JPWO2020137779A1 - Pharmaceutical glass container - Google Patents
Pharmaceutical glass container Download PDFInfo
- Publication number
- JPWO2020137779A1 JPWO2020137779A1 JP2020563151A JP2020563151A JPWO2020137779A1 JP WO2020137779 A1 JPWO2020137779 A1 JP WO2020137779A1 JP 2020563151 A JP2020563151 A JP 2020563151A JP 2020563151 A JP2020563151 A JP 2020563151A JP WO2020137779 A1 JPWO2020137779 A1 JP WO2020137779A1
- Authority
- JP
- Japan
- Prior art keywords
- glass
- glass container
- less
- sio
- medicinal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 188
- 230000007062 hydrolysis Effects 0.000 claims abstract description 33
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 33
- 239000013078 crystal Substances 0.000 claims description 52
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 36
- 238000002834 transmittance Methods 0.000 claims description 26
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 25
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 25
- 229910008556 Li2O—Al2O3—SiO2 Inorganic materials 0.000 claims description 23
- 239000003513 alkali Substances 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 230000004580 weight loss Effects 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 229910000500 β-quartz Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 29
- 239000000126 substance Substances 0.000 description 19
- 238000002425 crystallisation Methods 0.000 description 13
- 230000008025 crystallization Effects 0.000 description 13
- 239000011734 sodium Substances 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910021642 ultra pure water Inorganic materials 0.000 description 8
- 239000012498 ultrapure water Substances 0.000 description 8
- 238000004040 coloring Methods 0.000 description 7
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 239000008395 clarifying agent Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000000156 glass melt Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000005352 clarification Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000006066 glass batch Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- CEQFOVLGLXCDCX-WUKNDPDISA-N methyl red Chemical compound C1=CC(N(C)C)=CC=C1\N=N\C1=CC=CC=C1C(O)=O CEQFOVLGLXCDCX-WUKNDPDISA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000012602 primary packaging material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/05—Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
Landscapes
- Health & Medical Sciences (AREA)
- Hematology (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Glass Compositions (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
- Packaging Frangible Articles (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
Abstract
耐加水分解性に優れた医薬用ガラス容器を提供する。
結晶化ガラスからなることを特徴とする医薬用ガラス容器。Provided is a medicated glass container having excellent hydrolysis resistance.
A medicated glass container characterized by being made of crystallized glass.
Description
本発明は、医薬用ガラス容器に関する。 The present invention relates to a medicinal glass container.
バイアル、アンプル等の医薬用ガラス容器には、下記に示すような特性が要求される。
(a)充填される薬液中の成分とガラス中の成分が反応しないこと
(b)充填される薬液を汚染しないように耐加水分解性が高いこと、また、容器加工時の種々の熱処理後も高い加水分解性が維持されること
(c)ガラス管の製造工程や、バイアル、アンプル等への加工時に、サーマルショックによる破損が生じ難いように低熱膨張係数であることPharmaceutical glass containers such as vials and ampoules are required to have the following characteristics.
(A) The components in the chemical solution to be filled do not react with the components in the glass (b) The chemical solution to be filled has high hydrolysis resistance so as not to contaminate it, and even after various heat treatments during container processing. Maintaining high hydrolyzability (c) Low coefficient of thermal expansion so that damage due to thermal shock is unlikely to occur during the manufacturing process of glass tubes and processing into vials, ampoules, etc.
これらの要求特性を満足する標準的な医薬用ガラス容器は、一般にホウケイ酸ガラスからなる。 Standard medicated glass containers that meet these required properties are generally made of borosilicate glass.
近年、充填される薬液の開発が進み、より薬効の高い薬液が使用されつつある。これらの薬液の中には、化学的に不安定で変性しやすく、ガラスとの反応性が高いものもある。これに伴い、従来以上に耐加水分解性の高いガラスが要求されている。 In recent years, the development of filled chemicals has progressed, and more highly effective chemicals are being used. Some of these chemicals are chemically unstable, easily denatured, and highly reactive with glass. Along with this, there is a demand for glass having higher hydrolysis resistance than before.
特許文献1では耐加水分解性を向上させるためにK2Oの添加量を調整したガラスを提案しているが、耐加水分解性が未だ不十分であるという問題がある。It proposes a glass having an adjusted amount of K 2 O in order to improve the hydrolysis resistance in Patent Document 1, there is a problem that hydrolysis resistance is still insufficient.
本発明の目的は、耐加水分解性に優れた医薬用ガラス容器を提供することである。 An object of the present invention is to provide a medicinal glass container having excellent hydrolysis resistance.
本発明者等が種々の実験を行った結果、結晶化ガラスがホウケイ酸ガラス等の非晶質ガラスより耐加水分解性に優れていることを見出した。 As a result of various experiments conducted by the present inventors, it has been found that crystallized glass is superior in hydrolysis resistance to amorphous glass such as borosilicate glass.
即ち、本発明の医薬用ガラス容器は、結晶化ガラスからなることを特徴とする。 That is, the medicinal glass container of the present invention is characterized by being made of crystallized glass.
本発明の医薬用ガラス容器は、ISO 4802−1(1988)に準じた耐加水分解性試験において、溶出液100mL当たりの0.01mol/Lの塩酸の消費量が0.50mL以下であることが好ましい。 The pharmaceutical glass container of the present invention has a hydrolysis resistance test according to ISO 4802-1 (1988), and the consumption of 0.01 mol / L hydrochloric acid per 100 mL of eluate is 0.50 mL or less. preferable.
本発明の医薬用ガラス容器は、結晶化ガラスがLi2O−Al2O3−SiO2系結晶化ガラスであることが好ましい。In the medicinal glass container of the present invention, it is preferable that the crystallized glass is Li 2 O-Al 2 O 3 -SiO 2 system crystallized glass.
本発明の医薬用ガラス容器は、結晶化ガラス中に、主結晶としてβ−石英固溶体が析出していることが好ましい。このようにすれば、熱膨張係数が低く、透過率が高い医薬用ガラス容器を得ることが容易になる。 In the medicinal glass container of the present invention, it is preferable that a β-quartz solid solution is precipitated as a main crystal in the crystallized glass. By doing so, it becomes easy to obtain a medicinal glass container having a low coefficient of thermal expansion and a high transmittance.
本発明の医薬用ガラス容器は、結晶化ガラスが、重量%で、SiO2 40〜75%、Al2O3 6〜30%、Li2O 0.1〜10%を含有することが好ましい。Pharmaceutical glass container of the present invention, crystallized glass, in weight%, SiO 2 40~75%, Al 2 O 3 6~30%, preferably contains Li 2 O 0.1~10%.
本発明の医薬用ガラス容器は、ヤング率が60GPa以上であることが好ましい。 The medicinal glass container of the present invention preferably has a Young's modulus of 60 GPa or more.
本発明の医薬用ガラス容器は、30〜380℃における熱膨張係数が20×10−7/℃以下であることが好ましい。このようにすれば、耐熱衝撃性に優れた医薬用ガラス容器を得ることが容易になる。The medicinal glass container of the present invention preferably has a coefficient of thermal expansion of 20 × 10 -7 / ° C. or less at 30 to 380 ° C. By doing so, it becomes easy to obtain a medicinal glass container having excellent heat resistance and impact resistance.
本発明の医薬用ガラス容器は、厚み1mm、波長400〜800nmにおける平均透過率が65%以上であることが好ましい。 The medicinal glass container of the present invention preferably has a thickness of 1 mm and an average transmittance of 65% or more at a wavelength of 400 to 800 nm.
本発明の医薬用ガラス容器は、厚み1mm、波長350nmにおける透過率が60%以下であることが好ましい。このようにすれば、薬剤の変質を引き起す可能性がある紫外線を遮蔽しやすくなる。 The medicinal glass container of the present invention preferably has a thickness of 1 mm and a transmittance of 60% or less at a wavelength of 350 nm. In this way, it becomes easier to block ultraviolet rays that may cause alteration of the drug.
本発明の医薬用ガラス容器は、ISO 695(1991)に準じた耐アルカリ性試験において、単位面積当たりの重量減少量ρが75mg/dm2以下であることが好ましい。In the alkali resistance test according to ISO 695 (1991), the medicinal glass container of the present invention preferably has a weight loss amount ρ per unit area of 75 mg / dm 2 or less.
本発明の医薬用ガラス容器は、重量比で、SiO2/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO)が3以上であって、YBB00342004―2015に準じた耐酸性試験における単位面積当たりの重量減少量の半量SとISO 695(1991)に準じた耐アルカリ性試験における単位面積当たりの重量減少量ρとの合量であるS+ρが70mg/dm2以下であることを特徴とする。本発明の医薬用ガラス容器は、耐酸性、耐アルカリ性に優れているため、幅広いpHの薬液に使用することができる。なお、石英ガラスは耐酸性、耐アルカリ性に優れるが、バイアル、アンプル、シリンジ等の複雑な医薬用容器の形状に加工することが困難である。ここで、SiO2/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO)は、SiO2の含有量をLi2O、Na2O、K2O、MgO、CaO、SrO、及びBaOの合量で除した値である。The medicinal glass container of the present invention has SiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) of 3 or more in terms of weight ratio, and the amount of weight loss per unit area in the acid resistance test according to YBB00342004-2015. It is characterized in that S + ρ, which is the sum of the half amount S and the weight reduction amount ρ per unit area in the alkali resistance test according to ISO 695 (1991), is 70 mg / dm 2 or less. Since the medicinal glass container of the present invention has excellent acid resistance and alkali resistance, it can be used for a wide range of pH chemicals. Although quartz glass is excellent in acid resistance and alkali resistance, it is difficult to process it into a complicated medical container shape such as a vial, an ampoule, or a syringe. Here, SiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is a value obtained by dividing the content of SiO 2 by the total amount of Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, and BaO. Is.
本発明の医薬用ガラス容器の製造方法は、ガラス管を加工してガラス容器を得た後、ガラス容器を熱処理して結晶化させることを特徴とする。 The method for producing a pharmaceutical glass container of the present invention is characterized in that a glass tube is processed to obtain a glass container, and then the glass container is heat-treated to be crystallized.
本発明によれば、耐加水分解性に優れた医薬用ガラス容器を提供することができる。 According to the present invention, it is possible to provide a pharmaceutical glass container having excellent hydrolysis resistance.
本発明の医薬用ガラス容器は、結晶化ガラスからなることを特徴とし、ISO 4802−1(1988)に準じた耐加水分解性試験において、溶出液100mL当たりの0.01mol/Lの塩酸の消費量が0.50mL以下であることが好ましい。 The pharmaceutical glass container of the present invention is characterized by being made of crystallized glass, and in a hydrolysis resistance test according to ISO 4802-1 (1988), consumption of 0.01 mol / L hydrochloric acid per 100 mL of eluent is consumed. The amount is preferably 0.50 mL or less.
まず、本発明に使用される結晶化ガラスについて説明する。 First, the crystallized glass used in the present invention will be described.
結晶化ガラスは、Li2O−Al2O3−SiO2系結晶化ガラスであることが好ましく、さらに好ましくは、重量%で、SiO2 40〜75%、Al2O3 6〜30%、Li2O 0.1〜10%を含有する。組成を上記のように限定した理由を以下に示す。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「重量%」を意味する。Crystallized glass is preferably Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass, more preferably, in weight%, SiO 2 40~75%, Al 2 O 3 6~30%, It contains Li 2 O 0.1 to 10%. The reasons for limiting the composition as described above are shown below. In the following description of the content of each component, "%" means "% by weight" unless otherwise specified.
SiO2はガラスの骨格を形成するとともに、Li2O−Al2O3−SiO2系結晶を構成する成分である。SiO2の含有量が多すぎると、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなって生産性が低下しやすくなる。そのため、SiO2の含有量は75%以下、74%以下、73%以下、70%以下、69%以下であることが好ましい。一方、SiO2の含有量が少なすぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、耐加水分解性、耐アルカリ性、耐酸性が低下する傾向がある。そのため、SiO2の含有量は40%以上、45%以上、50%以上、55%以上、60%以上、64%以上、65%以上であることが好ましい。SiO 2 is a component that forms a glass skeleton and constitutes a Li 2 O—Al 2 O 3 −SiO 2 system crystal. If the content of SiO 2 is too large, the meltability of the glass is lowered, the viscosity of the glass melt becomes high, the clarification becomes difficult, the molding of the glass becomes difficult, and the productivity tends to be lowered. Therefore, the content of SiO 2 is preferably 75% or less, 74% or less, 73% or less, 70% or less, and 69% or less. On the other hand, if the content of SiO 2 is too small, the coefficient of thermal expansion tends to be high, and it becomes difficult to obtain crystallized glass having excellent thermal shock resistance. In addition, hydrolysis resistance, alkali resistance, and acid resistance tend to decrease. Therefore, the content of SiO 2 is preferably 40% or more, 45% or more, 50% or more, 55% or more, 60% or more, 64% or more, and 65% or more.
Al2O3はガラスの骨格を形成するとともに、Li2O−Al2O3−SiO2系結晶を構成する成分である。Al2O3の含有量は6〜30%、10〜30%、12〜29%、13〜28%、特に15〜28%であることが好ましい。Al2O3の含有量が少なすぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、結晶化度が低くなりガラスが白濁する傾向があり、容器内部の不溶性異物等を確認し難くなる。さらに、耐加水分解性が低下する傾向がある。一方、Al2O3の含有量が多すぎると、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって清澄しにくくなったり、ムライトの結晶が析出し易くなり、ガラスが失透ガラスの成形が難しくなって生産性が低下しやすくなる。Al 2 O 3 is a component that forms a glass skeleton and constitutes a Li 2 O-Al 2 O 3 -SiO 2 system crystal. The content of Al 2 O 3 is preferably 6 to 30%, 10 to 30%, 12 to 29%, 13 to 28%, and particularly preferably 15 to 28%. If the content of Al 2 O 3 is too small, the coefficient of thermal expansion tends to be high, and it becomes difficult to obtain crystallized glass having excellent thermal shock resistance. In addition, the crystallinity is low and the glass tends to become cloudy, making it difficult to check insoluble foreign substances inside the container. In addition, hydrolysis resistance tends to decrease. On the other hand, if the content of Al 2 O 3 is too large, the meltability of the glass is lowered, the viscosity of the glass melt becomes high and it becomes difficult to clarify, and the crystals of murite are easily precipitated, and the glass is lost. Molding of transparent glass becomes difficult and productivity tends to decrease.
Li2OはLi2O−Al2O3−SiO2系結晶を構成する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。Li2Oの含有量は0.1〜10%、0.5〜8%、1〜7%、1〜6%、特に1〜5%であることが好ましい。Li2Oの含有量が少なすぎると、ムライトの結晶が析出してガラスが失透する傾向がある。また、ガラスを結晶化させる際に、Li2O−Al2O3−SiO2系結晶が析出しにくくなり、耐加水分解性、耐アルカリ性、耐酸性に優れた結晶化ガラスを得ることが困難になる。さらに、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなって生産性が低下しやすくなる。一方、Li2Oの含有量が多すぎると、結晶性が強くなりすぎて、ガラスが失透し透過率が低下する傾向があり、容器内部の不溶性異物等を確認し難くなる。Li 2 O is a component constituting Li 2 O-Al 2 O 3 -SiO 2 system crystals, which has a great influence on crystallinity and lowers the viscosity of glass to improve the meltability and moldability of glass. It is an ingredient that makes you. The content of Li 2 O is preferably 0.1 to 10%, 0.5 to 8%, 1 to 7%, 1 to 6%, and particularly preferably 1 to 5%. If the Li 2 O content is too low, mullite crystals tend to precipitate and the glass tends to devitrify. Further, when the glass is crystallized, Li 2 O-Al 2 O 3 -SiO 2 system crystals are less likely to precipitate, and it is difficult to obtain crystallized glass having excellent hydrolysis resistance, alkali resistance and acid resistance. become. Further, the meltability of the glass is lowered, the viscosity of the glass melt becomes high, the clarification becomes difficult, the molding of the glass becomes difficult, and the productivity tends to be lowered. On the other hand, if the content of Li 2 O is too large, the crystallinity becomes too strong, the glass tends to be devitrified and the transmittance tends to decrease, and it becomes difficult to confirm insoluble foreign substances and the like inside the container.
Al2O3/Li2Oは1〜10、1.5〜9、2〜8、2.5〜7、3〜6、特に4〜6であることが好ましい。Al2O3/Li2Oが小さすぎると、Li2O−Al2O3−SiO2系結晶が析出し難くなり、白濁して透過率が低くなる傾向がある。一方、Al2O3/Li2Oのモル比率が大きすぎると、Li2O−Al2O3−SiO2系結晶が析出し難くなり、白濁して透過率が低くなる傾向がある。また、結晶化ガラスの耐加水分解性、耐アルカリ性、耐酸性が低下する傾向がある。なお、「Al2O3/Li2O」は、Al2O3の含有量をLi2Oの含有量で除した値である。Al 2 O 3 / Li 2 O is preferably 1 to 10, 1.5 to 9, 2 to 8, 2.5 to 7, 3 to 6, and particularly preferably 4 to 6. If Al 2 O 3 / Li 2 O is too small, it becomes difficult for Li 2 O-Al 2 O 3 -SiO 2 system crystals to precipitate, and the crystals tend to become cloudy and the transmittance tends to be low. On the other hand, if the molar ratio of Al 2 O 3 / Li 2 O is too large, it becomes difficult for Li 2 O-Al 2 O 3 -SiO 2 system crystals to precipitate, and the crystals tend to become cloudy and the transmittance tends to be low. In addition, the hydrolysis resistance, alkali resistance, and acid resistance of the crystallized glass tend to decrease. In addition, "Al 2 O 3 / Li 2 O" is a value obtained by dividing the content of Al 2 O 3 by the content of Li 2 O.
SiO2/Li2Oは5〜20、8〜19、特に10〜18であることが好ましい。SiO2/Li2Oが小さすぎるとLi2O−Al2O3−SiO2系結晶が析出し難くなり、白濁して透過率が低くなる傾向がある。また、ガラスマトリクスが多くなるため、結晶化ガラスの耐加水分解性、耐アルカリ性、耐酸性が低下する可能性がある。一方、SiO2/Li2Oが大きすぎるとLi2O−Al2O3−SiO2系結晶が析出し難くなり、白濁して透過率が低くなる傾向がある。また、ガラス融液の粘度が高くなり溶融性や成形性が低下し、生産性が低下しやすくなる。なお、「SiO2/Li2O」は、SiO2の含有量をLi2Oの含有量で除した値である。SiO 2 / Li 2 O is preferably 5 to 20, 8 to 19, particularly preferably 10 to 18. When SiO 2 / Li 2 O is too small Li 2 O-Al 2 O 3 -SiO 2 based crystal is not easily precipitated, clouded by the transmittance tends to be low. Further, since the number of glass matrices increases, the hydrolysis resistance, alkali resistance, and acid resistance of the crystallized glass may decrease. On the other hand, when the SiO 2 / Li 2 O is too large Li 2 O-Al 2 O 3 -SiO 2 based crystal is not easily precipitated, clouded by the transmittance tends to be low. In addition, the viscosity of the glass melt becomes high, the meltability and moldability decrease, and the productivity tends to decrease. In addition, "SiO 2 / Li 2 O" is a value obtained by dividing the content of SiO 2 by the content of Li 2 O.
SiO2/Al2O3は1〜7、1.5〜6、2〜5、2.2〜4、特に2.5〜3.5であることが好ましい。SiO2/Al2O3が小さすぎても大きすぎても、Li2O−Al2O3−SiO2系結晶が析出し難くなり、結結晶化ガラスの耐加水分解性、耐アルカリ性、耐酸性が低下する傾向がある。なお、「SiO2/Al2O3」は、SiO2の含有量をAl2O3の含有量で除した値である。SiO 2 / Al 2 O 3 is preferably 1 to 7, 1.5 to 6, 2 to 5, 2.2 to 4, particularly 2.5 to 3.5. Too large or too small, SiO 2 / Al 2 O 3, Li 2 O-Al 2 O 3 -SiO 2 based crystal is not easily precipitated, hydrolysis resistance forming crystallized glass, alkali resistance, acid resistance The sex tends to decrease. In addition, "SiO 2 / Al 2 O 3 " is a value obtained by dividing the content of SiO 2 by the content of Al 2 O 3.
本発明に使用される結晶化ガラスは、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。 In addition to the above components, the crystallized glass used in the present invention may contain the following components in the glass composition.
Na2Oはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。Na2Oの含有量は0〜10%、0〜5%、0〜4%、0〜3%、0〜2%、0.1〜1.5%、0.1〜1%、0.1〜0.8%、特に0.1〜0.5%であることが好ましい。Na2OはLi2O−Al2O3−SiO2系結晶に固溶し難い成分であり、結晶化後にガラスマトリクス中に残存し易い。そのため、Na2Oの含有量が多すぎると、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。Na 2 O is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. The content of Na 2 O is 0 to 10%, 0 to 5%, 0 to 4%, 0 to 3%, 0 to 2%, 0.1 to 1.5%, 0.1 to 1%, 0. It is preferably 1 to 0.8%, particularly 0.1 to 0.5%. Na 2 O is a component that is difficult to dissolve in Li 2 O-Al 2 O 3 -SiO 2 system crystals and easily remains in the glass matrix after crystallization. Therefore, if the content of Na 2 O is too large, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease.
K2Oはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。K2Oの含有量は0〜10%、0〜5%、0〜4%、0〜3%、0〜2%、0.1〜1.5%、0.1〜1%、0.1〜0.8%、特に0.1〜0.5%であることが好ましい。K2OはLi2O−Al2O3−SiO2系結晶に固溶し難い成分であり、結晶化後にガラスマトリクス中に残存し易い。そのため、K2Oの含有量が多すぎると、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。K 2 O is to lower the viscosity of the glass is a component that improves the meltability and formability of the glass. The content of K 2 O 0-10%, 0-5%, 0-4%, 0-3%, 0-2% 0.1 to 1.5% 0.1% to 1%, 0. It is preferably 1 to 0.8%, particularly 0.1 to 0.5%. K 2 O is a component that is difficult to dissolve in Li 2 O-Al 2 O 3 -SiO 2 system crystals and easily remains in the glass matrix after crystallization. Therefore, if the content of K 2 O is too large, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease.
MgOはLi2O−Al2O3−SiO2系結晶に固溶し、Li2O−Al2O3−SiO2系結晶の熱膨張係数を調整する成分である。また、ガラスの粘度を低下させて溶融性及び成形性を向上させる成分である。MgOの含有量は0〜10%、0〜5%、0〜3%、特に含有しないことが好ましい。MgOの含有量が多すぎると、Li2O−Al2O3−SiO2系結晶に固溶し難くなり、結晶化後にガラスマトリクス中に残存し易くなる。そのため、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。また、ガラスマトリクスと結晶との熱膨張係数差が大きくなり易いため、結晶化工程中に破損する虞れがある。さらに、ガラスマトリクスと結晶との屈折率差により散乱光が発生し易くなる。その結果、結晶化ガラスの透過率が低下し、容器内部の不溶性異物等を確認し難くなる。MgO is a component dissolved in the Li 2 O-Al 2 O 3 -SiO 2 based crystal, adjusting the thermal expansion coefficient of the Li 2 O-Al 2 O 3 -SiO 2 based crystal. Further, it is a component that lowers the viscosity of glass and improves meltability and moldability. The content of MgO is 0 to 10%, 0 to 5%, 0 to 3%, and it is particularly preferable that the content is not contained. If the content of MgO is too large, it becomes difficult to dissolve in Li 2 O-Al 2 O 3 -SiO 2 system crystals, and it tends to remain in the glass matrix after crystallization. Therefore, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease. Further, since the difference in the coefficient of thermal expansion between the glass matrix and the crystal tends to be large, there is a risk of damage during the crystallization process. Further, scattered light is likely to be generated due to the difference in refractive index between the glass matrix and the crystal. As a result, the transmittance of the crystallized glass decreases, and it becomes difficult to confirm insoluble foreign substances and the like inside the container.
CaOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。CaOの含有量は0〜10%、0〜5%、0〜3%、0〜1%、特に含有しないことが好ましい。CaOはLi2O−Al2O3−SiO2系結晶に固溶し難い成分であり、結晶化後にガラスマトリクス中に残存し易い。そのため、CaOの含有量が多すぎると、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。また、結晶化工程にて異種結晶を析出させる傾向があり、異種結晶とLi2O−Al2O3−SiO2系結晶との屈折率差により散乱光が発生し易くなる。その結果、結晶化ガラスの透過率が低下する傾向がある。CaO is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. The CaO content is 0 to 10%, 0 to 5%, 0 to 3%, 0 to 1%, and it is particularly preferable that the CaO content is not contained. CaO is a component that is difficult to dissolve in Li 2 O-Al 2 O 3 -SiO 2 system crystals and easily remains in the glass matrix after crystallization. Therefore, if the CaO content is too high, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease. In addition, there is a tendency to precipitate dissimilar crystals in the crystallization step, and scattered light is likely to be generated due to the difference in refractive index between the dissimilar crystals and the Li 2 O-Al 2 O 3 -SiO 2 system crystals. As a result, the transmittance of the crystallized glass tends to decrease.
SrOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。SrOの含有量は0〜10%、0〜5%、0〜3%、0〜1%、特に含有しないことが好ましい。SrOの含有量が多すぎると、ガラスが失透しやすくなり、ガラスが破損しやすくなる。SrOはLi2O−Al2O3−SiO2系結晶に固溶し難い成分であり、結晶化後にガラスマトリクス中に残存し易い。そのため、SrOの含有量が多すぎると、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。また、ガラスマトリクスと結晶との屈折率差により散乱光が発生し易くなる。その結果、結晶化ガラスの透過率が低下し、容器内部の不溶性異物等を確認し難くなる。SrO is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. The content of SrO is 0 to 10%, 0 to 5%, 0 to 3%, and 0 to 1%, and it is particularly preferable that the SrO content is not contained. If the content of SrO is too high, the glass tends to be devitrified and the glass is easily broken. SrO is a component that is difficult to dissolve in Li 2 O-Al 2 O 3 -SiO 2 system crystals and easily remains in the glass matrix after crystallization. Therefore, if the content of SrO is too large, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease. In addition, scattered light is likely to be generated due to the difference in refractive index between the glass matrix and the crystal. As a result, the transmittance of the crystallized glass decreases, and it becomes difficult to confirm insoluble foreign substances and the like inside the container.
BaOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。BaOの含有量は0〜10%、0〜5%、0〜4%、特に含有しないことが好ましい。BaOはLi2O−Al2O3−SiO2系結晶に固溶し難い成分であり、結晶化後にガラスマトリクス中に残存し易い。そのため、BaOの含有量が多すぎると、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。また、ガラスマトリクスと結晶との屈折率差により散乱光が発生し易くなる。その結果、結晶化ガラスの透過率が低下し、容器内部の不溶性異物等を確認し難くなる。さらに、ガラス容器中にて硫酸塩を含む薬液を充填、保存した際に、ガラスマトリクス中のBaOが薬液中に溶出し硫酸バリウム結晶を生成し不溶性異物となる虞れがある。BaO is a component that lowers the viscosity of glass and improves the meltability and moldability of glass. The content of BaO is 0 to 10%, 0 to 5%, 0 to 4%, and it is particularly preferable that the content is not contained. BaO is a component that is difficult to dissolve in Li 2 O-Al 2 O 3 -SiO 2 system crystals and easily remains in the glass matrix after crystallization. Therefore, if the content of BaO is too large, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease. In addition, scattered light is likely to be generated due to the difference in refractive index between the glass matrix and the crystal. As a result, the transmittance of the crystallized glass decreases, and it becomes difficult to confirm insoluble foreign substances and the like inside the container. Further, when a chemical solution containing sulfate is filled and stored in a glass container, BaO in the glass matrix may elute into the chemical solution to form barium sulfate crystals and become an insoluble foreign substance.
また、重量比で、SiO2/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO)が3以上、4以上、6以上、9以上、10以上、11以上、特に12以上であることが好ましい。SiO2/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO)が小さすぎると、耐酸性や耐加水分解性が低下し易くなる。一方、SiO2/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO)が大きすぎると、溶解性が低下し易くなる。そのため、SiO2/(Li2O+Na2O+K2O+MgO+CaO+SrO+BaO)は33以下、30以下、25以下、20以下、特に18以下であることが好ましい。Further, in terms of weight ratio, SiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is preferably 3 or more, 4 or more, 6 or more, 9 or more, 10 or more, 11 or more, and particularly preferably 12 or more. If SiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is too small, acid resistance and hydrolysis resistance tend to decrease. On the other hand, if SiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is too large, the solubility tends to decrease. Therefore, SiO 2 / (Li 2 O + Na 2 O + K 2 O + MgO + CaO + SrO + BaO) is preferably 33 or less, 30 or less, 25 or less, 20 or less, and particularly preferably 18 or less.
ZnOはLi2O−Al2O3−SiO2系結晶に固溶し、結晶性に大きな影響を与える成分である。ZnOの含有量は0〜10%、0〜5%、0〜3%、0〜1%、特に含有しないことが好ましい。ZnOの含有量が多すぎると、結晶性が強くなりすぎて失透しやすくなり、結晶化ガラスの透過率が低下し、容器内部の不溶性異物等を確認し難くなる。ZnO is a component that dissolves in Li 2 O-Al 2 O 3 -SiO 2 system crystals and has a great influence on crystallinity. The content of ZnO is 0 to 10%, 0 to 5%, 0 to 3%, and 0 to 1%, and it is particularly preferable that the ZnO content is not contained. If the content of ZnO is too large, the crystallinity becomes too strong and devitrification is likely to occur, the transmittance of the crystallized glass decreases, and it becomes difficult to confirm insoluble foreign substances and the like inside the container.
P2O5は粗大なZrO2結晶の析出を抑制する成分である。なお、粗大な結晶が析出すると、散乱光が発生し易くなる。その結果、結晶化ガラスの透過率が低下し、容器内部の不溶性異物等を確認し難くなる。P2O5の含有量は0〜5%、0〜4%、0〜3%、特に含有しないことが好ましい。P2O5の含有量が多すぎると、Li2O−Al2O3−SiO2系結晶の析出量が少なくなり、熱膨張係数が高くなる傾向がある。また、結晶化ガラスの耐加水分解性、耐酸性、耐アルカリ性が低下する傾向がある。P 2 O 5 is a component that suppresses the precipitation of coarse ZrO 2 crystals. When coarse crystals are deposited, scattered light is likely to be generated. As a result, the transmittance of the crystallized glass decreases, and it becomes difficult to confirm insoluble foreign substances and the like inside the container. The content of P 2 O 5 is 0 to 5%, 0 to 4%, 0 to 3%, and it is particularly preferable that the content is not contained. If the content of P 2 O 5 is too large, the amount of precipitation of Li 2 O-Al 2 O 3 -SiO 2 system crystals tends to be small, and the coefficient of thermal expansion tends to be high. In addition, the hydrolysis resistance, acid resistance, and alkali resistance of the crystallized glass tend to decrease.
TiO2は結晶化工程で結晶を析出させるための核形成剤となる成分である。一方で、多量に含有するとガラスの着色を著しく強める成分でもある。TiO2の含有量は0〜8%、0〜7%、0.5〜5%、特に1〜5%であることが好ましい。TiO2の含有量が多すぎると、ガラスの着色が強まりやすい。TiO 2 is a component that serves as a nucleating agent for precipitating crystals in the crystallization step. On the other hand, it is also a component that remarkably enhances the coloring of glass when contained in a large amount. The content of TiO 2 is preferably 0 to 8%, 0 to 7%, 0.5 to 5%, and particularly preferably 1 to 5%. If the content of TiO 2 is too high, the coloring of the glass tends to be strengthened.
ZrO2は結晶化工程で結晶を析出させるための核形成成分である。ZrO2の含有量は0〜8%、0〜5%、0.5〜5%、特に1〜5%であることが好ましい。ZrO2の含有量が多すぎると、粗大なZrO2結晶が析出してガラスが失透しやすくなり、ガラスが破損しやすくなる。ZrO 2 is a nucleation component for precipitating crystals in the crystallization step. The content of ZrO 2 is preferably 0 to 8%, 0 to 5%, 0.5 to 5%, and particularly preferably 1 to 5%. If the content of ZrO 2 is too large, coarse ZrO 2 crystals are precipitated and the glass is liable to be devitrified, and the glass is liable to be broken.
SnO2は清澄剤として作用する成分である。SnO2の含有量は0〜3%、0.001〜2%、0.005〜1%、0.003〜0.7%、特に0.01〜0.5%であることが好ましい。SnO2の含有量が多すぎると、ガラスの着色が強まりやすい。SnO 2 is a component that acts as a clarifying agent. The SnO 2 content is preferably 0 to 3%, 0.001 to 2%, 0.005 to 1%, 0.003 to 0.7%, and particularly preferably 0.01 to 0.5%. If the content of SnO 2 is too large, the coloring of the glass tends to be strengthened.
また、SnO2以外の清澄剤としてAs2O3、Sb2O3、Cl、F、Na2SO4等を含有しても良い。これらの清澄剤の含有量の合計は1.5%以下、1%以下、0.7%以下、特に0.5%以下であることが好ましい。また、これらの清澄剤は単独で使用しても良いし、併せて使用することもできる。Further, as a clarifying agent other than SnO 2 , As 2 O 3 , Sb 2 O 3 , Cl, F, Na 2 SO 4 and the like may be contained. The total content of these clarifying agents is preferably 1.5% or less, 1% or less, 0.7% or less, and particularly preferably 0.5% or less. In addition, these clarifying agents may be used alone or in combination.
B2O3はβ−石英固溶体からβ−スポジュメン固溶体への結晶転移を促進する成分である。なお、β−石英固溶体がβ−スポジュメンに転移すると、β−スポジュメンの析出に起因する局所的な熱膨張係数の増大によって、ガラスが破損しやすくなる。このため、B2O3は実質的に含有しない(具体的には0.05%未満)ことが好ましい。B 2 O 3 is a component that promotes crystal transition from a β-quartz solid solution to a β-spodium solid solution. When the β-quartz solid solution is transferred to β-spojumen, the glass is liable to break due to the increase in the local coefficient of thermal expansion caused by the precipitation of β-spojumen. Therefore, it is preferable that B 2 O 3 is substantially not contained (specifically, less than 0.05%).
Fe2O3はガラスの着色を強める成分である。Fe2O3の含有量は0〜0.15%、0.003〜0.04%、特に0.003〜0.03%であることが好ましい。Fe2O3の含有量が多すぎると、ガラスの着色が強まりやすい。Fe2O3の含有量は少ない程、着色を抑制できるため好ましいが、例えば0.003%を下回るような範囲にするには高価な高純度原料を使用する必要があり、製造コストが高くなってしまう。Fe 2 O 3 is a component that enhances the coloring of glass. The content of Fe 2 O 3 is preferably 0 to 0.15%, 0.003 to 0.04%, and particularly preferably 0.003 to 0.03%. If the content of Fe 2 O 3 is too large, the coloring of the glass tends to be strengthened. The smaller the content of Fe 2 O 3 is, the more the coloring can be suppressed, which is preferable. Will end up.
上記の組成を有する結晶化ガラス中には、β−石英固溶体が析出しやすい。β─石英固溶体を主結晶として析出させれば、結晶化ガラスが可視光を透過しやすく、透明性が高まりやすい。またガラスの熱膨張係数を低下させることが容易になる。 A β-quartz solid solution is likely to precipitate in the crystallized glass having the above composition. If the β-quartz solid solution is precipitated as the main crystal, the crystallized glass easily transmits visible light and the transparency tends to increase. In addition, it becomes easy to reduce the coefficient of thermal expansion of the glass.
本発明の医薬用ガラス容器は、ISO 4802−1(1988)に準じた耐加水分解性試験において、溶出液100mL当たりの0.01mol/Lの塩酸の消費量が0.50mL以下、0.45mL以下、特に0.40mL以下であることが好ましく、ISO 720(1985)に準じた耐加水分解性試験において、ガラス粉末1g当たりの0.02mol/Lの塩酸の消費量が0.1mL以下、0.08mL以下、0.06mL以下、0.04mL以下、特に0.03mL以下であることが好ましい。塩酸消費量が多すぎると、医薬用ガラス容器に薬液を充填、保存した際、ガラス成分、特にアルカリ成分の溶出が大幅に増加して薬液成分の変質を引き起こす恐れがある。 In the hydrolysis resistance test according to ISO 4802-1 (1988), the pharmaceutical glass container of the present invention consumes 0.01 mol / L of hydrochloric acid per 100 mL of eluent in an amount of 0.50 mL or less, 0.45 mL. Hereinafter, it is particularly preferable that the amount is 0.40 mL or less, and in the hydrolysis resistance test according to ISO 720 (1985), the consumption of 0.02 mol / L hydrochloric acid per 1 g of glass powder is 0.1 mL or less, 0. It is preferably 0.8 mL or less, 0.06 mL or less, 0.04 mL or less, and particularly preferably 0.03 mL or less. If the amount of hydrochloric acid consumed is too large, when the medicinal glass container is filled with the chemical solution and stored, the elution of the glass component, especially the alkaline component, may be significantly increased, which may cause deterioration of the chemical solution component.
本発明の医薬用ガラス容器は、ヤング率が60GPa以上、65GPa以上、特に70GPa以上であることが好ましい。ヤング率が小さすぎると、耐熱衝撃性が低下しやすくなる。なお、ヤング率の上限は特に限定されないが、現実的には300GPa以下である。 The medicinal glass container of the present invention preferably has a Young's modulus of 60 GPa or more, 65 GPa or more, and particularly preferably 70 GPa or more. If the Young's modulus is too small, the thermal impact resistance tends to decrease. The upper limit of Young's modulus is not particularly limited, but is actually 300 GPa or less.
本発明の医薬用ガラス容器は、30〜380℃における熱膨張係数が、20×10−7/℃以下、15×10−7/℃以下、10×10−7/℃以下、7×10−7/℃以下、5×10−7/℃以下、特に2×10−7/℃以下であることが好ましい。なお、耐熱衝撃性が特に必要とされる場合は、−5×10−7/℃〜5×10−7/℃、−2.5×10−7/℃〜2.5×10−7/℃、特に−2×10−7/℃〜2×10−7/℃であることが好ましい。The medicinal glass container of the present invention has a coefficient of thermal expansion at 30 to 380 ° C. of 20 × 10-7 / ° C or less, 15 × 10-7 / ° C or less, 10 × 10-7 / ° C or less, 7 × 10 −. It is preferably 7 / ° C. or lower, 5 × 10 -7 / ° C. or lower, and particularly preferably 2 × 10 -7 / ° C. or lower. In the case where thermal shock resistance is particularly required, -5 × 10 -7 / ℃ ~5 × 10 -7 /℃,-2.5×10 -7 /℃~2.5×10 -7 / ℃, particularly preferably -2 × 10 -7 / ° C to 2 × 10 -7 / ° C.
本発明の医薬用ガラス容器は、容器内部の不溶性異物等を確認する必要があるため、外観が透明であることが好ましく、具体的には、厚み1mm、波長400〜800nmにおける平均透過率が65%以上、68%以上、特に70%以上であることが好ましい。当該波長域における平均透過率が低すぎると、医薬用ガラス容器の着色が強くなりすぎるとともに、透明性が低下しやすくなる。 Since it is necessary to confirm insoluble foreign substances and the like inside the pharmaceutical glass container of the present invention, it is preferable that the appearance is transparent. Specifically, the average transmittance at a thickness of 1 mm and a wavelength of 400 to 800 nm is 65. % Or more, 68% or more, particularly preferably 70% or more. If the average transmittance in the wavelength range is too low, the coloring of the medicinal glass container becomes too strong and the transparency tends to decrease.
本発明の医薬用ガラス容器は、厚み1mm、波長350nmにおける透過率が60%以下、50%以下、45%以下、特に40%以下であることが好ましい。当該波長における透過率が高すぎると、薬剤の変質を引き起す可能性がある紫外線を遮蔽し難くなる。 The medicinal glass container of the present invention preferably has a transmittance of 60% or less, 50% or less, 45% or less, and particularly preferably 40% or less at a thickness of 1 mm and a wavelength of 350 nm. If the transmittance at the wavelength is too high, it becomes difficult to block ultraviolet rays that may cause deterioration of the drug.
本発明の医薬用ガラス容器は、ISO 695(1991)に準じた耐アルカリ性試験において、単位面積当たりの重量減少量ρが75mg/dm2以下、70mg/dm2以下、特に65mg/dm2以下であることが好ましい。重量減少量ρが大きすぎると、内部に充填した薬剤の品質劣化を起こす虞があるIn the alkali resistance test according to ISO 695 (1991), the medicinal glass container of the present invention has a weight loss ρ per unit area of 75 mg / dm 2 or less, 70 mg / dm 2 or less, and particularly 65 mg / dm 2 or less. It is preferable to have. If the weight loss amount ρ is too large, the quality of the drug filled inside may deteriorate.
本発明の医薬用ガラス容器は、YBB00342004−2015に準じた耐酸性試験において、単位面積当たりの重量減少量の半量Sが10mg/dm2以下、8mg/dm2以下、特に6mg/dm2以下であることが好ましい。重量減少量の半量Sが大きすぎると、内部に充填した薬剤の品質劣化を起こす虞があるIn the acid resistance test according to YBB00342004-2015, the medicinal glass container of the present invention has a half amount S of weight loss per unit area of 10 mg / dm 2 or less, 8 mg / dm 2 or less, and particularly 6 mg / dm 2 or less. It is preferable to have. If half the weight loss S is too large, the quality of the drug filled inside may deteriorate.
また、YBB00342004―2015に準じた耐酸性試験における単位面積当たりの重量減少量の半量SとISO 695(1991)に準じた耐アルカリ性試験における単位面積当たりの重量減少量ρとの合量であるS+ρが70mg/dm2以下、60mg/dm2以下、50mg/dm2以下、45mg/dm2以下、40mg/dm2以下、35mg/dm2以下、特に30mg/dm2以下であることが好ましい。このようにすれば、更に耐酸性、耐アルカリ性を向上させることが可能である。Further, S + ρ, which is the sum of half the weight loss amount S per unit area in the acid resistance test according to YBB00342004-2015 and the weight loss amount ρ per unit area in the alkali resistance test according to ISO 695 (1991). Is preferably 70 mg / dm 2 or less, 60 mg / dm 2 or less, 50 mg / dm 2 or less, 45 mg / dm 2 or less, 40 mg / dm 2 or less, 35 mg / dm 2 or less, and particularly preferably 30 mg / dm 2 or less. By doing so, it is possible to further improve the acid resistance and alkali resistance.
なお、本発明の医薬用ガラス容器の形状は特に限定されず、底面を有する容器形状でも、底面を有しない管形状であっても構わない。 The shape of the medicinal glass container of the present invention is not particularly limited, and may be a container shape having a bottom surface or a tube shape having no bottom surface.
次に本発明の医薬用ガラス容器を製造する方法を説明する。以下の説明は、ダンナー法を用いた例である。なお、ダンナー法に限らず、ベロー法やダウンドロー法等の従来周知の任意の手法を用いて製造しても良い。 Next, a method for manufacturing the pharmaceutical glass container of the present invention will be described. The following description is an example using the Dunner method. Not limited to the Dunner method, it may be manufactured by any conventionally known method such as a bellows method or a downdraw method.
まず、上記のガラス組成になるように、ガラス原料を調合してガラスバッチを作製する。次いで、このガラスバッチを1550〜1700℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出し、冷却することによりガラス管を得る。得られたガラス管を所定の長さに切断、加工することにより、ガラス容器を得る。 First, a glass batch is prepared by blending glass raw materials so as to have the above glass composition. Next, this glass batch was continuously put into a melting kiln at 1550 to 1700 ° C. to melt and clarify it, and then the obtained molten glass was wound around a rotating refractory while blowing air from the tip of the refractory. A glass tube is obtained by pulling out the glass in a tubular shape from the tip and cooling it. A glass container is obtained by cutting and processing the obtained glass tube to a predetermined length.
次に得られたガラス容器を熱処理して結晶化させる。結晶化条件としては、まず核形成を700〜950℃(好ましくは730〜900℃)で6〜300分(好ましくは10〜180分)行い、続いて結晶成長を800〜1050℃(好ましくは800〜1000℃)で6〜600分(好ましくは10〜300分)行う。このようにしてβ−石英固溶体結晶が主結晶として析出した透明な医薬用ガラス容器を得ることができる。なお、核形成温度、結晶成長温度が低すぎる、及び/又は核形成時間、結晶成長時間が短すぎると、結晶が析出しにくくなる。また、核形成温度、結晶成長温度が高すぎる、及び/又は核形成時間、結晶成長時間が長すぎると、β─スポジュメン固溶体が析出する傾向があり、結晶が粗大化するため、透過率が低下する傾向がある。 Next, the obtained glass container is heat-treated and crystallized. As crystallization conditions, first nucleation is performed at 700 to 950 ° C. (preferably 730 to 900 ° C.) for 6 to 300 minutes (preferably 10 to 180 minutes), and then crystal growth is carried out at 800 to 950 ° C. (preferably 800). ~ 1000 ° C.) for 6 to 600 minutes (preferably 10 to 300 minutes). In this way, a transparent medicinal glass container in which β-quartz solid solution crystals are precipitated as main crystals can be obtained. If the nucleation temperature and crystal growth temperature are too low, and / or the nucleation time and crystal growth time are too short, crystals are less likely to precipitate. In addition, if the nucleation temperature and crystal growth temperature are too high, and / or the nucleation time and crystal growth time are too long, β-spojumen solid solution tends to precipitate and the crystals become coarse, so that the transmittance decreases. Tend to do.
(実施例1)
以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。表1、2は本発明の実施例、及び比較例を示している。(Example 1)
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples. Tables 1 and 2 show examples and comparative examples of the present invention.
実施例の医薬用ガラス容器は次のようにして作製した。表1、2に記載の組成を有するガラスとなるように原料を調合、混合し、原料バッチを得た。この原料バッチを1600〜1680℃の溶融窯に連続投入して溶融、清澄した後、得られた溶融ガラスを回転する耐火物上に巻きつけながら、耐火物先端部からエアを吹き出しつつ、当該先端部からガラスを管状に引き出し冷却することにより、外径12〜15mmφのガラス管を得た。得られたガラス管を長さ160〜300mmに切断した後、ガラス管の片端をバーナーで融封することにより、長さ80〜150mmのガラス容器(結晶化前のガラス容器)を得た。 The medicated glass container of the example was prepared as follows. The raw materials were prepared and mixed so as to obtain a glass having the composition shown in Tables 1 and 2, and a raw material batch was obtained. This raw material batch is continuously put into a melting kiln at 1600 to 1680 ° C. to be melted and clarified, and then the obtained molten glass is wound around a rotating refractory while blowing air from the tip of the refractory. By pulling out the glass from the portion into a tubular shape and cooling it, a glass tube having an outer diameter of 12 to 15 mmφ was obtained. After cutting the obtained glass tube to a length of 160 to 300 mm, one end of the glass tube was melted with a burner to obtain a glass container (glass container before crystallization) having a length of 80 to 150 mm.
ガラス容器に対して、730〜780℃で5〜180分熱処理して核形成を行った後、さらに870〜920℃で5〜60分の熱処理を行い結晶成長させることにより医薬用ガラス容器を得た。得られた医薬用ガラス容器(結晶化後のガラス容器)について、析出結晶、耐加水分解性、耐アルカリ性、耐酸性、ヤング率、熱膨張係数、波長400〜800nmにおける平均透過率、波長350nmにおける透過率を評価した。結果を表1、2に示す。 A glass container is heat-treated at 730 to 780 ° C. for 5 to 180 minutes to form nuclei, and then further heat-treated at 870 to 920 ° C. for 5 to 60 minutes to grow crystals to obtain a medicinal glass container. rice field. The obtained medicinal glass container (glass container after crystallization) has precipitation crystals, hydrolysis resistance, alkali resistance, acid resistance, Young rate, thermal expansion coefficient, average transmittance at a wavelength of 400 to 800 nm, and a wavelength of 350 nm. The transmittance was evaluated. The results are shown in Tables 1 and 2.
析出結晶はX線回折装置(リガク製 全自動多目的水平型X線回折装置 Smart Lab)を用いて評価した。 Precipitated crystals were evaluated using an X-ray diffractometer (Rigaku's fully automatic multipurpose horizontal X-ray diffractometer Smart Lab).
耐加水分解性は、ISO 4802−1(1988)に準じた耐加水分解性試験方法、及びISO 720(1985)に準じた耐加水分解試験方法により評価した。詳細な試験手順は以下の通りである。 The hydrolysis resistance was evaluated by a hydrolysis resistance test method according to ISO 4802-1 (1988) and a hydrolysis resistance test method according to ISO 720 (1985). The detailed test procedure is as follows.
(ISO 4802−1(1988))
実施例で得られたガラス容器の内面と外面を精製水で洗浄した。ガラス容器の全容積の90%に相当する精製水(10.6mL)を、ガラス容器に充填した。ガラス容器の口部分はアルミホイルで蓋をし、輪ゴムで止めた。精製水を入れたガラス容器を、オートクレーブ内に設置し、室温から100℃まで昇温後、100℃から121℃までは1℃/分の昇温速度で加熱した。121℃に到達後60分間保持し、さらに100℃まで0.5℃/分で冷却した。その後、オートクレーブからガラス容器を取り出し、精製水を入れたトレイ内に静置させ常温まで冷却した。冷却後、ガラス容器内の溶出液(10mL)を200mLのコニカルビーカーに移した。実施例の方法で同様にして得られた5個のガラス容器を用いて、同様の操作を5回行うことにより溶出液50mLを得た。ホールピペットを用いて溶出液25mLずつ分取し、2つの50mLのコニカルビーカーへ移した。ブランクも同様に精製水50mLからホールピペットを用いて25mLずつ分取し、2つの50mLのコニカルビーカーへ移した。溶出液とブランクにそれぞれメチルレッド指示薬を50μLずつ添加した。0.01mol/Lの塩酸をビュレットに充填し、溶出液25mLに対して中和滴定を行った。溶出液の色がブランクの色と同じになったときの塩酸消費量を記録した。試験はn=2で実施し、平均値を算出後、溶出液100mLに対する塩酸消費量を算出した。(ISO 4802-1 (1988))
The inner and outer surfaces of the glass container obtained in the examples were washed with purified water. The glass container was filled with purified water (10.6 mL) corresponding to 90% of the total volume of the glass container. The mouth of the glass container was covered with aluminum foil and fastened with a rubber band. A glass container containing purified water was placed in an autoclave, and after heating from room temperature to 100 ° C., heating was performed from 100 ° C. to 121 ° C. at a heating rate of 1 ° C./min. After reaching 121 ° C., the mixture was held for 60 minutes and further cooled to 100 ° C. at 0.5 ° C./min. Then, the glass container was taken out from the autoclave and allowed to stand in a tray containing purified water to cool to room temperature. After cooling, the eluate (10 mL) in the glass container was transferred to a 200 mL conical beaker. Using the five glass containers obtained in the same manner by the method of the example, 50 mL of the eluate was obtained by performing the same operation 5 times. 25 mL each of the eluate was dispensed using a whole pipette and transferred to two 50 mL conical beakers. Similarly, the blank was separated from 50 mL of purified water by 25 mL using a whole pipette and transferred to two 50 mL conical beakers. 50 μL of each of the methyl red indicator was added to the eluate and the blank. The burette was filled with 0.01 mol / L hydrochloric acid, and neutralization titration was performed on 25 mL of the eluate. The hydrochloric acid consumption when the color of the eluate became the same as the color of the blank was recorded. The test was carried out at n = 2, and after calculating the average value, the amount of hydrochloric acid consumed with respect to 100 mL of the eluate was calculated.
(ISO 720(1985))
実施例で得られたガラス容器の内面と外面をエタノールで良く拭き、アルミナ製の乳鉢と乳棒で試料を粉砕した後、ステンレス製の目開き710μm、425μm、300μmの3つの篩を用いて分級した。300μmの篩上に残ったガラス粉末は採取し、700μm、425μmの篩に残ったガラスは再度粉砕した。300μmの篩上のガラス粉末が10g以上になるまで同じ作業を繰り返した。300μmの篩上に残った試料粉末をビーカーへ移し、30mLのアセトンを注ぎ1分間超音波洗浄を行った。上澄み液を廃棄し、その後4回同じ作業を繰り返した。その後、30mLのアセトンをビーカーに注ぎ、手で軽くゆすり上澄み液だけを廃棄する作業を3回繰り返した。ビーカーの口をアルミホイルで多い、複数個所穴を空けた後、110℃のオーブンで30分間乾燥させた。その後、取り出しデシケーター内で30分間冷却した。得られた試料粉末を、電子天秤を用いて10g±0.0001gで秤量し、250mLのフラスコに入れ、超純水50mLを加えた。ブランクとして超純水50mLのみを充填したフラスコも準備した。フラスコの口を石英容器で塞ぎ、オートクレーブに入れて121℃、30分間熱処理を行った。この時、100℃から121℃までは1℃/分で昇温し、121℃から100℃までは2℃/分で冷却した。95℃まで冷却後、フラスコを取り出し超純水が入ったトレイに静置させ30分間冷却した。冷却後、フラスコ内の溶出液をコニカルビーカーに移した。15mLの超純水をホールピペットで採取し、フラスコ内に注ぎいれ、軽くゆすり上澄み液だけをコニカルビーカーに流し入れた。同様の作業をあと2回行った。ブランクについても同様の操作を行い溶出液を得た。サンプルとブランクの溶出液にメチルレッドをそれぞれ0.05mL滴下した。0.02mol/Lの塩酸をサンプルの溶出液に滴下し、ブランクと同じ色になったときの塩酸消費量を記録し、ガラス1g当たりの塩酸消費量を算出した。(ISO 720 (1985))
The inner and outer surfaces of the glass container obtained in the examples were thoroughly wiped with ethanol, the sample was crushed with an alumina mortar and pestle, and then classified using three sieves with stainless steel openings of 710 μm, 425 μm, and 300 μm. .. The glass powder remaining on the 300 μm sieve was collected, and the glass remaining on the 700 μm and 425 μm sieve was pulverized again. The same operation was repeated until the amount of glass powder on a 300 μm sieve was 10 g or more. The sample powder remaining on the 300 μm sieve was transferred to a beaker, 30 mL of acetone was poured, and ultrasonic cleaning was performed for 1 minute. The supernatant was discarded, and then the same work was repeated 4 times. Then, 30 mL of acetone was poured into a beaker, and the work of lightly shaking by hand and discarding only the supernatant liquid was repeated three times. After making multiple holes in the mouth of the beaker with aluminum foil, the beaker was dried in an oven at 110 ° C. for 30 minutes. Then, it was cooled in a take-out desiccator for 30 minutes. The obtained sample powder was weighed at 10 g ± 0.0001 g using an electronic balance, placed in a 250 mL flask, and 50 mL of ultrapure water was added. A flask filled with only 50 mL of ultrapure water was also prepared as a blank. The mouth of the flask was closed with a quartz container, placed in an autoclave, and heat-treated at 121 ° C. for 30 minutes. At this time, the temperature was raised at 1 ° C./min from 100 ° C. to 121 ° C., and cooled at 2 ° C./min from 121 ° C. to 100 ° C. After cooling to 95 ° C., the flask was taken out and allowed to stand in a tray containing ultrapure water to cool for 30 minutes. After cooling, the eluate in the flask was transferred to a conical beaker. 15 mL of ultrapure water was collected with a whole pipette, poured into a flask, lightly shaken, and only the supernatant was poured into a conical beaker. The same work was done two more times. The same operation was performed on the blank to obtain an eluate. 0.05 mL each of methyl red was added dropwise to the eluate of the sample and the blank. 0.02 mol / L hydrochloric acid was added dropwise to the eluate of the sample, the amount of hydrochloric acid consumed when the color became the same as that of the blank was recorded, and the amount of hydrochloric acid consumed per 1 g of glass was calculated.
耐アルカリ性はISO 695(1991)に準じた方法により評価した。詳細な試験手順は以下の通りである。まず、全ての面を鏡面研磨仕上げとした総表面積が15cm2のガラスサンプルを準備し、前処理として試料をフッ酸(40重量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬させ、10分間マグネティックスターラーで攪拌した。次いでサンプルを取出し、超純水中で2分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、試料を110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。このようにして得られた試料の重量m1を精度±0.1mgまで測定し、記録した。続いてステンレス製の容器に1mol/Lの水酸化ナトリウム水溶液と0.5mol/Lの炭酸ナトリウム水溶液を体積比で1:1となるように混合した溶液を800mL入れ、電熱器を用いて沸騰するまで加熱し、白金線で吊したサンプルを投入して3時間保持した。試験中の液量の減少を防ぐために、容器の蓋の開口部はガスケット及び冷却管で栓をした。その後、サンプルを取り出し、1mol/Lの塩酸500mLの入ったビーカーに3回浸漬した後、超純水中で1分間の超音波洗浄を3回行い、エタノール中で1分間の超音波洗浄を2回行った。さらに洗浄したサンプルを110℃のオーブンの中で1時間乾燥し、デシケーター内で30分間冷却した。このようにして処理した試料の重量m2を精度±0.1mgまで測定し、記録した。最後に沸騰溶液に投入する前後の試料の重量m1、m2mgと試料の総表面積Acm2から式1によって単位面積当たりの重量減少量ρを算出した。
[式1] 単位面積当たりの重量減少量ρ=100×(m1−m2)/AAlkali resistance was evaluated by a method according to ISO 695 (1991). The detailed test procedure is as follows. First, a glass sample having a total surface area of 15 cm 2 with all surfaces mirror-polished was prepared, and as a pretreatment, the sample was mixed with hydrofluoric acid (40% by weight) and hydrochloric acid (2 mol / L) in a volume ratio of 1: 9. It was immersed in the mixed solution so that it was stirred with a magnetic stirrer for 10 minutes. Then, the sample was taken out and ultrasonically cleaned in ultrapure water for 2 minutes three times, and then ultrasonically cleaned in ethanol for 1 minute twice. The sample was then dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The weight m 1 of the sample thus obtained was measured and recorded with an accuracy of ± 0.1 mg. Next, put 800 mL of a solution of 1 mol / L sodium hydroxide aqueous solution and 0.5 mol / L sodium carbonate aqueous solution in a volume ratio of 1: 1 in a stainless steel container, and boil using an electric heater. The sample was heated to the above, and the sample suspended by a platinum wire was put in and held for 3 hours. To prevent a decrease in liquid volume during the test, the opening of the container lid was plugged with a gasket and a condenser. Then, the sample was taken out and immersed in a beaker containing 500 mL of 1 mol / L hydrochloric acid three times, then ultrasonically cleaned in ultrapure water for one minute three times, and ultrasonically cleaned in ethanol for one minute. I went there times. Further washed samples were dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The weight m 2 of the sample thus treated was measured and recorded to an accuracy of ± 0.1 mg. Was calculated weight loss ρ per unit area by the last weights before and after the sample to be introduced into the boiling solution m 1, m 2 mg and Formula 1 from the total surface area Acm 2 samples.
[Equation 1] Weight loss per unit area ρ = 100 × (m 1 − m 2 ) / A
耐酸性は、YBB00342004―2015に準じた方法により評価した。詳細な試験手順は以下の通りである。まず全ての表面を鏡面研磨仕上げとした総表面積が50cm2のガラスサンプルを準備し、前処理として試料をフッ酸(40質量%)と塩酸(2mol/L)を体積比で1:9となるように混合した溶液に浸漬し、10分間マグネティックスターラーで攪拌した。次いでサンプルを取出し、超純水中で1分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。次に、サンプルを110℃のオーブンの中で1時間乾燥させ、デシケーター内で30分間冷却した。このようにして得られたサンプルの質量m1を精度±0.1mgまで測定し記録した。続いて石英ガラス製のビーカーに6mol/Lの塩酸800mLを入れ、電熱器を用いて沸騰するまで加熱し、白金線で吊したサンプルを投入して6時間保持した。試験中の液量の減少を防ぐために、容器の蓋の開口部はガスケット及び冷却管で栓をした。その後、サンプルを取り出し、超純水中で1分間の超音波洗浄を3回行った後、エタノール中で1分間の超音波洗浄を2回行った。さらに洗浄したサンプルを110℃のオーブンの中で1時間乾燥し、デシケーター内で30分間冷却した。このようにして処理した試料の質量片m2を精度±0.1mgまで測定し、記録した。最後に沸騰塩酸に投入する前後の試料の質量m1、m2mgと試料の総表面積Acm2から以下の式2によって単位面積当たりの重量減少量の半量Sを算出した。
[式2] 単位面積当たりの重量減少量の半量S=100×(m1−m2)/(2×A)Acid resistance was evaluated by a method according to YBB00342004-2015. The detailed test procedure is as follows. First, prepare a glass sample with a total surface area of 50 cm 2 with all surfaces mirror-polished, and use hydrofluoric acid (40% by mass) and hydrochloric acid (2 mol / L) as a pretreatment at a volume ratio of 1: 9. The mixture was immersed in the mixed solution and stirred with a magnetic stirrer for 10 minutes. Then, the sample was taken out and ultrasonically cleaned in ultrapure water for 1 minute three times, and then ultrasonically cleaned in ethanol for 1 minute twice. The sample was then dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass m 1 of the sample thus obtained was measured and recorded with an accuracy of ± 0.1 mg. Subsequently, 800 mL of 6 mol / L hydrochloric acid was placed in a beaker made of quartz glass, heated to a boil using an electric heater, and a sample suspended by a platinum wire was added and held for 6 hours. To prevent a decrease in liquid volume during the test, the opening of the container lid was plugged with a gasket and a condenser. Then, the sample was taken out and ultrasonically cleaned in ultrapure water for 1 minute three times, and then ultrasonically cleaned in ethanol for 1 minute twice. Further washed samples were dried in an oven at 110 ° C. for 1 hour and cooled in a desiccator for 30 minutes. The mass piece m 2 of the sample treated in this manner was measured and recorded with an accuracy of ± 0.1 mg. Was calculated half S of the weight loss per unit area by the mass m 1, m 2 mg and Formula 2 below from the total surface area Acm 2 samples before and after the sample finally put into boiling hydrochloric acid.
[Equation 2] Half the amount of weight loss per unit area S = 100 × (m 1 − m 2 ) / (2 × A)
ヤング率は、共振法(日本テクノプラス製JE−RT3)にて測定した。 Young's modulus was measured by the resonance method (JE-RT3 manufactured by Nippon Techno Plus).
熱膨張係数は、20mm×5mmφに加工した試料を用いて、30〜380℃の温度域で測定した平均線熱膨張係数により評価した。測定にはNETZSCH製Dilatometerを用いた。 The coefficient of thermal expansion was evaluated by the average coefficient of linear thermal expansion measured in a temperature range of 30 to 380 ° C. using a sample processed to 20 mm × 5 mmφ. A NETZSCH Diratometer was used for the measurement.
波長400〜800nmにおける平均透過率、及び波長350nmにおける透過率は、肉厚1mmに両面光学研磨した試料について、分光光度計を用いて測定した波長350〜800nmでの透過率により評価した。測定には日本分光製分光光度計 V−670を用いた。 The average transmittance at a wavelength of 400 to 800 nm and the transmittance at a wavelength of 350 nm were evaluated by the transmittance at a wavelength of 350 to 800 nm measured with a spectrophotometer for a sample that had been optically polished on both sides to a wall thickness of 1 mm. A spectrophotometer V-670 manufactured by JASCO Corporation was used for the measurement.
表1、2から明らかなように、実施例1〜14は、β−石英固溶体が析出しており、耐加水分解性、透過特性に優れており、ヤング率が高く、熱膨張係数が0に近かった。一方、比較例1、2は、非晶質ガラスであり、塩酸消費量が多く耐加水分解性に劣っており、また熱膨張係数が40×10−7/℃以上と高かった。As is clear from Tables 1 and 2, in Examples 1 to 14, β-quartz solid solution is precipitated, excellent in hydrolysis resistance and permeation characteristics, high Young's modulus, and coefficient of thermal expansion of 0. It was close. On the other hand, Comparative Examples 1 and 2 were amorphous glasses, which consumed a large amount of hydrochloric acid and were inferior in hydrolysis resistance, and had a high coefficient of thermal expansion of 40 × 10 -7 / ° C. or higher.
(実施例2)
本発明の別の医薬用容器のガラス組成例を表3に示す。(Example 2)
Table 3 shows an example of the glass composition of another pharmaceutical container of the present invention.
本発明の医薬用ガラス容器は、アンプル、バイアル、プレフィルドシリンジ、カートリッジ、凍結乾燥製剤用容器、紫外線により変質しやすい製剤等の、一次包装材料、保護用容器等として好適に使用できる。 The medicinal glass container of the present invention can be suitably used as a primary packaging material, a protective container, etc. for ampoules, vials, prefilled syringes, cartridges, containers for lyophilized preparations, preparations that are easily deteriorated by ultraviolet rays, and the like.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024182478A JP2025003525A (en) | 2018-12-27 | 2024-10-18 | Pharmaceutical Glass Containers |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018244159 | 2018-12-27 | ||
JP2018244159 | 2018-12-27 | ||
JP2019044851 | 2019-03-12 | ||
JP2019044851 | 2019-03-12 | ||
PCT/JP2019/049763 WO2020137779A1 (en) | 2018-12-27 | 2019-12-19 | Medical glass container |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024182478A Division JP2025003525A (en) | 2018-12-27 | 2024-10-18 | Pharmaceutical Glass Containers |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2020137779A1 true JPWO2020137779A1 (en) | 2021-11-18 |
Family
ID=71128629
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020563151A Pending JPWO2020137779A1 (en) | 2018-12-27 | 2019-12-19 | Pharmaceutical glass container |
JP2024182478A Pending JP2025003525A (en) | 2018-12-27 | 2024-10-18 | Pharmaceutical Glass Containers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024182478A Pending JP2025003525A (en) | 2018-12-27 | 2024-10-18 | Pharmaceutical Glass Containers |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2020137779A1 (en) |
WO (1) | WO2020137779A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007507407A (en) * | 2003-09-30 | 2007-03-29 | ショット アクチエンゲゼルシャフト | Antibacterial glass, glass ceramic surface and method for producing the same |
JP2010510951A (en) * | 2006-11-30 | 2010-04-08 | ユーロケラ | Transparent, colorless, low titania beta, quartz, glass and ceramic materials |
JP2012533509A (en) * | 2009-07-20 | 2012-12-27 | ショット アクチエンゲゼルシャフト | High performance glass ceramic and method for producing high performance glass ceramic |
JP2015013793A (en) * | 2013-06-06 | 2015-01-22 | 日本電気硝子株式会社 | Glass for pharmaceutical containers |
CN104495007A (en) * | 2014-12-10 | 2015-04-08 | 甘肃惠森药业发展有限公司 | Method for storing traditional Chinese medicinal materials by microcrystalline glass |
-
2019
- 2019-12-19 JP JP2020563151A patent/JPWO2020137779A1/en active Pending
- 2019-12-19 WO PCT/JP2019/049763 patent/WO2020137779A1/en active Application Filing
-
2024
- 2024-10-18 JP JP2024182478A patent/JP2025003525A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007507407A (en) * | 2003-09-30 | 2007-03-29 | ショット アクチエンゲゼルシャフト | Antibacterial glass, glass ceramic surface and method for producing the same |
JP2010510951A (en) * | 2006-11-30 | 2010-04-08 | ユーロケラ | Transparent, colorless, low titania beta, quartz, glass and ceramic materials |
JP2012533509A (en) * | 2009-07-20 | 2012-12-27 | ショット アクチエンゲゼルシャフト | High performance glass ceramic and method for producing high performance glass ceramic |
JP2015013793A (en) * | 2013-06-06 | 2015-01-22 | 日本電気硝子株式会社 | Glass for pharmaceutical containers |
CN104495007A (en) * | 2014-12-10 | 2015-04-08 | 甘肃惠森药业发展有限公司 | Method for storing traditional Chinese medicinal materials by microcrystalline glass |
Also Published As
Publication number | Publication date |
---|---|
WO2020137779A1 (en) | 2020-07-02 |
JP2025003525A (en) | 2025-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0997445B1 (en) | Low expansion glass-ceramics | |
JP6202775B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass | |
JP6694167B2 (en) | Borosilicate glass for pharmaceutical containers | |
JPH08104537A (en) | Optical glass | |
CN106687422B (en) | Borosilicate glass for medical containers and glass tube for medical containers | |
JP7498895B2 (en) | Li2O-Al2O3-SiO2-based crystallized glass | |
US10710925B2 (en) | Borosilicate glass for pharmaceutical container | |
JPH07206472A (en) | Borosilicate glass for medicine | |
JP2024133712A (en) | Glass for pharmaceutical containers, glass tube for pharmaceutical containers and pharmaceutical containers using the same | |
JP7118587B2 (en) | borosilicate glass for pharmaceutical containers | |
WO2014069177A1 (en) | Medicinal glass and medicinal glass tube | |
JP7495668B2 (en) | Glass for pharmaceutical containers, glass tube for pharmaceutical containers and pharmaceutical containers using the same | |
JP7121348B2 (en) | LAS-based crystallizable glass, LAS-based crystallized glass, and method for producing the same | |
JPWO2020137779A1 (en) | Pharmaceutical glass container | |
WO2022075171A1 (en) | Tube glass, pharmaceutical primary packaging container, and alkali silicate glass | |
JP2017048091A (en) | Borosilicate glass for pharmaceutical container | |
JP2014237562A (en) | Borosilicate glass for medicament container | |
JPH0959037A (en) | Boro-silicate glass for medicine | |
WO2021220801A1 (en) | Medicine container glass, medicine container glass tube, and medicine container | |
JP4430829B2 (en) | Optical glass | |
JP2016108201A (en) | Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
WO2024166806A1 (en) | Glass for pharmaceutical container, and glass tube for pharmaceutical container | |
JP6653073B2 (en) | Borosilicate glass for pharmaceutical containers | |
JP2016108202A (en) | Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
JP6421795B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240522 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240828 |