Nothing Special   »   [go: up one dir, main page]

JPWO2020159666A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020159666A5
JPWO2020159666A5 JP2021542372A JP2021542372A JPWO2020159666A5 JP WO2020159666 A5 JPWO2020159666 A5 JP WO2020159666A5 JP 2021542372 A JP2021542372 A JP 2021542372A JP 2021542372 A JP2021542372 A JP 2021542372A JP WO2020159666 A5 JPWO2020159666 A5 JP WO2020159666A5
Authority
JP
Japan
Prior art keywords
deflector
scan
beam path
controller
scan field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021542372A
Other languages
Japanese (ja)
Other versions
JP2022518898A (en
JP7573535B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/012219 external-priority patent/WO2020159666A1/en
Publication of JP2022518898A publication Critical patent/JP2022518898A/en
Publication of JPWO2020159666A5 publication Critical patent/JPWO2020159666A5/ja
Application granted granted Critical
Publication of JP7573535B2 publication Critical patent/JP7573535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

図2及び図3に関して上記で述べた実施形態のいずれかにおいては、第1のポジショナ106は、単軸AODシステム又は多軸AODシステムとして提供され得る。(例えば上述したような)AODシステム内でのAODの構成に応じて、AODは、縦モードAOD又は剪断モードAODとして特徴付けることができ、直線偏光又は円偏光されたレーザエネルギービームを回折できるようになっていてもよい。このように、レーザエネルギービームの波長に応じて、またAODシステム中のAODのAOセルを形成する材料に応じて、AOD内のAOセルの回折軸がこれに入射するレーザエネルギービームの偏光面に平行又は垂直(あるいは少なくとも実質的に平行又は垂直)となるように内部のAODを方向付けることができる。例えば、レーザエネルギービームの波長は、電磁波スペクトルの紫外線域又は可視緑光域にあり、AODのAOセルは、石英のような材料から形成され、AOセルの回折軸が入射したレーザエネルギービームの偏光面に垂直(又は少なくとも実質的に垂直)になるようにAODを方向付けることができる。他の例においては、レーザエネルギービームの波長がいわゆる電磁波スペクトルの中波長赤外域又は長波長赤外域(すなわち、3μm(又はその前後)から15μm(又はその前後)の範囲にわたる波長)にあり、AODのAOセルが結晶ゲルマニウムのような材料から形成される場合には、AOセルの回折軸が入射したレーザエネルギービームの偏光面に平行(又は少なくとも実質的に平行)になるようにAODを方向付けることができる。 In any of the embodiments described above with respect to Figures 2 and 3, the first positioner 106 may be provided as a single-axis AOD system or a multi-axis AOD system. Depending on the configuration of the AOD within the AOD system (eg, as described above), the AOD can be characterized as a longitudinal mode AOD or a shear mode AOD, such that it can diffract linearly or circularly polarized laser energy beams. It may be. Thus, depending on the wavelength of the laser energy beam and on the material forming the AO cell of the AOD in the AOD system, the diffraction axis of the AO cell within the AOD will align with the plane of polarization of the laser energy beam incident on it. The internal AODs can be oriented to be parallel or vertical (or at least substantially parallel or vertical). For example, the wavelength of the laser energy beam is in the ultraviolet or visible green region of the electromagnetic spectrum, the AO cell of the AOD is made of a material such as quartz, and the diffraction axis of the AO cell is the plane of polarization of the incident laser energy beam. The AOD can be oriented so that it is perpendicular (or at least substantially perpendicular) to the . In another example, the wavelength of the laser energy beam is in the so-called mid-wave or long-wave infrared region of the electromagnetic spectrum (i.e., wavelengths ranging from (or about) 3 μm to (or about) 15 μm), and the AOD is If the AO cell is formed from a material such as crystalline germanium, orient the AOD so that the diffraction axis of the AO cell is parallel (or at least substantially parallel ) to the plane of polarization of the incident laser energy beam. be able to.

一般的に、第2のAOD404は、第2の回転軸が第1の回転軸と異なったものとなるように第1のAOD402に対して方向付けられる。例えば、第2の回転軸は、第1の回転軸に直交していてもよく、あるいは第1の回転軸に対して斜めになっていてもよい。しかしながら、他の実施形態においては、第2のAOD404は、第2の回転軸が第1の回転軸に平行(又は少なくとも実質的に平行)となるように第1のAOD402に対して方向付けられる。この場合において、第2のAOD404上に投影した場合に第1のAOD402の偏向平面が第2のAOD404の偏向平面の方向に対して(例えば、90度又はその前後)回転するように第1のAOD402の偏向平面を(例えば、90度又はその前後だけ)回転させるように1以上の光学的構成要素をビーム経路114’に配置することができる。例えば、上述したように偏向平面を回転させ得る方法の例に関して、国際公開第WO2019/060590A1を参照されたい。 Generally, the second AOD 404 is oriented with respect to the first AOD 402 such that the second axis of rotation is different than the first axis of rotation. For example, the second axis of rotation may be orthogonal to the first axis of rotation or may be oblique with respect to the first axis of rotation. However, in other embodiments, the second AOD 404 is oriented with respect to the first AOD 402 such that the second axis of rotation is parallel (or at least substantially parallel ) to the first axis of rotation. . In this case, the plane of deflection of the first AOD 402 is rotated (eg, 90 degrees or so) relative to the direction of the plane of deflection of the second AOD 404 when projected onto the second AOD 404 . One or more optical components can be placed in the beam path 114' to rotate the deflection plane of the AOD 402 (eg, by 90 degrees or so). See, for example, International Publication No. WO2019/060590A1 for an example of how the plane of deflection may be rotated as described above.

一般的に、第1のAOD402内のAOセルは、第2のAOD404内のAOセルと同一か、あるいはこれと異なり得る材料から形成されている。さらに、第1のAOD402が入射レーザエネルギービームを偏光するために使用する音波の種類(すなわち、剪断モード又は縦モード)は、第2のAOD404が入射レーザエネルギービームを偏光するために使用する音波の種類と同じであってもよいし、あるいはこれと異なっていてもよい。 Generally, the AO cells within the first AOD 402 are formed from the same or different materials as the AO cells within the second AOD 404 . Further, the type of acoustic wave (i.e., shear mode or longitudinal mode) used by the first AOD 402 to polarize the incident laser energy beam is determined by the type of acoustic wave used by the second AOD 404 to polarize the incident laser energy beam. It may be the same as the type, or it may be different.

一体化ビームダンプシステム700及び1000に関する上記説明からすれば、フレーム702及び1002によって提供される上記面は、レーザエネルギーがそれぞれのビームトラップに向かって伝搬し得る内部領域を規定することは理解できるであろう。例えば、フレーム702によって提供される上記面は内部領域726を規定し、フレーム1002によって提供される上記面は内部領域1028を規定する。好ましくない塵や他の粒子又は物体がこれらの内部領域に進入することを防止し、あるいはこれを最小限にするために、一体化ビームダンプシステム700又は1000のいずれかは、必要に応じて、内部領域に及ぶ1以上のプレートを含んでいてもよい。例えば、一体化ビームダンプシステム700は、(例えば、その第1の側方で)フレーム702に連結される第1のプレート728、(例えば、その第1の側方とは反対側の第2の側方で)フレーム702に(例えば、ネジ、接着材、クランプなど、あるいはこれらを任意に組み合わせたものにより)連結される第2のプレート730(図7においては点線で示されている)、又はこれらを組み合わせたものを含んでいてもよい。同様に、一体化ビームダンプシステム1000は、(例えば、その第1の側方で)フレーム1002に連結される第1のプレート1030、(例えば、その第1の側方とは反対側の第2の側方で)フレーム1002に(例えば、ネジ、接着材、クランプなど、あるいはこれらを任意に組み合わせたものにより)連結される第2のプレート1032(図10においては点線で示されている)、又はこれらを組み合わせたものを含んでいてもよい。一体化ビームダンプシステム1000に関しては、上記ではフレーム1002が面1008を提供するものとして説明されているが、面1008は、(例えば、ネジ、接着材、クランプなど、あるいはこれらを任意に組み合わせたものにより)第1のプレート1030に連結されるブロック(例えばブロック1034)により提供されていてもよい。 From the above description of integrated beam dump systems 700 and 1000, it can be appreciated that the surfaces provided by frames 702 and 1002 define interior regions within which laser energy can propagate toward the respective beam traps. be. For example, the surface provided by frame 702 defines interior region 726 and the surface provided by frame 1002 defines interior region 1028 . In order to prevent or minimize the ingress of unwanted dust or other particles or objects into these interior regions, either integrated beam dump system 700 or 1000 may: It may include one or more plates spanning the interior region. For example, the integrated beam dump system 700 includes a first plate 728 coupled to the frame 702 (eg, on a first side thereof) and a second plate 728 (eg, opposite the first side thereof). laterally) to the frame 702 (e.g., by screws, adhesives, clamps, etc., or any combination thereof), or A combination of these may also be included. Similarly, the integrated beam dump system 1000 includes a first plate 1030 coupled to the frame 1002 (eg, on a first side thereof) and a second plate 1030 (eg, on a side opposite the first side thereof). a second plate 1032 (shown in dashed lines in FIG. 10) that is coupled (e.g., by screws, adhesives, clamps, etc., or any combination thereof) to the frame 1002); Or it may contain a combination of these. With respect to the integrated beam dump system 1000, although the frame 1002 is described above as providing the surface 1008, the surface 1008 may be (eg, screws, adhesives, clamps, etc., or any combination thereof). by a block (eg, block 1034) coupled to the first plate 1030.

Claims (18)

ビーム経路に沿って伝搬可能なレーザエネルギービームを生成可能なレーザ源と、
前記ビーム経路内に配置され、前記ビーム経路を偏向可能な第1の偏向器と、
前記第1の偏向器の出力と光学的に連結され、前記ビーム経路を偏向可能な第2の偏向器と、
前記第1の偏向器に連結されるコントローラと
を備え、
前記コントローラは、前記ビーム経路を複数のスキャンフィールド内で偏向するように前記第1の偏向器及び前記第2の偏向器の動作を制御するように構成され、前記複数のスキャンフィールドのうち少なくとも2つは互いに重なっておらず、互いに接していない
レーザ加工装置。
a laser source capable of producing a laser energy beam propagable along a beam path;
a first deflector disposed in the beam path and capable of deflecting the beam path;
a second deflector optically coupled to the output of the first deflector and capable of deflecting the beam path;
a controller coupled to the first deflector ;
The controller is configured to control operation of the first deflector and the second deflector to deflect the beam path within a plurality of scan fields , wherein at least two of the plurality of scan fields are controlled. are not overlapping each other and do not touch each other ,
Laser processing equipment.
前記レーザ源は、電磁波スペクトルの紫外(UV)域の波長を有するレーザエネルギービームを生成可能である、請求項1の装置。 3. The apparatus of Claim 1, wherein the laser source is capable of producing a laser energy beam having a wavelength in the ultraviolet (UV) region of the electromagnetic spectrum. 前記レーザ源は、電磁波スペクトルの長波長赤外(LWIR)域の波長を有するレーザエネルギービームを生成可能である、請求項1の装置。 3. The apparatus of Claim 1, wherein the laser source is capable of producing a laser energy beam having a wavelength in the long wavelength infrared (LWIR) region of the electromagnetic spectrum. スキャンレンズを含む第1のスキャンヘッドと、
スキャンレンズを含む第2のスキャンヘッドと、
前記複数のスキャンフィールドのうち第1のスキャンフィールド内で偏向された前記ビーム経路を前記第1のスキャンヘッドに導くように配置される少なくとも1つの光学的構成要素と、
前記複数のスキャンフィールドのうち第2のスキャンフィールド内で偏向された前記ビーム経路を前記第2のスキャンヘッドに導くように配置される少なくとも1つの光学的構成要素と
をさらに備える、請求項1の装置。
a first scan head including a scan lens;
a second scan head including a scan lens;
at least one optical component arranged to direct the beam path deflected within a first of the plurality of scan fields to the first scan head;
and at least one optical component positioned to direct said beam path deflected within a second of said plurality of scan fields to said second scanhead. Device.
前記第1のスキャンヘッド及び前記第2のスキャンヘッド少なくとも一方は、前記ビーム経路を偏向可能なポジショナを含む、請求項の装置。 5. The apparatus of claim 4 , wherein at least one of said first scanhead and said second scanhead includes a positioner capable of deflecting said beam path. 前記ポジショナは、ガルバノメータミラーシステムを含む、請求項の装置。 6. The apparatus of Claim 5 , wherein the positioner includes a galvanometer mirror system. 前記複数のスキャンフィールドのうち少なくとも1つは、矩形の形状を有する、請求項1の装置。 2. The apparatus of claim 1, wherein at least one of said plurality of scan fields has a rectangular shape. 前記複数のスキャンフィールドのうち少なくとも1つは、正方形の形状を有する、請求項1の装置。 2. The apparatus of claim 1, wherein at least one of said plurality of scan fields has a square shape. 前記第1の偏向器及び前記第2の偏向器の少なくとも一方は、音響光学偏向器(AOD)を含む、請求項1の装置。 2. The apparatus of Claim 1, wherein at least one of the first deflector and the second deflector comprises an acousto-optic deflector (AOD). 前記コントローラは、前記複数のスキャンフィールドのそれぞれの内部の複数の位置に前記ビーム経路を偏向するように前記第1の偏向器及び前記第2の偏向器の動作を制御するようにさらに構成される、請求項1の装置。 The controller is further configured to control operation of the first deflector and the second deflector to deflect the beam path to multiple positions within each of the multiple scan fields. , the apparatus of claim 1. レーザエネルギービームが伝搬可能なビーム経路を偏向可能な第1の偏向器と、前記第1の偏向器の出力と光学的に連結され、前記ビーム経路を偏向可能な第2の偏向器とを備える装置とともに使用されるコントローラであって、 a first deflector capable of deflecting a beam path through which a laser energy beam can propagate; and a second deflector optically coupled to the output of said first deflector and capable of deflecting said beam path. A controller for use with the device, comprising:
プロセッサと、 a processor;
前記プロセッサによりアクセス可能なメモリであって、前記プロセッサにより実行された際に、前記コントローラに複数のスキャンフィールド内で前記ビーム経路を偏向するように前記第1の偏向器及び前記第2の偏向器の動作を制御させる命令を格納したメモリと A memory accessible by the processor that, when executed by the processor, causes the controller to direct the first deflector and the second deflector to deflect the beam path within a plurality of scan fields. A memory that stores instructions to control the operation of
を備え、with
前記複数のスキャンフィールドのうち少なくとも2つは、互いに重なっておらず、互いに接していない第1のスキャンフィールド及び第2のスキャンフィールドである、 at least two of the plurality of scan fields are a first scan field and a second scan field that are non-overlapping and non-tangent to each other;
コントローラ。controller.
前記第1のスキャンフィールド内の第1の複数の位置と前記第2のスキャンフィールド内の第2の複数の位置とに前記ビーム経路を偏向するように、第1の偏向器及び前記第2の偏向器の動作を制御するようにさらに構成される、請求項11のコントローラ。 a first deflector and the second deflector to deflect the beam path to a first plurality of positions within the first scan field and a second plurality of positions within the second scan field; 12. The controller of claim 11, further configured to control operation of the deflector. 前記第1のスキャンフィールド及び前記第2のスキャンフィールドの少なくとも一方は、矩形の形状を有する、請求項11のコントローラ。 12. The controller of claim 11, wherein at least one of said first scan field and said second scan field has a rectangular shape. 前記第1のスキャンフィールド及び前記第2のスキャンフィールドの少なくとも一方は、正方形の形状を有する、請求項11のコントローラ。 12. The controller of Claim 11, wherein at least one of the first scan field and the second scan field has a square shape. レーザエネルギービームが伝搬可能なビーム経路を偏向可能な第1の偏向器と、前記第1の偏向器の出力と光学的に連結され、前記ビーム経路を偏向可能な第2の偏向器と、前記第1の偏向器及び前記第2の偏向器の動作を制御するように構成されるコントローラとを備える装置とともに使用される非一過性コンピュータ読取可能媒体であって、前記コントローラにより実行された際に、前記コントローラに、 a first deflector capable of deflecting a beam path through which a laser energy beam can propagate; a second deflector optically coupled to the output of said first deflector and capable of deflecting said beam path; A non-transitory computer readable medium for use with an apparatus comprising a first deflector and a controller configured to control operation of said second deflector, when executed by said controller to the controller,
複数のスキャンフィールド内で前記ビーム経路を偏向させるように前記第1の偏向器及び前記第2の偏向器の動作を制御させる controlling operation of the first deflector and the second deflector to deflect the beam path within a plurality of scan fields;
命令を格納し、store the instructions,
前記複数のスキャンフィールドのうち少なくとも2つは、互いに重なっておらず、互いに接していない第1のスキャンフィールド及び第2のスキャンフィールドである、 at least two of the plurality of scan fields are a first scan field and a second scan field that are non-overlapping and non-tangent to each other;
非一過性コンピュータ読取可能媒体。A non-transitory computer-readable medium.
前記コントローラにより実行された際に、前記コントローラに、前記第1のスキャンフィールド内の第1の複数の位置と前記第2のスキャンフィールド内の第2の複数の位置とに前記ビーム経路を偏向するように前記第1の偏向器及び前記第2の偏向器の動作を制御させる命令を格納している、請求項15の非一過性コンピュータ読取可能媒体。 causing the controller, when performed by the controller, to deflect the beam path to a first plurality of positions within the first scan field and a second plurality of positions within the second scan field; 16. The non-transitory computer readable medium of claim 15, storing instructions for controlling operation of said first deflector and said second deflector such that: 前記第1のスキャンフィールド及び前記第2のスキャンフィールドの少なくとも一方は、矩形の形状を有する、請求項15の非一過性コンピュータ読取可能媒体。 16. The non-transitory computer-readable medium of Claim 15, wherein at least one of said first scan field and said second scan field has a rectangular shape. 前記第1のスキャンフィールド及び前記第2のスキャンフィールドの少なくとも一方は、正方形の形状を有する、請求項15の非一過性コンピュータ読取可能媒体。 16. The non-transitory computer-readable medium of Claim 15, wherein at least one of said first scan field and said second scan field has a square shape.
JP2021542372A 2019-01-31 2020-01-03 Laser processing apparatus, method of operating same, and method of using same to process a workpiece - Patents.com Active JP7573535B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962799218P 2019-01-31 2019-01-31
US62/799,218 2019-01-31
US201962832064P 2019-04-10 2019-04-10
US62/832,064 2019-04-10
US201962854579P 2019-05-30 2019-05-30
US62/854,579 2019-05-30
PCT/US2020/012219 WO2020159666A1 (en) 2019-01-31 2020-01-03 Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same

Publications (3)

Publication Number Publication Date
JP2022518898A JP2022518898A (en) 2022-03-17
JPWO2020159666A5 true JPWO2020159666A5 (en) 2022-12-01
JP7573535B2 JP7573535B2 (en) 2024-10-25

Family

ID=71842451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021542372A Active JP7573535B2 (en) 2019-01-31 2020-01-03 Laser processing apparatus, method of operating same, and method of using same to process a workpiece - Patents.com

Country Status (8)

Country Link
US (1) US20220048135A1 (en)
EP (1) EP3917717A4 (en)
JP (1) JP7573535B2 (en)
KR (1) KR20210111246A (en)
CN (1) CN112867578A (en)
SG (1) SG11202103563XA (en)
TW (1) TWI843784B (en)
WO (1) WO2020159666A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12103110B2 (en) * 2019-03-22 2024-10-01 Via Mechanics, Ltd. Laser processing apparatus and laser processing method
CN112059422A (en) * 2020-09-12 2020-12-11 北京航空航天大学 Laser processing equipment for grinding semiconductor wafer
US12070898B2 (en) * 2020-11-12 2024-08-27 Eagle Technology, Llc Additive manufacturing device with acousto-optic deflector and related methods
JP7538016B2 (en) * 2020-11-30 2024-08-21 株式会社Screenホールディングス Optical device and three-dimensional modeling device
US20220176495A1 (en) * 2020-12-04 2022-06-09 Lawrence Livermore National Security, Llc System and method for radius of curvature modification of optical plates and lenses by irradiation with optical energy
US12092581B2 (en) * 2020-12-17 2024-09-17 The Boeing Company Laser bond inspection system and method
KR20240023512A (en) * 2021-06-21 2024-02-22 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Laser processing device including beam analysis system and method for measuring and controlling beam characteristics
CN113478097B (en) * 2021-07-05 2022-11-29 上海维宏智能技术有限公司 Method, device and processor for realizing circular hole surrounding sorting processing in laser cutting numerical control system and computer readable storage medium thereof
US20230155341A1 (en) * 2021-11-16 2023-05-18 Taiwan Semiconductor Manufacturing Company Limited Laser device and method of using the same
US11874163B2 (en) 2022-01-14 2024-01-16 Ophir Optronics Solutions, Ltd. Laser measurement apparatus having a removable and replaceable beam dump
WO2023146631A1 (en) * 2022-01-28 2023-08-03 Electro Scientific Industries, Inc. Germanium aod system with parallel and perpendicular orientations
TW202337606A (en) * 2022-02-27 2023-10-01 美商伊雷克托科學工業股份有限公司 Method and apparatus for thermally stable operation of aods
WO2023235066A1 (en) * 2022-06-02 2023-12-07 Electro Scientific Industries, Inc. Laser processing apparatus including laser sensor system and methods of measurement of beam characteristics
WO2024211097A1 (en) * 2023-04-07 2024-10-10 Electro Scientific Industries, Inc. System and method for thermally-stable operation of acousto-optic deflector with reduced acoustic transients

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925986B2 (en) * 1996-12-16 2007-06-06 富士通株式会社 Height measuring device and height measuring method
JPH1147965A (en) * 1997-05-28 1999-02-23 Komatsu Ltd Laser beam machine
JP3945951B2 (en) * 1999-01-14 2007-07-18 日立ビアメカニクス株式会社 Laser processing method and laser processing machine
JP3642969B2 (en) * 1999-02-09 2005-04-27 松下電器産業株式会社 Laser processing apparatus and method
DE60002082T2 (en) * 1999-07-06 2004-02-19 Qinetiq Ltd. OPTICAL MULTIPLE-THROUGH AMPLIFIER
US6421166B1 (en) * 2000-05-09 2002-07-16 The Regents Of The University Of California Compact, flexible, frequency agile parametric wavelength converter
WO2002101442A1 (en) * 2001-06-12 2002-12-19 California Institute Of Technology A pzt unimrphed based, deformable mirror with continuous membran e
KR100992262B1 (en) * 2001-06-13 2010-11-05 오르보테크 엘티디. Multi-beam micro-machining system and method
US6804269B2 (en) * 2001-06-19 2004-10-12 Hitachi Via Mechanics, Ltd. Laser beam delivery system with trepanning module
US20030184887A1 (en) * 2002-03-28 2003-10-02 Greywall Dennis S. Method and apparatus for the correction of optical signal wave front distortion using fluid pressure adaptive optics
US6931991B1 (en) * 2004-03-31 2005-08-23 Matsushita Electric Industrial Co., Ltd. System for and method of manufacturing gravure printing plates
JP2006281268A (en) * 2005-03-31 2006-10-19 Hitachi Via Mechanics Ltd Laser beam machine
JP4650837B2 (en) * 2005-09-22 2011-03-16 住友電気工業株式会社 Laser optical device
JP5030512B2 (en) * 2005-09-30 2012-09-19 日立ビアメカニクス株式会社 Laser processing method
GB2436871A (en) * 2006-04-04 2007-10-10 Pcme Ltd Optical beam dump for particle monitoring system
US8598490B2 (en) * 2008-03-31 2013-12-03 Electro Scientific Industries, Inc. Methods and systems for laser processing a workpiece using a plurality of tailored laser pulse shapes
US8680430B2 (en) * 2008-12-08 2014-03-25 Electro Scientific Industries, Inc. Controlling dynamic and thermal loads on laser beam positioning system to achieve high-throughput laser processing of workpiece features
US8229304B1 (en) * 2009-04-30 2012-07-24 Hrl Laboratories, Llc Phase control of a fiber optic bundle
JP5743411B2 (en) * 2009-05-08 2015-07-01 キヤノン株式会社 Optical imaging apparatus and method
TWI594828B (en) * 2009-05-28 2017-08-11 伊雷克托科學工業股份有限公司 Acousto-optic deflector applications in laser processing of features in a workpiece, and related laser processing method
GB2485985B (en) * 2010-11-30 2015-07-22 Powerphotonic Ltd Laser pulse generation method and apparatus
JP5511644B2 (en) * 2010-12-07 2014-06-04 住友重機械工業株式会社 Laser processing apparatus and laser processing method
US8593722B2 (en) * 2011-07-05 2013-11-26 Electro Scientific Industries, Inc. Systems and methods for providing temperature stability of acousto-optic beam deflectors and acousto-optic modulators during use
CN102735617B (en) * 2012-06-29 2014-06-04 浙江大学 Super-resolution microscopic method and super-resolution microscopic device
US9304492B2 (en) * 2013-10-31 2016-04-05 Disney Enterprises, Inc. Scalable and tileable holographic displays
DE102014200633B3 (en) * 2014-01-15 2015-05-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Machining apparatus and method for laser processing a surface
JP2015135711A (en) * 2014-01-17 2015-07-27 株式会社日立エルジーデータストレージ Optical information reproduction device and optical information reproduction method
DE102015001421B4 (en) * 2015-02-06 2016-09-15 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Device and method for beam diagnosis on laser processing optics (PRl-2015-001)
KR102387132B1 (en) * 2015-02-27 2022-04-15 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 High-speed beam manipulation for transverse micromachining
US10471538B2 (en) * 2015-07-09 2019-11-12 Orbotech Ltd. Control of lift ejection angle
JP2017159317A (en) * 2016-03-09 2017-09-14 住友重機械工業株式会社 Laser beam machining device
KR20180118143A (en) * 2016-03-17 2018-10-30 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Position of image plane in laser machining system
US10401704B2 (en) * 2016-11-11 2019-09-03 Asml Netherlands B.V. Compensating for a physical effect in an optical system
US10371873B2 (en) * 2016-12-07 2019-08-06 Bae Systems Information And Electronic Systems Integration Inc. High fidelity optical beam dump
CN106773072A (en) * 2016-12-13 2017-05-31 中国科学院光电研究院 The detection means of laser shaping system and laser shaping system
JP6826427B2 (en) * 2016-12-22 2021-02-03 株式会社村田製作所 Laser machining equipment and laser machining method
WO2018126078A1 (en) * 2016-12-30 2018-07-05 Electro Scientific Industries, Inc. Method and system for extending optics lifetime in laser processing apparatus
CN111051953B (en) * 2017-07-07 2022-05-27 罗切斯特大学 Optical design of two-degree-of-freedom scanning system with curved sample plane

Similar Documents

Publication Publication Date Title
JPWO2020159666A5 (en)
US3329474A (en) Digital light deflector utilizing co-planar polarization rotators
JP6511433B2 (en) Random Access Stimulated Release Suppression (STED) Microscopy
US20110299147A1 (en) High-Speed Multi-Dimensional Beam Scanning System With Angle Amplification
JP2015507766A (en) Apparatus and method for compensating angular dispersion
CN112740100B (en) Wide field electro-optic modulator and methods and systems for making and using same
CN112859538A (en) Two-photon polymerization laser direct-writing processing system based on acousto-optic deflector
WO2017004528A1 (en) Power-scalable nonlinear optical wavelength converter
TW202217423A (en) Frequency conversion using stacked strontium tetraborate plates
JP6660314B2 (en) Two-dimensional optical deflector
US7706047B2 (en) Acousto-optical laser scanner and UV laser analyzer of micro-objects based on it
CN102449536A (en) Variable focus lens and microscope
WO2023096734A1 (en) Frequency conversion using interdigitated nonlinear crystal gratings
US20200209707A1 (en) Optically contacted acousto-optic device and method of making the same
JP2009014793A (en) Focal length adjusting device, laser machining device, laser displacement meter, and electro-optical element
US8830581B2 (en) Broadband polarization switching
US9740081B1 (en) Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials
US20170212406A1 (en) Acousto-optic deflector comprising multiple electro-acoustic transducers
TW202300899A (en) Tunable duv laser assembly
JPH0534733A (en) Laser light scanning device
CN110109245B (en) Method for improving wavefront correction spatial resolution of deformable mirror
TWI727341B (en) Laser processing system and method of determining laser processing path
RU2619827C1 (en) Laser system of the object teleorientation
JPH034216A (en) Light beam controller
JP2024542908A (en) Frequency conversion using opposed interdigital nonlinear crystal gratings.