以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一又は相当部分には同一符号を付す。
明細書に表されている構成要素の形態は、あくまで例示であって、これらの記載に限定されるものではない。また、本発明は、実施の形態及び図面で限定されるものではない。本発明の要旨を変更しない範囲で実施の形態及び図面に変更を加えることができるのはもちろんである。
本発明の実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでも良い。
本発明の実施の形態は、単独で実施されてもよく、組み合わされて実施されてもよい。いずれの場合においても、下記で説明する有利な効果を奏することとなる。また、実施の形態で説明する各種具体的な設定及びフラグは一例を示すだけであり、特にこれらに限定しない。
本発明の実施の形態において、システムとは、複数の装置で構成される装置全体又は複数の機能で構成される機能全体を表す。
(実施の形態1)
<空調装置1の構成>
図1に、本発明の実施の形態1に係る空調装置1を示す。空調装置1は、空調空間である室内空間71を空調する設備である。空調とは、空調空間の空気の温度、湿度、清浄度、気流等を調整することであって、具体的には、暖房、冷房、除湿、加湿、空気清浄等である。
図1に示すように、空調装置1は、家屋3に設置される。家屋3は、一例として、いわゆる一般的な戸建て住宅の建物である。空調装置1は、例えばCO2(二酸化炭素)、HFC(ハイドロフルオロカーボン)等を冷媒として用いたヒートポンプ式の空調設備である。空調装置1は、蒸気圧縮式の冷凍サイクルを搭載しており、図示しない商用電源、発電設備、蓄電設備等から電力を得て動作する。
図1に示すように、空調装置1は、家屋3の外側に設けられる室外機11と、家屋3の内側に設けられる室内機13と、ユーザによって操作されるリモートコントローラ55と、を備える。室外機11と室内機13とは、冷媒が流れる冷媒配管61と、各種信号が転送される通信線63と、を介して接続されている。空調装置1は、室内機13から空調空気、例えば、冷風を吹き出すことで室内空間71を冷房し、温風を吹き出すことで室内空間71を暖房する。
室外機11は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、室外送風機31と、室外機制御部51と、を備える。室内機13は、室内熱交換器25と、室内送風機33a,33bと、室内機制御部53と、を備える。冷媒配管61は、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁24と、室内熱交換器25と、を環状に接続している。これにより、冷凍サイクルが構成されている。
圧縮機21は、冷媒を圧縮して冷媒配管61を循環させる。具体的に説明すると、圧縮機21は、低温且つ低圧の冷媒を圧縮し、高圧及び高温となった冷媒を四方弁22に吐出する。圧縮機21は、駆動周波数に応じて運転容量を変化させることができるインバータ回路を備える。運転容量とは、圧縮機21が単位当たりに冷媒を送り出す量である。圧縮機21は、室外機制御部51からの指示に従って運転容量を変更する。
四方弁22は、圧縮機21の吐出側に設置されている。四方弁22は、空調装置1の運転が冷房又は除湿運転であるか暖房運転であるかに応じて、冷媒配管61中の冷媒の流れる方向を切り替える。
室外熱交換器23は、冷媒配管61を流れる冷媒と、空調空間の外部である室外空間72(外部空間)の空気と、の間で熱交換を行う。室外送風機31は、室外熱交換器23の傍に設けられており、室外空間72の空気を室外熱交換器23に送る。室外送風機31は室外空間72の空気を吸い込み、吸い込まれた空気は、室外熱交換器23に供給され、冷媒配管61を流れる冷媒により供給される冷温熱との間で熱交換された後、室外空間72に吹き出される。
膨張弁24は、室外熱交換器23と室内熱交換器25との間に設置されており、冷媒配管61を流れる冷媒を減圧して膨張させる。膨張弁24は、その開度が可変に制御可能な電子式膨張弁である。膨張弁24は、室外機制御部51からの指示に従って開度を変更して、冷媒の圧力を調整する。
室内熱交換器25は、冷媒配管61を流れる冷媒と、室内空間71の空気と、の間で熱交換を行う。室内送風機33a,33bは、それぞれ室内熱交換器25の傍に設けられており、室内空間71の空気を室内熱交換器25に送る。室内送風機33a,33bは、室内空間71の空気を吸い込み、吸い込まれた空気は、室内熱交換器25に供給され、冷媒配管61を流れる冷媒より供給される冷温熱との間で熱交換された後、室内空間71に吹き出される。室内熱交換器25で熱交換された空気は、空調空気として室内空間71に供給される。これにより、室内空間71が空調される。
室内熱交換器25は、2つの熱交換器25a,25bと、膨張弁26と、を備える。第1の熱交換器25aは、冷房時の冷凍サイクルにおいて冷媒の上流側に設置されており、第1の送風機である室内送風機33aにより送風される空気と冷媒との間で熱交換を行う。第2の熱交換器25bは、冷房時の冷凍サイクルにおいて冷媒の下流側に設置されており、第2の送風機である室内送風機33bにより送風される空気と冷媒との間で熱交換を行う。膨張弁26は、2つの熱交換器25a,25bの間に設置されており、2つの熱交換器25a,25bの間を流れる冷媒の圧力を調整する。
室内機13は、温度センサ41と、湿度センサ42と、赤外線センサ43と、を更に備えている。温度センサ41は、測温抵抗体、サーミスタ、熱電対等のセンサであり、室内空間71の空気温度である室温Tiを検知する。湿度センサ42は、電気抵抗式、静電容量式等のセンサであり、室内空間71の空気湿度である室内湿度RHiを検知する。
温度センサ41及び湿度センサ42は、室内熱交換器25における第2の熱交換器25bの吸い込み口に設置されており、第2の室内送風機33bにより第2の熱交換器25bに吸い込まれる空気の温度及び湿度を検知する。第2の室内送風機33bによる空気の吸い込み口に設置されていることで、温度センサ41及び湿度センサ42は、室内空間71内の空気の温度及び湿度を精度良く検知することができる。
赤外線センサ43は、焦電型、サーモパイル型等のセンサであり、被検知体から放射される赤外線を検知する。赤外線センサ43は、室内空間71における日射を受ける場所である窓75の付近に設置されており、窓75から放射される赤外線を検知することで、窓75の表面温度である窓温度Twを検知する。窓75は、日中太陽が出ている時に日光に照らされるため、その表面温度は、日射量の指標として用いることができる。
また、赤外線センサ43は、いわゆる人感センサとしても機能し、室内空間71に存在する人、物等の対象から放射される赤外線を検知することにより、対象の存在及び位置を特定することができる。
また、空調装置1は、図示を省略するが、外気温度を検知する外気温度センサと、外気湿度を検知する外気湿度センサと、冷媒配管61を流れる冷媒の蒸発温度を検知する蒸発温度センサと、を更に備える。外気温度センサ及び外気湿度センサは、それぞれ室外空間72に設置されており、室外空間72の空気温度である外気温To、及び、室外空間72の空気湿度である外気湿度RHoを検知する。
なお、湿度センサ42及び外気湿度センサは、相対湿度の単位で湿度を検知するとして以下では説明するが、絶対湿度の単位で検知しても良い。相対湿度と絶対湿度とは、その時の空気温度を用いて適宜換算可能である。
蒸発温度センサは、例えば冷房及び除湿時に室内熱交換器25の上流側となる冷媒配管61に設置されており、冷媒配管61の温度を検知する。これにより、蒸発温度センサは、室内熱交換器25に流入する冷媒の蒸発温度を検知する。また、蒸発温度センサは、例えば第1の熱交換器25aと第2の熱交換器25bとの間に設置されており、室内熱交換器25における冷媒の蒸発温度を検知しても良い。
各センサによる検知結果は、室内機制御部53に供給される。室内機制御部53は、供給された検知結果を、通信線63を介して、室外機制御部51に供給する。
室外機制御部51は、室外機11の動作を制御する。図2に示すように、室外機制御部51は、制御部101と、記憶部102と、計時部103と、通信部104と、を備える。これら各部はバスを介して接続されている。
制御部101は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等ともいう。制御部101において、CPUは、ROMに格納されたプログラム及びデータを読み出し、RAMをワークエリアとして用いて、室外機制御部51を統括制御する。
記憶部102は、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性の半導体メモリであって、いわゆる二次記憶装置又は補助記憶装置としての役割を担う。記憶部102は、制御部101が各種処理を行うために使用するプログラム及びデータ、並びに、制御部101が各種処理を行うことにより生成又は取得するデータを記憶する。
計時部103は、RTC(Real Time Clock)を備えており、空調装置1の電源がオフの間も計時を継続する計時デバイスである。
通信部104は、通信線63を介して室内機制御部53及びリモートコントローラ55と通信するためのインタフェースである。通信部104は、ユーザから受け付けられた操作情報を、リモートコントローラ55から受信し、ユーザに報知するための報知情報をリモートコントローラ55に送信する。また、通信部104は、室内機13の運転指令を室内機制御部53に送信し、室内機13の状態を示す状態情報を室内機制御部53から受信する。
室内機制御部53は、いずれも図示しないが、CPU、ROM、RAM、通信インタフェース、及び、読み書き可能な不揮発性の半導体メモリを備える。室内機制御部53において、CPUがRAMをワークメモリとして用いながらROMに格納された制御プログラムを実行することにより、室内機13の動作を制御する。
室外機制御部51は、有線、無線又は他の通信媒体である通信線63によって室内機制御部53と接続されている。室外機制御部51は、室内機制御部53と通信線63を介して各種信号を授受することにより協調動作し、空調装置1全体を制御する。このように、室外機制御部51は、空調装置1を制御する制御装置として機能する。
室外機制御部51及び室内機制御部53は、各センサの検知結果と、ユーザによって設定された空調装置1の設定情報と、に基づいて、空調装置1の運転を制御する。具体的に説明すると、室外機制御部51は、圧縮機21の駆動周波数、四方弁22の切り替え、室外送風機31の回転数、及び膨張弁24の開度を制御する。また、室内機制御部53は、室内送風機33a,33bの回転数を制御する。なお、室外機制御部51が室内送風機33a,33bの回転数を制御しても良いし、室内機制御部53が圧縮機21の駆動周波数、四方弁22の切り替え、室外送風機31の回転数、又は膨張弁24の開度を制御しても良い。このように、室外機制御部51及び室内機制御部53は、空調装置1に与えられた運転指令に応じて各種装置に各種動作指令を出力する。
室内空間71にはリモートコントローラ55が配置されている。リモートコントローラ55は、室内機13が備えている室内機制御部53と各種信号を送受信する。リモートコントローラ55は、押圧ボタン、タッチスクリーン、液晶ディスプレイ、LED(Light Emitting Diode)等を備えており、ユーザからの各種指令を受け付ける指令受付部、及び、各種情報をユーザに表示する表示部として機能する。ユーザは、リモートコントローラ55を操作することで、空調装置1に指令を入力する。指令は、例えば、運転と停止との切替指令、又は、運転モード、設定温度、設定湿度、風量、風向、タイマー等の切替指令である。空調装置1は、入力された指令に従って運転する。なお、このようなユーザインタフェースとして、スマートフォン、タブレット等の情報機器がリモートコントローラ55の代わりに備えられていても良い。
<運転モード>
空調装置1は、少なくとも「(A)冷房」、「(B)暖房」、「(C)除湿」、「(D)送風」及び「(E)自動」の運転モードを有しており、これらのうちのいずれかの運転モードで室内空間71を空調する。
(A)冷房モード
「冷房」の運転モードは、室内空間71の空気を冷却してその温度を下げるためのモードである。制御部101は、「冷房」の運転指令を受信すると、圧縮機21から吐出された冷媒が室外熱交換器23に流入するように四方弁22の流路を切り替え、膨張弁24,26を適度に開く。そして、制御部101は、圧縮機21と室外送風機31と室内送風機33a,33bとを駆動させる。
圧縮機21が駆動すると、圧縮機21から吐出された冷媒は、四方弁22を通過して室外熱交換器23へと流入する。室外熱交換器23に流入した冷媒は、室外空間72から吸い込まれた室外空気と熱交換して凝縮液化し、膨張弁24へと流入する。膨張弁24に流入した冷媒は、膨張弁24で減圧された後、室内熱交換器25へと流入する。室内熱交換器25に流入した冷媒は、室内空間71から吸い込まれた室内空気と熱交換して蒸発した後、四方弁22を通過して、再び圧縮機21に吸入される。このようにして冷媒が流れることで、室内空間71から吸い込まれた室内空気が室内熱交換器25で冷却される。
(B)暖房モード
「暖房」の運転モードは、室内空間71の空気を温めてその温度を上げるためのモードである。制御部101は、「暖房」の運転指令を受信すると、圧縮機21から吐出された冷媒が室内熱交換器25に流入するように四方弁22の流路を切り替え、膨張弁24,26を適度に開く。そして、制御部101は、圧縮機21と室外送風機31と室内送風機33a,33bとを駆動させる。
圧縮機21が駆動すると、圧縮機21から吐出された冷媒は、四方弁22を通過して室内熱交換器25へと流入する。室内熱交換器25に流入した冷媒は、室内空間71から吸い込まれた室内空気と熱交換して凝縮液化し、膨張弁24へと流入する。膨張弁24に流入した冷媒は、膨張弁24で減圧された後、室外熱交換器23へと流入する。室外熱交換器23に流入した冷媒は、室外空間72から吸い込まれた室外空気と熱交換して蒸発した後、四方弁22を通過して、再び圧縮機21に吸入される。このようにして「冷房」及び「除湿」とは逆向きに冷媒が流れることで、室内空間71から吸い込まれた室内空気が室内熱交換器25で加熱される。
<圧縮機の運転と停止>
冷房モードにおいて、制御部101は、圧縮機21の運転中に室温Tiがサーモオフ温度まで低下すると、冷えすぎを防止するために、圧縮機21の運転を停止する。そして、圧縮機21の停止中に室温Tiがサーモオン温度まで上昇すると、温まりすぎを防止するために、圧縮機21の運転を再開する。同様に、暖房モードにおいて、制御部101は、圧縮機21の運転中に室温Tiがサーモオフ温度まで上昇すると、温まりすぎを防止するために、圧縮機21の運転を停止する。そして、制御部101は、圧縮機21の停止中に室温Tiがサーモオン温度まで低下すると、冷えすぎを防止するために、圧縮機21の運転を再開する。サーモオフ温度及びサーモオン温度は、目標温度である設定温度Tmに対して規定の範囲内の温度に予め設定される。このように、制御部101は、圧縮機21の運転と停止とを繰り返すことにより、室温Tiを設定温度Tmに維持する。
(C)除湿モード
「除湿」の運転モードは、室内空間71の湿度を下げるためのモードである。制御部101は、「除湿」の運転指令を受信すると、「冷房」と同様に、圧縮機21から吐出された冷媒が室外熱交換器23に流入するように四方弁22の流路を切り替え、膨張弁24,26を適度に開く。そして、制御部101は、圧縮機21と室外送風機31と室内送風機33a,33bとを駆動させる。これにより、冷媒は、冷媒配管61を「冷房」と同様の向きに循環する。
より詳細には、「除湿」の運転モードは、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」及び「(C6)再熱除湿」の6つの運転モードに分けられる。これらを総称して除湿モードと扱う。なお、実製品においては、除湿モードを冷房モードの一部と説明する場合もあるが、冷房モードに比べて相対的に低い顕熱比SHFが得られる運転モードであれば、以下で説明する除湿モードに含まれる。
図3に、各運転モードと空調能力との関係を示す。ここで、空調能力とは、空調装置1による空調の強さを示す指標であって、室内熱交換器25における冷媒と室内空気との熱交換量に相当する。室内熱交換器25における冷媒と空気との熱交換量が大きいほど、空調装置1の空調能力は上昇する。冷房時の空調能力を冷房能力と呼び、暖房時の空調能力を暖房能力と呼ぶ。
図3において、横軸は顕熱能力を表し、縦軸は潜熱能力を表す。顕熱能力は、空調能力のうちの空気の温度変化に関わる能力に相当する。これに対して、潜熱能力は、空気中の水分の状態変化に関わる能力、すなわち除加湿に関わる能力に相当する。顕熱能力と潜熱能力の合計を全熱能力と呼び、全熱能力に対する顕熱能力の比率を顕熱比(SHF:Sensible Heat Factor)と呼ぶ。顕熱比は、下記(1)式により表される。
顕熱比(SHF)=顕熱能力/全熱能力 …(1)
以下では、空気を冷却する際の顕熱能力を正とし、空気を除湿する際の潜熱能力を正として説明する。具体的に説明すると、「除湿」の各運転モードでは、「冷房」に比べて除湿能力が上昇するため潜熱能力は上昇するが、冷房能力が低下するため顕熱能力は低下する。以下、「除湿」の各運転モードについて詳述する。
(C1)弱冷房除湿モード
「弱冷房除湿」の運転モードは、「冷房」よりも冷房能力が低く、且つ、除湿能力が高い除湿モードである。制御部101は、「弱冷房除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、室内送風機33a,33bの回転数を「冷房」の場合よりも減少させる。言い換えると、制御部101は、「弱冷房除湿」では「冷房」よりも、室内送風機33a,33bにより室内熱交換器25に送られる送風量を少なくする。
一般的に、室内送風機33a,33bの送風量が大きいほうが室内熱交換器25における冷媒の蒸発温度が高く、冷凍サイクルは高効率となる。そのため、空調装置1は、「冷房」では、騒音とならない程度に大きい送風量で運転することで省エネにつながる。これに対して、「弱冷房除湿」では、制御部101は、「冷房」よりも室内送風機33a,33bの送風量を減少させることで、冷媒の蒸発温度を低下させる。これにより、室内熱交換器25の顕熱能力は低下し、潜熱能力は上昇する。よって、顕熱比は減少する。その結果、「冷房」よりも「弱冷房除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
(C2)ダブルファン除湿モード
「ダブルファン除湿」の運転モードは、2つの室内送風機33a,33bを異なる回転数で駆動させて室内空間71を除湿する除湿モードである。制御部101は、「ダブルファン除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、第1の室内送風機33aの回転数を、第2の室内送風機33bの回転数よりも小さくする。
具体的に説明すると、制御部101は、「弱冷房除湿」では、2つの室内送風機33a,33bを共に規定の回転数W0で駆動させるのに対して、「ダブルファン除湿」では、温度センサ41及び湿度センサ42から遠い第1の室内送風機33aを、規定の回転数W0よりも小さい第1の回転数W1で駆動させる。一方で、制御部101は、「ダブルファン除湿」では、温度センサ41及び湿度センサ42から近い第2の室内送風機33bを、第1の回転数W1よりも大きい第2の回転数W2で駆動させる。第2の回転数W2は、規定の回転数W0に比べて同程度の回転数に設定される。これにより、制御部101は、「ダブルファン除湿」における第1の室内送風機33aと第2の室内送風機33bとによる送風量の和を、「弱冷房除湿」における第1の室内送風機33aと第2の室内送風機33bとによる送風量の和よりも、低下させる。
温度センサ41及び湿度センサ42から近い第2の室内送風機33bの回転数を減少させると、吸い込み空気の量が減少するため、吸い込み空気の温度を精度良く取得することが難しくなり、空調空間の空調を適切に制御することが難しくなる。しかしながら、「ダブルファン除湿」では、第2の室内送風機33bの回転数を「弱冷房除湿」と同程度に保つことで、第2の室内送風機33bにより室内熱交換器25に送られる空気の温度及び湿度を精度良く検知することができる。
一方で、温度センサ41及び湿度センサ42から遠い第1の室内送風機33aの回転数を「弱冷房除湿」よりも低下させることで、「弱冷房除湿」よりも室内送風機33a,33bによる送風量の和を低下させる。これにより、室内熱交換器25における冷媒の蒸発温度が低下し、潜熱能力が増加する。一方で、顕熱能力は減少するため、顕熱比は減少する。その結果、「弱冷房除湿」よりも「ダブルファン除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
このように、「ダブルファン除湿」では、2つの室内送風機33a,33bの回転数に差をつけることで、室内空間71の温度及び湿度を精度良く検知しつつ、室内熱交換器25への送風量を低下させることができる。そのため、「弱冷房除湿」よりも高い除湿能力で、室内空間71を除湿することができる。
(C3)露点温度除湿モード
「露点温度除湿」の運転モードは、除湿能力を高めるために、冷媒の蒸発温度を空気の露点温度よりも低下させる除湿モードである。制御部101は、「露点温度除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、圧縮機21の回転数を、蒸発温度センサにより検知された冷媒の蒸発温度が空気の露点温度よりも低くなる回転数に制御する。
「冷房」、「弱冷房除湿」及び「ダブルファン除湿」では、制御部101は、室温Tiと設定温度Tmとの温度差ΔTに応じて圧縮機21の回転数を制御するため、室温Tiが低下するほど圧縮機21の回転数を減少させる。圧縮機21の回転数が減少すると、室内熱交換器25における冷媒の蒸発温度が成り行きで上昇し、顕熱能力と潜熱能力との両方が減少する。そのため、室温Tiは設定温度Tmで安定するものの、室内湿度RHiが低下せずに快適性を低下させるおそれがある。
そこで、「露点温度除湿」では、制御部101は、室内熱交換器25における冷媒の蒸発温度と室内熱交換器25に吸い込まれる空気の露点温度との差に応じて、蒸発温度が露点温度よりも低下するように、圧縮機21の回転数を制御する。これにより、潜熱能力を低下しないように維持することができる。「弱冷房除湿」よりも「露点温度除湿」の方が、室内湿度RHiが低下しやすくなる。
(C4)部分冷却除湿モード
「部分冷却除湿」の運転モードは、室内熱交換器25の入口側で冷媒の蒸発温度を空気の露点温度よりも低下させ、且つ、室内熱交換器25の出口側で冷媒の過熱度を大きくする除湿モードである。制御部101は、「部分冷却除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、膨張弁24の開度を、室内熱交換器25に冷媒が流入する流入口における冷媒の蒸発温度が空気の露点温度よりも低くなる開度に制御する。
「冷房」、「弱冷房除湿」及び「ダブルファン除湿」では、制御部101は、膨張弁24の開度を、室内熱交換器25における冷媒の出口において冷媒が飽和ガスになる程度に、つまり室内熱交換器25における冷媒の出口付近における過熱度がゼロに近くなるように制御する。これにより、空調装置1の全熱能力が効率良く出力されるようになる。これに対して、「部分冷却除湿」では、制御部101は、膨張弁24の開度を、室内熱交換器25の冷媒の入口付近で冷媒の蒸発温度が室内熱交換器25に吸い込まれる空気の露点温度よりも低くなるように制御する。
具体的に説明すると、制御部101は、「部分冷却除湿」では「冷房」及び「弱冷房除湿」よりも膨張弁24の開度を絞る。これにより、室内熱交換器25の入口付近における冷媒の蒸発温度が低下し、室内熱交換器25の入口付近で冷媒の多くが蒸発するため、室内熱交換器25の出口付近での過熱度が大きくなる。その結果、室内熱交換器25の入口側では低温で空気を除湿可能となり、出口側では空気を冷やし過ぎないようになる。「弱冷房除湿」及び「露点温度除湿」よりも「部分冷却除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
(C5)拡張除湿モード
「拡張除湿」の運転モードは、上述した「(C2)ダブルファン除湿」、「(C3)露点温度除湿」及び「(C4)部分冷却除湿」のうちの2つ又は3つを組み合わせたモードである。これら3つの運転モードのうちの2つ又は3つを組み合わせることで、顕熱能力と潜熱能力を連続的に幅広く調整することができる。そのため、様々な気象条件、建物条件及び生活条件において、室温と湿度の変動が少ない快適な空調を提供できる。また、「拡張除湿」では、下記「再熱除湿」よりも省エネとなる。
(C6)再熱除湿モード
「再熱除湿」の運転モードは、室内空間71の温度の低下を抑えつつ湿度を低下させる除湿モードである。制御部101は、「再熱除湿」の運転指令を受信すると、冷媒を「冷房」と同様の向きに循環させる。その上で、制御部101は、室内熱交換器25における2つの熱交換器25a,25bの間の膨張弁26を適度に閉じる。
膨張弁26の開度を絞ることにより、膨張弁26よりも上流側に位置する第1の熱交換器25aは、冷媒を凝縮させる凝縮器として機能し、第2の室内送風機33bにより供給される空気を温める。一方で、膨張弁26よりも下流側に位置する第2の熱交換器25bは、冷媒を蒸発させる蒸発器として機能し、第2の室内送風機33bにより供給される空気の湿度を低下させる。空気を温めつつ湿度を低下させるため、他の除湿モードよりも「再熱除湿」の方が、室温Tiが低下しにくく、室内湿度RHiが低下しやすくなる。
(D)送風モード
「送風モード」の運転モードについて説明する。送風モードは、圧縮機21を停止させて、室内送風機33a,33bによる送風で空調するモードである。冷房時期において外気温Toが室温Tiよりも下がっていれば冷やす必要がないため、送風モードにすることで電力を大きく消費することなく室内空間71を攪拌することができる。圧縮機21が動いていなくても、風にあたることで涼感を得ることもできる。なお、室内送風機33a,33bによる送風を停止させずに圧縮機21を停止させる状態であれば、例えば、冷えすぎを防止するため圧縮機21を停止するサーモオフ時も送風モードの一部であるとして説明する。以下では、「送風モード」として、冷房と送風とを組み合わせたモードである「ハイブリッドモード」を例にとって説明する。
具体的に図4を参照して、送風モードでの処理の流れについて説明する。第1に、圧縮機21が運転している状態において、制御部101は、室温Tiがサーモオフ温度以下に低下したか否かを判定する(ステップS11)。室温Tiがサーモオン温度よりも高い場合(ステップS11;NO)、制御部101は、圧縮機21を運転させたまま維持する。一方、室温Tiがサーモオフ温度以下に低下した場合(ステップS11;YES)、制御部101は、圧縮機21の運転を停止する(ステップS12)。そして、制御部101は、圧縮機21の運転を停止する際に、室内送風機33a,33bの回転数を、圧縮機21が運転を停止する直前の回転数よりも増加させる(ステップS13)。
具体的に説明すると、「送風」以外の運転モードでは、圧縮機21が運転を停止する際に、制御部101は、室内送風機33a,33bの回転数を減少させるか、或いは室内送風機33a,33bの駆動を停止させるため、室内送風機33a,33bの回転数を増加させない。これに対して、「送風」モードでは、圧縮機21が運転を停止する際に、制御部101は、室内送風機33a,33bの回転数を増加させる。これにより、室内空間71の在室者が急に暑さを感じることなく適度な冷涼感が得られるようになる。
更に、制御部101は、圧縮機21の運転を停止した後、室温Tiの変化に応じて室内送風機33a,33bの回転数を調整する(ステップS14)。例えば、圧縮機21の停止中に室温Tiが上昇する場合、制御部101は、室内送風機33a,33bの回転数を徐々に増加させる。これにより、室内空間71における体感温度を低下させる。
圧縮機21の停止中、制御部101は、室内送風機33a,33bの風向を調整する(ステップS15)。具体的に説明すると、室内機13は、図示を省略するが、室内機13から吹き出される空気流の風向を左右に変更可能とする左右風向板と、風向を上下に変更可能とする上下風向板と、を備える。制御部101は、圧縮機21の停止状態において、左右風向板と上下風向板の少なくともどちらかをスイング動作させて、室内送風機33a,33bによる送風の向きをスイングさせる。これにより、室内空間71の全体を偏りなく空調する。
また、ステップS15において、制御部101は、赤外線センサ43により室内空間71に存在する人、物等の対象が検知された場合、左右風向板と上下風向板を回動制御して、室内送風機33a,33bによる送風の向きを、検知された対象の位置に向ける。これにより、冷涼感を高めて快適性を向上させることができる。
第2に、圧縮機21が運転を停止している状態において、制御部101は、室温Tiがサーモオン温度以上に上昇したか否かを判定する(ステップS16)。室温Tiがサーモオン温度よりも低い場合(ステップS16;NO)、制御部101は、圧縮機21を停止したまま維持する。一方、室温Tiがサーモオン温度以上に上昇した場合(ステップS16;YES)、制御部101は、冷房モードでないと快適性が維持できないと判定して、圧縮機21の運転を開始する(ステップS17)。そして、制御部101は、圧縮機21の運転を開始する際に、室内送風機33a,33bの回転数を、圧縮機21が運転を開始する直前の回転数よりも減少させる(ステップS18)。ここで、サーモオン温度は、例えば設定温度Tm、又は室内送風機33a,33bの送風による体感温度の低下分を設定温度Tmに加えた温度に設定される。
具体的に説明すると、「送風」以外の運転モードでは、圧縮機21が運転を開始する際に、制御部101は、室内送風機33a,33bの回転数を増加させるため、室内送風機33a,33bの回転数を減少させない。これに対して、「送風」モードでは、圧縮機21が運転を開始する際に、制御部101は、室内送風機33a,33bの回転数を減少させる。これにより、室内空間71の在室者が急に寒さを感じることなく適度な冷涼感が得られるようになる。
更に、制御部101は、圧縮機21の運転を開始した後、室温Tiの変化に応じて室内送風機33a,33bの回転数を調整する(ステップS19)。例えば、圧縮機21の運転中に室温Tiが低下する場合、制御部101は、室内送風機33a,33bの回転数を徐々に減少させる。これにより、室内空間71における体感温度を上昇させる。
その後、制御部101は、処理をステップ11に戻し、ステップS11からステップS19の処理を繰り返す。なお、制御部101は、室内送風機33a,33bの回転数を増加又は減少させる際、室内送風機33a,33bの回転数を目標とする回転数に急激に変更させず、徐々に変化させても良い。
このように、「送風」の運転モードでは、制御部101は、圧縮機21の運転と停止との切り替えの際に室内送風機33a,33bの回転数を増減させる。圧縮機21の停止中に室内送風機33a,33bによる送風量が増加することで、気流によってユーザの体感温度を低下させるため、圧縮機21が運転を停止していても快適性が確保される。これにより、圧縮機21の停止中にユーザが設定温度を下げて消費電力の増加を招いてしまうような事態を抑制することができる。その結果、圧縮機21の運転時間を削減することができ、快適性と省エネ性を両立できる。特に、「送風」の運転モードは、初夏又は晩夏のように、室外空間72の温度も湿度も高くなく、冷房と扇風機とのどちらでも空調可能な場合に好適である。また、扇風機を別途設置する必要がないため、室内空間71のデザイン性が向上する。
(E)自動モード
「自動」の運転モードは、上述した「(A)冷房」、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」、「(C6)再熱除湿」及び「(D)送風」のうちから運転モードを自動的に切り替えるモードである。ユーザは、ユーザインタフェースの単一のボタンを押圧することで、運転モードを「(E)自動モード」に変更することができる。ユーザインタフェースにおける「(E)自動モード」の表記は、「自動」、「おまかせ」、「A.I.」等の包括的な名称であっても良い。以下、空調装置1が「(E)自動」の運転モードで室内空間71を空調する場合について説明する。
<空調装置1の機能>
次に、図5を参照して、空調装置1の機能的な構成について説明する。図5に示すように、空調装置1は、機能的に、取得部510と、推定部520と、判定部530と、空調制御部540と、報知部550と、を備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部102に格納される。そして、制御部101において、CPUが、ROM又は記憶部102に記憶されたプログラムを実行することによって、図5に示した各機能を実現する。
取得部510は、室内空間71の熱負荷に関する負荷情報を取得する。熱負荷とは、空調装置1が室内空間71の温度、湿度等の環境を目標となる環境に変化させ、維持するために必要となる熱量である。取得部510は、負荷情報として、温度センサ41、湿度センサ42及び赤外線センサ43を含む各センサにより検知された温度、湿度等の情報を取得する。
具体的に説明すると、取得部510は、温度センサ41により検知された室温Tiを温度センサ41から取得し、湿度センサ42により検知された室内湿度RHiを湿度センサ42から取得し、赤外線センサ43により検知された窓温度Tw、及び室内空間71に居る対象の位置情報を、赤外線センサ43から取得する。また、取得部510は、外気温度センサ及び外気湿度センサにより検知された外気温To及び外気湿度RHo、及び、蒸発温度センサにより検知された冷媒の蒸発温度を、これら各センサから取得する。
各センサは、検知された情報を、予め定められた周期で定期的に室外機制御部51に送信する。或いは、取得部510が必要に応じて各センサに要求を送信し、各センサがこの要求に応答する方式で、検知された情報を送信しても良い。このようにして、取得部510は、各センサにより検知された温度、湿度等の情報を、室内機制御部53と通信線63とを介して取得する。取得部510は、制御部101が、通信部104と協働することによって実現される。取得部510は、取得手段として機能する。
推定部520は、取得部510により取得された温度、湿度等の情報に基づいて、室内空間71の熱負荷を推定する。ここで、熱負荷には、顕熱に起因して生じる顕熱負荷と、潜熱に起因して生じる潜熱負荷と、がある。
<熱負荷と空調能力との関係及び定義>
顕熱負荷は、下記(2)式で表される非定常顕熱負荷Psと、下記(3)式で表される定常顕熱負荷Qsと、に分類される。非定常顕熱負荷Psと定常顕熱負荷Qsとの和は、下記(4)式で表されるように、空調装置1が室温Tiを設定温度Tmに変化させ、維持するための顕熱能力に相当する。
非定常顕熱負荷Ps=顕熱容量/単位時間×(室温Ti−設定温度Tm) …(2)
定常顕熱負荷Qs=α(外気温To−室温Ti)+β(窓温度Tw−室温Ti)+内部発熱量Qn …(3)
顕熱能力=非定常顕熱負荷Ps+定常顕熱負荷Qs …(4)
上記(2)式において、顕熱容量は、室内空間71の壁、床、家具等が有する顕熱に関する熱容量である。また、上記(3)式において、αは、室内空間71の断熱性能を示す係数であり、βは、日射の入りやすさを示す係数であり、内部発熱量Qnは、室内空間71内に存在する照明、家電、人等から生じる熱量である。これらの値は、適宜の値に予め設定されて記憶部102に記憶されている。
非定常顕熱負荷Psは、上記(2)式に示すように、室温Tiと設定温度Tmとの温度差ΔTにより定められる。非定常顕熱負荷Psは、室温Tiを設定温度Tmまで変化させるための熱量に相当し、室温Tiが設定温度Tmから離れている場合に支配的となる第1の顕熱負荷である。
これに対して、定常顕熱負荷Qsは、上記(3)式に示すように、外気温Toと室温Tiとの差と、室外空間72の日射量に依存するパラメータである窓温度Twと室温Tiとの差と、内部発熱量Qnと、により定められる。定常顕熱負荷Qsは、主として室内空間71の環境と室外空間72の環境との差により生じる顕熱負荷であって、室温Tiが設定温度Tmに等しい場合に室温Tiを設定温度Tmに維持するために定常的に必要な熱量に相当する。定常顕熱負荷Qsは、室温Tiが設定温度Tmに近い場合に支配的となる第2の顕熱負荷である。
潜熱負荷は、下記(5)式で表される非定常潜熱負荷Plと、下記(6)式で表される定常潜熱負荷Qlと、に分類される。非定常潜熱負荷Plと定常潜熱負荷Qlとの和は、下記(7)式で表されるように、空調装置1が室内空間71の湿度RHiを設定湿度RHmに変化させ、維持するための潜熱能力に相当する。
非定常潜熱負荷Pl=潜熱容量/単位時間×(室内絶対湿度−目標絶対湿度) …(5)
定常潜熱負荷Ql=α’(室外絶対湿度−室内絶対湿度)+内部蒸発量 …(6)
潜熱能力=非定常潜熱負荷Pl+定常潜熱負荷Ql …(7)
上記(5)式において、潜熱容量は、室内空間71の壁、床、家具等が有する潜熱に関する熱容量である。また、上記(6)式において、α’は、室外空間72から室内空間71への水分の流入し易さを示す係数である。すなわち、上記(6)式の第1項は、換気によって室外空間72から室内空間71に入る水分の量を表す。内部蒸発量は、人体、調理等により室内空間71で蒸発した水分の量である。これらの値は、予め設定されて記憶部102に記憶されている。
非定常潜熱負荷Plは、上記(5)式に示すように、室内絶対湿度と目標絶対湿度との差により定められる。目標絶対湿度は、室温Tiが設定温度Tmに等しく、且つ、室内空間71の相対湿度である室内湿度RHiが目標湿度である設定湿度RHmに等しいときの絶対湿度である。すなわち、非定常潜熱負荷Plは、室温Tiが設定温度Tmに等しい場合に室内湿度RHiを設定湿度RHmまで変化させるための熱量に相当する。非定常潜熱負荷Plは、室内絶対湿度が目標絶対湿度から離れている場合に支配的となる第1の潜熱負荷である。
これに対して、定常潜熱負荷Qlは、上記(6)式に示すように、室外絶対湿度と室内絶対湿度との差と、内部蒸発量と、により定められる。定常潜熱負荷Qlは、主として室内空間71の環境と室外空間72の環境との差により生じる潜熱負荷であって、室内絶対湿度が目標絶対湿度に等しい場合に室内湿度RHiを設定湿度RHmに維持するための熱量に相当する。定常潜熱負荷Qlは、室内絶対湿度が目標絶対湿度に近い場合に支配的となる第2の潜熱負荷である。
推定部520は、上記(2)〜(7)式に従って、取得部510により取得された温度、湿度等の値から、非定常顕熱負荷Ps、定常顕熱負荷Qs、顕熱能力、非定常潜熱負荷Pl、定常潜熱負荷Ql、及び、潜熱能力を計算する。これにより、推定部520は、室内空間71の熱負荷を推定する。推定部520は、制御部101が記憶部102と協働することにより実現される。推定部520は、推定手段として機能する。
判定部530は、推定部520により推定された熱負荷に基づいて、空調の運転モードを判定する。図6に、熱負荷と運転モードとの関係を示す。図6に示すように、空調装置1が「(E)自動」の運転モードで室内空間71を空調する場合、定常顕熱負荷Qsの大きさと定常潜熱負荷Qlの大きさとに応じて、空調装置1が実行すべき運転モードが定められている。判定部530は、推定部520により推定された定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて、運転モードを判定する。
ここで、適切なタイミングで運転モードを切り替えるにはいくつか課題がある。例えば、冷房モードから送風モードに切り替わるのが早すぎると、短時間で温度戻り又は湿度戻りが発生して快適性が低下する。冷房モードから除湿モードに切り替わるのが早すぎると、室温Tiを下げる効率が悪化して消費電力が増大する。一方、冷房モードから送風モードに切り替わるのが遅すぎると、消費電力の増大と冷えすぎを招く。冷房モードから除湿モードに切り替わるのが遅すぎると、冷えすぎと湿度の上昇を招く。判定部530は、このような課題を回避するため、適切なタイミングで冷房と除湿と送風のモードを自動で切り替えることができるように、運転モードを判定する。
<運転モードの判定例>
第1に、判定部530は、推定部520により推定された定常潜熱負荷Qlと潜熱閾値Ql1,Ql2との大小関係を判定する。定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きい場合は、例えば雨又は曇りの日のように、外気湿度RHoが相対的に高い「高湿条件」が成立する場合に相当する。これに対して、定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さい場合は、例えば乾燥している日のように、外気湿度RHoが相対的に低い「低湿条件」が成立する場合に相当する。
定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きい場合、すなわち高湿条件が成立する場合、判定部530は、第2に、定常顕熱負荷Qsと顕熱閾値Qs1〜Qs3との大小関係を判定する。3つの顕熱閾値Qs1〜Qs3は、Qs1>Qs2>Qs3となるように予め値が設定されている。
(高湿条件1)
高湿条件において、定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも大きい場合は、外気温To又は窓温度Twが相対的に高い場合に相当するため、室温Tiが上昇し易い状況と言える。この場合、室温Tiを設定温度Tmに維持するためには、除湿能力に比べて冷房能力を主に必要とする。そのため、判定部530は、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。
(高湿条件2)
高湿条件において、定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも小さく、且つ、第2の顕熱閾値Qs2よりも大きい場合、高湿条件1ほどは冷房能力を必要としない。そのため、この場合、判定部530は、空調装置1が実行すべき運転モードが第1の除湿モードである「(A)弱冷房除湿」であると判定する。これにより、判定部530は、高湿条件1よりも冷房能力を低下させる代わりに除湿能力を高める。
(高湿条件3)
高湿条件において、定常顕熱負荷Qsが第2の顕熱閾値Qs2よりも小さく、且つ、第3の顕熱閾値Qs3よりも大きい場合、高湿条件2よりも更に冷房能力を必要としない。そのため、この場合、判定部530は、空調装置1が実行すべき運転モードが第2の除湿モードであると判定する。ここで、第2の除湿モードとは、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」又は「(C5)拡張除湿」である。これにより、判定部530は、高湿条件2よりも冷房能力を更に低下させ、且つ、除湿能力を更に高める。
より詳細に説明すると、高湿条件3の中で、定常潜熱負荷Qlが相対的に低い場合、判定部530は、空調装置1が実行すべき運転モードが「(C2)ダブルファン除湿」であると判定する。高湿条件3の中で、定常潜熱負荷Qlが相対的に高く、且つ、定常顕熱負荷Qsが相対的に高い場合、判定部530は、空調装置1が実行すべき運転モードが「(C3)露点温度除湿」であると判定する。高湿条件3の中で、定常潜熱負荷Qlが相対的に高く、且つ、定常顕熱負荷Qsが相対的に低い場合、判定部530は、空調装置1が実行すべき運転モードが「(C4)部分冷却除湿」であると判定する。なお、これら3つの運転モードのうちの境界付近では、判定部530は、これら3つの運転モードのうちの少なくとも2つを組み合わせた「(C5)拡張除湿」を、空調装置1が実行すべき運転モードとして判定する。このように、高湿条件3では、定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて、連続的に運転モードが切り替えられる。
(高湿条件4)
高湿条件において、定常顕熱負荷Qsが第3の顕熱閾値Qs3よりも小さい場合、室内空間71を冷房すると冷やしすぎになって快適性を低下させる。そのため、この場合、判定部530は、圧縮機21を停止して空調を停止すべきであると判定する。
定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さい場合、すなわち低湿条件が成立する場合、判定部530は、第2に、定常顕熱負荷Qsと第4の顕熱閾値Qs4との大小関係を判定する。第4の顕熱閾値Qs4は、0kW、又は、送風モードで得られる体感温度の低下分を熱量に換算した値を0kWに加算した値に設定される。
(低湿条件1)
低湿条件において、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも大きい場合は、室温Tiが上昇し易い状況に相当する。この場合、室温Tiを設定温度Tmに維持するためには、除湿能力に比べて冷房能力を主に必要とする。そのため、判定部530は、高湿条件1と同様に、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。
(低湿条件2)
低湿条件において、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さい場合、低湿条件1ほどは冷房能力を必要とせず、また大きな除湿能力も必要としない。この場合、判定部530は、消費電力を抑えるため、空調装置1が実行すべき運転モードが「(D)送風」であると判定する。
このように、判定部530は、推定部520により推定された定常顕熱負荷Qs及び定常潜熱負荷Qlに基づいて、空調の運転モードを判定する。潜熱閾値Ql1,Ql2及び顕熱閾値Qs1〜Qs4は、適宜の値に予め設定されており、記憶部102に記憶されている。判定部530は、制御部101が記憶部102と協働することにより実現される。判定部530は、判定手段として機能する。
なお、第1の潜熱閾値Ql1は、0kW以上であって、且つ、第2の潜熱閾値Ql2よりも大きい値に設定する。これにより、湿度が高い時には除湿モードを使用してしっかり湿度を低下させつつ、比較的湿度が低い時は冷房モードを活用することで省エネ性を高めることができる。また、運転モードが頻繁に切り替えられることを防ぐ観点からも、第1の潜熱閾値Ql1は第2の潜熱閾値Ql2よりも少し大きい方が好ましい。但し、簡便化のため、除湿モードでも省エネ性が得られる場合には、第1の潜熱閾値Ql1を0kWとしてもよい。第2の潜熱閾値Ql2は、送風モードにより得られる体感温度の低下分を湿度に換算した分だけ0kWよりも大きな値であっても良いが、0kWとしてもよい。また、第1の潜熱閾値Ql1と第2の潜熱閾値Ql2とを共に0kWとしてもよい。
図5に戻って、空調制御部540は、空調部110を制御して、空調部110に室内空間71を空調させる。空調部110は、室外機11における圧縮機21、四方弁22、室外熱交換器23、膨張弁24及び室外送風機31と、室内機13における室内熱交換器25及び室内送風機33a,33bと、を有し、室内空間71を空調する空調手段として機能する。
空調制御部540は、通信部104を介して室内機制御部53と通信し、室内機制御部53と協働することによって、空調部110に室内空間71を空調させる。具体的に説明すると、空調制御部540は、指示された運転モードに応じて四方弁22の流路を切り替え、膨張弁24の開度を調整し、圧縮機21、室外送風機31及び室内送風機33a,33bを駆動させる。これにより、空調制御部540は、上記<運転モード>で説明した「(A)冷房」、「(B)暖房」、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」、「(C6)再熱除湿」又は「(D)送風」の処理を実行する。空調制御部540は、制御部101が通信部104と協働することによって実現される。空調制御部540は、空調制御手段として機能する。
「(E)自動」の運転モードが指示されている場合、空調制御部540は、判定部530により判定された運転モードで、空調部110に室内空間71を空調させる。具体的に説明すると、空調制御部540は、上述した高湿条件1,2,3と低湿条件1,2とのうちのいずれかが成立した場合、成立した条件に応じて、「(A)冷房」、「(C1)弱冷房除湿」、「(C2)ダブルファン除湿」、「(C3)露点温度除湿」、「(C4)部分冷却除湿」、「(C5)拡張除湿」又は「(D)送風」の運転モードで空調部110に室内空間71を空調させる。高湿条件4が成立した場合、空調制御部540は、圧縮機21の運転を停止させる。
また、空調制御部540は、取得部510により取得された温度、湿度等の負荷情報に応じて判定部530が現在の運転モードとは異なる運転モードを新たに判定すると、現在の運転モードから新たに判定された運転モードに切り替えて、室内空間71を空調する。
具体的に説明すると、空調制御部540は、高湿条件が成立する場合において、空調部110が冷房モードで空調している際に定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも小さくなると、運転モードを第1の除湿モードに切り替える。更に、空調制御部540は、空調部110が第1の除湿モードで空調している際に定常顕熱負荷Qsが第2の顕熱閾値Qs2よりも小さくなると、運転モードを第2の除湿モードに切り替え、空調部110が第2の除湿モードで空調している際に定常顕熱負荷Qsが第3の顕熱閾値Qs3よりも小さくなると、圧縮機21を停止させる。逆に、定常顕熱負荷Qsが各顕熱閾値Qs1〜Qs3よりも大きくなると、空調制御部540は、運転モードを上記とは逆に切り替える。
一方、空調制御部540は、低湿条件が成立する場合において、空調部110が冷房モードで空調している際に定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さくなると、運転モードを送風モードに切り替える。逆に、空調部110が送風モードで空調している際に定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも大きくなると、空調制御部540は、運転モードを冷房モードに切り替える。
また、空調制御部540は、低湿条件が成立する場合において、空調部110が送風モードで空調している際に定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きくなると、運転モードを、その時の定常顕熱負荷Qsに応じて高湿条件1〜4のいずれかのモードに切り替える。逆に、高湿条件が成立する場合において、定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さくなり、且つ、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さい場合、運転モードを送風モードに切り替える。
以下、高湿条件が成立する場合と低湿条件が成立する場合とを例にとって、空調制御部540が運転モードを切り替えながら室内空間71を空調する処理について説明する。
<高湿条件>
図7(a)〜(f)及び図8(g)〜(j)に、第1の例として、高湿条件が成立する曇りの日における各種パラメータの変化を示す。図7(a)に示すように、日射量は、雲の量によって異なるが、おおよそ6時から12時にかけて増加し、12時から18時にかけて減少する。窓温度Twは、図示しないが、日射量の増減と同様に変化する。図7(b)に示す外気温Toは、日射により温められるため、日射量よりも遅れて変化し、13時頃にピークに達する。図7(c)に示す外気湿度RHoは、高湿条件の下では相対的に高く推移する。更に、雨が降らず、外気の絶対湿度がほとんど変化しないと仮定した場合、外気湿度RHoは、外気温Toが高い昼間の時間ほど低下する。
図7(d)に、室温Tiが設定温度Tmで一定である場合における定常顕熱負荷Qsの変化を示す。室温Tiが設定温度Tmで一定である場合、定常顕熱負荷Qsは、上記(3)式に従って推定部520により推定される。図7(d)に示すように、定常顕熱負荷Qsは、日射量及び外気温Toの上昇に伴って6時から徐々に増加し、昼頃にピークを迎え、その後徐々に低下する。
図7(e)に、室温Ti及び室内湿度RHiが一定である場合における定常潜熱負荷Qlを示す。定常潜熱負荷Qlは、上記(6)式に従って推定部520により推定される。室外絶対湿度と換気量が一定であり、内部蒸発量も一定である場合、図7(e)に示すように、定常潜熱負荷Qlは一定となる。
図7(f)及び図8(g)〜図8(j)に、それぞれ空調装置1による「自動」モードでの空調が16時に開始した場合における運転モード、顕熱能力、潜熱能力、室温Ti及び室内湿度RHiの変化を示す。判定部530は、図7(d)に示した定常顕熱負荷Qsと図7(e)に示した定常潜熱負荷Qlとに基づいて運転モードを判定する。空調制御部540は、判定部530により判定された空調モードで、空調を実行する。
具体的に説明すると、16時の空調開始時において、定常潜熱負荷Qlが第1の潜熱閾値Ql1よりも大きく、且つ、定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも大きい。そのため、空調制御部540は、図7(f)に示すように「冷房」の運転モードで空調を開始する。その後、時間が経過して外気温Toが低下すると、定常顕熱負荷Qsは減少する。例えば17時において定常顕熱負荷Qsが第1の顕熱閾値Qs1よりも低下すると、空調制御部540は、「冷房」から第1の除湿モードである「弱冷房除湿」に運転モードを切り替える。更に、例えば23時において定常顕熱負荷Qsが第2の顕熱閾値Qs2よりも低下すると、空調制御部540は、「弱冷房除湿」から第2の除湿モードである「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」に運転モードを切り替える。
図8(g)に示す顕熱能力は、16時に「冷房」モードで空調が開始した時点では、図8(i)に示す室温Tiが設定温度Tmよりも高いため、大きくなる。その後、顕熱能力は、室温Tiが設定温度Tmに近づくほど小さくなり、室温Tiが設定温度Tmで安定するように空調制御部540により制御される。室温Tiが設定温度Tmで安定した後、夜間は外気温Toが低下するため、図7(d)に示す定常顕熱負荷Qsは緩やかに減少する。それに伴い、図8(g)に示す顕熱能力は、定常顕熱負荷Qsと同程度になり、その結果として図8(i)に示すように室温Tiは設定温度Tmと同程度で安定する。
図8(h)に示す潜熱能力は、「冷房」モードでは室温Tiが設定温度Tmになるように顕熱能力が制御されるため、成り行きで変化する。空調の開始からしばらくは、顕熱能力が大きいことに伴って潜熱能力も大きく推移するため、図8(j)に示す室内湿度RHiは低下する。しかしながら、「冷房」モードのままで運転した場合、潜熱能力は、図8(h)において一点鎖線で示すように顕熱能力の減少に伴って減少する。そのため、除湿量が減少し、室内湿度RHiは、図8(j)において一点鎖線で示すように増加に転じる。
このように室内湿度RHiが増加することを回避するため、空調制御部540は、「冷房」モードから「弱冷房除湿」モードに、また「弱冷房除湿」モードから「拡張除湿」モードに、順次切り替える。このように運転モードを切り替えることで、潜熱能力が定常潜熱負荷Qlと同程度で推移するため、図8(j)において実線で示すように、室内湿度RHiは設定湿度RHmと同程度で安定する。
<低湿条件>
図9(a)〜(f)及び図10(g)〜(j)に、第2の例として、低湿条件が成立する晴天の日における各種パラメータの変化を示す。図9(a)に示すように、日射量は、雲の量によって異なるが、おおよそ6時から12時にかけて増加し、12時から18時にかけて減少する。窓温度Twは、図示しないが、日射量の増減と同様に変化する。図9(b)に示す外気温Toは、日射により温められるため、日射量よりも遅れて変化し、13時頃にピークに達する。図9(c)に示す外気湿度RHoは、低湿条件の下では、図7(c)に示した高湿条件の下に比べて、相対的に低く推移する。
図9(d)に、室温Tiが設定温度Tmで一定である場合における定常顕熱負荷Qsの変化を示す。図9(d)に示すように、定常顕熱負荷Qsは、日射量及び外気温Toの上昇に伴って6時から徐々に増加し、昼頃にピークを迎え、その後徐々に低下する。
図9(e)に、室温Ti及び室内湿度RHiが一定である場合における定常潜熱負荷Qlを示す。室外絶対湿度と換気量とが一定であり、内部蒸発量も一定である場合、図9(e)に示すように、定常潜熱負荷Qlは一定となる。また、低湿条件の下では、図7(e)に示した高湿条件の下に比べて、定常潜熱負荷Qlは小さくなる。
図9(f)及び図10(g)〜図10(j)に、それぞれ空調装置1による「自動」モードでの空調が16時に開始した場合における運転モード、顕熱能力、潜熱能力、室温Ti及び室内湿度RHiの変化を示す。
16時の空調開始時において、定常潜熱負荷Qlが第2の潜熱閾値Ql2よりも小さく、且つ、定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも大きい。そのため、空調制御部540は、図9(f)に示すように「冷房」の運転モードで空調を開始する。その後、時間が経過して外気温Toが低下すると、定常顕熱負荷Qsは減少する。例えば17時において定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも低下すると、空調制御部540は、「冷房」から「送風」に運転モードを切り替える。
図10(g)に示す顕熱能力は、16時に「冷房」モードで空調が開始した時点では、図10(i)に示す室温Tiが設定温度Tmよりも高いため、大きくなる。その後、顕熱能力は、室温Tiが設定温度Tmに近づくほど小さくなり、室温Tiが設定温度Tmで安定するように空調制御部540により制御される。室温Tiが設定温度Tmで安定した後、夜間は外気温Toが低下するため、図9(d)に示す定常顕熱負荷Qsは緩やかに減少する。それに伴い、図10(g)に示す顕熱能力は、定常顕熱負荷Qsと同程度になり、その結果として図10(i)に示すように室温Tiは設定温度Tmに保たれる。
図10(h)に示す潜熱能力は、「冷房」モードでは室温Tiが設定温度Tmになるように顕熱能力が制御されるため、成り行きで変化する。空調の開始からしばらくは、顕熱能力が大きいことに伴って潜熱能力も大きく推移するため、図10(j)に示す室内湿度RHiは低下する。「冷房」モードのままで運転した場合、顕熱能力の減少に伴って潜熱能力も減少する。しかしながら、低湿条件では、室内湿度RHiは低下しやすい状況であるため、潜熱能力が小さくても快適性への影響は小さい。そのため、空調制御部540は、顕熱能力の低下に応じて、運転モードを「冷房」から「送風」に切り替える。
定常顕熱負荷Qsが第4の顕熱閾値Qs4よりも小さいことを条件に「冷房」から「送風」に切り替えられるため、「送風」に切り替えられた後に顕熱能力が不足したとしても、室温Tiが設定温度Tmよりも大きく上昇するという事態は起こりにくい。また、低湿条件であるため、「送風」に切り替えた後に、室内熱交換器25に付着している水分が送風で再蒸発する等により室内湿度RHiが上昇するという事態も起こりにくい。そのため、「送風」に切り替えることで、快適性と省エネ性とを両立できる。
なお、図示は省略するが、急に雨が降って外気湿度RHoが変化した場合のように、1日のうちで高湿条件と低湿条件とが切り替わった場合、各種のパラメータは、図7及び図8に示した高湿条件における変化と、図9及び図10に示した低湿条件における変化と、が混在した推移を示す。
例えば、低湿条件において「送風」で空調中に外気湿度RHoが上昇して高湿条件が成立した場合、空調制御部540は、運転モードを「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」に切り替える。逆に、高湿条件において「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」で除湿中に外気湿度RHoが低下して低湿条件が成立した場合、空調制御部540は、運転モードを「送風」に切り替える。これにより、高湿条件では「除湿」の運転モードに切り替えて室内空間71の快適性を高めつつ、除湿をせずとも室内空間71の快適性を確保できる場合には、「送風」の運転モードに切り替えて消費電力を抑えることが可能になる。
<報知機能>
報知部550は、室内空間71の環境に関する第1の報知情報と、空調制御部540による空調部110の制御に関する第2の報知情報とを、表示又は音声によりユーザに報知する。報知部550は、空調制御部540により空調の運転モードが切り替えられた際に、例えば図11から図13に示す報知画面を、リモートコントローラ55、スマートフォン、タブレット等の表示部130に表示する。報知部550は、制御部101が通信部104と協働することにより実現される。報知部550は、報知手段として機能する。
図11から図13に示すように、報知部550は、第1の報知情報として、室内空間71の温度又は湿度の傾向を示す傾向情報131を報知し、第2の報知情報として、運転モードを示す運転モード情報132を報知する。傾向情報131は、取得部510により取得された室温Ti又は室内湿度RHiが上昇傾向にあるか、下降傾向にあるか、維持傾向にあるかを示す第1の画像情報である。
例えば図11に示すように、室内湿度RHiが上昇傾向にある場合、報知部550は、傾向情報131として、湿度を表す水滴の絵と共に上向きの矢印を表示する。一方で、図12に示すように、室温Tiと室内湿度RHiとが共に維持傾向にある場合、報知部550は、傾向情報131として、水滴の絵及び温度を表す温度計の絵と共に横向きの矢印を表示する。また、図13に示すように、室温Tiが上昇傾向にある場合、報知部550は、傾向情報131として、温度計の絵と共に上向きの矢印を表示する。このような室温Ti又は室内湿度RHiの傾向は、直近の予め定められた長さの期間において、室温Ti又は室内湿度RHiが上昇しているか、下降しているか、或いは変動幅が誤差の範囲内に収まっているかにより判定される。
報知部550は、空調制御部540により運転モードが切り替えられた場合、傾向情報131として、運転モードが切り替えられる直前の室温Ti又は室内湿度RHiの傾向を示す情報を報知する。運転モードが切え替られた時の直前の情報を報知することにより、例えば運転モードが冷房モードから除湿モードに切り替えられた場合など、なぜ運転モードが切り替えられたのかの理由を、ユーザが認識しやすい効果がある。
一方で、報知部550は、ユーザから要求を受け付けた場合、傾向情報131として、現在の室温Ti又は室内湿度RHiの傾向を示す情報を報知する。ユーザから要求を受け付けた場合に現在の情報を報知することにより、ユーザが温度と湿度の今後の傾向を把握することができる。
運転モード情報132は、空調制御部540により運転モードが切り替えられた場合に、運転モードがどのモードからどのモードに切り替えられたかを示す第2の画像情報である。報知部550は、空調制御部540により運転モードが第1のモードから第2のモードに切り替えられた際、運転モード情報132として、切り替え前の運転モードである第1のモードと、切り替え後の運転モードである第2のモードと、の双方を示す情報を報知する。
例えば図11に示すように、運転モードが冷房モードから除湿モードに切り替えられた場合、報知部550は、運転モード情報132として、切り替え後の運転モードである除湿モードを、切り替え前の運転モードである冷房モードに比べて目立つように大きく表示する。同様に、図12に示すように、運転モードが冷房モードから送風モードに切り替えられた場合、報知部550は、運転モード情報132として、切り替え後の運転モードである送風モードを、切り替え前の運転モードである冷房モードに比べて目立つように大きく表示する。
なお、報知部550は、運転モード情報132として、切り替え前後の運転モードの双方を報知することに限らず、簡便化のために、切り替え後の運転モードのみを報知しても良い。但し、切り替え前後の運転モードを双方共に報知することで、ユーザは、運転モードが自動で切り替えられたことを認識し易くなる。
このように、傾向情報131及び運転モード情報132を表示することで、ユーザが現在の空調の状況を容易に認識することができる。このとき、絵と文字とを交えた画像をフルドット方式の表示部130を介して鮮明に表示し、また傾向情報131と運転モード情報132とを隣接して表示することにより、運転モードの切り替えとその理由とをユーザがより認識しやすくなる。
更に、報知部550は、このような傾向情報131及び運転モード情報132に加えて、第1の報知情報として、運転モードの判定内容を示す判定情報133を報知し、第2の報知情報として、空調制御部540による制御内容を示す制御情報134を報知する。判定情報133は、判定部530により判定された運転モードの判定内容を示す第1の文字情報である。上述したように、判定部530は、取得部510により取得された室温Ti、室内湿度RHi、定常顕熱負荷Qs、定常潜熱負荷Ql等に基づいて、運転モードを切り替える基準が満たされたか否か、及び、切り替えるべき運転モードを判定する。判定情報133は、このような判定部530により判定された運転モードの情報である。一方、制御情報134は、空調制御部540により空調が実行された時、及び、運転モードが切り替えられた時の制御内容を示す第2の文字情報である。
例えば図11に示すように、報知部550は、判定情報133として、「温度は目標に到達しそうですが、まだ湿度が高そうです。」との文字情報を表示し、制御情報134として、「除湿モードに切り替えました。」との文字情報を表示する。或いは、図12に示すように、報知部550は、判定情報133として、「送風に変えても、温度も湿度も上がらないと予測し、」との文字情報を表示し、制御情報134として、「送風に切り替えました。」との文字情報を表示する。更に、図13に示すように、報知部550は、判定情報133として、「外気・日射で暑くなりそうです。」との文字情報を表示し、制御情報134として、「早めに暖房をゆるめました。」との文字情報を表示する。このような報知により、ユーザは自動で行われた制御内容を把握することができる。また、例えば、冷房モードから除湿モードに切り替えられた場合、なぜ運転モードが切り替えられたのかの理由をユーザが認識しやすくなる。
報知部550は、これらの文字情報を連結させて1つの文で表示する。これにより、判定情報133と制御情報134とをユーザが読みやすくなり、より認識しやすくなる。また、表示スペースを節約することができる。
また、報知部550は、図11から図13に示すように、画面上部に傾向情報131と運転モード情報132とを表示し、画面下部に判定情報133と制御情報134とを表示する。このように各情報を同時に表示することにより、ユーザの認識性が更に向上する。なお、画面内における各情報の配置はこれに限らない。
このような報知部550の機能により、現在の空調の状況をユーザが容易に認識することができる。すなわち、自動モードでは、ユーザは自身で操作することなく、冷房モードと除湿モードと送風モードとのそれぞれを簡単に享受することができる。一方で、自動モードは便利であるが、制御内容を把握しにくいため、ユーザの安心感又は信頼感を得ることができなかったり、違和感を抱いたりする可能性がある。特に、近年のAI(Artificial Intelligence)機能の普及により自動化が進む一方で、ユーザの内容認識及びユーザと機械との対話の質の向上が望まれている。実施の形態1では、報知部550の機能により、現在の空調の状況をユーザが容易に認識することができるため、ユーザが自動モードでの空調をより便利に安心して使用することができる。
次に、図14に示すフローチャートを参照して、空調装置1により実行される自動モードでの制御処理の流れについて説明する。
自動モードでの運転が指令された場合、制御部101は、取得部510として機能し、各センサにより検知された室温Ti、外気温To、窓温度Tw、室内湿度RHi、外気湿度RHo等のセンサ情報を取得する(ステップS101)。そして、制御部101は、推定部520として機能し、室内空間71の熱負荷を推定する(ステップS102)。具体的に説明すると、制御部101は、上記(2)〜(7)式に従って、取得されたセンサ情報から非定常顕熱負荷Ps、定常顕熱負荷Qs、顕熱能力、非定常潜熱負荷Pl、定常潜熱負荷Ql、及び、潜熱能力を計算する。
熱負荷を推定すると、制御部101は、判定部530として機能し、推定した熱負荷に基づいて、空調の運転モードを判定する(ステップS103)。そして、制御部101は、空調制御部540として機能し、判定した運転モードで空調する(ステップS104)。具体的に説明すると、制御部101は、定常顕熱負荷Qsと顕熱閾値Qs1〜Qs4との大小関係、及び、定常潜熱負荷Qlと潜熱閾値Ql1,Ql2との大小関係を比較する。そして、制御部101は、図6に示した判定基準に基づいて、複数の運転モードの中から空調装置1が実行すべき運転モードを選択し、選択した運転モードで空調部110に室内空間71を空調させる。
更に、制御部101は、必要に応じて、例えば図11又は図12に示したように、運転モードの切り替え情報、又は、実行中の運転モードに関する情報を報知する(ステップS105)。例えば、制御部101は、報知部550として機能して、図11から図13に示した報知画面を表示部130に表示する。その後、制御部101は、処理をステップS101に戻す。そして、制御部101は、自動モードでの運転が指令されている間、ステップS101からステップS105の処理を繰り返す。
以上説明したように、実施の形態1に係る空調装置1は、室温Tiを設定温度Tmに維持するために必要な定常顕熱負荷Qsと、室内湿度RHiを設定湿度RHmに維持するために必要な定常潜熱負荷Qlと、に応じて運転モードを切り替えて、室内空間71を空調する。これにより、室温Tiと設定温度Tmとの温度差ΔT、又は、室内湿度RHiと設定湿度RHmとの湿度差ΔRHにより生じる非定常的な熱負荷のみに応じて運転モードを切り替える場合に比べて、室温Ti及び室内湿度RHiの変化を予測して運転モードを切り替えることが可能になる。そのため、室内空間71の冷やし過ぎによる快適性の低下が抑制され、快適性の向上につながる。また、消費電力の増大を抑制することができる。
室温Tiと設定温度Tmとの温度差ΔTの判定だけでは、冷房モードから除湿モードに切り替え後で、必要な顕熱負荷が除湿モードでまかなえる顕熱負荷では不足する場合には、温度戻りによる不快な温度変動が発生し、再度冷房モードに戻さなくてはいけない。複数の除湿モード内で顕熱能力がより高い第1の除湿モードから顕熱能力がより低い第2の除湿モードに切り替える場合、及び、冷房モードから送風モードに切り替える場合についても同様である。また、湿度差ΔRHの判定だけを用いて運転モードを送風モードに切り替える場合も同様に、現在の湿度が低くても定常潜熱負荷Qlが残っていれば、湿度戻りが発生してしまう。実施の形態1に係る空調装置1は、定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて運転モードを切り替えることで、運転モードの切り替え後に温度及び湿度が上昇するか否かを、運転モードの切り替え前に推定することができる。そのため、運転モードが頻繁に切り替えられることを抑制することができ、その結果、冷房モード、除湿モード及び送風モードの3つの運転モードをユーザがボタンを押して選ぶことなく精度よく切り替えることができる。
また、実施の形態1に係る空調装置1は、「弱冷房除湿」よりも高い潜熱能力で除湿可能な「ダブルファン除湿」、「露点温度除湿」及び「部分冷却除湿」の運転モードを備える。そして、実施の形態1に係る空調装置1は、「自動」の運転モードにおいて、定常顕熱負荷Qsに応じてこれらの複数の除湿モードを切り替えて室内空間71を除湿する。これにより、温度制御に関わる顕熱能力と湿度制御に関わる潜熱能力とを連続的に出力できるため、気象条件、建物条件、生活条件等の様々な状況に応じて、運転モードの切り替えの際に温度及び湿度の変動が少なく、快適な空調を提供できる。また、複数の運転モードの顕熱能力又は潜熱能力が重なる条件においては、より省エネの運転モードを選択することで、消費電力を削減できる。
また、実施の形態1に係る空調装置1は、冷房と送風とを組み合わせた「送風」の運転モードを備える。そして、実施の形態1に係る空調装置1は、「自動」の運転モードにおいて、低湿条件が成立し、且つ、定常顕熱負荷Qsが相対的に小さい場合には、運転モードを「送風」に切り替えて室内空間71を空調する。その結果、室内空間71の快適性を確保しつつ、省エネ性を高めることができる。
(実施の形態2)
次に、本発明の実施の形態2について説明する。実施の形態1では、判定部530は、定常顕熱負荷Qsと定常潜熱負荷Qlとに応じて、空調装置1が実行すべき空調の運転モードを判定した。これに対して、実施の形態2では、判定部530は、室温Tiと設定温度Tmとの温度差ΔTと、室内湿度RHiと設定湿度RHmとの湿度差ΔRHと、に応じて、運転モードを判定する。
実施の形態2において、推定部520は、取得部510により取得された室温Tiに基づいて、室温Tiと設定温度Tmとの温度差ΔTを計算する。また、推定部520は、取得部510により取得された室内湿度RHiに基づいて、室内湿度RHiと設定湿度RHmとの湿度差ΔRHを計算する。温度差ΔTは、上記(2)式で示されるように、非定常顕熱負荷Psの指標である。また、湿度差ΔRHは、上記(5)式では室外絶対湿度と室内絶対湿度との差を用いているが、近似的には非定常潜熱負荷Plの指標と言える。
図15に、温度と湿度と運転モードとの関係を示す。図15に示すように、空調装置1が「(E)自動」の運転モードで室内空間71を空調する場合、温度差ΔTと湿度差ΔRHとに応じて、空調装置1が実行すべき運転モードが定められている。判定部530は、推定部520により計算された温度差ΔTと湿度差ΔRHとに応じて、運転モードを判定する。
実施の形態2における判定部530による運転モードの判定処理は、実施の形態1における非定常顕熱負荷Qsを温度差ΔTに置き換え、且つ、定常潜熱負荷Qlを湿度差ΔRHに置き換えることにより、実施の形態1と同様に説明することができる。
具体的に説明すると、第1に、判定部530は、推定部520により計算された湿度差ΔRHと湿度閾値ΔRH1,ΔRH2との大小関係を判定する。湿度差ΔRHが第1の湿度閾値ΔRH1よりも大きい場合は、高湿条件が成立する場合に相当する。これに対して、湿度差ΔRHが第2の湿度閾値ΔRH2よりも小さい場合は、低湿条件が成立する場合に相当する。
高湿条件が成立する場合、判定部530は、温度差ΔTと第1から第3の温度閾値ΔT1〜ΔT3との大小関係を判定する。温度差ΔTが第1の温度閾値ΔT1よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。温度差ΔTが第1の温度閾値ΔT1よりも小さく、且つ、第2の温度閾値ΔT2よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(C1)弱冷房除湿」であると判定する。温度差ΔTが第2の温度閾値ΔT2よりも小さく、且つ、第3の温度閾値ΔT3よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(C2)ダブルファン除湿」、「(C3)露点温度除湿」又は「(C4)部分冷却除湿」であると判定する。温度差ΔTが第3の温度閾値ΔT3よりも小さい場合、判定部530は、圧縮機21を停止すべきであると判定する。
低湿条件が成立する場合、判定部530は、温度差ΔTと第4の温度閾値ΔT4との大小関係を判定する。温度差ΔTが第4の温度閾値ΔT4よりも大きい場合、判定部530は、空調装置1が実行すべき運転モードが「(A)冷房」であると判定する。温度差ΔTが第4の温度閾値ΔT4よりも小さい場合、判定部530は、空調装置1が実行すべき運転モードが「(D)送風」であると判定する。第4の温度閾値ΔT4は、0℃、又は、送風モードで得られる体感温度の低下分である約1〜2℃を0℃に加算した値に設定される。
空調制御部540は、実施の形態1と同様に、判定部530により判定された運転モードで、空調部110に室内空間71を空調させる。また、空調制御部540は、取得部510により取得された温度、湿度等の負荷情報に応じて判定部530が現在の運転モードとは異なる運転モードを新たに判定すると、現在の運転モードから新たに判定された運転モードに切り替えて、室内空間71を空調する。
具体的に説明すると、空調制御部540は、高湿条件が成立する場合において、空調部110が冷房モードで空調している際に温度差ΔTが第1の温度閾値ΔT1よりも小さくなると、運転モードを第1の除湿モードに切り替える。更に、空調制御部540は、空調部110が第1の除湿モードで空調している際に温度差ΔTが第2の温度閾値ΔT2よりも小さくなると、運転モードを第2の除湿モードに切り替え、空調部110が第2の除湿モードで空調している際に温度差ΔTが第3の温度閾値ΔT3よりも小さくなると、圧縮機21を停止させる。逆に、温度差ΔTが各温度閾値ΔT1〜ΔT3よりも大きくなると、空調制御部540は、運転モードを上記とは逆に切り替える。
一方、空調制御部540は、低湿条件が成立する場合において、空調部110が冷房モードで空調している際に温度差ΔTが第4の温度閾値ΔT4よりも小さくなると、運転モードを送風モードに切り替える。逆に、空調部110が送風モードで空調している際に温度差ΔTが第4の温度閾値ΔT4よりも大きくなると、空調制御部540は、運転モードを冷房モードに切り替える。
また、空調制御部540は、低湿条件が成立する場合において、空調部110が送風モードで空調している際に湿度差ΔRHが第1の湿度閾値ΔRH1よりも大きくなると、運転モードを、その時の定常顕熱負荷Qsに応じて高湿条件1〜4のいずれかのモードに切り替える。逆に、高湿条件が成立する場合において、湿度差ΔRHが第2の湿度閾値ΔRH2よりも小さくなり、且つ、温度差ΔTが第4の温度閾値ΔT4よりも小さい場合、運転モードを送風モードに切り替える。
このように、実施の形態2に係る空調装置1は、室温Tiと設定温度Tmとの温度差ΔTと、室内湿度RHiと設定湿度RHmとの湿度差ΔRHと、に応じて運転モードを切り替える。温度差ΔTの判定だけでは、冷房モードと除湿モードとの間での切り替えの判定は可能だが、冷房モードから除湿モードにするか、それとも送風モードにするかを判定することができない。これに対して、実施の形態2に係る空調装置1は、温度差ΔTの判定に加えて、湿度差ΔRHの判定を加えることで、冷房モードから除湿モードにするか、それとも送風モードにするかを判定することができる。これにより、冷房モードによって温度が低下した後に、湿度が高いにもかかわらず送風モードに切り替えることで快適性を低下させることを抑制することができ、また湿度が低いもかかわらず除湿モードにすることで不要な電力を消費することを抑制することができる。その結果、室温Tiと室内湿度RHiとの両方の快適性を手軽に得ることができる。
また、近年の建物の断熱性能及び換気性能の向上により、室温Tiはすぐに低下するが室内湿度RHiが低下しにくいという湿度篭もりが発生しやすいが、実施の形態2に係る空調装置1は、温度差ΔTと湿度差ΔRHとの両方に応じて運転モードを切り替えることにより、このような湿度篭もりを抑制することができる。
また、温度差ΔT及び湿度差ΔRHを用いることで、運転モードの判定及び切り替えのために外気温To、窓温度Tw及び外気湿度RHoの情報を取得する必要がない。そのため、より簡易な構成で運転モードを切り替えて室内空間71を空調することができる。特に、定常顕熱負荷Qs及び定常潜熱負荷Qlに比べて非定常顕熱負荷Ps及び非定常潜熱負荷Plが支配的になる場合、温度差ΔT及び湿度差ΔRHに応じて運転モードを判定することで、適切に運転モードを切り替えた空調が可能となる。
なお、判定部530は、図6に示した定常顕熱負荷Qs及び定常潜熱負荷Qlによる判定処理と図15に示した温度差ΔT及び湿度差ΔRHによる判定処理とを、AND条件又はOR条件で組み合わせても良い。この場合、空調制御部540は、温度差ΔTと定常顕熱負荷Qsとの両方に応じて、冷房モードと除湿モードとの間、及び、冷房モードと送風モードとの間で運転モードを切り替え、湿度差ΔRHと定常潜熱負荷Qlとの両方に応じて、除湿モードと送風モードとの間で運転モードを切り替える。或いは、判定部530は、非定常顕熱負荷Psと定常顕熱負荷Qsの和である顕熱能力、又は、非定常潜熱負荷Plと定常顕熱負荷Qlの和である潜熱能力に応じて、運転モードを判定しても良い。温度差ΔT及び湿度差ΔRHによる判定処理と定常顕熱負荷Qs及び定常潜熱負荷Qlによる判定処理とを適度に組み合わせて運転モードを切り替えることで、運転モードの頻繁な切替、室温Tiの変動、及び室内湿度RHiの変動を抑制することができる。そのため、快適性と省エネ性の両立が可能となる。
(実施の形態3)
次に、本発明の実施の形態3について説明する。実施の形態1では、推定部520は、取得部510により取得された現時点における温度、湿度等に基づいて、定常顕熱負荷Qs及び定常潜熱負荷Qlを推定した。これに対して、実施の形態3では、推定部520は、定常顕熱負荷Qsと定常潜熱負荷Qlとのそれぞれについて、現時点よりも前の予め定められた長さの期間における変化傾向に基づいて、現時点から規定時間後における熱負荷を推定する。
具体的に説明すると、推定部520は、室温Tiが設定温度Tmに近づいた後において、下記(8)式に従って、推定顕熱負荷Qs’を計算する。また、推定部520は、室内湿度RHiが設定湿度RHmに近づいた後において、下記(9)式に従って、推定潜熱負荷Ql’を計算する。
推定顕熱負荷Qs’=定常顕熱負荷Qs+予測変動量ΔQs …(8)
推定潜熱負荷Ql’=定常潜熱負荷Ql+予測変動量ΔQl …(9)
上記(8)式において、予測変動量ΔQsは、直近の予め定められた時間における定常顕熱負荷Qsの変動量である。例えば現在時刻が18時である場合、推定部520は、定常顕熱負荷Qsが長時間にわたり継続して低下していることから、今後も定常顕熱負荷Qsの低下傾向が維持されると推定する。このように室外空間72の環境が現時点から規定時間後も直前と同様に変化する場合、直前の期間における定常顕熱負荷Qsの変化傾向を延長することにより、定常顕熱負荷Qsを先読みすることが可能である。
具体的に、推定部520は、予測変動量ΔQsを、現時点の定常顕熱負荷Qsと、現時点から予め定められた時間前の定常顕熱負荷Qsと、の差分を計算することにより推定する。例えば、現時点より前の1時間において定常顕熱負荷Qsが10%増えた場合、推定部520は、現時点から1時間後の予測変動量ΔQsも10%であると推定する。そして、推定部520は、予測変動量ΔQsを現在の定常顕熱負荷Qsに加算することにより、推定顕熱負荷Qs’を計算する。上記(9)式に示される推定潜熱負荷Ql’についても同様である。
判定部530は、実施の形態1における定常顕熱負荷Qs及び定常潜熱負荷Qlに代えて、推定部520により推定された、現時点から規定時間後における推定顕熱負荷Qs’及び推定潜熱負荷Ql’に応じて、運転モードを判定する。空調制御部540は、判定部530により判定された運転モードで、室内空間71を空調する。
このように、実施の形態3に係る空調装置1は、定常顕熱負荷Qs及び定常潜熱負荷Qlのそれぞれについて、直近の変化傾向から将来の値を推定し、推定した値に応じて運転モードを切り替える。これにより、現時点のセンサ情報のみを用いるよりも、短時間におけるセンサ情報のばらつきの影響を抑えつつ、室内空間71における熱負荷の先の状況をより精度良く予測することができる。
推定顕熱負荷Qs’を求めることで、運転モードが冷房モードから除湿モードに切り替えられた後に、冷房モードに比べて最大顕熱能力が下がった除湿モードであっても温度を維持できるか、それとも最大顕熱能力が不足して温度が上昇してしまうのかを、切り替え前から先回りして判定することができる。また、運転モードが冷房モードから送風モードに切り替えられた後に、送風モードであっても温度を維持できるか、それとも温度が上昇してしまうのかを、切り替え前から先回りして判定することができる。
推定潜熱負荷Ql’を求めることで、運転モードが冷房モード又は送風モードから除湿モードに切り替えられないと、潜熱能力が不足して湿度が上昇してしまうのかを、切り替え前から先回りして判定することができる。また、運転モードが冷房モードから送風モードに切り替えられた後に、送風モードであっても湿度を維持できるか、それとも湿度が上昇してしまうのかを、切り替え前から先読みして判定することができる。
このように推定顕熱負荷Qs’と推定潜熱負荷Ql’をと求めることによって、設定温度Tmに近づく前から、設定温度Tmに近づいた後に室温Tiと室内湿度RHiを維持するための熱負荷が求められる。求めた熱負荷を現在の運転モードで発揮できる顕熱能力と潜熱能力と比較することで、運転モードを切り替えるべきか否かを判定することができる。その結果、室温Ti及び室内湿度RHiを設定温度Tm及び設定湿度RHmにより精度良く維持することができ、快適性の向上につながる。
(実施の形態4)
次に、本発明の実施の形態4について説明する。実施の形態1では、推定部520が上記(3)式に従って定常顕熱負荷Qsを計算する際に、断熱性能を示すα、日射の入りやすさを示すβ、及び、内部発熱量Qnは既知であった。これに対して、実施の形態4に係る空調装置1は、各センサにより検知された過去の情報に基づいて、α、β、Qnの値を学習する。
図16に、実施の形態4に係る空調装置1に備えられた室外機制御部51aの機能的な構成を示す。なお、室外機制御部51aは、実施の形態1と同様のハードウェア構成を備えているため、説明を省略する。
図16に示すように、室外機制御部51aは、機能的に、取得部510と、推定部520と、判定部530と、空調制御部540と、報知部550と、情報更新部560と、学習部570と、を備える。取得部510、推定部520、判定部530、空調制御部540及び報知部550の機能については、実施の形態1と同様であるため、説明を省略する。
情報更新部560は、取得部510によって取得された各センサの検知情報によって、記憶部102に記憶された履歴情報150を更新する。履歴情報150は、室温Ti、窓温度Tw、外気温To、空調能力等の履歴を示す情報である。
図17に、履歴情報150の具体例を示す。図17に示すように、履歴情報150は、温度センサ41によって検知された室温Tiと、赤外線センサ43によって検知された窓温度Twと、外気温度センサによって検知された外気温Toと、を含むセンサによって検知された情報を時系列順に格納している。また、履歴情報150は、空調制御部540によって制御された空調能力を示す値を時系列順に格納している。また、履歴情報150は、空調制御部540によって制御された運転モードを時系列順に格納している。
情報更新部560は、予め定められた時間毎に、各センサによって新たに検知された情報と空調能力とを対応付けて履歴情報150に格納する。これにより、情報更新部560は、履歴情報150を更新していく。情報更新部560は、制御部101が記憶部102と協働することによって実現される。情報更新部560は、情報更新手段として機能する。
学習部570は、室内空間71の熱特性を学習する。室内空間71の熱特性とは、室内空間71の熱に関する性質であって、具体的には、室内空間71の断熱性能、室内空間71への日射の入りやすさ等である。学習部570は、履歴情報150に記録された過去の室温Ti、窓温度Tw、外気温To及び空調能力に基づいて、室内空間71の熱特性を学習する。学習部570は、制御部101によって実現される。学習部570は、学習手段として機能する。
<学習機能>
以下、学習部570の学習機能についてより詳細に説明する。図18に示すように、室内空間71と室外空間72との間では、家屋3の壁、窓、隙間、換気設備等を介して熱が移動する。そのため、空調装置1が室温Tiを設定温度Tmに維持するために必要な熱量である定常顕熱負荷Qsは、壁の厚さ、窓の大きさ等の家屋3の特徴に依存する。
より詳細には、定常顕熱負荷Qsには、貫流負荷と換気負荷と内部発熱量と日射負荷とがある。貫流負荷は、外気温Toと室温Tiとの温度差ΔTioに応じて外皮を伝わる熱負荷である。なお、外皮は、室内空間71を室外空間72から隔離する壁である。換気負荷は、換気又は隙間風の空気流入による熱負荷である。換気負荷は、温度差ΔTioに比例する。内部発熱量Qnは、室内空間71内に存在する、照明、家電、及び、人による熱負荷である。日射負荷は、窓ガラスを透過して室内を加熱する熱負荷である第1の日射負荷と、外皮を加熱して外皮から室内空間71内に伝わる熱負荷である第2の日射負荷と、に分けられる。
学習部570は、取得部510により取得された室内空間71の熱負荷に関する負荷情報に基づいて、室内空間71の熱特性を学習する。具体的には、学習部570は、室内空間71の熱特性として、定常顕熱負荷Qsと、室温Tiと、外気温Toと、窓温度Twと、の関係を学習し、上記(3)式におけるα、β及びQnの値を見積もる。推定部520は、学習部570により学習されたα、β及びQnの値を用いて、上記(3)式により定常顕熱負荷Qsを推定する。なお、理解を容易にするため、室温Tiは設定温度Tmと一致し、定常顕熱負荷Qsは空調装置1の空調能力に一致すると仮定する。
上記(3)式において、αは、家屋3の断熱性能を示す係数αは、外気温Toと室温Tiとの温度差ΔTioに比例して必要となる熱負荷である貫流負荷と換気負荷に関わる比例係数である。ただし、第2の日射負荷も、外皮を伝わる熱負荷であるため、貫流負荷と同様に扱うことが好適である。そこで、学習部570は、外気温Toの上昇分ΔToを第2の日射負荷に対応するパラメータと見なし、外気温Toの代わりに見かけ上の外気温To2(=To+ΔTo)を用いて熱負荷Qを見積もる。
なお、αは、換気負荷を考慮しない場合、理論上、外皮平均熱貫流率UAと外皮の表面積Aとを用いて、以下の(10)式により見積もられる。(10)式において、αの単位はW(ワット)/K(ケルビン)であり、外皮平均熱貫流率UAの単位はW/(m2・K)であり、外皮の表面積Aの単位はm2である。また、1.000は、貫流負荷に対応する係数であり、0.034は、第2の日射負荷に対応する係数である。ただし、外皮平均熱貫流率UA及び外皮の表面積Aに関する情報を取得できないことが多く、また、換気負荷の影響により以下の(10)式によりαを正確に求めることができないことも多い。そこで、本実施の形態では、学習部570は、上記(3)式を用いて、各種の値の実績値からαの値を求める。
α=UA×A×(1.000+0.034) …(10)
上記(3)式において、室内空間71への日射の入りやすさを示す係数βは、日射量に比例して必要となる熱負荷である第1の日射負荷に関わる比例係数である。βの値は、窓75の大きさ、窓75を構成するガラスの種類等に依存する。
学習部570は、記憶部102に記憶された履歴情報150を参照して、室温Ti、窓温度Tw、外気温To及び空調能力の関係を分析する。そして、学習部570は、分析の結果に基づいて、α、β及びQnを見積もる。
第1に、室内空間71の断熱性能を示す係数αを学習する方法について説明する。学習部570は、日射量が十分に少ない場合に取得された室温Ti、外気温To及び空調能力のデータに基づいて、係数αを学習する。具体的に説明すると、日射量が十分に少ない場合には、第1日射負荷及び第2日射負荷が貫流負荷及び換気負荷に比べて無視できる。この場合、上記(3)式において、β=0であると近似でき、更にΔTo=0、すなわちTo=To2であると近似できる。そのため、上記(3)式は、下記(11)式に近似できる。学習部570は、下記(11)式によって表される室温Tiと外気温Toとの温度差ΔTioと空調能力との関係に基づいて、係数αを学習する。
Qs=α(To−Ti)+Qn …(11)
図19(a)に、室温Tiと外気温Toとの温度差ΔTioと空調能力との関係を示す。図19(a)は、室温Tiと外気温Toとの温度差ΔTioを表す座標軸である横軸と空調能力を表す座標軸である縦軸とを有する座標平面に、温度差ΔTioの実績値と空調能力の実績値とに対応する複数のデータ点をプロットした場合の一例を示している。貫流負荷及び換気負荷は温度差ΔTioに比例するため、温度差ΔTioと空調能力との関係は一次近似式で表すことができる。学習部570は、座標平面にプロットされた複数のデータ点に対して最小二乗法等の適宜の回帰手法を適用することにより、温度差ΔTioと空調能力との関係を示す近似直線L0を求める。近似直線L0と式(11)との対応から、近似直線L0の傾きは断熱性能を示す係数αに対応し、近似直線L0の切片は内部発熱量Qnに対応する。
ここで、家屋3の外皮に使用される断熱材の性能が良いほど、また、外皮の面積が小さいほど、貫流負荷は小さくなる。また、室内空間71と室外空間72とを仕切る外皮の隙間が小さい程、換気負荷は小さくなる。そのため、貫流負荷が小さいほど、また、換気負荷が小さいほど、近似直線の傾きが小さくなる。具体的に図19(b)に、家屋3の断熱性能に応じて近似直線の傾きが異なる様子を示す。図19(b)に示すように、断熱性能が悪い家屋3について求められる近似直線L11の傾きは、断熱性能が良い家屋3について求められる近似直線L12の傾きよりも大きくなる。そのため、学習部570は、近似直線の傾きから、室内空間71の断熱性能を取得する。
また、内部発熱量Qnが小さいほど、近似直線の切片が小さくなる。具体的に図19(c)に、内部発熱量Qnに応じて近似直線の切片が異なる様子を示す。図19(c)に示すように、内部発熱量Qnが大きい家屋3について求められる近似直線L21の切片は、内部発熱量Qnが小さい家屋3について求められる近似直線L22の切片よりも大きくなる。そのため、学習部570は、近似直線の切片から、室内空間71の内部発熱量Qnを取得する。このように、学習部570は、記憶部102に記憶された履歴情報150を参照して、室温Tiと外気温Toとの温度差ΔTioと空調能力との関係に基づいて、断熱性能を示す係数α及び内部発熱量Qnを求める。
ここで、学習の精度及び速度を向上させるには、履歴情報150を短期間に多数収集する必要がある。そこで、学習部570は、外気温To及び室温Tiが異なる場合であっても温度差ΔTioが同じである場合には、要求される空調能力が同じであるものとみなして、同じ温度差ΔTioのデータ点として座標平面にプロットする。かかる構成では、外気温To又は室温Ti毎に熱特性式を求める必要がないため、学習の精度及び速度を向上させることができる。なお、空調運転中に履歴情報150の更新と学習とを繰り返すことで、室内空間71の熱特性の変化についても把握することができ、制御の精度を向上させることができる。熱特性の変化は、例えば、冬季に電気カーペットを使用し始めて内部発熱量Qnが増加したり、部屋の間の仕切りをして貫流負荷が減少したりすることにより生じる。
第2に、室内空間71への日射の入りやすさを示す係数βを学習する方法について説明する。学習部570は、室温Tiと外気温Toとの温度差ΔTioが同一であるときに取得された室温Ti、窓温度Tw及び空調能力のデータに基づいて、係数βを学習する。
温度差ΔTioが同一である場合には、上記(11)式におけるα(To2−Ti)の項を定数として扱うことができる。この場合、学習部570は、上記(11)式におけるβ(Tw−Ti)の項に基づいて、室温Tiと窓温度Twとの温度差ΔTiwと空調能力との関係を見積もることができる。具体的には、室温Tiと窓温度Twとの温度差ΔTiwを表す座標軸である横軸と空調能力を表す座標軸である縦軸とを有する座標平面に、温度差ΔTiwの実績値と空調能力の実績値とに対応する複数のデータ点をプロットした場合、図19(a)と同様に、温度差ΔTiwと空調能力との関係は一次近似式で表すことができる。
ここで、室内空間71に日射が入りやすいほど、近似直線の傾きは大きくなり、室内空間71に日射が入りにくいほど、近似直線の傾きは小さくなる。そのため、図19(b)において、「断熱性能が悪い家屋」を「日射が入りやすい家屋」に置き換え、且つ、「断熱性能が良い家屋」を「日射が入りにくい家屋」に置き換えることで、同様に説明可能である。学習部570は、座標平面にプロットされた複数のデータ点に対して最小二乗法等の適宜の回帰手法を適用することにより、温度差ΔTiwと空調能力との関係を示す近似直線を求める。そして、学習部570は、近似直線の傾きから、室内空間71への日射の入りやすさを示す係数βを学習する。
以下、学習の精度を向上させる方法について説明する。学習部570は、日射量が閾値以下であるときの室温Ti、外気温To及び空調能力に基づいて、断熱性能を学習する。具体的に説明すると、温度差ΔTioを表す座標軸である横軸と空調能力を表す座標軸である縦軸とを有する座標平面にプロットされる複数のデータ点は、日射量が閾値以下であるときに取得されたデータ点に限られる。学習部570は、座標平面に温度差ΔTioと空調能力とに対応するデータ点をプロットする前に、プロットするデータ点に対応する温度差ΔTio及び空調能力のデータが、日射量が予め定められた閾値以下であるときに取得されたデータであるか否かを判別する。そして、学習部570は、プロットするデータ点に対応する温度差ΔTio及び空調能力のデータが、日射量が閾値以下であるときに取得されたと判別した場合、このデータ点を座標平面にプロットする。一方、学習部570は、プロットするデータ点に対応する温度差ΔTio及び空調能力のデータが、日射量が閾値より大きいときに取得されたと判別した場合、このデータ点を座標平面にプロットしない。
つまり、学習部570は、温度差ΔTioと空調能力とに対応する複数のデータ点のうち、日射量が閾値以下であるときに取得されたデータ点を、座標平面にプロットする。例えば、学習部570は、窓温度Twが室温Tiよりも小さい場合に日射量が閾値以下であると判別し、窓温度Twが室温Tiよりも大きい場合に日射量が閾値より大きいと判別する。
このように、温度差ΔTioと空調能力との相関関係を学習する場合、日射の影響が小さいときに取得されたデータから温度差ΔTioと空調能力との関係を求めることが好適である。かかる構成によれば、日射負荷の影響によるデータのばらつきが抑制される。そのため、傾きにより表される断熱性能を示す係数αと切片により表される内部発熱量Qnとを精度良く取得することができる。つまり、日射量が閾値以下であるときに取得されたデータを用いる場合、(3)式ではなく(11)式を用いて、容易にαを求めることができる。なお、学習部570は、温度差ΔTioと空調能力とのデータから近似直線の傾き及び切片を取得することができれば良く、実際に、何らかの座標平面にデータ点をプロットしなくてもよいことは勿論である。
また、学習部570は、室温Tiの変化量が基準値以下であるときの室温Ti、外気温To及び空調能力に基づいて、断熱性能を学習しても良い。また、学習部570は、室温Tiの変化量が基準値以下であるときの室温Ti、窓温度Tw及び空調能力に基づいて、日射の入りやすさを学習しても良い。
具体的に説明すると、室温Tiが安定していない過渡状態では、発揮される空調能力が安定しないことが一般的である。例えば、空調の起動直後において室温Tiが大きく変化している間は、空調能力の中に部屋の熱容量を処理する分が含まれるため、見かけ上の空調能力は大きくなる。そこで、学習部570は、座標平面にプロットされる複数のデータ点を、規定時間における室温Tiの変化量が基準値以下であるときに取得されたデータ点に限っても良い。これにより、学習部570は、室温Tiが安定しているときに取得されたデータを用いて、近似直線を求めることができる。そのため、近似直線の傾きにより表される断熱性能又は日射の入りやすさと、切片により表される内部発熱量Qnとを、精度良く求めることができる。
学習部570は、例えばε−NTU(Number of Transfer Unit)法により、顕熱分の空調能力を算出する。全熱能力、顕熱能力及び潜熱能力は、下記(12)〜(14)式により表される。
全熱能力=エンタルピ効率・空気密度・風量・(室内機13の吸込空気エンタルピ−室内熱交換器25の配管温度の飽和空気エンタルピ) …(12)
顕熱能力=温度効率・空気密度・空気比熱・風量・(室内機13の吸込空気温度−室内熱交換器25の配管温度) …(13)
潜熱能力=全熱能力−顕熱能力 …(14)
次に、図20を参照して、学習の精度を向上するためのデータ処理方法について説明する。実際に学習部570が履歴情報150に基づいて学習する場合、データ点が座標平面に均一にプロットされるとは限られない。例えば、図20に示す例では、温度差ΔTioが大きい領域、具体的には、温度差ΔTioがT3からT4までの間の領域に、データ点が偏って分布している。なお、プロットされた全データ点を黒丸で表している。ここで、全データ点を用いて近似直線を求めると、データ点が多数ある領域の影響を強く受け、近似直線の傾き及び切片が正確に求められないことがある。図20には、全データ点を用いて求めた近似直線L31の傾きが小さく、且つ、その切片が大きくなる例が示されている。つまり、この場合、断熱性能が良く、内部発熱量Qnが大きい家屋3とみなされ、誤差が大きくなる。
そこで、学習部570は、黒丸で表される全データ点ではなく、白丸で表される代表データ点を用いて、近似直線を求めることが好適である。図20には、温度差ΔTioの領域を、予め定められた温度幅で複数の区分に分類し、分類された温度幅毎に1つの代表データ点を求める例が示されている。代表データ点は、例えば、1つの区分に属する全データ点の平均値を表すデータ点である。平均値は、温度差ΔTioと空調能力とのそれぞれについて求められる。言い換えると、学習部570は、座標平面において、複数の区分のうちの1つの区分において温度差Δの実績値と空調能力の実績値とのそれぞれを平均化することにより、この1つの区分に含まれる複数のデータ点を1つの代表データ点に統合する。そして、学習部570は、統合後の代表データ点により近似直線を求める。
図20の例では、代表データ点を用いて求められた近似直線L32の傾きは、全データ点を用いて求められた近似直線L31の傾きよりも大きい。また、近似直線L32の切片は、近似直線L31の切片よりも小さい。このように区分毎に求められた代表データ点を用いることで、全データ点を用いるよりも精度良く近似直線の傾きと切片とを求めることができる。また、かかる手法によれば、例えば、空調装置1の使い始めの頃のように、データの個数が少なく、或いは条件が偏っている場合においても、精度良く学習することができる。
このように、実施の形態4に係る空調装置1は、室内空間71の熱特性を学習し、学習結果に基づいて定常顕熱負荷Qsを推定する。これにより、室温Tiを設定温度Tmに維持するための定常顕熱負荷Qsを精度良く推定することができる。例えば、室温Tiが27℃である場合、冷房モードで空調することが一般的だが、断熱性能が高い住宅のように定常顕熱負荷Qsが小さい状況では、冷房モードでは室内熱交換器25における冷媒の蒸発温度が高くなって十分に除湿されなくなる。このような場合には、除湿モードに切り替えた方が快適性が高まる。実施の形態4に係る空調装置1は、室内空間71の熱特性を学習により見積もるため、様々な気象条件、建物条件及び生活条件において、各種の運転モードの切り替えの際に室温変動が少なく、快適な空調を提供することができる。
(実施の形態5)
次に、本発明の実施の形態5について説明する。上記実施の形態では、顕熱閾値Qs1〜Qs4又は温度閾値ΔT1〜ΔT4は、予め定められた値に固定されていた。これに対して、実施の形態5では、空調装置1は、状況に応じて第1、第2の顕熱閾値Qs1,Qs2を補正する。
図21に、実施の形態5に係る空調装置1に備えられた室外機制御部51bの機能的な構成を示す。なお、室外機制御部51bは、実施の形態1と同様のハードウェア構成を備えているため、説明を省略する。
図21に示すように、室外機制御部51bは、機能的に、取得部510と、推定部520と、判定部530と、空調制御部540と、報知部550と、情報更新部560と、学習部570と、を備える。取得部510、推定部520、判定部530、空調制御部540及び報知部550の機能については、実施の形態1と同様である。
具体的に説明すると、取得部510は、室温Ti、外気温Tо、窓温度Tw等の負荷情報を取得する。空調制御部540は、取得部510により取得された室温Ti、外気温Tо、窓温度Tw等に基づく指標値である定常顕熱負荷Qsに応じて運転モードを切り替えて、空調部110に室内空間71を空調させる。より詳細には、空調制御部540は、空調部110が第1のモードで室内空間71を空調している際に定常顕熱負荷Qsが閾値よりも小さくなると、運転モードを、第1のモードよりも空調部110の最大顕熱能力が低い第2のモードに切り替える。ここで、第1のモードと第2のモードは、閾値が第1の顕熱閾値Qs1である場合にはそれぞれ冷房モードと第1の除湿モードに相当し、閾値が第2の顕熱閾値Qs2である場合にはそれぞれ第1の除湿モードと第2の除湿モードに相当する。
補正部580は、取得部510により取得された室温Tiに応じて、第1、第2の顕熱閾値Qs1,Qs2を補正する。具体的に説明すると、補正部580は、空調制御部540により運転モードが切り替えられた後における室温Tiの変化に応じて、第1、第2の顕熱閾値Qs1,Qs2を補正する。補正部580は、制御部101により実現される。補正部580は、補正手段として機能する。
運転モードが冷房モードから第1の除湿モードに切り替えられた後に室温Tiが上昇した場合は、第1の除湿モードでの顕熱能力が顕熱負荷よりも小さいため室温Tiを維持することができない場合に相当する。この場合、補正部580は、第1の顕熱閾値Qs1を減少させて、第1の除湿モードでの顕熱能力が顕熱負荷を下回らないようにする。同様に、運転モードが第1の除湿モードから第2の除湿モードに切り替えられた後に室温Tiが上昇した場合、補正部580は、第2の顕熱閾値Qs2を減少させる。
これに対して、運転モードが冷房モードから第1の除湿モードに切り替えられた後に外気温Tоが上昇したにもかかわらず室温Tiが上昇しなかった場合は、第1の除湿モードでの顕熱能力が顕熱負荷よりも大きいため室温Tiの維持に余裕がある場合に相当する。この場合、補正部580は、第1の顕熱閾値Qs1を増加させて、第1の除湿モードでのカバー範囲を広げる。同様に、運転モードが第1の除湿モードから第2の除湿モードに切り替えられた後に外気温Tоが上昇したにもかかわらず室温Tiが上昇しなかった場合、補正部580は、第2の顕熱閾値Qs2を増加させる。
ここで、第1の顕熱閾値Qs1の初期値は、例えば、第1の除湿モードで空調部110が発揮することができる最大顕熱能力Qs1maxに設定される。また、第2の顕熱閾値Qs2の初期値は、例えば、第2の除湿モードで空調部110が発揮することができる最大顕熱能力Qs2maxに設定される。このように最大顕熱能力を閾値の初期値に設定するのは、運転モードの切り替え後に空調部110が室温Tiを維持するのに必要な顕熱能力を発揮することができるようにするためである。補正部580は、運転モードが切り替えられた後に室温Tiが上昇した場合、顕熱閾値Qs1,Qs2を減少させることで、最大顕熱能力を減少方向に補正する。これに対して、運転モードが切り替えられた後に外気温Tоが上昇したにもかかわらず室温Tiが上昇しなかった場合、補正部580は、顕熱閾値Qs1,Qs2を増加させることで、最大顕熱能力を増加方向に補正する。
より詳細には、補正部580は、運転モードが冷房モードから第1の除湿モードに切り替えられた後において、室温Tiが上昇した場合、又は、外気温Toが上昇したにもかかわらず室温Tiが上昇しなかった場合、空調部110の顕熱能力と第1の顕熱閾値Qs1とのずれに応じて、第1の顕熱閾値Qs1を補正する。切り替え後の第1の除湿モードで室温Tiが上昇した場合は、顕熱能力が第1の顕熱閾値Qs1よりも小さくなっている可能性が高い。この場合、補正部580は、顕熱能力と第1の顕熱閾値Qs1との差が大きいほど、第1の顕熱閾値Qs1をより大きく減少させる。
これに対して、切り替え後の第1の除湿モードにおいて、外気温Toが上昇したにもかかわらず室温Tiが上昇しなかった場合は、顕熱能力に余裕があるため、顕熱能力が第1の顕熱閾値Qs1よりも大きくなっている可能性が高い。この場合、補正部580は、顕熱能力と第1の顕熱閾値Qs1との差が大きいほど、第1の顕熱閾値Qs1をより大きく増加させる。
また、補正部580は、顕熱能力と第1の顕熱閾値Qs1とのずれが生じた回数に応じて、第1の顕熱閾値Qs1を補正する。ずれが生じた回数とは、運転モードの切り替え後に、室温Tiが上昇した場合、又は、外気温Toが上昇したにもかかわらず室温Tiが上昇しなかった場合において、顕熱能力と第1の顕熱閾値Qs1とのずれの度合いの最大値が予め規定された値よりも大きくなった回数である。補正部580は、ずれが生じた回数を記憶部102に記憶しておき、ずれが生じた回数が多いほど、第1の顕熱閾値Qs1をより大きく補正する。
このように、補正部580は、顕熱能力と第1の顕熱閾値Qs1とのずれの度合い及びずれが生じた回数に応じて、第1の顕熱閾値Qs1を補正する。第2の顕熱閾値Qs2についても同様である。補正部580により第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2が補正された後、空調制御部540は、補正後の第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2を用いて空調を制御する。具体的に説明すると、空調制御部540は、室温Tiが補正後の第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2よりも大きいか否かに応じて運転モードを切り替えて、空調部110に室内空間71を空調させる。
このように顕熱閾値Qs1,Qs2を状況に応じて補正することにより、家屋3の熱特性及びその周囲の環境により適した顕熱閾値Qs1,Qs2を得ることができる。そのため、早すぎるタイミング又は温度戻りが発生するタイミングのように、快適性が低下するタイミングで運転モードが切り替わることを抑制することができる。その結果、適切なタイミングで運転モードを切り替えて室内空間71を空調することができ、快適性を向上させることができる。また適切な運転モードで空調できるため、省エネ性を高めることができる。
<顕熱閾値の学習>
更に、実施の形態5において、学習部570は、取得部510により取得された室温Tiと外気温Tоとの温度差ΔTiоと、補正部580により補正された第1、第2の顕熱閾値Qs1,Qs2と、の関係を学習する。具体的に説明すると、情報更新部560は、補正部580により第1の顕熱閾値Qs1又は第2の顕熱閾値Qs2が補正されると、補正後の顕熱閾値Qs1,Qs2を、その時の温度差ΔTiоと対応付けて、履歴情報150に記憶する。履歴情報150は、補正部580により補正された後の第1、第2の顕熱閾値Qs1,Qs2と、その時の温度差ΔTioと、の対応関係を過去の履歴として格納している。学習部570は、履歴情報150を参照して、温度差ΔTiоと第1、第2の顕熱閾値Qs1,Qs2との関係を学習する。なお、環境条件ごとに圧縮機21の最大周波数が異なる場合、履歴情報150は、温度差ΔTioの代わりに、最大周波数と第1、第2の顕熱閾値Qs1,Qs2とを対応付けて格納してもよい。
図22に、温度差ΔTiоごとに第1の顕熱閾値Qs1をプロットした例を示す。図22において、黒丸は、第1の顕熱閾値Qs1の初期値を表し、白丸は、補正部580により初期値から補正された後の第1の顕熱閾値Qs1を表す。学習部570は、このようなプロットに対して最小二乗法等の手法を用いることにより、第1の顕熱閾値Qs1と温度差ΔTioとの対応関係を、例えば図22において破線で示す相関線で近似する。このとき、学習部570は、相関線として、計算の簡便化のために一次式を用いる。
学習部570は、補正部580により第1の顕熱閾値Qs1が補正されると、その時の温度差ΔTioと対応付けてプロットを更新する。そして、学習部570は、更新後のプロットを新たな相関線で近似することにより、学習結果を更新する。このようにして、学習部570は、補正部580により補正された後の第1の顕熱閾値Qs1と温度差ΔTioとの対応関係を学習する。また、学習部570は、第2の顕熱閾値Qs2に対しても、第1の顕熱閾値Qs1と同様に、温度差ΔTioとの対応関係を学習する。
補正部580は、取得部510により室温Tiと外気温Tоとが新たに取得されると、新たに取得された室温Tiと外気温Tоとの温度差ΔTiоと、学習部570により学習された関係と、に基づいて顕熱閾値Qs1,Qs2を補正する。空調制御部540は、補正部580により補正された顕熱閾値Qs1,Qs2を用いて、空調の運転モードを切り替える。このように、温度差ΔTiоと顕熱閾値Qs1,Qs2との対応関係を学習し、現在の温度差ΔTioに応じて顕熱閾値Qs1,Qs2を補正することにより、状況に応じてより高精度に顕熱閾値Qs1,Qs2を補正することができる。特に、第2の除湿モードが再熱除湿モードである場合には、他の除湿モードに比べて温度差ΔTiоが変わると顕熱閾値が大きく変動する傾向にあるため、より効果的である。
なお、実施の形態2と同様に、空調制御部540は、室温Tiと設定温度Tmとの温度差ΔTに応じて運転モードを切り替えても良い。その場合、補正部580は、第1、第2の顕熱閾値Qs1,Qs2を補正する代わりに、第1、第2の温度閾値ΔT1,ΔT2を補正する。
冷房モードから第1の除湿モードに遷移する場合の第1の顕熱閾値Qs1を、第1の除湿モードから冷房モードに戻る場合の第1の顕熱閾値Qs1よりも、1γ〜2γ程度小さくしても良い。第2から第4の顕熱閾値Qs2〜Qs4も同様である。このように運転モードの切り替えにヒステリシスを設けることで、短時間で運転モードが頻繁に切り替わることを抑制することができる。ここで、γの値は、例えば室温Tiを1℃上昇させるのに必要な熱量である。また、γの値を学習により得ても良い。これにより、1〜2℃相当といった精密な操作が可能となり、頻繁な切り替えを防止しながらも、適切なタイミングで運転モードの切り替えが可能になる。
(変形例)
以上、本発明の実施の形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。
例えば、上記実施の形態では、空調装置1は、「弱冷房除湿」、「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」、「拡張除湿」、「再熱除湿」及び「送風」の各運転モードで室内空間71を空調した。しかしながら、本発明において、空調装置1は、これらの運転モードのうちのいずれかで空調する機能を備えていなくても良い。空調装置1が「再熱除湿」の機能を備えない場合、室内機13は、2つの熱交換器25a,25bと膨張弁26とを備えなくても良く、室内空間71の空気と冷媒との間で熱交換を行う室内熱交換器を1つ備えていれば良い。また、空調装置1が「ダブルファン除湿」の機能を備えない場合、室内機13は、2つの室内送風機33a,33bを備えなくても良く、室内熱交換器25に送風する室内送風機を1つ備えていれば良い。
上記実施の形態では、第1の除湿モードは「弱冷房除湿」であり、第2の除湿モードは「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」であるとして説明した。しかしながら、第1の除湿モードの方が第2の除湿モードよりも最大顕熱能力が高ければ、第1の除湿モード及び第2の除湿モードがどの運転モードであっても良い。例えば、第1の除湿モードが「弱冷房除湿」、「ダブルファン除湿」、「露点温度除湿」、「部分冷却除湿」又は「拡張除湿」であって、第2の除湿モードが「再熱除湿」であっても良い。また、制御可能な除湿モードが第1の除湿モードと第2の除湿モードとのどちらか一方のみであっても良い。
自動モードは、暖房モードも含んでいても良い。暖房モードと冷房モードとは外気温To又は設定温度Tmに基づいて切り替え可能である。例えば、空調制御部540は、外気温Tо又は設定温度Tmが予め定められた値より低ければ暖房モードに切り替え、予め定められた値より高ければ冷房モードに切り替える。
上記実施の形態では、取得部510は、日射量を示す指標として、赤外線センサ43により検知された窓温度Twを取得した。しかしながら、本発明において、取得部510は、日射量を示す指標として、窓温度Twに限らず、日射量を直接的又は間接的に示す情報であればどのような情報を取得しても良い。例えば、取得部510は、照度センサにより検知された室内空間71の照度、又は、カメラによって撮影された室内空間71の画像を取得し、照度又は画像から室内空間71に差し込む日射量を推測しても良い。また、取得部510は、外部の通信ネットワークを介して太陽光発電設備による発電量の情報を取得しても良いし、外部の通信ネットワークを介して日射量の情報を含む気象データを示す情報を取得しても良い。
上記実施の形態では、室外機制御部51が、図5、図16又は図21に示した各部の機能を備えており、空調装置1を制御する制御装置として機能した。しかしながら、本発明において、これらの各機能のうちの一部又は全部を、室内機制御部53が備えていても良いし、空調装置1の外部の装置が備えていても良い。
例えば、図23に示すように、空調装置1と制御装置100とを備える空調システムSにおいて、空調装置1と通信ネットワークNを介して接続された制御装置100が、図5、図16又は図21に示した各部の機能を備えていても良い。例えば、通信ネットワークNは、エコーネットライト(ECHONET Lite)に準じた宅内ネットワークであって、制御装置100は、家屋3における電力を管理するHEMS(Home Energy Management System)のコントローラであっても良い。或いは、通信ネットワークNは、インターネット等の広域ネットワークであって、制御装置100は、家屋3の外部から空調装置1を制御するサーバであっても良い。
制御装置100が上記の各機能を備える場合、空調システムSは、制御装置100による制御対象として複数の空調装置1を備えていても良い。この場合、空調装置1の台数は限定されない。制御装置100の制御対象は、空調装置1のように、冷凍サイクルを備える装置であれば良く、その詳細な構成は限定されない。
上記実施の形態では、空調装置1が設置される対象として、家屋3を例に挙げて説明した。しかしながら、本発明において、空調装置1が設置される対象は、集合住宅、オフィスビル、施設、工場等であっても良い。空調空間は、家屋3内の部屋であることに限らず、空調装置1の空調対象となる空間であれば、どのような空間であっても良い。空調装置1は、1台の室外機11と1台の室内機13とを備えることに限らず、1台の室外機11と複数台の室内機13とを備えるものであっても良いし、複数台の室内機13の中に冷房する室内機13と暖房する室内機13とを混在させて運転することが可能なものであっても良い。
上記実施の形態では、ユーザがリモートコントローラ55を操作して設定温度Tm及び設定湿度RHmの数値を入力した。しかしながら、ユーザがリモートコントローラ55で冷房又は除湿の強/中/弱を指定することで、対応する設定温度Tm又は設定湿度RHmが定められても良い。また、リモートコントローラ55以外のユーザインタフェースを用いて、ユーザの入力を受け付けても良いし、報知部550による報知情報を出力しても良い。
上記実施の形態では、制御部101において、CPUがROM又は記憶部102に記憶されたプログラムを実行することによって、図5、図16又は図21に示した各部として機能した。しかしながら、本発明において、制御部101は、専用のハードウェアであってもよい。専用のハードウェアとは、例えば単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組み合わせ等である。制御部101が専用のハードウェアである場合、各部の機能それぞれを個別のハードウェアで実現してもよいし、各部の機能をまとめて単一のハードウェアで実現してもよい。
また、各部の機能のうち、一部を専用のハードウェアによって実現し、他の一部をソフトウェア又はファームウェアによって実現してもよい。このように、制御部101は、ハードウェア、ソフトウェア、ファームウェア、又は、これらの組み合わせによって、上述の各機能を実現することができる。
本発明に係る制御部101の動作を規定するプログラムを、パーソナルコンピュータ又は情報端末装置等の既存のコンピュータに適用することで、当該コンピュータを、本発明に係る空調装置1又は制御装置100として機能させることも可能である。
また、このようなプログラムの配布方法は任意であり、例えば、CD−ROM(Compact Disk ROM)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、又は、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。