取可能な記録媒体(CD−ROM(Compact Disc Read−Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto Optical disc)等)に格納して適用できる他、インターネット上のストレージにプログラムを格納しておき、これをダウンロードさせることにより適用することもできる。
なお、本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。即ち、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。
本出願は、2019年5月28日に出願された、日本国特許出願特願2019−099220号に基づく。本明細書中に日本国特許出願特願2019−099220号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
1 3次元モデル復元システム、2 展開データ復元部、3 3次元モデル復元部、4 3次元モデル、10 設計情報、11 CPU、12 記憶部、13 通信部、14 入出力部、21 抜き加工NCデータ分析部、22 金型配置部、23 展開データ作成部、24 ワーク、25 抜き金型、25a 外形抜き金型、25b 穴抜き金型、26 外形線、27 穴形状線、28 展開図データ、28a、28b 展開データ、29 金型配置図、30 成形加工情報、31 曲げ加工NCデータ分析部、32 流し方向基準補正部、33 曲げ加工情報結合部、34 3次元モデル作成部、40 データベース、50 表示装置、51 入力装置、52 出力装置、53 外部記憶装置、60 CADシステム、99 内部バス、110 ネットワーク、120 抜き加工NCデータ、130 曲げ加工NCデータ、140 抜き金型マスタ、150 曲げ金型マスタ、160 曲げ伸び値マスタ、170 抜き許容誤差テーブル、180 曲げ許容誤差テーブル、190 成形加工形状マスタ、200 抜き加工情報、231 外形線作図部、232 穴形状作図部、233 成形加工情報結合部、300 曲げ加工情報、400 製造システム、410 抜き加工用工作機械、420 曲げ加工用工作機械、430 計測装置、440 検査装置。

Claims (8)

  1. 抜き加工NCデータに基づいて、展開データを作成する展開データ復元部と、
    曲げ加工NCデータと前記展開データとに基づいて、3次元モデルを作成する3次元モデル復元部と、
    を備える3次元モデル復元システムであって、
    前記展開データ復元部は、
    抜き加工NCデータから抜き加工情報を作成する抜き加工NCデータ分析部と、
    前記抜き加工情報に基づいて、抜き金型を座標位置に配置した金型配置図を作成する金型配置部と、
    前記金型配置図に基づいて展開データを作成する展開データ作成部と、
    を備え、
    前記3次元モデル復元部は、
    曲げ加工NCデータから、曲げ加工情報を作成する曲げ加工NCデータ分析部と、
    前記曲げ加工情報と曲げ線とを、前記展開データに結合する曲げ加工情報結合部と、
    前記曲げ加工情報と前記曲げ線とが付与された前記展開データに基づいて3次元モデルを作成する3次元モデル作成部と、
    を備える3次元モデル復元システム。
  2. 前記展開データ作成部は、
    前記金型配置図に配置された外形抜き金型によって形成される閉じられた領域の内側輪郭線を外形線として作図する外形線作図部と、
    前記金型配置図に配置された穴抜き金型の外形を穴形状として作図する穴形状作図部と、
    成形加工情報を前記展開データに結合する成形加工情報結合部と、
    を備える請求項1に記載の3次元モデル復元システム。
  3. 前記3次元モデル復元部は、
    抜き加工NCデータと曲げ加工NCデータとにそれぞれ定義された加工原点の座標値を取得し、前記曲げ加工NCデータに定義された加工原点の座標値と前記抜き加工NCデータに定義された加工原点の座標値の差分に基づいて、前記曲げ加工情報の加工位置座標を補正する流し方向基準補正部をさらに有する、
    請求項1又は2に記載の3次元モデル復元システム。
  4. 請求項1から3のいずれか1項に係る3次元モデル復元システムと、
    前記3次元モデル復元システムにより生成された3次元モデルと、NCデータに基づいて製造された検査対象物の外観検査データとを比較して検査を行う検査手段と、
    を備える検査装置。
  5. 設計情報により指定された通りに抜き金型を配置することが可能か否かを判別する配置可否判別手段をさらに備え、
    前記検査手段は、
    前記配置可否判別手段が配置可能と判別した場合には、前記設計情報に基づいて生成された3次元モデルを比較対象として使用し、
    前記配置可否判別手段が配置できないと判別した場合には、前記3次元モデル復元システムにより生成された3次元モデルを比較対象として使用する、
    請求項4に記載の検査装置。
  6. 設計情報により指定された通りに抜き金型を配置することが可能か否かを判別する配置可否判別手段と、
    前記配置可否判別手段が配置可能と判別した場合には、前記設計情報に基づいてNCデータを生成する手段と、
    前記配置可否判別手段が配置可能と判別した場合には、前記設計情報とは異なる仕様でNCデータを生成する手段と、
    をさらに備える請求項4に記載の検査装置。
  7. 展開データ復元部と、3次元モデル復元部と、を備える3次元モデル復元システムによる3次元モデル復元方法であって、
    前記展開データ復元部が、抜き加工NCデータに基づいて、展開データを作成する展開データ復元ステップと、
    前記3次元モデル復元部が、曲げ加工NCデータと前記展開データとに基づいて、3次元モデルを作成する3次元モデル復元ステップと、
    を備える3次元モデル復元方法。
  8. コンピュータに、
    抜き加工NCデータから展開データを作成し、
    曲げ加工NCデータと前記展開データとから、3次元モデルを作成する、
    処理を実行させるプログラム。
JP2021522805A 2019-05-28 2020-05-27 3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム Active JP7337154B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019099220 2019-05-28
JP2019099220 2019-05-28
PCT/JP2020/020892 WO2020241676A1 (ja) 2019-05-28 2020-05-27 3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2020241676A1 true JPWO2020241676A1 (ja) 2021-11-25
JP7337154B2 JP7337154B2 (ja) 2023-09-01

Family

ID=73552259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021522805A Active JP7337154B2 (ja) 2019-05-28 2020-05-27 3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム

Country Status (2)

Country Link
JP (1) JP7337154B2 (ja)
WO (1) WO2020241676A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219341A (ja) * 1998-06-05 2001-08-14 Amada Co Ltd 板金加工統合支援システム
JP2002207504A (ja) * 2001-01-11 2002-07-26 Mori Seiki Co Ltd 3次元形状データ生成方法及び3次元形状データ生成装置
JP2002355737A (ja) * 1998-06-29 2002-12-10 Amada Metrecs Co Ltd 板金データ管理システム及び板金データ管理プログラムを記憶した記憶媒体
JP2003044118A (ja) * 2001-07-31 2003-02-14 Amada Co Ltd 板金加工製品の3次元検査・利用方法及びそのシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219341A (ja) * 1998-06-05 2001-08-14 Amada Co Ltd 板金加工統合支援システム
JP2002355737A (ja) * 1998-06-29 2002-12-10 Amada Metrecs Co Ltd 板金データ管理システム及び板金データ管理プログラムを記憶した記憶媒体
JP2002207504A (ja) * 2001-01-11 2002-07-26 Mori Seiki Co Ltd 3次元形状データ生成方法及び3次元形状データ生成装置
JP2003044118A (ja) * 2001-07-31 2003-02-14 Amada Co Ltd 板金加工製品の3次元検査・利用方法及びそのシステム

Also Published As

Publication number Publication date
WO2020241676A1 (ja) 2020-12-03
JP7337154B2 (ja) 2023-09-01

Similar Documents

Publication Publication Date Title
JP3338373B2 (ja) 板金加工統合支援システム
US7327869B2 (en) Computer aided quality assurance software system
US20090226073A1 (en) Method of creating master data used for inspecting concave-convex figure
JP2008176441A (ja) 金型モデルデータの修正方法
JP2008076384A (ja) 情報処理方法、情報処理装置およびプログラム
TWI514068B (zh) 基於上下文感知圖案之自動化設計佈局圖案校正之方法及設備
JP4778685B2 (ja) 半導体デバイスのパターン形状評価方法及びその装置
US6735489B1 (en) Horizontally structured manufacturing process modeling
WO2020241676A1 (ja) 3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム
JP5062747B2 (ja) 金型製造装置及び金型製造方法
EP2845130B1 (en) System and method for bending and unbending complex sheet metal bend regions
JP2007172058A (ja) 板金モデル作成システム、板金モデル作成方法、及び板金モデル作成プログラム
CN110781641B (zh) 一种快速识别纠正版图中敏感图形的方法
Sulaiman et al. Integrated Interface Development Environment using STEP Universal Data Structure
JP5892846B2 (ja) 加工シミュレーション装置及び方法
JP2008140036A (ja) 作業支援装置および方法
KR100737018B1 (ko) 차체용접 지그 제조방법
JPH0916657A (ja) 中間的構造物形状設計データの作成方法および工具軌跡データの作成方法
EP1116078B1 (en) Process and system for working a workpiece through numerically controlled machine tools
JP7204504B2 (ja) 対象物確認装置
CN112184853B (zh) 检具构建方法、装置、电子设备及存储介质
JP2006187816A (ja) 光学製品または光学製品の成形用金型の製作方法
CN112926158B (zh) 一种工业机械设计场景下基于参数微调的通用设计方法
TWI760675B (zh) 加工路徑缺陷檢測方法
US12000694B2 (en) Computer-implemented method for automatically producing metrology test plan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7337154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150