Nothing Special   »   [go: up one dir, main page]

JPWO2013145989A1 - Imaging lens, imaging device, and portable terminal - Google Patents

Imaging lens, imaging device, and portable terminal Download PDF

Info

Publication number
JPWO2013145989A1
JPWO2013145989A1 JP2014507536A JP2014507536A JPWO2013145989A1 JP WO2013145989 A1 JPWO2013145989 A1 JP WO2013145989A1 JP 2014507536 A JP2014507536 A JP 2014507536A JP 2014507536 A JP2014507536 A JP 2014507536A JP WO2013145989 A1 JPWO2013145989 A1 JP WO2013145989A1
Authority
JP
Japan
Prior art keywords
lens
imaging
conditional expression
imaging lens
following conditional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014507536A
Other languages
Japanese (ja)
Inventor
貴志 川崎
貴志 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014507536A priority Critical patent/JPWO2013145989A1/en
Publication of JPWO2013145989A1 publication Critical patent/JPWO2013145989A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

画角65?以上、Fナンバー3以下の広角で明るいレンズにおいて、従来タイプより誤差感度が低く成形性などが良好でありながら、諸収差が補正された3枚構成の撮像レンズ、及びそれを用いた撮像装置並びに携帯端末を提供する。撮像レンズは、物体側から順に第1レンズ、開口絞り、第2レンズ、第3レンズからなり、前記第1レンズは物体側面が凸面の正レンズ、前記第2レンズは物体面が凹面の正メニスカスレンズ、前記第3レンズは像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズであり、以下の条件式を満足する。−5.0 < r3/f < −0.4 ・・・(1)0.0 < f1/f2 < 5.0 ・・・(2)但し、r3:前記第2レンズ物体側面の曲率半径(mm)f:全系の焦点距離(mm)f1:前記第1レンズの焦点距離(mm)f2:前記第2レンズの焦点距離(mm)A wide-angle, bright lens with an angle of view of 65? Or more and an F number of 3 or less, and a three-lens imaging lens with various aberrations corrected while having lower error sensitivity and better moldability than the conventional type, and its use An imaging apparatus and a portable terminal are provided. The imaging lens includes a first lens, an aperture stop, a second lens, and a third lens in order from the object side. The first lens is a positive lens having a convex object side surface, and the second lens is a positive meniscus having a concave object surface. The third lens is a negative lens whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is a convex aspheric surface around the lens, and satisfies the following conditional expression: To do. −5.0 <r3 / f <−0.4 (1) 0.0 <f1 / f2 <5.0 (2) where r3: radius of curvature of the side surface of the second lens object ( mm) f: focal length of the entire system (mm) f1: focal length of the first lens (mm) f2: focal length of the second lens (mm)

Description

本発明は、CCD(Charge Coupled Device)型イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置に好適な撮像レンズ及び撮像レンズを用いた撮像装置並びに携帯端末に関するものである。   The present invention relates to an imaging lens suitable for an imaging device using a solid-state imaging device such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, an imaging device using the imaging lens, and a portable terminal. It is about.

近年、CCD(Charge Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像素子の高性能化、小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及しつつある。また、これらの撮像装置に搭載される撮像レンズには、さらなる小型化、高性能化への要求が高まっている。近頃では、このような携帯端末に高画素・高性能のメインカメラと、低画素・小型のサブカメラの2つが搭載されている場合も多い。   In recent years, with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, Portable information terminals are becoming popular. In addition, there is an increasing demand for further downsizing and higher performance of imaging lenses mounted on these imaging apparatuses. Recently, there are many cases where such a portable terminal is equipped with a high-pixel, high-performance main camera and a low-pixel, small-sized sub camera.

メインカメラ用途の撮像レンズとしては、高性能化が必要とされるため3枚乃至5枚構成の撮像レンズが提案されている。一方で、サブカメラとしては、これまではVGAクラスの画素数が一般的で、1〜2枚構成の撮像レンズが主であったが、最近では携帯端末における画像表示素子の高解像度化、大型化に伴い、サブカメラも2Mクラスへ高画素化が進み、撮像装置への要求性能も高まっている。そのため1〜2枚構成に比べ高性能化が可能な3枚構成の撮像レンズが提案されている。しかしながら、3枚構成になると2枚構成に比べ要素が多いため、それぞれの製造誤差が積み重なることによる性能劣化が著しく、2枚構成の撮像レンズよりも高精度に製造しなければ、高性能化が難しい。そのため、3枚構成の撮像レンズの光学設計には誤差感度が低く、生産性の観点で優れた設計が求められる。ここで、3枚構成の撮像レンズとしては、特許文献1,2のような、正正負構成の撮像レンズが知られている。   As an imaging lens for main camera applications, an imaging lens having a configuration of three to five lenses has been proposed because high performance is required. On the other hand, as a sub-camera, the number of pixels of the VGA class has been common so far, and the image pickup lens having one or two lenses has been mainly used. As the number of sub-cameras increases to 2M class, the required performance of imaging devices is also increasing. For this reason, an imaging lens having a three-lens configuration that can achieve higher performance than one or two-lens configurations has been proposed. However, since the number of elements in the three-lens configuration is larger than that in the two-lens configuration, the performance deterioration due to the accumulation of the respective manufacturing errors is significant. difficult. For this reason, the optical design of the three-lens imaging lens requires a low error sensitivity and an excellent design from the viewpoint of productivity. Here, as imaging lenses having a three-lens configuration, imaging lenses having a positive / negative configuration as in Patent Documents 1 and 2 are known.

特開2004−326097号公報JP 2004-326097 A 特開2007−322561号公報JP 2007-322561 A

しかしながら、特許文献1に記載の撮像レンズでは、第2レンズの物体側面の曲率が強過ぎるため、前記光学面が光軸から偏芯した時に、大きな片ボケが発生してしまう。従って、第1レンズと第2レンズの光軸間に発生する偏芯を高精度に管理することが必要となり、生産性に懸念がある。また、特許文献2に記載の撮像レンズも同様に、第2レンズの物体側面の曲率が強過ぎるため、前記光学面が光軸から偏芯した時に発生する軸上コマ収差が大きく、生産性に懸念がある。更に、特許文献1、特許文献2の両方に開示された技術では、最大像高2mm以内の撮像レンズとした時に、レンズの厚みが薄くなり過ぎ、レンズ成形が困難となる懸念がある。   However, in the imaging lens described in Patent Document 1, since the curvature of the object side surface of the second lens is too strong, large one-sided blur occurs when the optical surface is decentered from the optical axis. Therefore, it is necessary to manage the eccentricity generated between the optical axes of the first lens and the second lens with high accuracy, and there is a concern about productivity. Similarly, in the imaging lens described in Patent Document 2, since the curvature of the object side surface of the second lens is too strong, the axial coma generated when the optical surface is decentered from the optical axis is large, which increases productivity. There are concerns. Furthermore, with the techniques disclosed in both Patent Document 1 and Patent Document 2, when an imaging lens having a maximum image height of 2 mm or less is used, there is a concern that the lens thickness becomes too thin and lens molding becomes difficult.

本発明は、このような問題点に鑑みてなされたものであり、画角65°以上、Fナンバー3以下の広角で明るいレンズにおいて、従来タイプより誤差感度が低く成形性などが良好でありながら、諸収差が補正された3枚構成の撮像レンズ、及びそれを用いた撮像装置並びに携帯端末を提供することを目的とする。   The present invention has been made in view of such problems, and in a wide-angle and bright lens having an angle of view of 65 ° or more and an F number of 3 or less, the error sensitivity is lower than the conventional type and the moldability is good. An object of the present invention is to provide a three-lens imaging lens in which various aberrations are corrected, an imaging device using the imaging lens, and a portable terminal.

ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
TTL/2Y<1.10・・・(14)
Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
TTL / 2Y <1.10 (14)

ただし、ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲が良い。
TTL/2Y<1.00・・・(14)’
Here, the image-side focus refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens. When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel. The flat plate portion is calculated as the above L value after the air conversion distance. More preferably, the range of the following formula is good.
TTL / 2Y <1.00 (14) '

請求項1に記載の撮像レンズは、最大像高の画角が65°以上、かつFナンバーが3.0以下の撮像レンズにおいて、
物体側から順に第1レンズ、開口絞り、第2レンズ、第3レンズからなり、
前記第1レンズは物体側面が凸面の正レンズ、
前記第2レンズは物体面が凹面の正メニスカスレンズ、
前記第3レンズは像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズであり、
以下の条件式を満足することを特徴とする撮像レンズ。
−5.0 < r3/f < −0.4 ・・・(1)
0.0 < f1/f2 < 5.0 ・・・(2)
但し、
r3:前記第2レンズ物体側面の曲率半径(mm)
f:全系の焦点距離(mm)
f1:前記第1レンズの焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
The imaging lens according to claim 1, wherein the angle of view of the maximum image height is 65 ° or more and the F number is 3.0 or less.
It consists of the first lens, aperture stop, second lens, and third lens in order from the object side.
The first lens is a positive lens having a convex object side surface,
The second lens is a positive meniscus lens having a concave object surface,
The third lens is a negative lens whose image side surface is a concave surface near the optical axis, has an inflection point within the effective diameter, and is an aspheric surface that is a convex surface around the lens,
An imaging lens satisfying the following conditional expression:
−5.0 <r3 / f <−0.4 (1)
0.0 <f1 / f2 <5.0 (2)
However,
r3: radius of curvature (mm) of the side surface of the second lens object
f: Focal length of the entire system (mm)
f1: Focal length (mm) of the first lens
f2: Focal length (mm) of the second lens

最も物体側に、前記第1レンズとして物体側に凸面を向けた正レンズ(正のパワーを有するレンズ)を配置することで、主点位置を物体側へ寄せることができるため、レンズ全長を短縮することが出来る。また、前記開口絞りを前記第1レンズと前記第2レンズの間に配置することで、前記第1レンズと前記第2レンズが前記開口絞りを挟んで対称に近い構成を取ることができるため、収差補正に有利になる。   By placing a positive lens (a lens with positive power) facing the object side as the first lens on the most object side, the principal point can be moved closer to the object side, reducing the total lens length. I can do it. In addition, since the aperture stop is disposed between the first lens and the second lens, the first lens and the second lens can have a configuration close to symmetry with the aperture stop interposed therebetween. This is advantageous for aberration correction.

また前記第2レンズとして物体側に凹面を向けたメニスカスレンズを配置することで、前記第2レンズ物体側面および像側面への光線入射角を小さくすることができるため、収差の発生を抑えることができる。更に前記第2レンズを正レンズとすることで、全長短縮時に前記第1レンズに偏りがちな正のパワーを前記第2レンズと分担することができ、広角化しても収差補正を良好にすることが出来る。   In addition, by arranging a meniscus lens having a concave surface facing the object side as the second lens, it is possible to reduce a light incident angle on the object side surface and the image side surface of the second lens, thereby suppressing the occurrence of aberrations. it can. Furthermore, by making the second lens a positive lens, it is possible to share the positive power that tends to be biased to the first lens when the total length is shortened with the second lens, and to improve aberration correction even when the angle is widened. I can do it.

また前記第3レンズとして像側面の光軸付近を凹面とする負レンズ(負のパワーを有するレンズ)を配置することで、ある程度バックフォーカスを確保することができ、同時に変曲点を持ち周辺部で凸面となる非球面とすることで、周辺光線のテレセントリック特性を良好にすることができる。   Further, by arranging a negative lens (lens having negative power) having a concave surface near the optical axis on the image side as the third lens, it is possible to secure a certain degree of back focus, and at the same time have an inflection point and a peripheral portion. By making the convex aspherical surface, the telecentric characteristics of the peripheral rays can be improved.

最大像高画角65°以上の広角であり、なおかつF3以下の明るさと持ちつつ、光学全長の小さい撮像レンズを、3枚レンズであって第1レンズと第2レンズの間に開口絞りがある構成で達成しようとすると、より物体側に強い正のパワーが必要であり、なおかつ誤差感度を下げる観点から各レンズの光学面は曲率半径を大きくする必要がある。従って、前記第1レンズと前記第2レンズを一つのレンズ群と見なした時に、その群は強い正のパワーを持つ必要があり、その正のパワーは収差補正や誤差感度低減の観点から前記第1レンズと前記第2レンズで分担することが望ましい。条件式(2)は、前記第1レンズと前記第2レンズのパワー比の条件式であるが、条件式(2)の値が下限を下回るほど前記第1レンズのパワーが強い場合、前記第1レンズの偏芯誤差感度が非常に高くなってしまい、生産性が悪くなってしまう懸念がある。また、条件式(2)の値が上限を上回るほど前記第2レンズのパワーが強い場合、これも同じく前記第2レンズの偏芯誤差感度が高くなってしまい、生産性が悪くなってしまう懸念がある。そこで、条件式(2)を満たすことで、前記第1レンズおよび前記第2レンズの偏芯誤差感度を抑えつつ、広角かつ明るいレンズとしても性能を良好にすることができる。   An image pickup lens having a wide angle of 65 ° or more and a brightness of F3 or less and a small optical total length is a three-lens lens with an aperture stop between the first lens and the second lens. If it is going to be achieved by the configuration, a stronger positive power is required on the object side, and the optical surface of each lens needs to have a larger radius of curvature from the viewpoint of reducing error sensitivity. Accordingly, when the first lens and the second lens are regarded as one lens group, the group needs to have a strong positive power, and the positive power is the above-mentioned in terms of aberration correction and error sensitivity reduction. It is desirable to share the first lens and the second lens. Conditional expression (2) is a conditional expression of the power ratio between the first lens and the second lens. When the power of the first lens is so strong that the value of conditional expression (2) is lower than the lower limit, There is a concern that the decentering error sensitivity of one lens becomes very high, and the productivity deteriorates. Further, when the power of the second lens is so strong that the value of the conditional expression (2) exceeds the upper limit, the decentration error sensitivity of the second lens is also increased, and the productivity may be deteriorated. There is. Therefore, by satisfying conditional expression (2), it is possible to improve the performance as a wide-angle and bright lens while suppressing the eccentric error sensitivity of the first lens and the second lens.

また条件式(1)は、前記第2レンズの物体側面の曲率半径と全系の焦点距離の比を規定する条件式であるが、条件式(1)の値が下限を下回るほど曲率半径が小さい場合、特にF3以下の明るいレンズにおいては、暗いレンズに比べ光線高さが高くなり、よりレンズ面の角度が大きいレンズ周辺部に光線が入射するため、偏芯誤差感度が高くなってしまう。また条件式(1)の値が上限を上回るほど曲率半径が大きい場合、面への光線の入射角が大きくなってしまい、コマ収差等の収差の発生を抑えることが困難となる。従って条件式(1)を満たすことで、偏芯誤差感度を低減させつつ、収差補正が良好なレンズとすることができる。   Conditional expression (1) is a conditional expression that regulates the ratio of the curvature radius of the object side surface of the second lens to the focal length of the entire system, and the curvature radius decreases as the value of conditional expression (1) falls below the lower limit. In the case of a small lens, particularly in a bright lens of F3 or less, the height of the light beam is higher than that of a dark lens, and the light beam is incident on the periphery of the lens having a larger angle of the lens surface. If the radius of curvature is so large that the value of conditional expression (1) exceeds the upper limit, the incident angle of the light ray on the surface becomes large, and it becomes difficult to suppress the occurrence of aberrations such as coma. Therefore, by satisfying conditional expression (1), it is possible to obtain a lens with good aberration correction while reducing decentration error sensitivity.

請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
−1.0 < (r5+r6)/(r5−r6) < 2.5 ・・・(3)
但し、
r5:前記第3レンズ物体側面の曲率半径(mm)
r6:前記第3レンズ像側面の曲率半径(mm)
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
-1.0 <(r5 + r6) / (r5-r6) <2.5 (3)
However,
r5: radius of curvature (mm) of the side surface of the third lens object
r6: radius of curvature (mm) of the side surface of the third lens image

条件式(3)は前記第3レンズの形状を規定する条件式である。条件式(3)の値が下限を上回ることで、負レンズである前記第3レンズの主点位置に対してレンズを物体側へ寄せることができるため、バックフォーカスを確保しやすくなる。また条件式(3)の値が上限を下回ることで、前記第3レンズが物体側に凸面を向けた強いメニスカス形状にならないため、バックフォーカスが長くなり過ぎ光学全長が大きくなってしまうことを防ぐことができる。   Conditional expression (3) is a conditional expression that defines the shape of the third lens. When the value of conditional expression (3) exceeds the lower limit, the lens can be moved toward the object side with respect to the principal point position of the third lens, which is a negative lens, so that it is easy to ensure the back focus. Further, when the value of conditional expression (3) is below the upper limit, the third lens does not have a strong meniscus shape with the convex surface facing the object side, so that the back focus becomes too long and the total optical length is prevented from increasing. be able to.

請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
0.9 < f1/f < 1.2・・・(4)
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied.
0.9 <f1 / f <1.2 (4)

条件式(4)は、前記第1レンズのパワーと全系のパワーの比を規定する条件式である。条件式(4)の値が下限を上回ることで、前記第1レンズのパワーが強過ぎることによる高次収差の発生や、偏芯誤差感度の上昇を防ぐことが出来る。また条件式(4)の値が上限を下回ることで、物体側に近い前記第1レンズの正のパワーが強くなり、全系の主点位置が物体側に寄るため、光学全長の短縮が可能になる。   Conditional expression (4) is a conditional expression that defines the ratio of the power of the first lens to the power of the entire system. When the value of conditional expression (4) exceeds the lower limit, it is possible to prevent the occurrence of higher-order aberrations and the increase in decentering error sensitivity due to the power of the first lens being too strong. Also, if the value of conditional expression (4) is less than the upper limit, the positive power of the first lens close to the object side becomes stronger, and the principal point position of the entire system is closer to the object side, so that the total optical length can be shortened. become.

請求項4に記載の撮像レンズは、請求項1〜3のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.7 < Ds/Y < 1.2・・・(5)
但し、
Ds:前記開口絞りから像面までの距離(mm)
Y:最大像高(mm)
The imaging lens of Claim 4 satisfies the following conditional expressions in the invention of any one of Claims 1-3.
0.7 <Ds / Y <1.2 (5)
However,
Ds: Distance from the aperture stop to the image plane (mm)
Y: Maximum image height (mm)

条件式(5)は、前記開口絞りから像面までの距離と最大像高の比を規定する条件式である。条件式(5)の値が下限を上回ることで、最大像高に対し前記開口絞りを像面から遠ざけ射出瞳位置を物体側へ寄せて、テレセントリック性を良好にすることができる。また条件式(5)の値が上限を下回ることで、前記開口絞りが像面から遠ざかり過ぎることを抑えて、光学全長が大きくなってしまうことを防ぐことができる。   Conditional expression (5) is a conditional expression that defines the ratio of the distance from the aperture stop to the image plane and the maximum image height. When the value of conditional expression (5) exceeds the lower limit, the aperture stop is moved away from the image plane with respect to the maximum image height, and the exit pupil position is moved toward the object side, so that telecentricity can be improved. In addition, when the value of conditional expression (5) is less than the upper limit, it is possible to prevent the aperture stop from being too far from the image plane and to prevent the total optical length from increasing.

請求項5に記載の撮像レンズは、請求項1〜4のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.15 < d1/TTL < 0.3・・・(6)
但し、
d1:前記第1レンズの芯厚(mm)
TTL:前記撮像レンズ全長(平板は空気換算とする)(mm)
The imaging lens of Claim 5 satisfies the following conditional expressions in the invention in any one of Claims 1-4, It is characterized by the above-mentioned.
0.15 <d1 / TTL <0.3 (6)
However,
d1: Core thickness of the first lens (mm)
TTL: Total length of the imaging lens (the flat plate is converted to air) (mm)

条件式(6)は、光学全長と前記第1レンズの軸上厚みの比を規定する条件式である。
条件式(6)の値が下限を上回ることで、前記第1レンズの厚みを十分確保することができるため、成形性に有利になる。また条件式(6)の値が上限を下回ることで、前記第1レンズが厚くなり過ぎ光学全長の短縮が困難になるのを防ぐことができる。
Conditional expression (6) is a conditional expression that defines the ratio between the total optical length and the axial thickness of the first lens.
When the value of conditional expression (6) exceeds the lower limit, the thickness of the first lens can be sufficiently secured, which is advantageous for moldability. Moreover, when the value of conditional expression (6) is less than the upper limit, it is possible to prevent the first lens from becoming too thick and shortening the optical total length.

請求項6に記載の撮像レンズは、請求項1〜5のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
−2.0 < (r1+r2)/(r1−r2) < −0.6・・・(7)
但し、
r1:前記第1レンズ物体側面の曲率半径(mm)
r2:前記第1レンズ像側面の曲率半径(mm)
The imaging lens of Claim 6 satisfies the following conditional expressions in the invention in any one of Claims 1-5, It is characterized by the above-mentioned.
−2.0 <(r1 + r2) / (r1−r2) <− 0.6 (7)
However,
r1: curvature radius (mm) of the side surface of the first lens object
r2: radius of curvature (mm) of the side surface of the first lens image

条件式(7)は、前記第1レンズの形状を規定する条件式である。条件式(7)の値が下限を上回ることで、前記第1レンズの物体側面および像側面の曲率半径が小さくなり過ぎることによるコマ収差などの発生を抑えることができる。また条件式(7)の値が上限を下回ることにより前記第1レンズの主点位置が物体側に寄るため、光学全長を短縮することができる。   Conditional expression (7) is a conditional expression that defines the shape of the first lens. When the value of conditional expression (7) exceeds the lower limit, it is possible to suppress the occurrence of coma and the like due to the curvature radii of the object side surface and the image side surface of the first lens becoming too small. Moreover, since the principal point position of the first lens is closer to the object side when the value of conditional expression (7) is less than the upper limit, the optical total length can be shortened.

請求項7に記載の撮像レンズは、請求項1〜6のいずれかに記載の発明において、下記の条件式を満足することを特徴とする。
−2.0 < r3/f < −0.4 ・・・(8)
The imaging lens of Claim 7 satisfies the following conditional expressions in the invention in any one of Claims 1-6, It is characterized by the above-mentioned.
−2.0 <r3 / f <−0.4 (8)

条件式(8)は第2レンズの物体側曲率半径と全系の焦点距離の比のより望ましい範囲であり、この条件式を満たすことで、より偏芯誤差感度と収差補正のバランスを良好にすることができる。   Conditional expression (8) is a more desirable range of the ratio of the object-side radius of curvature of the second lens to the focal length of the entire system. By satisfying this conditional expression, the balance between decentration error sensitivity and aberration correction is improved. can do.

請求項8に記載の撮像レンズは、請求項1〜7のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.7 < f1/f2 < 2.3 ・・・(9)
An imaging lens according to an eighth aspect of the invention according to any one of the first to seventh aspects satisfies the following conditional expression.
0.7 <f1 / f2 <2.3 (9)

条件式(9)は第1レンズと第2レンズの焦点距離の比のより望ましい範囲であり、この条件式を満たすことで、第1レンズと第2レンズのパワー比がより適切になり、偏芯誤差感度を低減することができる。   Conditional expression (9) is a more desirable range of the focal length ratio of the first lens and the second lens. By satisfying this conditional expression, the power ratio of the first lens and the second lens becomes more appropriate, and the The core error sensitivity can be reduced.

請求項9に記載の撮像レンズは、請求項1〜8のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.1< (r5+r6)/(r5−r6) < 2.0・・・(10)
An imaging lens according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the following conditional expression is satisfied.
0.1 <(r5 + r6) / (r5-r6) <2.0 (10)

条件式(10)は第3レンズ形状のより望ましい範囲であり、この条件式を満たすことで、バックフォーカスをより適切に保ちつつ、光学全長を小さくすることができる。   Conditional expression (10) is a more desirable range of the third lens shape. By satisfying this conditional expression, the total optical length can be reduced while maintaining the back focus more appropriately.

請求項10に記載の撮像レンズは、請求項1〜9のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
45 < v3 <70 ・・・(11)
v3:第3レンズのアッベ数
The imaging lens of Claim 10 satisfies the following conditional expressions in the invention in any one of Claims 1-9.
45 <v3 <70 (11)
v3: Abbe number of the third lens

条件式(11)は前記第3レンズのアッベ数を規定する条件式である。条件式(11)の値が下限を上回ることで、前記第3レンズ周辺部による倍率色収差の発生を抑えることができる。また条件式(11)の値が上限を下回ることで、軸上色収差の補正に有利になる。   Conditional expression (11) is a conditional expression that defines the Abbe number of the third lens. When the value of conditional expression (11) exceeds the lower limit, the occurrence of lateral chromatic aberration due to the third lens peripheral portion can be suppressed. Moreover, it becomes advantageous for correction | amendment of a longitudinal chromatic aberration because the value of conditional expression (11) is less than an upper limit.

請求項11に記載の撮像レンズは、請求項1〜10のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
TTL/f < 1.5 ・・・(12)
The imaging lens of Claim 11 satisfies the following conditional expressions in the invention of any one of Claims 1-10.
TTL / f <1.5 (12)

条件式(12)は光学全長と焦点距離の比を規定する条件式である。この条件式を満足することで、画角と光学全長のバランスが良く、光学全長の小さい撮像レンズとすることができる。   Conditional expression (12) is a conditional expression that defines the ratio of the total optical length to the focal length. By satisfying this conditional expression, an imaging lens having a good balance between the angle of view and the total optical length and a small total optical length can be obtained.

請求項12に記載の撮像レンズは、請求項1〜11のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
D/TTL > 1.5・・・(13)
但し、
D:入射瞳径(mm)
An imaging lens according to a twelfth aspect of the invention according to any one of the first to eleventh aspects satisfies the following conditional expression.
D / TTL> 1.5 (13)
However,
D: Entrance pupil diameter (mm)

条件式(13)は入射瞳径と光学全長の比を規定する条件式である。条件式(13)の値が下限を上回ることによって、適切な光量を確保することができ、ノイズの少ないクリアな画像を維持しつつ、全長を短縮することができる。一方、条件式(13)の値が上限を下回ることによって、入射瞳径を大きくしすぎる必要がなく諸収差の補正が容易となる。   Conditional expression (13) is a conditional expression that defines the ratio of the entrance pupil diameter to the total optical length. When the value of conditional expression (13) exceeds the lower limit, an appropriate amount of light can be secured, and the total length can be shortened while maintaining a clear image with little noise. On the other hand, when the value of conditional expression (13) is less than the upper limit, it is not necessary to make the entrance pupil diameter too large and various aberrations can be corrected easily.

請求項13に記載の撮像レンズは、請求項1〜12のいずれかに記載の発明において、実質的にパワーを有しないレンズを有することを特徴とする。つまり、請求項1の構成に、実質的にパワーを持たないダミーレンズを付与した場合でも本発明の適用範囲内である。   An imaging lens according to a thirteenth aspect is characterized in that, in the invention according to any one of the first to twelfth aspects, the lens has substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.

請求項14に記載の撮像装置は、請求項1〜13のいずれかに記載の撮像レンズを備えることを特徴とする。   The imaging device of Claim 14 is provided with the imaging lens in any one of Claims 1-13.

請求項15に記載の携帯端末は、請求項14に記載の撮像装置を備えることを特徴とする。   According to a fifteenth aspect of the present invention, there is provided a mobile terminal including the imaging device according to the fourteenth aspect.

本発明によれば、画角65°以上、Fナンバー3以下の広角で明るいレンズにおいて、従来タイプより誤差感度が低く成形性などが良好でありながら、諸収差が補正された3枚構成の撮像レンズ、及びそれを用いた撮像装置並びに携帯端末を提供することができる。   According to the present invention, in a wide-angle and bright lens having an angle of view of 65 ° or more and an F-number of 3 or less, an image with a three-lens structure in which various aberrations are corrected while error sensitivity is lower than a conventional type and moldability is good A lens, an imaging device using the lens, and a portable terminal can be provided.

本実施の形態にかかる撮像装置LUの斜視図である。It is a perspective view of imaging device LU concerning this embodiment. 図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。It is sectional drawing which cut | disconnected the structure of FIG. 1 by the arrow II-II line | wire, and looked at the arrow direction. 携帯電話機Tを示す図である。1 is a diagram showing a mobile phone T. FIG. 実施例1にかかる撮像レンズの断面図である。1 is a cross-sectional view of an imaging lens according to Example 1. FIG. 実施例1にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 1; 実施例2にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 2. FIG. 実施例2にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 2; 実施例3にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 3. FIG. 実施例3にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 6 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 3; 実施例4にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 4. FIG. 実施例4にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 4; 実施例5にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 5. FIG. 実施例5にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 5; 実施例6にかかる撮像レンズの断面図である。6 is a cross-sectional view of an imaging lens according to Example 6. FIG. 実施例6にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 6; 実施例7にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 7. FIG. 実施例7にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d) of the imaging lens according to Example 7; 実施例8にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 8. FIG. 実施例8にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d) of the imaging lens according to Example 8; 実施例9にかかる撮像レンズの断面図である。10 is a cross-sectional view of an imaging lens according to Example 9. FIG. 実施例9にかかる撮像レンズの球面収差(a)、非点収差(b)、及び歪曲収差(c)、メリディオナルコマ収差(d)の収差図である。FIG. 10 is an aberration diagram of spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d) of the imaging lens according to Example 9;

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置LUの斜視図であり、図2は、図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。図2に示すように、撮像装置LUは、光電変換部IMaを有する固体撮像素子としてのCMOS型イメージセンサIMと、このイメージセンサIMの光電変換部(受光面)IMaに被写体像を撮像させる撮像レンズLNと、その電気信号の送受を行う不図示の外部接続用端子(電極)とを備え、これらが一体的に形成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging apparatus LU according to the present embodiment, and FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. As shown in FIG. 2, the imaging device LU is a CMOS type image sensor IM as a solid-state imaging device having a photoelectric conversion unit IMa, and imaging that causes the photoelectric conversion unit (light receiving surface) IMa of the image sensor IM to capture a subject image. A lens LN and an external connection terminal (electrode) (not shown) for transmitting and receiving the electrical signal are provided, and these are integrally formed.

最大像高の画角が65°以上、かつFナンバーが3.0以下の撮像レンズLNは、物体側(図2で上方)から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。レンズは、ガラス製でもプラスチック製でも良い。   The imaging lens LN having an angle of view of the maximum image height of 65 ° or more and an F number of 3.0 or less, in order from the object side (upward in FIG. 2), first lens L1, aperture stop S, second lens L2, The first lens L1 is a positive lens having a convex object side surface, the second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 has an image side surface near the optical axis. It is a negative lens that is concave and has an inflection point within the effective diameter and is an aspherical surface that is convex around the lens. The lens may be made of glass or plastic.

第1レンズL1と第2レンズL2との間にはスペーサSP1が配置され、第2レンズL2と第3レンズL3との間にはスペーサSP2が配置され、第3レンズL3とIRカットフィルタFとの間にはスペーサSP3が配置されている。尚、レンズL1〜L3は、フランジ部同士を当接させていても良い。撮像レンズLNは、以下の式を満たす。
−5.0 < r3/f < −0.4 ・・・(1)
0.0 < f1/f2 < 5.0 ・・・(2)
但し、
r3:第2レンズL2物体側面の曲率半径(mm)
f:全系の焦点距離(mm)
f1:第1レンズL1の焦点距離(mm)
f2:第2レンズL2の焦点距離(mm)
A spacer SP1 is disposed between the first lens L1 and the second lens L2, a spacer SP2 is disposed between the second lens L2 and the third lens L3, and the third lens L3, the IR cut filter F, A spacer SP3 is disposed between the two. The lenses L1 to L3 may be in contact with each other at the flange portions. The imaging lens LN satisfies the following expression.
−5.0 <r3 / f <−0.4 (1)
0.0 <f1 / f2 <5.0 (2)
However,
r3: second lens L2 radius of curvature of object side surface (mm)
f: Focal length of the entire system (mm)
f1: Focal length (mm) of the first lens L1
f2: Focal length (mm) of the second lens L2

撮像レンズLNは、筐体BXの内周に固定されている。筐体BXの下端は、イメージセンサIMを保持する基板STに当接している。   The imaging lens LN is fixed to the inner periphery of the housing BX. The lower end of the housing BX is in contact with the substrate ST that holds the image sensor IM.

イメージセンサIMは、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部IMaが形成されており、不図示の信号処理回路に接続されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、イメージセンサIMの受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、不図示のワイヤを介してイメージセンサIMに接続されている。イメージセンサIMは、光電変換部IMaからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して所定の回路に出力する。ここで、Yは輝度信号、U(=R−Y)は赤と輝度信号との色差信号、V(=B−Y)は青と輝度信号との色差信号である。なお、固体撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。   The image sensor IM has a photoelectric conversion unit IMa as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the plane on the light receiving side, and a signal processing circuit (not shown). It is connected to the. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged near the outer edge of the light receiving side plane of the image sensor IM, and are connected to the image sensor IM via wires (not shown). The image sensor IM converts a signal charge from the photoelectric conversion unit IMa into an image signal such as a digital YUV signal and outputs the image signal to a predetermined circuit via a wire (not shown). Here, Y is a luminance signal, U (= R−Y) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.

イメージセンサIMは、外部接続用端子を介して外部回路(例えば、撮像装置を実装した携帯端末の上位装置が有する制御回路)と接続し、外部回路からイメージセンサIMを駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能とする。   The image sensor IM is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal, and a voltage or a clock for driving the image sensor IM from the external circuit. It is possible to receive a signal and to output a digital YUV signal to an external circuit.

次に、撮像装置を備えた携帯端末の一例として携帯電話機を図3の外観図に基づいて説明する。なお、図3(a)は折り畳んだ携帯電話機を開いて内側から見た図であり、図3(b)は折り畳んだ携帯電話機を開いて外側から見た図である。   Next, a mobile phone as an example of a mobile terminal equipped with an imaging device will be described with reference to the external view of FIG. 3A is a view of the folded mobile phone opened from the inside and FIG. 3B is a view of the folded mobile phone opened from the outside.

図3において、携帯電話機Tは、表示画面D1,D2を備えたケースとしての上筐体71と、操作ボタンBを備えた下筐体72とがヒンジ73を介して連結されている。本実施の形態においては、風景等を撮影するためのメインの撮像装置MCが、上筐体71の表面側に設けられ、上述した広角の撮像レンズLNを備える撮像装置LUが、上筐体71の裏面側であって表示画面D1の上に設けられている。   In FIG. 3, in the mobile phone T, an upper housing 71 as a case having display screens D <b> 1 and D <b> 2 and a lower housing 72 having operation buttons B are connected via a hinge 73. In the present embodiment, the main imaging device MC for photographing a landscape or the like is provided on the surface side of the upper housing 71, and the imaging device LU including the above-described wide-angle imaging lens LN is the upper housing 71. And provided on the display screen D1.

撮像レンズLNは、図3(a)に示すように撮像装置LUに正対した状態で、携帯電話機Tを手で把持した使用者自身の上半身を撮像装置LUにより撮像できる。その画像信号を通信している相手方の携帯電話機に送信して、こちらのユーザーの画像を表示できると共に、通常の通話を行うことにより、いわゆるテレビ電話を実現できる。なお、携帯電話機Tは折り畳み式に限定されるものではない。   As shown in FIG. 3A, the imaging lens LN can capture an image of the upper body of the user who holds the mobile phone T with his / her hand, with the imaging device LU facing the imaging device LU. By transmitting the image signal to the mobile phone of the other party that is communicating and displaying the image of this user, a so-called videophone can be realized by making a normal call. The mobile phone T is not limited to a folding type.

(実施例)
次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。実施例における各符号の意味は以下の通りである(長さの単位は、波長以外mm)。
FL:撮像レンズ全系の焦点距離(mm)
BF:バックフォーカス(mm)(但し、カバーガラス込みの近軸像面までの距離)
Fno :Fナンバー
w :半画角(゜)
Ymax:固体撮像素子の撮像面対角線長の半分の長さ(mm)
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離(mm)(但し、「像側焦点」とは、撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。)
r :屈折面の曲率半径(mm)
d :軸上面間隔(mm)
nd:レンズ材料のd線の常温での屈折率
vd:レンズ材料のアッベ数
STO:開口絞り
(Example)
Next, examples suitable for the above-described embodiment will be described. However, the present invention is not limited to the following examples. The meaning of each code | symbol in an Example is as follows (a unit of length is mm other than a wavelength).
FL: Focal length of the entire imaging lens system (mm)
BF: Back focus (mm) (however, distance to paraxial image plane including cover glass)
Fno: F number w: Half angle of view (°)
Ymax: half length (mm) of the diagonal length of the imaging surface of the solid-state imaging device
TL: Distance (mm) on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system (however, “image-side focal point” means that parallel rays parallel to the optical axis are incident on the imaging lens. This is the image point when
r: radius of curvature of refractive surface (mm)
d: Distance between shaft upper surfaces (mm)
nd: Refractive index of lens material at d-line at room temperature vd: Abbe number of lens material STO: Aperture stop

各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。   In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is h, and is expressed by the following “Equation 1”.

ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
である。
However,
Ai: i-th order aspherical coefficient R: radius of curvature K: conic constant.

また、以降(表のレンズデータを含む)において、10のべき乗数(例えば、2.5×10-02)をEまたはe(例えば2.5e−002)を用いて表すものとする。また、レンズデータの面番号は第1レンズの物体側を1面として順に付与した。なお、実施例に記載の長さを表す数値の単位はすべてmmとする。In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is represented using E or e (for example, 2.5e−002). The surface number of the lens data was given in order with the object side of the first lens as one surface. In addition, the unit of the numerical value showing the length as described in an Example shall be mm.

なお、請求項ならびに実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41〜42を参照のこと)   Incidentally, regarding the meaning of the paraxial radius of curvature described in the claims and the examples, in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter). The approximate radius of curvature when the measured shape of the shape is fitted by the method of least squares can be regarded as the paraxial radius of curvature. For example, when a secondary aspherical coefficient is used, a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius. (For example, see references 41 to 42 of Yoshiya Matsui's “Lens Design Method” (Kyoritsu Publishing Co., Ltd.) for reference)

(実施例1)
実施例1におけるレンズデータを表1に示す。図4は実施例1のレンズの断面図である。実施例1の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
Example 1
Table 1 shows lens data in Example 1. 4 is a sectional view of the lens of Example 1. FIG. The imaging lens according to the first exemplary embodiment includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表1]
[実施例1]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 1.0093 0.5970 1.58313 59.45 1.145
2* -20.0000 0.0040 0.653
STO INFINITY 0.2370 0.603
4* -0.8784 0.5110 1.58313 59.45 0.745
5* -0.5667 0.0200 1.154
6* -11.5146 0.4670 1.58313 59.45 1.438
7* 1.0398 0.2000 1.976
8 INFINITY 0.1750 1.52550 54.49 2.320
IMG INFINITY 0.3186

非球面係数
1:K=-5.82823e-001,A4=-1.44729e-002,A6=2.00267e-001,A8=-3.32259e+000,A10=9.67450e+000,A12=-1.62611e+001
2:K=-5.00000e+001,A4=-6.11206e-001,A6=1.04561e+000,A8=-1.99733e+001,A10=1.15283e+002,A12=-2.53793e+002
4:K=-1.68073e+000,A3=-2.43603e-001,A4=2.23065e+000,A5=-1.48786e+001,A6=5.30436e+000,A7=0.00000e+000,A8=3.24127e+002,A9=0.00000e+000,A10=-3.36409e+003,A11=0.00000e+000,A12=1.75099e+004,A13=0.00000e+000,A14=-3.64514e+004
5:K=-3.32755e+000,A3=2.86194e-001,A4=-5.05356e+000,A5=6.14011e+000,A6=3.30102e+000,A7=0.00000e+000,A8=-1.12011e+001,A9=0.00000e+000,A10=-1.16984e+000,A11=0.00000e+000,A12=1.52798e+002,A13=0.00000e+000,A14=-2.73122e+002
6:K=4.44836e+001,A3=3.72034e-001,A4=-5.49083e+000,A5=7.71369e+000,A6=1.16549e+000,A7=0.00000e+000,A8=-9.45267e+000,A9=0.00000e+000,A10=8.58151e+000,A11=0.00000e+000,A12=-3.13681e+000,A13=0.00000e+000,A14=1.43510e-001
7:K=-4.02482e-001,A3=4.50567e-001,A4=-4.40852e+000,A5=6.83922e+000,A6=-4.20748e+000,A7=0.00000e+000,A8=3.34901e-001,A9=0.00000e+000,A10=9.87298e-001,A11=0.00000e+000,A12=-9.55421e-001,A13=0.00000e+000,A14=2.87654e-001

FL 1.810
Fno 2.42
w 70.85゜
Ymax 1.295
BF 0.627
TL 2.463

Elem Surfs Focal Length Diameter
1 1- 2 1.6651 1.145
2 4- 5 1.7077 1.154
3 6- 7 -1.6134 1.976
[table 1]
[Example 1]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 1.0093 0.5970 1.58313 59.45 1.145
2 * -20.0000 0.0040 0.653
STO INFINITY 0.2370 0.603
4 * -0.8784 0.5110 1.58313 59.45 0.745
5 * -0.5667 0.0200 1.154
6 * -11.5146 0.4670 1.58313 59.45 1.438
7 * 1.0398 0.2000 1.976
8 INFINITY 0.1750 1.52550 54.49 2.320
IMG INFINITY 0.3186

Aspheric coefficient
1: K = -5.82823e-001, A4 = -1.44729e-002, A6 = 2.00267e-001, A8 = -3.32259e + 000, A10 = 9.67450e + 000, A12 = -1.62611e + 001
2: K = -5.00000e + 001, A4 = -6.11206e-001, A6 = 1.04561e + 000, A8 = -1.99733e + 001, A10 = 1.15283e + 002, A12 = -2.53793e + 002
4: K = -1.68073e + 000, A3 = -2.43603e-001, A4 = 2.23065e + 000, A5 = -1.48786e + 001, A6 = 5.30436e + 000, A7 = 0.00000e + 000, A8 = 3.24127 e + 002, A9 = 0.00000e + 000, A10 = -3.36409e + 003, A11 = 0.00000e + 000, A12 = 1.75099e + 004, A13 = 0.00000e + 000, A14 = -3.64514e + 004
5: K = -3.32755e + 000, A3 = 2.86194e-001, A4 = -5.05356e + 000, A5 = 6.14011e + 000, A6 = 3.30102e + 000, A7 = 0.00000e + 000, A8 = -1.12011 e + 001, A9 = 0.00000e + 000, A10 = -1.16984e + 000, A11 = 0.00000e + 000, A12 = 1.52798e + 002, A13 = 0.00000e + 000, A14 = -2.73122e + 002
6: K = 4.44836e + 001, A3 = 3.72034e-001, A4 = -5.49083e + 000, A5 = 7.71369e + 000, A6 = 1.16549e + 000, A7 = 0.00000e + 000, A8 = -9.45267e + 000, A9 = 0.00000e + 000, A10 = 8.58151e + 000, A11 = 0.00000e + 000, A12 = -3.13681e + 000, A13 = 0.00000e + 000, A14 = 1.43510e-001
7: K = -4.02482e-001, A3 = 4.50567e-001, A4 = -4.40852e + 000, A5 = 6.83922e + 000, A6 = -4.20748e + 000, A7 = 0.00000e + 000, A8 = 3.34901 e-001, A9 = 0.00000e + 000, A10 = 9.87298e-001, A11 = 0.00000e + 000, A12 = -9.55421e-001, A13 = 0.00000e + 000, A14 = 2.87654e-001

FL 1.810
Fno 2.42
w 70.85 °
Ymax 1.295
BF 0.627
TL 2.463

Elem Surfs Focal Length Diameter
1 1- 2 1.6651 1.145
2 4- 5 1.7077 1.154
3 6-7 -1.6134 1.976

図5は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。ここで、球面収差図及びメリディオナルコマ収差図において、実線はd線、点線はg線に対する球面収差量をそれぞれ表し、非点収差図において、実線はサジタル面、点線はメリディオナル面を表す(以下、同じ)。   FIG. 5 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). Here, in the spherical aberration diagram and the meridional coma aberration diagram, the solid line represents the spherical aberration amount with respect to the d line and the dotted line, respectively, and in the astigmatism diagram, the solid line represents the sagittal surface and the dotted line represents the meridional surface ( same as below).

(実施例2)
実施例2におけるレンズデータを表2に示す。図6は実施例2のレンズの断面図である。実施例2の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
(Example 2)
Table 2 shows lens data in Example 2. 6 is a sectional view of the lens of Example 2. FIG. The imaging lens of Example 2 includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表2]
[実施例2]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 1.0985 0.6980 1.58313 59.45 1.227
2* -1e+003 0.0170 0.590
STO INFINITY 0.2440 0.522
4* -1.1544 0.5840 1.58313 59.45 0.744
5* -0.6000 0.0910 1.199
6* -8.1659 0.4500 1.58313 59.45 1.495
7* 0.8781 0.2000 2.069
8 INFINITY 0.2100 1.52550 54.49 2.400
IMG INFINITY 0.2227

非球面係数
1:K=-1.06930e+000,A3=0.00000e+000,A4=4.18030e-002,A5=0.00000e+000,A6=3.23990e-001,A7=0.00000e+000,A8=-2.45580e+000,A9=0.00000e+000,A10=6.03320e+000,A12=-6.75840e+000
2:K=3.00000e+001,A3=0.00000e+000,A4=-5.35580e-001,A5=0.00000e+000,A6=3.83290e+000,A7=0.00000e+000,A8=-3.05320e+001,A9=0.00000e+000,A10=6.01560e+001,A12=-2.30730e+002
4:K=-1.25250e+001,A3=-2.26050e-002,A4=-1.59240e+000,A5=-2.60220e+000,A6=5.52880e+000,A7=0.00000e+000,A8=1.20530e+001,A9=0.00000e+000,A10=-1.81540e+002,A11=0.00000e+000,A12=4.07010e+002,A13=0.00000e+000,A14=2.84260e+003
5:K=-6.54530e-001,A3=4.20450e-001,A4=-3.55610e+000,A5=7.49390e+000,A6=-4.10650e+000,A7=0.00000e+000,A8=-1.08340e+001,A9=0.00000e+000,A10=4.30770e+001,A11=0.00000e+000,A12=-2.55210e+001,A13=0.00000e+000,A14=-2.18560e+001
6:K=-3.67010e+000,A3=9.48110e-002,A4=-3.54110e+000,A5=4.15590e+000,A6=9.59320e-001,A7=0.00000e+000,A8=-3.13200e+000,A9=0.00000e+000,A10=2.47510e+000,A11=0.00000e+000,A12=-2.32220e+000,A13=0.00000e+000,A14=1.23010e+000
7:K=-5.20260e-001,A3=-1.01150e-001,A4=-2.47930e+000,A5=3.61860e+000,A6=-1.84470e+000,A7=0.00000e+000,A8=-2.18470e-001,A9=0.00000e+000,A10=4.65450e-001,A11=0.00000e+000,A12=-1.94400e-001,A13=0.00000e+000,A14=1.34670e-002

FL 1.892
Fno 2.80
w 69.05゜
Ymax 1.295
BF 0.550
TL 2.634

Elem Surfs Focal Length Diameter
1 1- 2 1.8822 1.227
2 4- 5 1.5436 1.199
3 6- 7 -1.3352 2.069
[Table 2]
[Example 2]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 1.0985 0.6980 1.58313 59.45 1.227
2 * -1e + 003 0.0170 0.590
STO INFINITY 0.2440 0.522
4 * -1.1544 0.5840 1.58313 59.45 0.744
5 * -0.6000 0.0910 1.199
6 * -8.1659 0.4500 1.58313 59.45 1.495
7 * 0.8781 0.2000 2.069
8 INFINITY 0.2100 1.52550 54.49 2.400
IMG INFINITY 0.2227

Aspheric coefficient
1: K = -1.06930e + 000, A3 = 0.00000e + 000, A4 = 4.18030e-002, A5 = 0.00000e + 000, A6 = 3.23990e-001, A7 = 0.00000e + 000, A8 = -2.45580e + 000, A9 = 0.00000e + 000, A10 = 6.03320e + 000, A12 = -6.75840e + 000
2: K = 3.00000e + 001, A3 = 0.00000e + 000, A4 = -5.35580e-001, A5 = 0.00000e + 000, A6 = 3.83290e + 000, A7 = 0.00000e + 000, A8 = -3.05320e + 001, A9 = 0.00000e + 000, A10 = 6.01560e + 001, A12 = -2.30730e + 002
4: K = -1.25250e + 001, A3 = -2.26050e-002, A4 = -1.59240e + 000, A5 = -2.60220e + 000, A6 = 5.52880e + 000, A7 = 0.00000e + 000, A8 = 1.20530e + 001, A9 = 0.00000e + 000, A10 = -1.81540e + 002, A11 = 0.00000e + 000, A12 = 4.07010e + 002, A13 = 0.00000e + 000, A14 = 2.84260e + 003
5: K = -6.54530e-001, A3 = 4.20450e-001, A4 = -3.55610e + 000, A5 = 7.49390e + 000, A6 = -4.10650e + 000, A7 = 0.00000e + 000, A8 =- 1.08340e + 001, A9 = 0.00000e + 000, A10 = 4.30770e + 001, A11 = 0.00000e + 000, A12 = -2.55210e + 001, A13 = 0.00000e + 000, A14 = -2.18560e + 001
6: K = -3.67010e + 000, A3 = 9.48110e-002, A4 = -3.54110e + 000, A5 = 4.15590e + 000, A6 = 9.59320e-001, A7 = 0.00000e + 000, A8 = -3.13200 e + 000, A9 = 0.00000e + 000, A10 = 2.47510e + 000, A11 = 0.00000e + 000, A12 = -2.32220e + 000, A13 = 0.00000e + 000, A14 = 1.23010e + 000
7: K = -5.20260e-001, A3 = -1.01150e-001, A4 = -2.47930e + 000, A5 = 3.61860e + 000, A6 = -1.84470e + 000, A7 = 0.00000e + 000, A8 = -2.18470e-001, A9 = 0.00000e + 000, A10 = 4.65450e-001, A11 = 0.00000e + 000, A12 = -1.94400e-001, A13 = 0.00000e + 000, A14 = 1.34670e-002

FL 1.892
Fno 2.80
w 69.05 °
Ymax 1.295
BF 0.550
TL 2.634

Elem Surfs Focal Length Diameter
1 1- 2 1.8822 1.227
2 4- 5 1.5436 1.199
3 6-7 -1.3352 2.069

図7は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 7 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)).

(実施例3)
実施例3におけるレンズデータを表3に示す。図8は実施例3のレンズの断面図である。実施例3の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
(Example 3)
Table 3 shows lens data in Example 3. FIG. 8 is a sectional view of the lens of Example 3. The imaging lens of Example 3 includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表3]
[実施例3]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.7288 0.3106 1.54470 56.09 0.812
2* 6.6420 0.0275 0.578
STO INFINITY 0.2228 0.487
4* -0.5810 0.3071 1.54470 56.09 0.608
5* -0.3170 0.0215 0.834
6* 13.0982 0.2309 1.54470 56.09 1.100
7* 0.5185 0.2025 1.380
8 INFINITY 0.2100 1.52310 54.49 1.680
IMG INFINITY 0.3064

非球面係数
1:K=-6.17489e-001,A3=0.00000e+000,A4=-5.77962e-002,A5=0.00000e+000,A6=8.12359e-001,A7=0.00000e+000,A8=-3.27881e+001,A9=0.00000e+000,A10=1.79113e+002,A12=-5.76174e+002
2:K=2.48970e+000,A3=0.00000e+000,A4=-1.35183e+000,A5=0.00000e+000,A6=2.38687e+001,A7=0.00000e+000,A8=-6.39337e+002,A9=0.00000e+000,A10=6.85188e+003,A12=-2.74431e+004
4:K=-1.28548e+001,A3=-4.21232e-001,A4=-6.46691e+000,A5=3.35091e+000,A6=-4.06024e-001,A7=0.00000e+000,A8=3.69681e+002,A9=0.00000e+000,A10=-5.86088e+003,A11=0.00000e+000,A12=3.35323e+004,A13=0.00000e+000,A14=1.84507e+004
5:K=-1.54745e+000,A3=1.02137e+000,A4=-4.19467e+000,A5=3.90191e+000,A6=-1.49072e+000,A7=0.00000e+000,A8=-2.71405e+001,A9=0.00000e+000,A10=3.15198e+002,A11=0.00000e+000,A12=6.14455e+002,A13=0.00000e+000,A14=-2.26195e+003
6:K=1.99179e+001,A3=5.62236e-001,A4=-5.25251e+000,A5=7.95696e+000,A6=-2.56313e-001,A7=0.00000e+000,A8=-1.22486e+001,A9=0.00000e+000,A10=2.04422e+001,A11=0.00000e+000,A12=-1.67662e+001,A13=0.00000e+000,A14=8.78548e+000
7:K=-1.07787e+000,A3=-5.86961e-001,A4=-6.90530e+000,A5=1.78845e+001,A6=-1.58721e+001,A7=0.00000e+000,A8=4.07817e+000,A9=0.00000e+000,A10=4.74275e+000,A11=0.00000e+000,A12=-8.44236e+000,A13=0.00000e+000,A14=3.86176e+000

FL 1.361
Fno 2.40
w 70.74゜
Ymax 0.991
BF 0.641
TL 1.762

Elem Surfs Focal Length Diameter
1 1- 2 1.4755 0.831
2 4- 5 0.9083 0.856
3 6- 7 -0.9977 1.534
[Table 3]
[Example 3]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.7288 0.3106 1.54470 56.09 0.812
2 * 6.6420 0.0275 0.578
STO INFINITY 0.2228 0.487
4 * -0.5810 0.3071 1.54470 56.09 0.608
5 * -0.3170 0.0215 0.834
6 * 13.0982 0.2309 1.54470 56.09 1.100
7 * 0.5185 0.2025 1.380
8 INFINITY 0.2100 1.52310 54.49 1.680
IMG INFINITY 0.3064

Aspheric coefficient
1: K = -6.17489e-001, A3 = 0.00000e + 000, A4 = -5.77962e-002, A5 = 0.00000e + 000, A6 = 8.12359e-001, A7 = 0.00000e + 000, A8 = -3.27881 e + 001, A9 = 0.00000e + 000, A10 = 1.79113e + 002, A12 = -5.76174e + 002
2: K = 2.48970e + 000, A3 = 0.00000e + 000, A4 = -1.35183e + 000, A5 = 0.00000e + 000, A6 = 2.38687e + 001, A7 = 0.00000e + 000, A8 = -6.39337e + 002, A9 = 0.00000e + 000, A10 = 6.85188e + 003, A12 = -2.74431e + 004
4: K = -1.28548e + 001, A3 = -4.21232e-001, A4 = -6.46691e + 000, A5 = 3.35091e + 000, A6 = -4.06024e-001, A7 = 0.00000e + 000, A8 = 3.69681e + 002, A9 = 0.00000e + 000, A10 = -5.86088e + 003, A11 = 0.00000e + 000, A12 = 3.35323e + 004, A13 = 0.00000e + 000, A14 = 1.84507e + 004
5: K = -1.54745e + 000, A3 = 1.02137e + 000, A4 = -4.19467e + 000, A5 = 3.90191e + 000, A6 = -1.49072e + 000, A7 = 0.00000e + 000, A8 =- 2.71405e + 001, A9 = 0.00000e + 000, A10 = 3.15198e + 002, A11 = 0.00000e + 000, A12 = 6.14455e + 002, A13 = 0.00000e + 000, A14 = -2.26195e + 003
6: K = 1.99179e + 001, A3 = 5.62236e-001, A4 = -5.25251e + 000, A5 = 7.95696e + 000, A6 = -2.56313e-001, A7 = 0.00000e + 000, A8 = -1.22486 e + 001, A9 = 0.00000e + 000, A10 = 2.04422e + 001, A11 = 0.00000e + 000, A12 = -1.67662e + 001, A13 = 0.00000e + 000, A14 = 8.78548e + 000
7: K = -1.07787e + 000, A3 = -5.86961e-001, A4 = -6.90530e + 000, A5 = 1.78845e + 001, A6 = -1.58721e + 001, A7 = 0.00000e + 000, A8 = 4.07817e + 000, A9 = 0.00000e + 000, A10 = 4.74275e + 000, A11 = 0.00000e + 000, A12 = -8.44236e + 000, A13 = 0.00000e + 000, A14 = 3.86176e + 000

FL 1.361
Fno 2.40
w 70.74 °
Ymax 0.991
BF 0.641
TL 1.762

Elem Surfs Focal Length Diameter
1 1- 2 1.4755 0.831
2 4- 5 0.9083 0.856
3 6-7 -0.9977 1.534

図9は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 9 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

(実施例4)
実施例4におけるレンズデータを表4に示す。図10は実施例4のレンズの断面図である。実施例4の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
Example 4
Table 4 shows lens data in Example 4. FIG. 10 is a sectional view of the lens of Example 4. The imaging lens of Example 4 includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表4]
[実施例4]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.7347 0.3064 1.54470 56.09 0.805
2* 7.2122 0.0270 0.577
STO INFINITY 0.2423 0.490
4* -0.5683 0.3031 1.54470 56.09 0.619
5* -0.3145 0.0200 0.842
6* 15.4076 0.2326 1.54470 56.09 1.120
7* 0.5274 0.2070 1.390
8 INFINITY 0.2100 1.52310 54.49 1.710
IMG INFINITY 0.2957

非球面係数
1:K=-6.48596e-001,A3=0.00000e+000,A4=-6.70484e-002,A5=0.00000e+000,A6=6.91345e-001,A7=0.00000e+000,A8=-3.28755e+001,A9=0.00000e+000,A10=1.79314e+002,A12=-5.87418e+002
2:K=-4.48170e+001,A3=0.00000e+000,A4=-1.35668e+000,A5=0.00000e+000,A6=2.39714e+001,A7=0.00000e+000,A8=-6.37816e+002,A9=0.00000e+000,A10=6.84782e+003,A12=-2.77262e+004
4:K=-1.23566e+001,A3=-4.63019e-001,A4=-6.54866e+000,A5=3.22694e+000,A6=-5.13701e-001,A7=0.00000e+000,A8=3.71082e+002,A9=0.00000e+000,A10=-5.99233e+003,A11=0.00000e+000,A12=3.29123e+004,A13=0.00000e+000,A14=2.34825e+004
5:K=-1.51528e+000,A3=1.03010e+000,A4=-4.25213e+000,A5=3.79135e+000,A6=-1.68235e+000,A7=0.00000e+000,A8=-2.81556e+001,A9=0.00000e+000,A10=3.13827e+002,A11=0.00000e+000,A12=6.21489e+002,A13=0.00000e+000,A14=-2.26185e+003
6:K=-1.74664e+000,A3=5.42485e-001,A4=-5.25311e+000,A5=7.96085e+000,A6=-2.47613e-001,A7=0.00000e+000,A8=-1.22122e+001,A9=0.00000e+000,A10=2.04587e+001,A11=0.00000e+000,A12=-1.68599e+001,A13=0.00000e+000,A14=8.83749e+000
7:K=-1.09045e+000,A3=-5.96305e-001,A4=-6.91120e+000,A5=1.78923e+001,A6=-1.58751e+001,A7=0.00000e+000,A8=4.02198e+000,A9=0.00000e+000,A10=4.67516e+000,A11=0.00000e+000,A12=-8.40741e+000,A13=0.00000e+000,A14=4.12776e+000

FL 1.364
Fno 2.40
w 70.80゜
Ymax 0.991
BF 0.635
TL 1.766

Elem Surfs Focal Length Diameter
1 1- 2 1.4771 0.805
2 4- 5 0.9095 0.839
3 6- 7 -1.0081 1.383
[Table 4]
[Example 4]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.7347 0.3064 1.54470 56.09 0.805
2 * 7.2122 0.0270 0.577
STO INFINITY 0.2423 0.490
4 * -0.5683 0.3031 1.54470 56.09 0.619
5 * -0.3145 0.0200 0.842
6 * 15.4076 0.2326 1.54470 56.09 1.120
7 * 0.5274 0.2070 1.390
8 INFINITY 0.2100 1.52310 54.49 1.710
IMG INFINITY 0.2957

Aspheric coefficient
1: K = -6.48596e-001, A3 = 0.00000e + 000, A4 = -6.70484e-002, A5 = 0.00000e + 000, A6 = 6.91345e-001, A7 = 0.00000e + 000, A8 = -3.28755 e + 001, A9 = 0.00000e + 000, A10 = 1.79314e + 002, A12 = -5.87418e + 002
2: K = -4.48170e + 001, A3 = 0.00000e + 000, A4 = -1.35668e + 000, A5 = 0.00000e + 000, A6 = 2.39714e + 001, A7 = 0.00000e + 000, A8 = -6.37816 e + 002, A9 = 0.00000e + 000, A10 = 6.84782e + 003, A12 = -2.77262e + 004
4: K = -1.23566e + 001, A3 = -4.63019e-001, A4 = -6.54866e + 000, A5 = 3.22694e + 000, A6 = -5.13701e-001, A7 = 0.00000e + 000, A8 = 3.71082e + 002, A9 = 0.00000e + 000, A10 = -5.99233e + 003, A11 = 0.00000e + 000, A12 = 3.29123e + 004, A13 = 0.00000e + 000, A14 = 2.34825e + 004
5: K = -1.51528e + 000, A3 = 1.03010e + 000, A4 = -4.25213e + 000, A5 = 3.79135e + 000, A6 = -1.68235e + 000, A7 = 0.00000e + 000, A8 =- 2.81556e + 001, A9 = 0.00000e + 000, A10 = 3.13827e + 002, A11 = 0.00000e + 000, A12 = 6.21489e + 002, A13 = 0.00000e + 000, A14 = -2.26185e + 003
6: K = -1.74664e + 000, A3 = 5.42485e-001, A4 = -5.25311e + 000, A5 = 7.96085e + 000, A6 = -2.47613e-001, A7 = 0.00000e + 000, A8 =- 1.22122e + 001, A9 = 0.00000e + 000, A10 = 2.04587e + 001, A11 = 0.00000e + 000, A12 = -1.68599e + 001, A13 = 0.00000e + 000, A14 = 8.83749e + 000
7: K = -1.09045e + 000, A3 = -5.96305e-001, A4 = -6.91120e + 000, A5 = 1.78923e + 001, A6 = -1.58751e + 001, A7 = 0.00000e + 000, A8 = 4.02198e + 000, A9 = 0.00000e + 000, A10 = 4.67516e + 000, A11 = 0.00000e + 000, A12 = -8.40741e + 000, A13 = 0.00000e + 000, A14 = 4.12776e + 000

FL 1.364
Fno 2.40
w 70.80 °
Ymax 0.991
BF 0.635
TL 1.766

Elem Surfs Focal Length Diameter
1 1- 2 1.4771 0.805
2 4- 5 0.9095 0.839
3 6- 7 -1.0081 1.383

図11は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 11 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

(実施例5)
実施例5におけるレンズデータを表5に示す。図12は実施例5のレンズの断面図である。実施例5の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
(Example 5)
Table 5 shows lens data in Example 5. 12 is a sectional view of the lens of Example 5. FIG. The imaging lens of Example 5 includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表5]
[実施例5]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.7571 0.3980 1.54470 56.09 1.032
2* 2.0960 0.0611 0.688
STO INFINITY 0.2630 0.582
4* -0.9594 0.5409 1.54470 56.09 0.765
5* -0.3998 0.0200 1.182
6* 12.8895 0.2763 1.54470 56.09 1.557
7* 0.5429 0.2000 1.897
8 INFINITY 0.2100 1.52310 54.49 2.156
IMG INFINITY 0.3881

非球面係数
1:K=-2.12223e-001,A3=0.00000e+000,A4=9.44218e-002,A5=0.00000e+000,A6=8.73824e-001,A7=0.00000e+000,A8=-5.89894e+000,A9=0.00000e+000,A10=2.87946e+001,A12=-4.35614e+001
2:K=4.74203e+000,A3=0.00000e+000,A4=-3.48170e-001,A5=0.00000e+000,A6=9.74272e+000,A7=0.00000e+000,A8=-1.25263e+002,A9=0.00000e+000,A10=7.72957e+002,A12=-1.93360e+003
4:K=-2.47267e+001,A3=-2.09631e-001,A4=-2.91299e+000,A5=1.60631e+000,A6=-3.92374e+000,A7=0.00000e+000,A8=7.03881e+001,A9=0.00000e+000,A10=-7.45996e+002,A11=0.00000e+000,A12=2.90749e+003,A13=0.00000e+000,A14=-4.18084e+003
5:K=-1.47985e+000,A3=7.35473e-001,A4=-2.17357e+000,A5=1.60764e+000,A6=1.46526e-002,A7=0.00000e+000,A8=-7.41180e+000,A9=0.00000e+000,A10=1.99449e+001,A11=0.00000e+000,A12=-6.20567e+000,A13=0.00000e+000,A14=1.13730e+001
6:K=-2.89526e+001,A3=2.23174e-001,A4=-2.76256e+000,A5=3.36174e+000,A6=8.78567e-002,A7=0.00000e+000,A8=-2.42147e+000,A9=0.00000e+000,A10=2.61648e+000,A11=0.00000e+000,A12=-1.99703e+000,A13=0.00000e+000,A14=7.70916e-001
7:K=-9.34713e-001,A3=-6.61931e-001,A4=-3.52027e+000,A5=7.49593e+000,A6=-5.30455e+000,A7=0.00000e+000,A8=8.33485e-001,A9=0.00000e+000,A10=6.73974e-001,A11=0.00000e+000,A12=-7.08918e-001,A13=0.00000e+000,A14=2.00545e-001

FL 1.739
Fno 2.40
w 70.00゜
Ymax 1.238
BF 0.719
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 1.9695 1.056
2 4- 5 0.9385 1.233
3 6- 7 -1.0489 2.125
[Table 5]
[Example 5]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.7571 0.3980 1.54470 56.09 1.032
2 * 2.0960 0.0611 0.688
STO INFINITY 0.2630 0.582
4 * -0.9594 0.5409 1.54470 56.09 0.765
5 * -0.3998 0.0200 1.182
6 * 12.8895 0.2763 1.54470 56.09 1.557
7 * 0.5429 0.2000 1.897
8 INFINITY 0.2100 1.52310 54.49 2.156
IMG INFINITY 0.3881

Aspheric coefficient
1: K = -2.12223e-001, A3 = 0.00000e + 000, A4 = 9.44218e-002, A5 = 0.00000e + 000, A6 = 8.73824e-001, A7 = 0.00000e + 000, A8 = -5.89894e + 000, A9 = 0.00000e + 000, A10 = 2.87946e + 001, A12 = -4.35614e + 001
2: K = 4.74203e + 000, A3 = 0.00000e + 000, A4 = -3.48170e-001, A5 = 0.00000e + 000, A6 = 9.74272e + 000, A7 = 0.00000e + 000, A8 = -1.25263e + 002, A9 = 0.00000e + 000, A10 = 7.72957e + 002, A12 = -1.93360e + 003
4: K = -2.47267e + 001, A3 = -2.09631e-001, A4 = -2.91299e + 000, A5 = 1.60631e + 000, A6 = -3.92374e + 000, A7 = 0.00000e + 000, A8 = 7.03881e + 001, A9 = 0.00000e + 000, A10 = -7.45996e + 002, A11 = 0.00000e + 000, A12 = 2.90749e + 003, A13 = 0.00000e + 000, A14 = -4.18084e + 003
5: K = -1.47985e + 000, A3 = 7.35473e-001, A4 = -2.17357e + 000, A5 = 1.60764e + 000, A6 = 1.46526e-002, A7 = 0.00000e + 000, A8 = -7.41180 e + 000, A9 = 0.00000e + 000, A10 = 1.99449e + 001, A11 = 0.00000e + 000, A12 = -6.20567e + 000, A13 = 0.00000e + 000, A14 = 1.13730e + 001
6: K = -2.89526e + 001, A3 = 2.23174e-001, A4 = -2.76256e + 000, A5 = 3.36174e + 000, A6 = 8.78567e-002, A7 = 0.00000e + 000, A8 = -2.42147 e + 000, A9 = 0.00000e + 000, A10 = 2.61648e + 000, A11 = 0.00000e + 000, A12 = -1.99703e + 000, A13 = 0.00000e + 000, A14 = 7.70916e-001
7: K = -9.34713e-001, A3 = -6.61931e-001, A4 = -3.52027e + 000, A5 = 7.49593e + 000, A6 = -5.30455e + 000, A7 = 0.00000e + 000, A8 = 8.33485e-001, A9 = 0.00000e + 000, A10 = 6.73974e-001, A11 = 0.00000e + 000, A12 = -7.08918e-001, A13 = 0.00000e + 000, A14 = 2.00545e-001

FL 1.739
Fno 2.40
w 70.00 °
Ymax 1.238
BF 0.719
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 1.9695 1.056
2 4- 5 0.9385 1.233
3 6-7 -1.0489 2.125

図13は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 13 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

(実施例6)
実施例6におけるレンズデータを表6に示す。図14は実施例6のレンズの断面図である。実施例6の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
(Example 6)
Table 6 shows lens data in Example 6. FIG. 14 is a sectional view of the lens of Example 6. The imaging lens of Example 6 includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表6]
[実施例6]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.8169 0.3908 1.54470 56.09 1.053
2* 2.3298 0.0646 0.700
STO INFINITY 0.3609 0.598
4* -3.8305 0.6636 1.54470 56.09 0.962
5* -0.4250 0.0200 1.344
6* -5.8080 0.2500 1.54470 56.09 1.521
7* 0.4375 0.2000 2.061
8 INFINITY 0.2100 1.52310 54.49 2.230
IMG INFINITY 0.1962

非球面係数
1:K=-1.52969e-001,A3=0.00000e+000,A4=1.43038e-001,A5=0.00000e+000,A6=-8.48792e-001,A7=0.00000e+000,A8=1.05741e+001,A9=0.00000e+000,A10=-3.99881e+001,A12=7.07314e+001
2:K=2.95142e+001,A3=0.00000e+000,A4=-2.47685e-001,A5=0.00000e+000,A6=6.98135e+000,A7=0.00000e+000,A8=-1.18474e+002,A9=0.00000e+000,A10=8.97606e+002,A12=-2.69198e+003
4:K=-5.00000e+001,A3=-2.29364e-001,A4=1.02674e+000,A5=-1.57055e+000,A6=-1.69722e+001,A7=0.00000e+000,A8=1.79103e+002,A9=0.00000e+000,A10=-1.02883e+003,A11=0.00000e+000,A12=3.02000e+003,A13=0.00000e+000,A14=-3.52347e+003
5:K=-2.49539e+000,A3=2.77022e-001,A4=-2.23833e+000,A5=1.81634e+000,A6=9.89095e-001,A7=0.00000e+000,A8=-6.35618e+000,A9=0.00000e+000,A10=1.50234e+001,A11=0.00000e+000,A12=-1.32646e+001,A13=0.00000e+000,A14=7.54699e+000
6:K=4.11416e+001,A3=-2.66457e-001,A4=-3.11989e+000,A5=3.52584e+000,A6=9.14555e-001,A7=0.00000e+000,A8=-1.03863e+000,A9=0.00000e+000,A10=1.65374e+000,A11=0.00000e+000,A12=-6.17614e+000,A13=0.00000e+000,A14=4.71489e+000
7:K=-9.26775e-001,A3=-1.14558e+000,A4=-3.35954e+000,A5=7.68450e+000,A6=-5.35169e+000,A7=0.00000e+000,A8=6.43931e-001,A9=0.00000e+000,A10=6.86433e-001,A11=0.00000e+000,A12=-5.54066e-001,A13=0.00000e+000,A14=1.11887e-001

FL 1.750
Fno 2.40
w 69.86゜
Ymax 1.234
BF 0.528
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 2.1166 1.053
2 4- 5 0.8213 1.344
3 6- 7 -0.7365 2.061
[Table 6]
[Example 6]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.8169 0.3908 1.54470 56.09 1.053
2 * 2.3298 0.0646 0.700
STO INFINITY 0.3609 0.598
4 * -3.8305 0.6636 1.54470 56.09 0.962
5 * -0.4250 0.0200 1.344
6 * -5.8080 0.2500 1.54470 56.09 1.521
7 * 0.4375 0.2000 2.061
8 INFINITY 0.2100 1.52310 54.49 2.230
IMG INFINITY 0.1962

Aspheric coefficient
1: K = -1.52969e-001, A3 = 0.00000e + 000, A4 = 1.43038e-001, A5 = 0.00000e + 000, A6 = -8.48792e-001, A7 = 0.00000e + 000, A8 = 1.05741e + 001, A9 = 0.00000e + 000, A10 = -3.99881e + 001, A12 = 7.07314e + 001
2: K = 2.95142e + 001, A3 = 0.00000e + 000, A4 = -2.47685e-001, A5 = 0.00000e + 000, A6 = 6.98135e + 000, A7 = 0.00000e + 000, A8 = -1.18474e + 002, A9 = 0.00000e + 000, A10 = 8.97606e + 002, A12 = -2.69198e + 003
4: K = -5.00000e + 001, A3 = -2.29364e-001, A4 = 1.02674e + 000, A5 = -1.57055e + 000, A6 = -1.69722e + 001, A7 = 0.00000e + 000, A8 = 1.79103e + 002, A9 = 0.00000e + 000, A10 = -1.02883e + 003, A11 = 0.00000e + 000, A12 = 3.02000e + 003, A13 = 0.00000e + 000, A14 = -3.52347e + 003
5: K = -2.49539e + 000, A3 = 2.77022e-001, A4 = -2.23833e + 000, A5 = 1.81634e + 000, A6 = 9.89095e-001, A7 = 0.00000e + 000, A8 = -6.35618 e + 000, A9 = 0.00000e + 000, A10 = 1.50234e + 001, A11 = 0.00000e + 000, A12 = -1.32646e + 001, A13 = 0.00000e + 000, A14 = 7.54699e + 000
6: K = 4.11416e + 001, A3 = -2.66457e-001, A4 = -3.11989e + 000, A5 = 3.52584e + 000, A6 = 9.14555e-001, A7 = 0.00000e + 000, A8 = -1.03863 e + 000, A9 = 0.00000e + 000, A10 = 1.65374e + 000, A11 = 0.00000e + 000, A12 = -6.17614e + 000, A13 = 0.00000e + 000, A14 = 4.71489e + 000
7: K = -9.26775e-001, A3 = -1.14558e + 000, A4 = -3.35954e + 000, A5 = 7.68450e + 000, A6 = -5.35169e + 000, A7 = 0.00000e + 000, A8 = 6.43931e-001, A9 = 0.00000e + 000, A10 = 6.86433e-001, A11 = 0.00000e + 000, A12 = -5.54066e-001, A13 = 0.00000e + 000, A14 = 1.11887e-001

FL 1.750
Fno 2.40
w 69.86 °
Ymax 1.234
BF 0.528
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 2.1166 1.053
2 4- 5 0.8213 1.344
3 6-7 -0.7365 2.061

図15は実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 15 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

(実施例7)
実施例7におけるレンズデータを表7に示す。図16は実施例7のレンズの断面図である。実施例7の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
(Example 7)
Table 7 shows lens data in Example 7. FIG. 16 is a sectional view of the lens of Example 7. The imaging lens according to the seventh exemplary embodiment includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表7]
[実施例7]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.8511 0.4013 1.54470 56.09 1.062
2* 1.8506 0.0695 0.653
STO INFINITY 0.2888 0.541
4* -2.9620 0.6475 1.54470 56.09 0.944
5* -0.3405 0.0407 1.283
6* -2.5368 0.2500 1.54470 56.09 1.582
7* 0.4276 0.2000 2.033
8 INFINITY 0.2100 1.52310 54.49 2.164
IMG INFINITY 0.2480

非球面係数
1:K=-1.03776e-002,A3=0.00000e+000,A4=1.87104e-001,A5=0.00000e+000,A6=-8.66986e-001,A7=0.00000e+000,A8=1.17674e+001,A9=0.00000e+000,A10=-4.34734e+001,A12=8.25561e+001
2:K=1.50371e+001,A3=0.00000e+000,A4=7.66907e-002,A5=0.00000e+000,A6=5.85416e+000,A7=0.00000e+000,A8=-1.07585e+002,A9=0.00000e+000,A10=1.15749e+003,A12=-4.43924e+003
4:K=1.80188e+001,A3=-5.49035e-002,A4=3.24135e-001,A5=9.04907e-002,A6=-1.76211e+001,A7=0.00000e+000,A8=1.74496e+002,A9=0.00000e+000,A10=-1.01278e+003,A11=0.00000e+000,A12=3.15869e+003,A13=0.00000e+000,A14=-3.77798e+003
5:K=-1.71328e+000,A3=1.27737e+000,A4=-3.36740e+000,A5=1.12523e+000,A6=1.65838e+000,A7=0.00000e+000,A8=-5.27829e+000,A9=0.00000e+000,A10=1.06616e+001,A11=0.00000e+000,A12=-2.02010e+001,A13=0.00000e+000,A14=4.13132e+001
6:K=5.80943e+000,A3=6.95597e-001,A4=-3.52999e+000,A5=2.90357e+000,A6=6.12133e-001,A7=0.00000e+000,A8=-6.46441e-001,A9=0.00000e+000,A10=2.52287e+000,A11=0.00000e+000,A12=-5.53078e+000,A13=0.00000e+000,A14=3.11594e+000
7:K=-9.66263e-001,A3=-1.04302e+000,A4=-3.55231e+000,A5=7.94015e+000,A6=-5.40543e+000,A7=0.00000e+000,A8=5.55505e-001,A9=0.00000e+000,A10=7.41856e-001,A11=0.00000e+000,A12=-5.02395e-001,A13=0.00000e+000,A14=8.29632e-002

FL 1.594
Fno 2.40
w 75.79゜
Ymax 1.234
BF 0.580
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 2.5341 1.062
2 4- 5 0.6497 1.283
3 6- 7 -0.6523 2.033
[Table 7]
[Example 7]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.8511 0.4013 1.54470 56.09 1.062
2 * 1.8506 0.0695 0.653
STO INFINITY 0.2888 0.541
4 * -2.9620 0.6475 1.54470 56.09 0.944
5 * -0.3405 0.0407 1.283
6 * -2.5368 0.2500 1.54470 56.09 1.582
7 * 0.4276 0.2000 2.033
8 INFINITY 0.2100 1.52310 54.49 2.164
IMG INFINITY 0.2480

Aspheric coefficient
1: K = -1.03776e-002, A3 = 0.00000e + 000, A4 = 1.87104e-001, A5 = 0.00000e + 000, A6 = -8.66986e-001, A7 = 0.00000e + 000, A8 = 1.17674e + 001, A9 = 0.00000e + 000, A10 = -4.34734e + 001, A12 = 8.25561e + 001
2: K = 1.50371e + 001, A3 = 0.00000e + 000, A4 = 7.66907e-002, A5 = 0.00000e + 000, A6 = 5.85416e + 000, A7 = 0.00000e + 000, A8 = -1.07585e + 002, A9 = 0.00000e + 000, A10 = 1.15749e + 003, A12 = -4.43924e + 003
4: K = 1.80188e + 001, A3 = -5.49035e-002, A4 = 3.24135e-001, A5 = 9.04907e-002, A6 = -1.76211e + 001, A7 = 0.00000e + 000, A8 = 1.74496e + 002, A9 = 0.00000e + 000, A10 = -1.01278e + 003, A11 = 0.00000e + 000, A12 = 3.15869e + 003, A13 = 0.00000e + 000, A14 = -3.77798e + 003
5: K = -1.71328e + 000, A3 = 1.27737e + 000, A4 = -3.36740e + 000, A5 = 1.12523e + 000, A6 = 1.65838e + 000, A7 = 0.00000e + 000, A8 = -5.27829 e + 000, A9 = 0.00000e + 000, A10 = 1.06616e + 001, A11 = 0.00000e + 000, A12 = -2.02010e + 001, A13 = 0.00000e + 000, A14 = 4.13132e + 001
6: K = 5.80943e + 000, A3 = 6.95597e-001, A4 = -3.52999e + 000, A5 = 2.90357e + 000, A6 = 6.12133e-001, A7 = 0.00000e + 000, A8 = -6.46441e -001, A9 = 0.00000e + 000, A10 = 2.52287e + 000, A11 = 0.00000e + 000, A12 = -5.53078e + 000, A13 = 0.00000e + 000, A14 = 3.11594e + 000
7: K = -9.66263e-001, A3 = -1.04302e + 000, A4 = -3.55231e + 000, A5 = 7.94015e + 000, A6 = -5.40543e + 000, A7 = 0.00000e + 000, A8 = 5.55505e-001, A9 = 0.00000e + 000, A10 = 7.41856e-001, A11 = 0.00000e + 000, A12 = -5.02395e-001, A13 = 0.00000e + 000, A14 = 8.29632e-002

FL 1.594
Fno 2.40
w 75.79 °
Ymax 1.234
BF 0.580
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 2.5341 1.062
2 4- 5 0.6497 1.283
3 6- 7 -0.6523 2.033

図17は実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 17 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

(実施例8)
実施例8におけるレンズデータを表8に示す。図18は実施例8のレンズの断面図である。実施例8の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
(Example 8)
Table 8 shows lens data in Example 8. FIG. 18 is a sectional view of the lens of Example 8. The imaging lens according to the eighth exemplary embodiment includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表8]
[実施例8]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.7225 0.4326 1.54470 56.09 1.057
2* 1.9854 0.0617 0.678
STO INFINITY 0.2504 0.566
4* -0.9275 0.4278 1.54470 56.09 0.737
5* -0.3231 0.0727 1.054
6* -0.5307 0.3462 1.54470 56.09 1.374
7* 3.0070 0.2052 1.834
8 INFINITY 0.2100 1.52310 54.49 2.144
IMG INFINITY 0.2834

非球面係数
1:K=-1.97626e-001,A3=0.00000e+000,A4=8.88625e-002,A5=0.00000e+000,A6=3.98172e-001,A7=0.00000e+000,A8=-8.83580e-001,A9=0.00000e+000,A10=6.69554e+000,A12=-7.55857e+000
2:K=1.40660e+000,A3=0.00000e+000,A4=-2.61728e-002,A5=0.00000e+000,A6=2.85174e+000,A7=0.00000e+000,A8=-4.06029e+001,A9=0.00000e+000,A10=2.93508e+002,A12=-8.99515e+002
4:K=-3.32176e+000,A3=1.87422e-001,A4=-3.29029e+000,A5=1.72062e+000,A6=-1.17147e+001,A7=0.00000e+000,A8=3.99078e+001,A9=0.00000e+000,A10=5.16280e+002,A11=0.00000e+000,A12=-6.78861e+003,A13=0.00000e+000,A14=2.16943e+004
5:K=-1.21280e+000,A3=1.08241e+000,A4=-2.50701e+000,A5=1.79875e+000,A6=-1.29413e+000,A7=0.00000e+000,A8=-1.03574e+001,A9=0.00000e+000,A10=4.48482e+001,A11=0.00000e+000,A12=5.20148e+001,A13=0.00000e+000,A14=-8.24828e+001
6:K=-6.14011e-001,A3=1.16793e+000,A4=-2.07640e+000,A5=3.48692e+000,A6=-1.45751e-001,A7=0.00000e+000,A8=-2.52902e+000,A9=0.00000e+000,A10=2.92016e+000,A11=0.00000e+000,A12=-7.44067e+000,A13=0.00000e+000,A14=9.24233e+000
7:K=-5.00000e+001,A3=4.43475e-001,A4=-3.82731e+000,A5=7.32317e+000,A6=-5.36081e+000,A7=0.00000e+000,A8=8.62393e-001,A9=0.00000e+000,A10=7.57066e-001,A11=0.00000e+000,A12=-6.23728e-001,A13=0.00000e+000,A14=-6.39495e-003

FL 1.746
Fno 2.40
w 69.84゜
Ymax 1.234
BF 0.619
TL 2.211

Elem Surfs Focal Length Diameter
1 1- 2 1.8606 1.057
2 4- 5 0.7286 1.054
3 6- 7 -0.8006 1.834
[Table 8]
[Example 8]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.7225 0.4326 1.54470 56.09 1.057
2 * 1.9854 0.0617 0.678
STO INFINITY 0.2504 0.566
4 * -0.9275 0.4278 1.54470 56.09 0.737
5 * -0.3231 0.0727 1.054
6 * -0.5307 0.3462 1.54470 56.09 1.374
7 * 3.0070 0.2052 1.834
8 INFINITY 0.2100 1.52310 54.49 2.144
IMG INFINITY 0.2834

Aspheric coefficient
1: K = -1.97626e-001, A3 = 0.00000e + 000, A4 = 8.88625e-002, A5 = 0.00000e + 000, A6 = 3.98172e-001, A7 = 0.00000e + 000, A8 = -8.83580e -001, A9 = 0.00000e + 000, A10 = 6.69554e + 000, A12 = -7.55857e + 000
2: K = 1.40660e + 000, A3 = 0.00000e + 000, A4 = -2.61728e-002, A5 = 0.00000e + 000, A6 = 2.85174e + 000, A7 = 0.00000e + 000, A8 = -4.06029e + 001, A9 = 0.00000e + 000, A10 = 2.93508e + 002, A12 = -8.99515e + 002
4: K = -3.32176e + 000, A3 = 1.87422e-001, A4 = -3.29029e + 000, A5 = 1.72062e + 000, A6 = -1.17147e + 001, A7 = 0.00000e + 000, A8 = 3.99078 e + 001, A9 = 0.00000e + 000, A10 = 5.16280e + 002, A11 = 0.00000e + 000, A12 = -6.78861e + 003, A13 = 0.00000e + 000, A14 = 2.16943e + 004
5: K = -1.21280e + 000, A3 = 1.08241e + 000, A4 = -2.50701e + 000, A5 = 1.79875e + 000, A6 = -1.29413e + 000, A7 = 0.00000e + 000, A8 =- 1.03574e + 001, A9 = 0.00000e + 000, A10 = 4.48482e + 001, A11 = 0.00000e + 000, A12 = 5.20148e + 001, A13 = 0.00000e + 000, A14 = -8.24828e + 001
6: K = -6.14011e-001, A3 = 1.16793e + 000, A4 = -2.07640e + 000, A5 = 3.48692e + 000, A6 = -1.45751e-001, A7 = 0.00000e + 000, A8 =- 2.52902e + 000, A9 = 0.00000e + 000, A10 = 2.92016e + 000, A11 = 0.00000e + 000, A12 = -7.44067e + 000, A13 = 0.00000e + 000, A14 = 9.24233e + 000
7: K = -5.00000e + 001, A3 = 4.43475e-001, A4 = -3.82731e + 000, A5 = 7.32317e + 000, A6 = -5.36081e + 000, A7 = 0.00000e + 000, A8 = 8.62393 e-001, A9 = 0.00000e + 000, A10 = 7.57066e-001, A11 = 0.00000e + 000, A12 = -6.23728e-001, A13 = 0.00000e + 000, A14 = -6.39495e-003

FL 1.746
Fno 2.40
w 69.84 °
Ymax 1.234
BF 0.619
TL 2.211

Elem Surfs Focal Length Diameter
1 1- 2 1.8606 1.057
2 4- 5 0.7286 1.054
3 6- 7 -0.8006 1.834

図19は実施例8の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 19 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

(実施例9)
実施例9におけるレンズデータを表9に示す。図20は実施例9のレンズの断面図である。実施例9の撮像レンズは、物体側から順に、第1レンズL1、開口絞りS、第2レンズL2、第3レンズL3からなり、第1レンズL1は物体側面が凸面の正レンズであり、第2レンズL2は物体面が凹面の正メニスカスレンズであり、第3レンズL3は像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズである。CGはカバーガラス又はIRカットフィルタを想定した平行平板であり、IMは固体撮像素子の撮像面である。
Example 9
Table 9 shows lens data in Example 9. FIG. 20 is a sectional view of the lens of Example 9. The imaging lens according to the ninth exemplary embodiment includes, in order from the object side, a first lens L1, an aperture stop S, a second lens L2, and a third lens L3. The first lens L1 is a positive lens having a convex object side surface. The second lens L2 is a positive meniscus lens having a concave object surface, and the third lens L3 is an aspheric surface whose image side surface is concave near the optical axis, has an inflection point within the effective diameter, and is convex around the lens. It is a negative lens. CG is a parallel plate assuming a cover glass or an IR cut filter, and IM is an imaging surface of the solid-state imaging device.

[表9]
[実施例9]

Reference Wave Length = 587.56 nm
unit: mm

面番号 r d nd vd eff.diameter
OBJ INFINITY 350.0000
1* 0.9046 0.3573 1.54470 56.09 1.054
2* 3.9258 0.0717 0.763
STO INFINITY 0.3796 0.609
4* -0.9067 0.4742 1.54470 56.09 0.880
5* -0.4678 0.0201 1.225
6* 1.0938 0.2500 1.54470 56.09 1.685
7* 0.4309 0.2048 1.993
8 INFINITY 0.2100 1.52310 54.49 2.083
IMG INFINITY 0.3890

非球面係数
1:K=-4.65610e-001,A3=0.00000e+000,A4=1.49423e-002,A5=0.00000e+000,A6=5.72446e-001,A7=0.00000e+000,A8=-2.65903e+000,A9=0.00000e+000,A10=6.35086e+000,A12=-5.09613e+000
2:K=1.20013e+001,A3=0.00000e+000,A4=-1.64630e-001,A5=0.00000e+000,A6=3.29193e+000,A7=0.00000e+000,A8=-4.34633e+001,A9=0.00000e+000,A10=2.58730e+002,A12=-5.58065e+002
4:K=-2.54499e+001,A3=-9.31413e-002,A4=-2.98041e+000,A5=1.70580e+000,A6=-2.19356e+000,A7=0.00000e+000,A8=8.71661e+001,A9=0.00000e+000,A10=-8.21247e+002,A11=0.00000e+000,A12=3.34236e+003,A13=0.00000e+000,A14=-4.93676e+003
5:K=-1.48536e+000,A3=5.88871e-001,A4=-2.14116e+000,A5=1.70438e+000,A6=2.08768e-001,A7=0.00000e+000,A8=-6.98350e+000,A9=0.00000e+000,A10=2.12481e+001,A11=0.00000e+000,A12=-1.78307e+000,A13=0.00000e+000,A14=-1.57841e+001
6:K=-9.20236e+000,A3=1.29053e-001,A4=-2.77143e+000,A5=3.34916e+000,A6=7.65998e-002,A7=0.00000e+000,A8=-2.42220e+000,A9=0.00000e+000,A10=2.60599e+000,A11=0.00000e+000,A12=-1.92579e+000,A13=0.00000e+000,A14=6.75292e-001
7:K=-9.51954e-001,A3=-8.31912e-001,A4=-3.56816e+000,A5=7.54042e+000,A6=-5.27186e+000,A7=0.00000e+000,A8=8.06649e-001,A9=0.00000e+000,A10=6.63896e-001,A11=0.00000e+000,A12=-6.75316e-001,A13=0.00000e+000,A14=1.72049e-001

FL 1.725
Fno 2.40
w 70.00゜
Ymax 1.234
BF 0.725
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 2.0714 1.054
2 4- 5 1.2848 1.225
3 6- 7 -1.5054 1.993
[Table 9]
[Example 9]

Reference Wave Length = 587.56 nm
unit: mm

Surface number rd nd vd eff.diameter
OBJ INFINITY 350.0000
1 * 0.9046 0.3573 1.54470 56.09 1.054
2 * 3.9258 0.0717 0.763
STO INFINITY 0.3796 0.609
4 * -0.9067 0.4742 1.54470 56.09 0.880
5 * -0.4678 0.0201 1.225
6 * 1.0938 0.2500 1.54470 56.09 1.685
7 * 0.4309 0.2048 1.993
8 INFINITY 0.2100 1.52310 54.49 2.083
IMG INFINITY 0.3890

Aspheric coefficient
1: K = -4.65610e-001, A3 = 0.00000e + 000, A4 = 1.49423e-002, A5 = 0.00000e + 000, A6 = 5.72446e-001, A7 = 0.00000e + 000, A8 = -2.65903e + 000, A9 = 0.00000e + 000, A10 = 6.35086e + 000, A12 = -5.09613e + 000
2: K = 1.20013e + 001, A3 = 0.00000e + 000, A4 = -1.64630e-001, A5 = 0.00000e + 000, A6 = 3.29193e + 000, A7 = 0.00000e + 000, A8 = -4.34633e + 001, A9 = 0.00000e + 000, A10 = 2.58730e + 002, A12 = -5.58065e + 002
4: K = -2.54499e + 001, A3 = -9.31413e-002, A4 = -2.98041e + 000, A5 = 1.70580e + 000, A6 = -2.19356e + 000, A7 = 0.00000e + 000, A8 = 8.71661e + 001, A9 = 0.00000e + 000, A10 = -8.21247e + 002, A11 = 0.00000e + 000, A12 = 3.34236e + 003, A13 = 0.00000e + 000, A14 = -4.93676e + 003
5: K = -1.48536e + 000, A3 = 5.88871e-001, A4 = -2.14116e + 000, A5 = 1.70438e + 000, A6 = 2.08768e-001, A7 = 0.00000e + 000, A8 = -6.98350 e + 000, A9 = 0.00000e + 000, A10 = 2.12481e + 001, A11 = 0.00000e + 000, A12 = -1.78307e + 000, A13 = 0.00000e + 000, A14 = -1.57841e + 001
6: K = -9.20236e + 000, A3 = 1.29053e-001, A4 = -2.77143e + 000, A5 = 3.34916e + 000, A6 = 7.65998e-002, A7 = 0.00000e + 000, A8 = -2.42220 e + 000, A9 = 0.00000e + 000, A10 = 2.60599e + 000, A11 = 0.00000e + 000, A12 = -1.92579e + 000, A13 = 0.00000e + 000, A14 = 6.75292e-001
7: K = -9.51954e-001, A3 = -8.31912e-001, A4 = -3.56816e + 000, A5 = 7.54042e + 000, A6 = -5.27186e + 000, A7 = 0.00000e + 000, A8 = 8.06649e-001, A9 = 0.00000e + 000, A10 = 6.63896e-001, A11 = 0.00000e + 000, A12 = -6.75316e-001, A13 = 0.00000e + 000, A14 = 1.72049e-001

FL 1.725
Fno 2.40
w 70.00 °
Ymax 1.234
BF 0.725
TL 2.278

Elem Surfs Focal Length Diameter
1 1- 2 2.0714 1.054
2 4- 5 1.2848 1.225
3 6-7 -1.5054 1.993

図21は実施例9の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。   FIG. 21 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

各条件式に対応する実施例の値を表10にまとめて示す。   Table 10 summarizes the values of the examples corresponding to the respective conditional expressions.

また、本発明は、明細書に記載の実施形態や実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。例えば、実質的にパワーを持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。   In addition, the present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications, and includes the embodiments, examples, and techniques described in the present specification. It will be apparent to those skilled in the art from the idea. For example, even when a dummy lens having substantially no power is further provided, it is within the scope of the present invention.

B 操作ボタン
D1,D2 表示画面
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
LN 撮像レンズ
LU 撮像装置
Ape 開口絞り
IM イメージセンサ
IMa 光電変換部
T 携帯電話機
B Operation buttons D1 and D2 Display screen L1 First lens L2 Second lens L3 Third lens LN Imaging lens LU Imaging device Ape Aperture stop IM Image sensor IMa Photoelectric conversion unit T Mobile phone

請求項1に記載の撮像レンズは、最大像高の画角が65°以上、かつFナンバーが3.0以下の撮像レンズにおいて、
物体側から順に第1レンズ、開口絞り、第2レンズ、第3レンズからなり、
前記第1レンズは物体側面が凸面の正レンズ、
前記第2レンズは物体面が凹面の正メニスカスレンズ、
前記第3レンズは像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズであり、
以下の条件式を満足することを特徴とする
−5.0 < r3/f < −0.4 ・・・(1)
0.0 < f1/f2 < 5.0 ・・・(2)
0.7 < Ds/Y < 1.2 ・・・(5)
但し、
r3:前記第2レンズ物体側面の曲率半径(mm)
f:全系の焦点距離(mm)
f1:前記第1レンズの焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
Ds:前記開口絞りから像面までの距離(mm)
Y:最大像高(mm)
The imaging lens according to claim 1, wherein the angle of view of the maximum image height is 65 ° or more and the F number is 3.0 or less.
It consists of the first lens, aperture stop, second lens, and third lens in order from the object side.
The first lens is a positive lens having a convex object side surface,
The second lens is a positive meniscus lens having a concave object surface,
The third lens is a negative lens whose image side surface is a concave surface near the optical axis, has an inflection point within the effective diameter, and is an aspheric surface that is a convex surface around the lens,
The following conditional expression is satisfied .
−5.0 <r3 / f <−0.4 (1)
0.0 <f1 / f2 <5.0 (2)
0.7 <Ds / Y <1.2 (5)
However,
r3: radius of curvature (mm) of the side surface of the second lens object
f: Focal length of the entire system (mm)
f1: Focal length (mm) of the first lens
f2: Focal length (mm) of the second lens
Ds: Distance from the aperture stop to the image plane (mm)
Y: Maximum image height (mm)

また条件式(1)は、前記第2レンズの物体側面の曲率半径と全系の焦点距離の比を規定する条件式であるが、条件式(1)の値が下限を下回るほど曲率半径が小さい場合、特にF3以下の明るいレンズにおいては、暗いレンズに比べ光線高さが高くなり、よりレンズ面の角度が大きいレンズ周辺部に光線が入射するため、偏芯誤差感度が高くなってしまう。また条件式(1)の値が上限を上回るほど曲率半径が大きい場合、面への光線の入射角が大きくなってしまい、コマ収差等の収差の発生を抑えることが困難となる。従って条件式(1)を満たすことで、偏芯誤差感度を低減させつつ、収差補正が良好なレンズとすることができる。
条件式(5)は、前記開口絞りから像面までの距離と最大像高の比を規定する条件式である。条件式(5)の値が下限を上回ることで、最大像高に対し前記開口絞りを像面から遠ざけ射出瞳位置を物体側へ寄せて、テレセントリック性を良好にすることができる。また条件式(5)の値が上限を下回ることで、前記開口絞りが像面から遠ざかり過ぎることを抑えて、光学全長が大きくなってしまうことを防ぐことができる。
Conditional expression (1) is a conditional expression that regulates the ratio of the curvature radius of the object side surface of the second lens to the focal length of the entire system, and the curvature radius decreases as the value of conditional expression (1) falls below the lower limit. In the case of a small lens, particularly in a bright lens of F3 or less, the height of the light beam is higher than that of a dark lens, and the light beam is incident on the periphery of the lens having a larger angle of the lens surface. If the radius of curvature is so large that the value of conditional expression (1) exceeds the upper limit, the incident angle of the light ray on the surface becomes large, and it becomes difficult to suppress the occurrence of aberrations such as coma. Therefore, by satisfying conditional expression (1), it is possible to obtain a lens with good aberration correction while reducing decentration error sensitivity.
Conditional expression (5) is a conditional expression that defines the ratio of the distance from the aperture stop to the image plane and the maximum image height. When the value of conditional expression (5) exceeds the lower limit, the aperture stop is moved away from the image plane with respect to the maximum image height, and the exit pupil position is moved toward the object side, so that telecentricity can be improved. In addition, when the value of conditional expression (5) is less than the upper limit, it is possible to prevent the aperture stop from being too far from the image plane and to prevent the total optical length from increasing.

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.15 < d1/TTL < 0.3・・・(6)
但し、
d1:前記第1レンズの芯厚(mm)
TTL:前記撮像レンズ全長(平板は空気換算とする)(mm)
The imaging lens of Claim 4 satisfies the following conditional expressions in the invention of any one of Claims 1-3 .
0.15 <d1 / TTL <0.3 (6)
However,
d1: Core thickness of the first lens (mm)
TTL: Total length of the imaging lens (the flat plate is converted to air) (mm)

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
−2.0 < (r1+r2)/(r1−r2) < −0.6・・・(7)
但し、
r1:前記第1レンズ物体側面の曲率半径(mm)
r2:前記第1レンズ像側面の曲率半径(mm)
The imaging lens of Claim 5 satisfies the following conditional expressions in the invention in any one of Claims 1-4 .
−2.0 <(r1 + r2) / (r1−r2) <− 0.6 (7)
However,
r1: curvature radius (mm) of the side surface of the first lens object
r2: radius of curvature (mm) of the side surface of the first lens image

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、下記の条件式を満足することを特徴とする。
−2.0 < r3/f < −0.4 ・・・(8)
An imaging lens according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fifth aspects, the following conditional expression is satisfied.
−2.0 <r3 / f <−0.4 (8)

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.7 < f1/f2 < 2.3 ・・・(9)
The imaging lens according to a seventh aspect is characterized in that, in the invention according to any one of the first to sixth aspects, the following conditional expression is satisfied.
0.7 <f1 / f2 <2.3 (9)

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.1< (r5+r6)/(r5−r6) < 2.0・・・(10)
An imaging lens according to an eighth aspect is characterized in that, in the invention according to any one of the first to seventh aspects, the following conditional expression is satisfied.
0.1 <(r5 + r6) / (r5-r6) <2.0 (10)

請求項に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
45 < v3 <70 ・・・(11)
v3:第3レンズのアッベ数
An imaging lens according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the following conditional expression is satisfied.
45 <v3 <70 (11)
v3: Abbe number of the third lens

請求項10に記載の撮像レンズは、請求項1〜のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
TTL/f < 1.5 ・・・(12)
The imaging lens according to claim 10 is the invention according to any one of claims 1 to 9, characterized by satisfying the following conditional expression.
TTL / f <1.5 (12)

請求項11に記載の撮像レンズは、請求項1〜10のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
D/TTL > 1.5・・・(13)
但し、
D:入射瞳径(mm)
An imaging lens according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the following conditional expression is satisfied.
D / TTL> 1.5 (13)
However,
D: Entrance pupil diameter (mm)

請求項12に記載の撮像レンズは、請求項1〜11のいずれかに記載の発明において、実質的にパワーを有しないレンズを有することを特徴とする。つまり、請求項1の構成に、実質的にパワーを持たないダミーレンズを付与した場合でも本発明の適用範囲内である。 An imaging lens according to a twelfth aspect is characterized in that, in the invention according to any one of the first to eleventh aspects, the lens has substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.

請求項13に記載の撮像装置は、請求項1〜12のいずれかに記載の撮像レンズを備えることを特徴とする。 The imaging apparatus according to claim 13, characterized in that it comprises an imaging lens according to any one of claims 1 to 12.

請求項14に記載の携帯端末は、請求項13に記載の撮像装置を備えることを特徴とする。
A portable terminal according to a fourteenth aspect includes the imaging device according to the thirteenth aspect.

Claims (15)

最大像高の画角が65°以上、かつFナンバーが3.0以下の撮像レンズにおいて、
物体側から順に第1レンズ、開口絞り、第2レンズ、第3レンズからなり、
前記第1レンズは物体側面が凸面の正レンズ、
前記第2レンズは物体面が凹面の正メニスカスレンズ、
前記第3レンズは像側面が光軸付近では凹面であり、かつ有効径内に変曲点を持ち、レンズ周辺では凸面となる非球面である負レンズであり、
以下の条件式を満足することを特徴とする撮像レンズ。
−5.0 < r3/f < −0.4 ・・・(1)
0.0 < f1/f2 < 5.0 ・・・(2)
但し、
r3:前記第2レンズ物体側面の曲率半径(mm)
f:全系の焦点距離(mm)
f1:前記第1レンズの焦点距離(mm)
f2:前記第2レンズの焦点距離(mm)
In an imaging lens with a maximum image height of 65 ° or more and an F-number of 3.0 or less,
It consists of the first lens, aperture stop, second lens, and third lens in order from the object side.
The first lens is a positive lens having a convex object side surface,
The second lens is a positive meniscus lens having a concave object surface,
The third lens is a negative lens whose image side surface is a concave surface near the optical axis, has an inflection point within the effective diameter, and is an aspheric surface that is a convex surface around the lens,
An imaging lens satisfying the following conditional expression:
−5.0 <r3 / f <−0.4 (1)
0.0 <f1 / f2 <5.0 (2)
However,
r3: radius of curvature (mm) of the side surface of the second lens object
f: Focal length of the entire system (mm)
f1: Focal length (mm) of the first lens
f2: Focal length (mm) of the second lens
以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
−1.0 < (r5+r6)/(r5−r6) < 2.5 ・・・(3)
但し、
r5:前記第3レンズ物体側面の曲率半径(mm)
r6:前記第3レンズ像側面の曲率半径(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
-1.0 <(r5 + r6) / (r5-r6) <2.5 (3)
However,
r5: radius of curvature (mm) of the side surface of the third lens object
r6: radius of curvature (mm) of the side surface of the third lens image
以下の条件式を満足することを特徴とする請求項1または2に記載の撮像レンズ。
0.9 < f1/f < 1.2・・・(4)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.9 <f1 / f <1.2 (4)
以下の条件式を満足することを特徴とする請求項1〜3のいずれか1項に記載の撮像レンズ。
0.7 < Ds/Y < 1.2・・・(5)
但し、
Ds:前記開口絞りから像面までの距離(mm)
Y:最大像高(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.7 <Ds / Y <1.2 (5)
However,
Ds: Distance from the aperture stop to the image plane (mm)
Y: Maximum image height (mm)
以下の条件式を満足することを特徴とする請求項1〜4のいずれか1項に記載の撮像レンズ。
0.15 < d1/TTL < 0.3・・・(6)
但し、
d1:前記第1レンズの芯厚(mm)
TTL:前記撮像レンズ全長(平板は空気換算とする)(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.15 <d1 / TTL <0.3 (6)
However,
d1: Core thickness of the first lens (mm)
TTL: Total length of the imaging lens (the flat plate is converted to air) (mm)
以下の条件式を満足することを特徴とする請求項1〜5のいずれか1項に記載の撮像レンズ。
−2.0 < (r1+r2)/(r1−r2) < −0.6・・・(7)
但し、
r1:前記第1レンズ物体側面の曲率半径(mm)
r2:前記第1レンズ像側面の曲率半径(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−2.0 <(r1 + r2) / (r1−r2) <− 0.6 (7)
However,
r1: curvature radius (mm) of the side surface of the first lens object
r2: radius of curvature (mm) of the side surface of the first lens image
下記の条件式を満足することを特徴とする請求項1〜6のいずれか1項に記載の撮像レンズ。
−2.0 < r3/f < −0.4 ・・・(8)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−2.0 <r3 / f <−0.4 (8)
以下の条件式を満足することを特徴とする請求項1〜7のいずれか1項に記載の撮像レンズ。
0.7 < f1/f2 < 2.3 ・・・(9)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.7 <f1 / f2 <2.3 (9)
以下の条件式を満足することを特徴とする請求項1〜8のいずれか1項に記載の撮像レンズ。
0.1< (r5+r6)/(r5−r6) < 2.0・・・(10)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.1 <(r5 + r6) / (r5-r6) <2.0 (10)
以下の条件式を満足することを特徴とする請求項1〜9のいずれか1項に記載の撮像レンズ。
45 < v3 <70 ・・・(11)
v3:第3レンズのアッベ数
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
45 <v3 <70 (11)
v3: Abbe number of the third lens
以下の条件式を満足することを特徴とする請求項1〜10のいずれか1項に記載の撮像レンズ。
TTL/f < 1.5 ・・・(12)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
TTL / f <1.5 (12)
以下の条件式を満足することを特徴とする請求項1〜11のいずれか1項に記載の撮像レンズ。
D/TTL > 1.5 ・・・(13)
但し、
D:入射瞳径(mm)
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
D / TTL> 1.5 (13)
However,
D: Entrance pupil diameter (mm)
実質的にパワーを有しないレンズを有することを特徴とする請求項1〜12のいずれか1項に記載の撮像レンズ。   The imaging lens according to claim 1, comprising a lens that has substantially no power. 請求項1〜13のいずれか1項に記載の撮像レンズを備えることを特徴とする撮像装置。   An imaging apparatus comprising the imaging lens according to claim 1. 請求項13に記載の撮像装置を備えることを特徴とする携帯端末。   A portable terminal comprising the imaging device according to claim 13.
JP2014507536A 2012-03-28 2013-02-23 Imaging lens, imaging device, and portable terminal Pending JPWO2013145989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507536A JPWO2013145989A1 (en) 2012-03-28 2013-02-23 Imaging lens, imaging device, and portable terminal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012073037 2012-03-28
JP2012073037 2012-03-28
JP2014507536A JPWO2013145989A1 (en) 2012-03-28 2013-02-23 Imaging lens, imaging device, and portable terminal

Publications (1)

Publication Number Publication Date
JPWO2013145989A1 true JPWO2013145989A1 (en) 2015-12-10

Family

ID=49259269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507536A Pending JPWO2013145989A1 (en) 2012-03-28 2013-02-23 Imaging lens, imaging device, and portable terminal

Country Status (3)

Country Link
JP (1) JPWO2013145989A1 (en)
CN (1) CN104204892A (en)
WO (1) WO2013145989A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570287B (en) * 2014-12-17 2018-02-02 广东旭业光电科技股份有限公司 The high pixel lens assembly of big wide-angle large aperture
CN104977699B (en) * 2015-06-30 2017-08-01 瑞声声学科技(苏州)有限公司 Pick-up lens
CN114911030A (en) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 Optical imaging system, image capturing module and electronic device
WO2024177346A1 (en) * 2023-02-20 2024-08-29 엘지이노텍 주식회사 Optical system and camera module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567327B2 (en) * 2002-05-08 2004-09-22 富士写真光機株式会社 Imaging lens
JP3870907B2 (en) * 2002-07-30 2007-01-24 コニカミノルタオプト株式会社 Imaging lens
JP2004226487A (en) * 2003-01-20 2004-08-12 Seiko Epson Corp Imaging lens
JP4617744B2 (en) * 2003-07-11 2011-01-26 コニカミノルタオプト株式会社 Imaging lens, imaging unit, and portable terminal including the imaging unit
JP2007206611A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Single focal imaging lens and imaging apparatus having the same
JP2009223251A (en) * 2008-03-19 2009-10-01 Olympus Corp Image pickup apparatus
JPWO2010047178A1 (en) * 2008-10-24 2012-03-22 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal
JP5097086B2 (en) * 2008-11-13 2012-12-12 パナソニック株式会社 Imaging optical system and imaging apparatus using the same
WO2010079549A1 (en) * 2009-01-12 2010-07-15 ナルックス株式会社 Image pickup lens system

Also Published As

Publication number Publication date
WO2013145989A1 (en) 2013-10-03
CN104204892A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6845484B2 (en) Imaging optical system, lens unit and imaging device
JP5854227B2 (en) Imaging lens and imaging apparatus
JP5304117B2 (en) Imaging lens, imaging device, and portable terminal
JP5839038B2 (en) Imaging lens and imaging apparatus
WO2017199633A1 (en) Imaging lens and imaging device
JP5975386B2 (en) Imaging lens
WO2016092944A1 (en) Imaging lens and imaging device
JP5644947B2 (en) Wide-angle lens, imaging optical device and digital equipment
JP2014232147A (en) Imaging lens, imaging apparatus, and portable terminal
WO2013008862A1 (en) Imaging lens and imaging device
WO2005116715A1 (en) Imaging lens, imaging unit, and portable terminal
JP2009282223A (en) Imaging lens, imaging unit and personal digital assistant
WO2011046053A1 (en) Image-capturing lens and image-capturing device
JP2009069195A (en) Imaging lens, camera module and imaging equipment
JP2011095301A (en) Imaging lens, imaging apparatus and portable terminal
JP2013092584A (en) Imaging lens, imaging apparatus and portable terminal
JP5353879B2 (en) Imaging lens, imaging device, and portable terminal
WO2014123136A1 (en) Imaging optical system, imaging optical device, and digital instrument
JP2009098513A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP2015001644A (en) Image capturing lens and image capturing device
JP2013024892A (en) Image pickup lens and image pickup apparatus
WO2013145989A1 (en) Image capture lens, image capture device, and portable terminal
WO2012173026A1 (en) Image capture lens for image capture device and image capture device
JP2012230233A (en) Imaging lens, imaging apparatus and portable terminal
WO2013132915A1 (en) Imaging lens and imaging device