Nothing Special   »   [go: up one dir, main page]

JPWO2013015016A1 - 放射線撮影装置 - Google Patents

放射線撮影装置 Download PDF

Info

Publication number
JPWO2013015016A1
JPWO2013015016A1 JP2013525610A JP2013525610A JPWO2013015016A1 JP WO2013015016 A1 JPWO2013015016 A1 JP WO2013015016A1 JP 2013525610 A JP2013525610 A JP 2013525610A JP 2013525610 A JP2013525610 A JP 2013525610A JP WO2013015016 A1 JPWO2013015016 A1 JP WO2013015016A1
Authority
JP
Japan
Prior art keywords
radiation
unit
radiation detector
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013525610A
Other languages
English (en)
Inventor
大田 恭義
恭義 大田
西納 直行
直行 西納
岩切 直人
直人 岩切
中津川 晴康
晴康 中津川
北野 浩一
浩一 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013525610A priority Critical patent/JPWO2013015016A1/ja
Publication of JPWO2013015016A1 publication Critical patent/JPWO2013015016A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/548Remote control of the apparatus or devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

動画撮影中に迅速に静止画撮影を行うことを可能とする。電子カセッテ(15)は、静止画撮影をする第1の放射線検出器(40)と、動画撮影をする第2の放射線検出器(41)を備える。第1の放射線検出器(40)は、第1の光検出部(32)と発光部(33)とを備える。発光部(33)は、第1の光検出部(32)を透過した放射線を吸収して可視光を発生する。第1の放射線検出器(40)は、発光部(33)により発生された可視光を検出する。第2の放射線検出器(41)は、発光部(33)と、発光部(33)の放射線入射側とは反対側に配置された第2の光検出部(34)とにより構成される。第2の光検出部(34)は、発光部(33)により発生された可視光を検出する。

Description

本発明は、動画撮影と静止画撮影とが可能な放射線撮影装置に関する。
医療分野において、画像診断を行うために、放射線(例えば、X線)を用いて被写体(患者の撮影部位)を撮影する放射線撮影装置が知られている。放射線撮影装置は、放射線(例えば、X線)を被写体に向けて放射する放射線発生器と、放射線発生器に対向配置され、被写体を透過した放射線を検出して画像化する放射線検出器とを備える。
この放射線撮影装置には、動画撮影(透視撮影ともいう)と静止画撮影(単に撮影ともいう)の両方が可能なものがある。動画撮影を行う場合と静止画撮影を行う場合とでは、放射線発生器から放射される放射線の線量が異なる。動画撮影は、低線量で行われ、静止画撮影のための患者の位置決めや、病変部の探索等を行うために使用される。静止画撮影は、高線量で行われ、病変部の鮮明な放射線画像を得るために使用される。一般に、静止画撮影時の線量は、動画撮影時の線量の100倍程度である。
このように動画撮影と静止画撮影が可能な放射線撮影装置では、動画撮影と静止画撮影とのいずれを行うかに応じて放射線検出器の駆動モードを切り替える必要がある。この駆動モードの切り替えを容易に行うために、特許文献1では、放射線発生器から射出される放射線の線量を放射線検出器側で監視し、低線量から高線量に移行するタイミングに合わせて、放射線検出器を動画撮影モードから静止画撮影モードに切り替えることが提案されている。これにより、放射線発生器と放射線検出器との間で同期信号の授受を行わずに放射線検出器の駆動モードを切り替えることができる。
しかし、特許文献1に記載の放射線撮影装置は、単一の放射線検出器を用いて動画撮影と静止画撮影を行っているため、動画撮影の場合と静止画撮影の場合との間で画質や視野サイズ等を変更することができない。そこで、特許文献2,3では、静止画撮影を行う第1の放射線検出器と、第1の放射線検出器より小視野であって、動画撮影を行う第2の放射線検出器とを設け、静止画撮影を行う場合には、第2の放射線検出器を放射線発生器からの放射線照射領域から退避させたうえで、第1の放射線検出器により静止画撮影を行う放射線撮影装置が提案されている。
特開2003−307569号公報 特開2011−004966号公報 特開2002−102213号公報
しかしながら、特許文献2,3に記載の放射線撮影装置では、第2の放射線検出器で動画撮影を行っている間に第1の放射線検出器で静止画撮影を行う場合には、第2の放射線検出器を放射線照射領域から退避させる機械的な動作が必要であるため、動画撮影中に迅速に静止画撮影を行うことができず、撮影好機を逃してしまう恐れがある。
本発明は、動画撮影を行なっている間に、迅速に静止画撮影を行うことを可能とする放射線撮影装置を提供することを目的とする。
上記課題を解決するために、本発明の放射線撮影装置は、放射線発生器から射出された放射線を検出して画像データを生成する第1の放射線検出器と、第1の放射線検出器を透過した放射線を検出して画像データを生成する第2の放射線検出器と、第1及び第2の放射線検出器を制御する制御部とを備える。この制御部は、第1の放射線検出器に静止画撮影を実行させ、第2の放射線検出器に動画撮影を実行させる。
放射線発生器から射出された放射線パルスの線量を測定する放射線量測定部と、放射線量測定部により測定された線量を所定の閾値と比較する線量判定部とを備えることが好ましい。この場合には、制御部は、線量判定部により所定の閾値より小さい低線量パルスが検出された場合には、第2の放射線検出器に動画撮影を実行させ、線量判定部により閾値より大きい高線量パルスが検出された場合には、第1の放射線検出器に静止画撮影を実行させる。
第1及び第2の放射線検出器は複数の画素を有し、また、第2の放射線検出器は第1の放射線検出器より画素の配置密度が小さいことが好ましい。この場合、第2の放射線検出器は、第1の放射線検出器より画素の数が少ないことが好ましい。
第2の放射線検出器は、第1の放射線検出器よりフレームレートが高いことが好ましい。また、第2の放射線検出器は、第1の放射線検出器より視野範囲が小さいことが好ましい。
第1の放射線検出器は、放射線を吸収して可視光を発生する発光部と、発光部の放射線入射側に配置されると共に、発光部により発生された可視光を検出する第1の光検出部とにより構成され、そして、第2の放射線検出器は、発光部と、発光部の放射線入射側とは反対側に配置されると共に、発光部により発生された可視光を検出する第2の光検出部とにより構成されていることが好ましい。
発光部は、柱状結晶蛍光体を備え、柱状結晶蛍光体の先端部が第1の光検出部に対向していることが好ましい。
第2の光検出部は、発光部より面積が小さいことが好ましい。この場合に、第1及び第2の放射線検出器は複数の画素を有し、第2の放射線検出器は第1の放射線検出器より画素の配置密度が大きいことが好ましい。また、第2の光検出部は、CMOS型イメージセンサまたはCCD型イメージセンサであることが好ましい。さらに、発光部と第2の光検出部との間に、発光部から放出された可視光を第2の光検出部に集光するためのフレネルレンズを設けてもよい。
第1の放射線検出器は、放射線を吸収して可視光を発生する第1の発光部と、第1の発光部の放射線入射側に配置されると共に、第1の発光部により発生された可視光を検出する第1の光検出部とにより構成されることが好ましい。第2の放射線検出器は、第1の発光部及び第1の光検出部を透過した放射線を吸収して可視光を発生する第2の発光部と、第2の発光部の放射線入射側とは反対側に配置されると共に、第2の発光部により発生された可視光を検出する第2の光検出部とにより構成されることが好ましい。さらに、第1の発光部と第2の発光部との一方が柱状結晶蛍光体を備え、他方がGOS蛍光体を備えることが好ましい。
本発明の放射線撮影装置によれば、第1の放射線検出器の背後に第2の放射線検出器を配置し、第1の放射線検出器を静止画撮影用、第2の放射線検出器を動画撮影用として用いるので、動画撮影中に迅速に静止画撮影を行うことができる。
放射線情報システムのブロック図である。 放射線撮影システムの各装置の配置状態を示す側面図である。 電子カセッテの一部破断斜視図である。 電子カセッテの構成を模式的に示した断面図である。 シンチレータの構成を示す断面図である。 第1の放射線検出器、第2の放射線検出器、放射線量測定部の構成を説明する説明図である。 電子カセッテの電気的構成を示すブロック図である。 放射線発生器及びコンソールのブロック図である。 放射線撮影システムの動作タイミングを説明する説明図である。 電子カセッテの第1の変形例を説明する説明図である。 電子カセッテの第2の変形例を説明する説明図である。 電子カセッテの第3の変形例を説明する説明図である。 電子カセッテの第4の変形例を説明する説明図である。 電子カセッテの第5の変形例を説明する説明図である。 電子カセッテの第6の変形例を説明する説明図である。 電子カセッテの第7の変形例を説明する説明図である。
図1において、放射線情報システム(RIS:Radiology Information System)10は、病院内の放射線科部門における診療予約や診断記録等の情報管理を行うためのシステムである。RIS10は、複数の端末装置11、RISサーバ12、病院内の各放射線撮影室(或いは手術室)に設置された放射線撮影システム13を、有線又は無線で病院内ネットワークNWに接続することにより構成されている。
端末装置11としては、パーソナル・コンピュータ(PC)等が用いられ、撮影者(医師や放射線技師)によって操作される。撮影者は、端末装置11を操作して診断情報や施設予約の入力・閲覧を行う。放射線画像の撮影依頼(撮影予約)も端末装置11を介して入力される。
RISサーバ12は、RISデータベース(DB)を記憶する記憶部12Aを備えたコンピュータである。記憶部12Aには、患者の属性情報(患者の氏名、性別、生年月日、年齢、血液型、患者ID等)や、病歴、受診歴、放射線画像撮影の履歴、過去に撮影した放射線画像のデータ等の患者に関する他の情報、各放射線撮影システム13が有する電子カセッテ15に関する情報(識別番号、型式、サイズ、感度、使用可能な撮影部位、使用開始年月日、使用回数等)が登録されている。RISサーバ12は、記憶部12Aに登録されている情報に基づいて、RIS10全体を管理する処理(例えば、各端末装置11からの撮影依頼を受け付け、各放射線撮影システム13の撮影スケジュールを管理する処理)を行う。
放射線撮影システム13は、RISサーバ12から指示された放射線画像の撮影を、医師や放射線技師の操作に従って行う。放射線撮影システム13は、放射線を発生する放射線発生器14と、患者の撮影部位を透過した放射線を検出し放射線画像を生成する電子カセッテ15と、電子カセッテ15を充電するためのクレードル16と、これらの各機器の動作を制御するコンソール17とを備えている。電子カセッテ15は、可搬型の放射線撮影装置である。
図2において、放射線撮影室には、放射線発生器14と、立位の患者20Aの撮影部位を放射線撮影(以下、立位撮影という)する際に用いられる立位台20と、臥位の患者21Aの撮影部位を放射線撮影(以下、臥位撮影という)する際に用いられる臥位台21とが設置されている。立位台20には、電子カセッテ15が装着されるカセッテ室22が設けられている。立位撮影を行う際には、電子カセッテ15を立位台20のカセッテ室22に保持させる。臥位撮影を行う際には、臥位台21のカセッテ室23に電子カセッテ15を収納する。
また、放射線撮影室には、1つの放射線発生器14で立位撮影と臥位撮影とを可能とするために、伸縮自在な支柱25を介して放射線発生器14を支持しながら、天井26に沿って二次元的に移動する支持移動機構24が設けられている。支柱25は、放射線発生器14を、水平な軸回り(矢印A方向)、及び鉛直な軸回り(矢印B方向)の回転を可能に支持している。
クレードル16には、電子カセッテ15を収納可能な収容部16Aが形成されている。電子カセッテ15は、非使用時には収容部16Aに収納され、この状態で内蔵バッテリの充電が行われる。放射線画像の撮影時には、電子カセッテ15は、撮影者によってクレードル16から取り出され、立位撮影の場合には立位台20の保持部22に保持され、臥位撮影の場合には臥位台21の収容部23に収容される。
図3において、電子カセッテ15は、筐体30、放射線量測定センサ31、第1の光検出部32、発光部33、第2の光検出部34、基台35、及び収納ケース36を備えている。放射線量測定センサ31、第1の光検出部32、発光部33、第2の光検出部34、及び基台35は、筐体30内に、放射線の入射方向に沿ってこの順に積層されている。
筐体30は、放射線透過性材料により形成され、全体形状が直方体状である。筐体30は、カーボン等の放射線低吸収材で形成された天板30Aを有する。天板30Aには、患者の撮影部位を透過した放射線が照射される。筐体30のうち、天板30A以外の部分は、ABS樹脂等で形成されている。
天板30Aには、複数個の発光ダイオード(LED)で構成され、電子カセッテ15の動作モード(例えば「レディ状態」や「データ送信中」等)やバッテリの残容量等の動作状態を表示するための表示部37が設けられている。なお、表示部37は、LED以外の発光素子で構成された表示装置や、液晶ディスプレイや有機ELディスプレイであってもよい。また、表示部37を、天板30A以外の部分に設けてもよい。
収納ケース36は、天板30Aの長手方向の一端側に沿って設けられている。収納ケース36には、マイクロコンピュータ(図示せず)や、バッテリ(図示せず)を収納している。バッテリは、充電可能で、かつ着脱可能である。放射線量測定センサ31、第1の光検出部32、第2の光検出部34を含む電子カセッテ15の各種電子回路は、バッテリから供給される電力によって動作する。これらの各種電子回路が放射線によって損傷することを防止するため、収納ケース36の天板30A側には鉛板等の放射線遮蔽部材(図示せず)が設けられている。
図4において、第1の光検出部32は、光電変換部321、薄膜トランジスタ(TFT:Thin Film Transistor)322、及びキャパシタ323を有する画素324を、絶縁性基板325上に複数形成することにより構成されている。画素324は、2次元マトリクス状に配列されている。
絶縁性基板325と、TFT322及びキャパシタ323が形成された層とは、いわゆるTFTアクティブマトリクス基板(以下、TFT基板という)32Aを構成している。TFT322は、アモルファスシリコンにより形成されている。絶縁性基板325は、石英基板、ガラス基板、樹脂基板等の光透過性を有し、かつ放射線の吸収が少ない材料で形成されている。
光電変換部321は、第1の電極321A及び第2の電極321Bと、これらの間に、配置された光電変換膜321Cとを有する。光電変換膜321Cは、アモルファスシリコンにより形成されており、後述する発光部33から放出された可視光を吸収して電荷を発生する。光電変換部321は、PIN型またはMIS型のフォトダイオードを構成しており、TFT基板32A上に設けられている。TFT基板32A上には、光電変換部321を覆うように、平坦化層326が設けられている。平坦化層326は、窒化シリコンや酸化シリコン等で形成されており、放射線の入射側と反対側の面が平坦化されている。
第2の光検出部34は、第1の光検出部32と同様な構成であり、光電変換部341、TFT342、及びキャパシタ343を備えた画素344が、絶縁性基板345に2次元マトリクス状に複数形成されている。第2の光検出部34の画素344の配列ピッチは、第1の光検出部32の画素324の配列ピッチより大きく、配置密度が小さい。
光電変換部341は、第1の電極341A及び第2の電極341Bと、これらの間に配置された光電変換膜341Cとにより構成されている。また、光電変換部341を覆うように平坦化層346が設けられており、平坦化層346は、放射線の入射側の面が平坦化されている。絶縁性基板345と、TFT342及びキャパシタ343が形成された層とが、TFT基板34Aを構成している。
第2の光検出部34は、放射線の入射方向に対する各部の構成順序が、第1の光検出部32の各部の構成順序とは逆である。すなわち、第1の光検出部32の平坦化層326と、第2の光検出部34の平坦化層346とが対向しており、これらの間に発光部33が配置されている。発光部33は、放射線の入射に応じて可視光を発生して放出する。
第1の光検出部32の平坦化層326と発光部33とは、透光性を有する接着層327によって接着されている。同様に、第2の光検出部34の平坦化層346と発光部33とは、透光性を有する接着層347によって接着されている。また、第2の光検出部34の絶縁性基板345は、基台35に接着層348によって接着されている。
第1の光検出部32の放射線入射側には、放射線量測定センサ31が形成されている。放射線量測定センサ31は、絶縁性基板325上に、配線層311、絶縁層312、光電変換部313、保護層314が順に形成されている。配線層311は、絶縁性基板315上に後述する配線73(図7参照)がパターニングされた層である。光電変換部313は、発光部33から放出され第1の光検出部32を透過した可視光を検出する素子であり、絶縁層312上にマトリクス状に複数形成されている。放射線量測定センサ31の厚みは、0.05mm程度である。
光電変換部313は、第1の電極313A及び第2の電極313Bと、これらの間に配置された光電変換膜313Cとを備える。光電変換膜313Cは、有機光電変換材料で形成されている。光電変換膜313Cは、インクジェットヘッド等を用いて有機光電変換材料を第2の電極313B上に塗布することにより形成される。
図5において、発光部33は、蒸着基板331、シンチレータ332、及び防湿保護膜333により構成されている。蒸着基板331は、石英基板、ガラス基板、樹脂基板等の光透過性を有する基板である。シンチレータ332は、蒸着基板331上にタリウム活性化ヨウ化セシウム(CsI:Tl)を蒸着することにより形成される。シンチレータ332は、非柱状結晶332Aと、この非柱状結晶332A上に立設した複数の柱状結晶332Bとにより構成されている。防湿保護膜333は、ポリパラキシリレン等の防湿性材料により形成されており、シンチレータ332の周囲を覆っている。
なお、蒸着基板331は設けなくてもよい。例えば、蒸着基板331上にシンチレータ332を形成した後、蒸着基板331をシンチレータ332から剥離して、シンチレータ332を第2の光検出部34に接合してもよい。これに代えて、シンチレータ332を第2の光検出部34上に直接蒸着形成してもよい。また、CsI:Tlに代えて、ナトリウム活性化ヨウ化セシウム(CsI:Na)等の蛍光体材料を用いてもよい。
シンチレータ332は、柱状結晶332Bの先端部332Cが第1の光検出部32に対向するように配置されている。蒸着基板331は、接着剤等で第2の光検出部34に接合されている。複数の柱状結晶332Bは、互いに空隙GPを介して離間されている。各柱状結晶332Bの径は、数μm〜10μm程度である。
シンチレータ332は、放射線発生器14から射出され、患者、天板30A、放射線量測定センサ31、第1の光検出部32等を透過して発光部33に入射した放射線を吸収して可視光を発生する。放射線は、第1の光検出部32の側からシンチレータ332に入射するため、シンチレータ332内での発光は、主に柱状結晶332Bの先端部332C側で生じる。シンチレータ332で発生した可視光は、柱状結晶332Bのライトガイド効果によって、第1の光検出部32及び第2の光検出部34に向かって進行する。
第1の光検出部32に向かって進行した可視光は、先端部332Cから射出され、防湿保護膜333を透過して第1の光検出部32に入射し、第1の光検出部32の光電変換部321により検出される。また、第1の光検出部32に入射した可視光の一部は、第1の光検出部32を透過して放射線量測定センサ31に入射する。放射線量測定センサ31に入射した可視光は、光電変換部313により検出される。
一方、第2の光検出部34に向かって進行した可視光は、非柱状結晶332Aに入射し、非柱状結晶332Aによって一部が反射されるが、大半は蒸着基板331を透過して第2の光検出部34に入射する。第2の光検出部34に入射した可視光は、光電変換部341により検出される。
図6に示すように、発光部33と第1の光検出部32とにより、第1の放射線検出器40が構成されている。第1の放射線検出器40は、放射線の進行方向に沿って、第1の光検出部32、発光部33の順に配置されている。このような配置方式は、ISS(Irradiation Side Sampling)型と呼ばれる。また、発光部33と第2の光検出部34とにより、第2の放射線検出器41が構成されている。第2の放射線検出器41は、放射線の進行方向に沿って、発光部33、第2の光検出部34の順に配置される。このような配置方式は、PSS(Penetration Side Sampling)型と呼ばれる。
さらに、発光部33と放射線量測定センサ31とにより、ISS型の放射線量測定部42が構成されている。前述のように、発光部33のシンチレータ332内での発光は、第1の光検出部32の近傍で生じるため、第1の放射線検出器40では、光量が大きく高精細な画像が検出される。
第1の放射線検出器40は、静止画撮影に用いられる。第2の放射線検出器41は、動画撮影に用いられる。第2の放射線検出器41は、画素344の配列ピッチが第1の放射線検出器40の画素324の配列ピッチより大きく、画素344の数(有効画素数)が少ないため、高フレームレートで駆動される。
図7において、第1の光検出部32には、行方向に沿って延在され、各TFT322をオン/オフさせるための複数本のゲート配線50と、行方向と交差する列方向に沿って延在され、キャパシタ323に蓄積された電荷をオン状態のTFT322を介して読み出すための複数本のデータ配線51が設けられている。第1の放射線検出器40には、この第1の光検出部32の他、ゲート線ドライバ52、信号処理部53、及び画像メモリ54が設けられている。
ゲート配線50は、ゲート線ドライバ52に接続されている。データ配線51は、信号処理部53に接続されている。患者の撮影部位を透過した放射線(撮影部位の画像情報を担持した放射線)が電子カセッテ15に照射されると、発光部33からは、放射線の照射量に応じた光量の可視光が放出される。各画素324の光電変換部321では、可視光の入射光量に応じた大きさの電荷が発生する。この電荷がキャパシタ323に蓄積される。
キャパシタ323に電荷が蓄積されると、TFT322は、ゲート線ドライバ52からゲート配線50を介して供給される信号により行単位で順にオンにされる。TFT322がオンになった画素324のキャパシタ323に蓄積されている電荷は、アナログの電気信号としてデータ配線51を伝送されて信号処理部53に入力される。このように、各画素324のキャパシタ323に蓄積された電荷は行単位で順に読み出される。
信号処理部53は、データ配線51毎に、増幅器(図示せず)及びサンプルホールド回路(図示せず)を備えている。各データ配線51を伝送された電気信号は、増幅器で増幅された後、サンプルホールド回路に保持される。サンプルホールド回路の出力側には、マルチプレクサ(図示せず)、A/D変換器(図示せず)が順に接続されている。各サンプルホールド回路に保持された電気信号は、マルチプレクサにより選択され、A/D変換器によってデジタルの画像データに変換される。信号処理部53には、画像メモリ54が接続されており、信号処理部53のA/D変換器から出力された画像データは、画像メモリ54に記憶される。
第2の光検出部34には、同様に、複数本のゲート配線60と、複数本のデータ配線61が設けられている。第2の放射線検出器41には、この第2の光検出部34の他、ゲート線ドライバ62、信号処理部63、及び画像メモリ64が設けられている。ゲート配線60はゲート線ドライバ62に接続されており、データ配線61は信号処理部63に接続されている。そして、信号処理部63には、画像メモリ64が接続されている。
前述のように、第2の光検出部34は、画素344の配置密度が小さいため、ゲート配線60及びデータ配線61の本数が、第1の光検出部32のゲート配線50及びデータ配線51の本数より少ない。また、第2の放射線検出器41は、動画撮影用であるため、信号処理部63の増幅器のゲインは、第1の放射線検出器40に用いられる信号処理部53の増幅器のゲインより大きな値に設定されている。これ以外の第2の放射線検出器41の構成は、第1の放射線検出器40の構成と同一であるため、詳しい説明は省略する。
画像メモリ54,64は、電子カセッテ15の全体の動作を制御するカセッテ制御部70と接続されている。カセッテ制御部70は、マイクロコンピュータを含んで構成されており、CPU70Aと、RAM70Bと、フラッシュメモリ等の不揮発性のROM70Cとを備えている。
カセッテ制御部70には、外部機器との間で各種情報の送受信を無線により行う無線通信部71が接続されている。無線通信部71は、IEEE(Institute of Electrical and Electronics Engineers)802.11a/b/g/nに代表される無線LAN(Local Area Network)規格に対応している。カセッテ制御部70は、無線通信部71を介してコンソール17と無線通信を行う。
放射線量測定部42は、放射線発生器14から電子カセッテ15に照射される放射線の線量を測定するために用いられる。放射線発生器14は、放射線として、動画撮影用の低線量パルスと、静止画撮影用の高線量パルスとを、撮影者の操作に従って射出する。
放射線量測定部42の放射線量測定センサ31には、光電変換部313と同数の配線73が設けられている。放射線量測定部42には、この放射線量測定センサ31の他、信号検出部74が設けられている。各光電変換部313は、互いに異なる配線73を介して信号検出部74に接続されている。信号検出部74は、配線73毎に、増幅器、サンプルホールド回路、及びA/D変換器(いずれも図示せず)を備えており、カセッテ制御部70及び線量判定部75と接続されている。
信号検出部74は、カセッテ制御部70からの制御により、光電変換部313から配線73を介して伝送される信号のサンプリングを所定の周期で行い、サンプリングした信号をデジタルデータに変換して線量判定部75へ順次出力する。線量判定部75は、信号検出部74から入力されたデータに基づき、放射線発生器14から照射された放射線の線量を判定(すなわち、動画撮影用の低線量パルス、静止画撮影用の高線量パルスのいずれであるかを判定)する。この判定結果は、カセッテ制御部70へ出力される。
電子カセッテ15には電源部77が設けられており、上述した各種電子回路と配線(図示せず)により接続されている。電源部77は、電子カセッテ15の可搬性を損なわないように、前述のバッテリを内蔵しており、このバッテリから各種電子回路へ電力を供給する。また、電源部77は、カセッテ制御部70に接続されている。カセッテ制御部70は、第1の放射線検出器40及び第2の放射線検出器41への電力の供給を選択的にオン/オフすることを可能とする。
図8において、コンソール17は、コンピュータで構成され、装置全体の動作を制御するCPU170と、制御プログラムを含む各種プログラム等が予め記憶されたROM171と、各種データを一時的に記憶するRAM172と、各種データを記憶するHDD173とを備え、これらはバス線BLを介して互いに接続されている。また、バス線BLには、通信I/F174及び無線通信部175が接続され、ディスプレイ176がディスプレイドライバ177を介して接続されている。更に、バス線BLには、操作部178が操作入力検出部179を介して接続されている。
通信I/F174は、接続端子17A及び通信ケーブル78を介して、放射線発生器14の接続端子14Aと接続されている。CPU170は、通信I/F174を介して、放射線発生器14との間で、曝射条件等の各種情報の送受信を行う。無線通信部175は、電子カセッテ15の無線通信部71と無線通信を行う。CPU170は、無線通信部175を介して、電子カセッテ15との間で、画像データ等の各種情報の送受信を行う。
ディスプレイドライバ177は、ディスプレイ176に各種情報を表示させるための信号を生成して出力する。CPU170は、ディスプレイドライバ177を介して、操作メニューや放射線画像等をディスプレイ176に表示させる。操作部178は、キーボード等により構成され、各種情報や操作指示が入力される。操作入力検出部179は、操作部178に対する操作を検出し、検出結果をCPU170に送信する。また、操作入力検出部179には、放射線撮影室の床上に配置され、動画撮影と静止画撮影との切り替えを行うための(図示せず)が接続されている。このフットスイッチは、撮影者が足で踏むことによってオン/オフする。
放射線発生器14は、放射線を発生する放射線源140と、コンソール17との間で曝射条件等の各種情報の送受信を行う通信I/F141と、コンソール17から受信した曝射条件に基づいて放射線源140を制御する線源制御部142とを備えている。
次に、RIS10の作用について説明する。放射線画像の撮影を希望する場合、端末装置11から撮影依頼を入力する。この撮影依頼では、撮影対象とする患者、撮影対象とする撮影部位が指定され、管電圧、管電流などが必要に応じて指定される。
端末装置11は、入力された撮影依頼の内容をRISサーバ12に通知する。RISサーバ12は、端末装置11から通知された撮影依頼の内容を記憶部12Aに記憶する。コンソール17は、RISサーバ12にアクセスすることにより、撮影依頼の内容及び撮影対象とする患者の属性情報を取得し、撮影依頼の内容及び患者の属性情報をディスプレイ176に表示させる。
撮影者は、ディスプレイ176に表示された撮影依頼の内容に基づいて、放射線画像の撮影を行うための準備作業を行う。例えば、臥位台21上に横臥した患者21Aの患部の撮影を行う場合には、臥位台21の収容部23に電子カセッテ15を収納する。
撮影者は、上記の準備作業が完了すると、コンソール17の操作部178を介して準備作業の完了を通知する操作を行う。コンソール17は、この操作をトリガとして、電子カセッテ15の動作モードをレディ状態とする。電子カセッテ15は、レディ状態となると、カセッテ制御部70により放射線量測定部42及び線量判定部75が駆動され、放射線発生器14から照射される放射線パルス(動画撮影用の低線量パルスまたは静止画撮影用の高線量パルス)を検出するための待ち受け動作を開始する。コンソール17は、ディスプレイ176の表示を切り替えることで撮影可能状態になったことを撮影者へ通知する。
この通知を確認した撮影者は、操作部178を介して撮影指示を行う。例えば、静止画撮影の場合には、コンソール17は、曝射開始を指示する指示信号を放射線発生器14へ送信する。放射線発生器14は、コンソール17から受信した曝射条件に応じた管電圧、管電流で放射線発生器14から静止画撮影用の高線量パルスを射出させる。
電子カセッテ15のカセッテ制御部70は、放射線量測定部42及び線量判定部75により高線量パルスを検出すると、第1の放射線検出器40を駆動して撮影動作を行い、第1の放射線検出器40により得られた画像データを、無線通信部71を介してコンソール17に送信する。コンソール17では、入力された画像データは、静止画像としてディスプレイ176に表示される。
循環器系の診断や処置を行う場合には、撮影者として数名の医師等がチームを組んで対処する。このチームは、患者の載置されている臥位台21の位置を調整したり、患者の撮影部位に合わせて放射線発生器14を回転させたりする操作を担当する補助的な役割を担う者と、動画像(透視像)を観察しながら患者に挿入するカテーテルやガイドワイヤを操作する医師とにより構成される。この医師は、カテーテルやガイドワイヤを操作するために両手が塞がっているため、前述のフットスイッチを用いて動画撮影、静止画撮影の切り替えを行う。動画撮影は、患者の位置決めや、病変部の探索に使用される。静止画撮影は、病変部のより鮮明な放射線画像を得るために使用される。
次に、図9に示すタイミングチャートを参照して動画撮影中に行われる静止画撮影動作について説明する。動画撮影時には、放射線発生器14から動画撮影用の低線量パルスが所定の間隔で患者の撮影部位に向けて照射される。放射線量測定部42は、この低線量パルスの照射間隔より短い間隔で放射線のサンプリングを行っている。線量判定部75は、放射線量測定部42により測定される放射線の立ち上がり時の放射線量を、所定の閾値と比較し、この閾値より放射線量が小さい場合には、低線量パルスと判定する。
線量判定部75により低線量パルスが検出されると、カセッテ制御部70は、低線量パルスに同期して第2の放射線検出器41を駆動し、動画撮影動作MPを実行させる。この動画撮影動作MPでは、まず、ゲート線ドライバ62により全てのゲート配線60が一括選択されて全てのTFT342がオン状態となり、キャパシタ343に蓄積された電荷が廃棄(リセット)される。
次に、全てのゲート配線60が非選択とされて全てのTFT342がオフ状態となり、キャパシタ343が電荷蓄積状態となる。光電変換部341により、患者の撮影部位を透過した放射線に応じた電荷が発生され、キャパシタ343に蓄積される。そして、低線量パルスの照射終了後、ゲート線ドライバ62によりゲート配線60が順次に駆動されることにより、キャパシタ343に蓄積された電荷が読み出され、信号処理部63により画像データが生成される。
この動画撮影動作MPには、カセッテ制御部70は、電源部77から第1の放射線検出器40の各部への電源電圧の供給を停止し、オフ状態(OFF)とする。これにより、第2の放射線検出器41の読み出し動作への電源ノイズの影響が低減される。
低線量パルスが検出されるたびに動画撮影動作MPが行われ、画像データが画像メモリ64から無線通信部71を介してコンソール17に順次に送信される。コンソール17では、入力された画像データは、動画像としてディスプレイ176に表示される。
この動画撮影中に、フットスイッチ等の操作により静止画撮影指示がなされた場合には、放射線発生器14から静止画撮影用の高線量パルスが患者の撮影部位に向けて照射される。この高線量パルスの線量は、低線量パルスの100倍程度である。線量判定部75は、放射線量測定部42により測定される放射線の立ち上がり時の放射線量を、所定の閾値と比較し、この閾値より放射線量が大きい場合には、高線量パルスと判定する。
線量判定部75により高線量パルスが検出されると、カセッテ制御部70は、高線量パルスに同期して第1の放射線検出器40を駆動し、静止画撮影動作SPを実行させる。この静止画撮影動作SPは、上記の動画撮影動作MPと同様であり、第1の放射線検出器40により画像データが生成される。この画像データは、無線通信部71を介してコンソール17に送信され、コンソール17では、静止画像としてディスプレイ176に表示される。なお、この静止画像を、ディスプレイ176以外の別のディスプレイに表示してもよい。
また、この静止画撮影動作SPには、カセッテ制御部70は、電源部77から第2の放射線検出器41の各部への電源電圧の供給を停止し、オフ状態(OFF)とする。これにより、第1の放射線検出器40の読み出し動作への電源ノイズの影響が低減される。
以上のように、第1の放射線検出器40は、画素324の配置密度が大きいため、高精細な静止画像が得られる。これに対して、第2の放射線検出器41は、画素344の配置密度が小さく、画素344の数が少ないため、高速駆動され、高フレームレートで動画像が生成される。
また、第1の放射線検出器40と第2の放射線検出器41とは放射線の進行方向に積層され、第2の放射線検出器41は第1の放射線検出器40を透過した放射線を検出するように構成されているため、動画撮影から静止画撮影に切り替える際に、第2の放射線検出器41を移動させる必要はなく、迅速に静止画撮影を行うことができる。
次に、電子カセッテの他の構成について説明する。図10に示す構成は、放射線量測定センサ31、第1の光検出部32、発光部33が上記実施形態と同一の構成であるが、第2の光検出部34が発光部33及び第1の光検出部32より小面積(視野範囲が小さい)である点が上記実施形態と異なる。この場合、第2の光検出部34は、画素344の配列ピッチが第1の光検出部32の画素324の配列ピッチより小さい(配置密度が大きい)ことが好ましい。このような小面積の第2の光検出部34としては、シリコン基板をベースとして構成されたCMOS型イメージセンサやCCD型イメージセンサを用いることが好適である。これにより、第2の放射線検出器41は、単位時間当たりのフレーム数が大きい高速度撮影が可能となる。この場合、シリコン基板に代えて、炭化シリコン(SiC)等のワイドギャップ半導体基板を用いることも好ましい。SiC基板は、シリコン基板より500倍程度放射線耐性に優れることが知られている。
図11に示す構成は、小面積の第2の光検出部34を複数個敷詰めて発光部33及び第1の光検出部32と同等の面積としたものである。この場合、第2の放射線検出器41により得られる放射線画像には、隣接する第2の光検出部34間に対応する隙間が生じてしまうが、この隙間部分には補間処理を施せばよい。この放射線画像は動画像として用いられるため、診断への影響は少ない。
図12に示す構成は、小面積の第2の光検出部34と発光部33との間にフレネルレンズ80を配置したものである。発光部33から第2の光検出部34の方向へ放出される可視光は、フレネルレンズ80により集光され、第2の光検出部34に入射するため、第2の光検出部34は、第1の光検出部32と同等の視野範囲を検出することができる。
図13に示す構成は、放射線の進行方向に沿って、放射線量測定センサ31、第1の光検出部32、第1の発光部33A、第2の光検出部34、第2の発光部33Bを順に配置したものである。第1の発光部33A及び第2の発光部33Bは、前述の発光部33と同一の構成である。この構成では、第1の放射線検出器40と第2の放射線検出器41とは、いずれもISS型である。この場合、第1の発光部33Aの放射線入射側とは反対側の面に光反射層81Aを形成し、第2の発光部33Bの放射線入射側とは反対側の面に光反射層81Bを形成することが好ましい。光反射層81A,81Bは、アルミニウム等の金属膜により形成される。
図14に示す構成は、放射線の進行方向に沿って、放射線量測定センサ31、第1の発光部33A、第1の光検出部32、第2の発光部33B、第2の光検出部34の順に配置したものである。この構成では、第1の放射線検出器40と第2の放射線検出器41とは、いずれもPSS型である。この場合、第1の発光部33Aの放射線入射側の面に光反射層81Aを形成し、第2の発光部33Bの放射線入射側の面に光反射層81Bを形成することが好ましい。
図15に示す構成は、放射線の進行方向に沿って、放射線量測定センサ31、第2の光検出部34、第1の光検出部32、発光部33を順に配置したものである。この構成では、第1の放射線検出器40と第2の放射線検出器41とは、いずれもISS型である。この場合、第2の光検出部34は、放射線量測定センサ31と同様に、有機材料で形成することが好ましい。また、発光部33の放射線入射側とは反対側の面に光反射層82を形成することが好ましい。
図16に示す構成は、放射線の進行方向に沿って、放射線量測定センサ31、第1の光検出部32、第1の発光部33A、第2の発光部33B、第2の光検出部34を順に配置したものである。これは、図6に示す構成において、発光部33を第1の発光部33Aと第2の発光部33Bとで構成したものである。第1の放射線検出器40は、第1の発光部33Aと第1の光検出部32とで構成されたISS型放射線検出器であり、第2の放射線検出器41は、第2の発光部33Bと第2の光検出部34とで構成されたPSS型放射線検出器である。
図16に示す構成では、第1の発光部33Aと第2の発光部33Bとは、特性の異なる蛍光体を備える。例えば、第1の発光部33Aに、CsI:TlやCsI:Na等の柱状結晶構造を有する柱状結晶蛍光体を用い、第2の発光部33Bに、酸化ガドリニウム(GOS)蛍光体を用いる。この場合、柱状結晶蛍光体の先端部を図5に示す構成と同様に第1の光検出部32に対向させること好ましい。
柱状結晶蛍光体は、分解能が高く高性能である反面、GOS蛍光体に比べて高価であるため、高画質の撮影を必要とする静止画撮影用の第1の放射線検出器40の第1の発光部33Aに柱状結晶蛍光体を用い、高画質が必要とされない動画撮影用の第2の放射線検出器41の第2の発光部33BにGOS蛍光体を用いている。これにより、所望される性能を犠牲とすることなくコストを削減することができる。また、柱状結晶蛍光体は、厚みが厚いほど耐衝撃性が劣化するが、本構成では柱状結晶蛍光体を薄くすることができるため、耐衝撃性が向上する。
GOS蛍光体は、粉末の粒子であるため、バインダー樹脂に混ぜられている。GOS蛍光体を小粒子とすることで分解能を向上させることが可能となるため、上記とは逆に、第1の発光部33AにGOS蛍光体を用い、第2の発光部33Bに柱状結晶蛍光体を用いてもよい。この場合には、柱状結晶蛍光体の先端部を第2の光検出部34に対向させることが好ましい。
第1の発光部33Aは、GOS蛍光体を備えることにより、より高いエネルギーの放射線(X線)を吸収することができる。これは、GOS蛍光体が柱状結晶蛍光体より原子番号が大きいことによる。この構成は、動画撮影と静止画撮影とで放射線源140の管電圧を変え、高コントラストの静止画像を得るために静止画撮影時の管電圧を高くする場合に有効である。また、柱状結晶蛍光体は、放射線に対する感度が高いため、第2の発光部33Bに柱状結晶蛍光体を用いることで、動画撮影時の放射線の線量を下げ、患者の被曝を低減することができる。
上記2つの例において、GOS蛍光体は、第1の光検出部32及び第2の光検出部34の一方に、塗布または貼り合せを行うことにより形成される。柱状結晶蛍光体は、第1の光検出部32及び第2の光検出部34の他方に、蒸着または貼り合せを行ことにより形成される。柱状結晶蛍光体の蒸着には、直接蒸着と間接蒸着とがある。間接蒸着とは、蒸着基板に柱状結晶蛍光体を蒸着し、柱状結晶蛍光体を第1の光検出部32または第2の光検出部34に貼り合せた後、蒸着基板を剥離する方法である。柱状結晶蛍光体とGOS蛍光体との接合は、貼り合せ、または両者を押し当てた状態でパウチ加工することにより行う。また、柱状結晶蛍光体を、GOS蛍光体上に直接蒸着または間接蒸着した後、柱状結晶蛍光体と第1の光検出部32または第2の光検出部34とを貼り合せてもよい。
さらに別の例として、第1の発光部33Aに小粒子のGOS蛍光体をバインダー樹脂に混ぜたものを用い、第2の発光部33Bに大粒子のGOS蛍光体をバインダー樹脂に混ぜたものを用いてもよい。この場合、大粒子のGOS蛍光体は、小粒子のGOS蛍光体と比べ、分解能については劣るが、放射線に対する感度が高いため、高感度の動画像を得ることができる。また、上記各例において、第1の発光部33Aと第2の発光部33Bの間に光反射層を設けてもよい。
また、上記実施形態では、第1の放射線検出器40において、第1の光検出部32の光電変換膜321Cをアモルファスシリコンによって構成しているが、光電変換膜321Cを、有機光電変換材料を含む材料で構成してもよい。この場合には、主に可視光域で高い吸収を示す吸収スペクトルが得られ、光電変換膜321Cではシンチレータ332から放出された可視光以外の電磁波の吸収が殆どない。これにより、放射線が光電変換膜321Cで吸収されることで発生するノイズが抑制される。
また、有機光電変換材料からなる光電変換膜321Cは、インクジェットヘッド等の液滴吐出ヘッドを用いて有機光電変換材料をTFT基板32A上に付着させることで形成することができ、TFT基板32Aに含まれる絶縁性基板325には、耐熱性は要求されない。このため、絶縁性基板325をガラス以外の材質とすることができる。
光電変換膜321Cを有機光電変換材料で構成した場合、光電変換膜321Cで放射線が殆ど吸収されないので、第1の光検出部32を透過することによる放射線の減衰が抑制される。従って、光電変換膜321Cを有機光電変換材料で構成することは、第1の放射線検出器40がISS型である場合に好適である。
光電変換膜321Cを構成する有機光電変換材料は、シンチレータ332から放出された可視光を最も効率良く吸収するために、その吸収ピーク波長が、シンチレータ332の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ332の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ332から放出された可視光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、シンチレータ332の発光ピーク波長との差が10nm以内であることが好ましく、5nm以内であることがより好ましい。
このような条件を満たすことが可能な有機光電変換材料としては、キナクリドン系有機化合物やフタロシアニン系有機化合物が挙げられる。キナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ332の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能であり、シンチレータ332で発生する電荷量をほぼ最大にすることができる。
光電変換膜321Cは、有機p型化合物または有機n型化合物を含有することが好ましい。有機p型化合物は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体であり、電子を供与しやすい性質を有する。より詳しくは、有機p型化合物は、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物である。ドナー性有機半導体としては、電子供与性を有するものであれば如何なる有機化合物も使用可能である。有機n型化合物は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体であり、電子を受容し易い性質を有する。より詳しくは、有機n型化合物は、2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物である。アクセプター性有機半導体としては、電子受容性を有するものであれば如何なる有機化合物も使用可能である。
また、光電変換部321は、少なくとも電極321A,321Bと光電変換膜321Cとを含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜及び正孔ブロッキング膜の少なくとも何れかを、光電変換膜321Cと電極321A、321Bとの間に設けることが好ましく、両方を設けることがより好ましい。
また、TFT322の活性層としては、In、Ga及びZnのうちの少なくとも1つを含む非晶質酸化物(例えば、In−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む非晶質酸化物(例えば、In−Zn−O系、In−Ga−O系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む非晶質酸化物が特に好ましい。In−Ga−Zn−O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の正の整数)で表される非晶質酸化物が好ましく、特に、m=4であることがより好ましい。
また、TFT322の活性層を有機半導体材料で形成してもよい。この場合、有機半導体材料としては、特開2009−212389号公報に記載されたフタロシアニン化合物や、ペンタセン、バナジルフタロシアニン等が挙げられる。
TFT322の活性層を、非晶質酸化物や有機半導体材料によって形成すれば、X線等の放射線を吸収せず、或いは吸収したとしても極めて微量に留まるため、ノイズの発生が効果的に抑制される。
また、TFT322の活性層をカーボンナノチューブで形成してもよい。この場合、TFT322のスイッチング速度が高速化する。また、TFT322における可視光域の光の吸収度合いを低下させることができる。なお、活性層をカーボンナノチューブで形成する場合、活性層にごく微量の金属性不純物が混入しただけでTFT322の性能が著しく低下するため、遠心分離等により非常に純度の高いカーボンナノチューブを分離・抽出して活性層の形成に用いる必要がある。
TFT322の活性層を構成する非晶質酸化物や有機半導体材料、光電変換膜321Cを構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、絶縁性基板325としては、石英基板、ガラス基板等の耐熱性の高い基板に限られず、合成樹脂製の可撓性基板、アラミド、バイオナノファイバを用いることができる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このような合成樹脂製の可撓性基板を用いれば、軽量化を図ることもできる。なお、絶縁性基板325には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。
また、バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂とを複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60〜70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3〜7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて薄型化できる。
なお、以上のように構成された第1の光検出部32と同様に第2の光検出部34を構成してもよい。
また、上記実施形態では、第1の放射線検出器40、第2の放射線検出器41、放射線量測定部42は、いずれも放射線をシンチレータで可視光に変換し、この可視光を電荷に変換する間接変換型の放射線検出器であるが、アモルファスセレン等の光導電性層により放射線を電荷に直接変換する直接変換型の放射線検出器としてもよい。
また、上記実施形態では、放射線量測定センサ31を、第1の光検出部32及び第2の光検出部34より放射線の上流側に配置しているが、これに代えて、放射線量測定センサ31を、第1の光検出部32及び第2の光検出部34より放射線の下流側に配置してもよい。さらには、放射線量測定センサ31を、第1の光検出部32または第2の光検出部34に組み込んでもよい。
上記実施形態では、放射線撮影装置として電子カセッテを例示したが、電子カセッテに代えて、マンモグラフィ装置等の放射線検出装置にも本発明を適用可能である。
15 電子カセッテ
31 放射線量測定センサ
32 第1の光検出部
33 発光部
34 第2の光検出部
40 第1の放射線検出器
41 第2の放射線検出器
42 放射線量測定部
321,341 光電変換部
324,344 画素
332 シンチレータ
332A 非柱状結晶
332B 柱状結晶
332C 先端部
333 防湿保護膜

Claims (14)

  1. 放射線発生器から射出された放射線を検出して画像データを生成する第1の放射線検出器と、
    前記第1の放射線検出器を透過した放射線を検出して画像データを生成する第2の放射線検出器と、
    前記第1及び第2の放射線検出器を制御し、前記第1の放射線検出器に静止画撮影を実行させ、前記第2の放射線検出器に動画撮影を実行させる制御部と、
    を備える放射線撮影装置。
  2. 放射線発生器から射出された放射線パルスの線量を測定する放射線量測定部と、
    前記放射線量測定部により測定された線量を所定の閾値と比較する線量判定部とを備え、
    前記制御部は、前記線量判定部により所定の閾値より小さい低線量パルスが検出された場合には、前記第2の放射線検出器に動画撮影を実行させ、前記線量判定部により前記閾値より大きい高線量パルスが検出された場合には、前記第1の放射線検出器に静止画撮影を実行させる、
    ことを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  3. 前記第1及び第2の放射線検出器は、複数の画素を有し、
    前記第2の放射線検出器は、前記第1の放射線検出器より前記画素の配置密度が小さいことを特徴とする請求の範囲第2項に記載の放射線撮影装置。
  4. 前記第2の放射線検出器は、前記第1の放射線検出器より前記画素の数が少ないことを特徴とする請求の範囲第3項に記載の放射線撮影装置。
  5. 前記第2の放射線検出器は、前記第1の放射線検出器よりフレームレートが高いことを特徴とする請求の範囲第4項に記載の放射線撮影装置。
  6. 前記第2の放射線検出器は、前記第1の放射線検出器より視野範囲が小さいことを特徴とする請求の範囲第5項に記載の放射線撮影装置。
  7. 第1の放射線検出器は、放射線を吸収して可視光を発生する発光部と、前記発光部の放射線入射側に配置されると共に、前記発光部により発生された可視光を検出する第1の光検出部とにより構成され、
    第2の放射線検出器は、前記発光部と、前記発光部の放射線入射側とは反対側に配置されると共に、前記発光部により発生された可視光を検出する第2の光検出部とにより構成されている、
    ことを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  8. 前記発光部は、柱状結晶蛍光体を備え、前記柱状結晶蛍光体の先端部が前記第1の光検出部に対向していることを特徴とする請求の範囲第7項に記載の放射線撮影装置。
  9. 前記第2の光検出部は、前記発光部より面積が小さいことを特徴とする請求の範囲第8項に記載の放射線撮影装置。
  10. 前記第1及び第2の放射線検出器は、複数の画素を有し、
    前記第2の放射線検出器は、前記第1の放射線検出器より前記画素の配置密度が大きいことを特徴とする請求の範囲第9項に記載の放射線撮影装置。
  11. 前記第2の光検出部は、CMOS型イメージセンサまたはCCD型イメージセンサであることを特徴とする請求の範囲第10項に記載の放射線撮影装置。
  12. 前記発光部と前記第2の光検出部との間に、前記発光部から放出された可視光を前記第2の光検出部に集光するためのフレネルレンズを備えることを特徴とする請求の範囲第9項に記載の放射線撮影装置。
  13. 前記第1の放射線検出器は、放射線を吸収して可視光を発生する第1の発光部と、前記第1の発光部の放射線入射側に配置されると共に、前記第1の発光部により発生された可視光を検出する第1の光検出部とにより構成され、
    前記第2の放射線検出器は、前記第1の発光部及び前記第1の光検出部を透過した放射線を吸収して可視光を発生する第2の発光部と、前記第2の発光部の放射線入射側とは反対側に配置されると共に、前記第2の発光部により発生された可視光を検出する第2の光検出部とにより構成されている、
    ことを特徴とする請求の範囲第1項に記載の放射線撮影装置。
  14. 前記第1の発光部と前記第2の発光部との一方が柱状結晶蛍光体を備え、他方がGOS蛍光体を備えることを特徴とする請求の範囲第13項に記載の放射線撮影装置。
JP2013525610A 2011-07-27 2012-05-31 放射線撮影装置 Pending JPWO2013015016A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525610A JPWO2013015016A1 (ja) 2011-07-27 2012-05-31 放射線撮影装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011164279 2011-07-27
JP2011164279 2011-07-27
JP2013525610A JPWO2013015016A1 (ja) 2011-07-27 2012-05-31 放射線撮影装置

Publications (1)

Publication Number Publication Date
JPWO2013015016A1 true JPWO2013015016A1 (ja) 2015-02-23

Family

ID=47600876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013525610A Pending JPWO2013015016A1 (ja) 2011-07-27 2012-05-31 放射線撮影装置

Country Status (3)

Country Link
US (1) US20140103220A1 (ja)
JP (1) JPWO2013015016A1 (ja)
WO (1) WO2013015016A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9270904B2 (en) * 2012-08-28 2016-02-23 General Electric Company X-ray system and method with digital image acquisition using a photovoltaic device
US10321882B2 (en) 2014-05-27 2019-06-18 Agfa Nv Method for controlling multiple wireless self-triggering radiographic image sensors in a single exposure
EP3167276B1 (en) * 2014-07-07 2023-08-23 Bio-Rad Laboratories, Inc. Contact imager
US10416321B2 (en) 2017-03-15 2019-09-17 Canon Medical Systems Corporation X-ray diagnostic apparatus
JP6976699B2 (ja) 2017-03-15 2021-12-08 キヤノンメディカルシステムズ株式会社 X線診断装置
JP6707048B2 (ja) * 2017-03-22 2020-06-10 富士フイルム株式会社 マンモグラフィ装置
JP7381297B2 (ja) * 2019-11-07 2023-11-15 キヤノン株式会社 放射線撮像装置、放射線撮像システム、制御装置、制御方法、および、プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177774A (en) * 1991-08-23 1993-01-05 Trustees Of Princeton University Reflection soft X-ray microscope and method
US5548123A (en) * 1994-12-06 1996-08-20 Regents Of The University Of California High resolution, multiple-energy linear sweep detector for x-ray imaging
JPH10258046A (ja) * 1997-03-18 1998-09-29 Toshiba Iyou Syst Eng Kk X線診断装置
JP4731704B2 (ja) * 2001-02-27 2011-07-27 キヤノン株式会社 医療用撮影システム及び撮影表示方法
WO2007039839A2 (en) * 2005-10-05 2007-04-12 Koninklijke Philips Electronics N.V. Multiple layer detector for spectral computed tomography imaging
US7696481B2 (en) * 2005-11-22 2010-04-13 General Electric Company Multi-layered detector system for high resolution computed tomography
JP4442695B2 (ja) * 2008-02-29 2010-03-31 ソニー株式会社 固体撮像装置及びカメラ装置
EP2347284B1 (en) * 2008-11-18 2018-05-23 Koninklijke Philips N.V. Spectral imaging detector
JP2011022132A (ja) * 2009-06-17 2011-02-03 Fujifilm Corp 放射線検出装置及び放射線画像検出システム
JP5439054B2 (ja) * 2009-06-25 2014-03-12 株式会社東芝 X線診断装置
JP5400507B2 (ja) * 2009-07-13 2014-01-29 キヤノン株式会社 撮像装置及び放射線撮像システム
JP5062312B2 (ja) * 2010-09-06 2012-10-31 株式会社島津製作所 X線透視装置

Also Published As

Publication number Publication date
WO2013015016A1 (ja) 2013-01-31
US20140103220A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
US9592017B2 (en) Radiographic imaging device and computer readable medium
US8550709B2 (en) Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
JP5676632B2 (ja) 放射線画像撮影装置、当該装置によって実行されるプログラム、放射線画像撮影方法
JP5620249B2 (ja) 放射線画像撮影システム
JP6033363B2 (ja) 放射線検出パネル
JP5666716B2 (ja) 放射線動画処理装置、放射線動画撮影装置、放射線動画撮影システム、放射線動画処理方法、放射線動画処理プログラム、及び記憶媒体
WO2013015016A1 (ja) 放射線撮影装置
WO2013015267A1 (ja) 放射線撮影装置
JP2012107886A (ja) 放射線撮影装置、及び放射線撮影システム
JP2012200455A (ja) 放射線画像撮影システムおよびプログラム
JP2012125409A (ja) 放射線撮影装置
JP2011212427A (ja) 放射線画像撮影システム
JP5634894B2 (ja) 放射線画像撮影装置およびプログラム
WO2013015062A1 (ja) 放射線撮影装置
JP5705534B2 (ja) 放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影制御処理プログラム
JP5595940B2 (ja) 放射線画像撮影装置
WO2013015044A1 (ja) 放射線撮影装置
JP2012063343A (ja) 放射線検出パネル
JP5616237B2 (ja) 放射線画像撮影装置
WO2012029403A1 (ja) 放射線画像撮影システム、放射線画像撮影装置、およびコンピュータ可読記録媒体
WO2013062052A1 (ja) 放射線画像表示システム、放射線画像表示装置、放射線画像撮影装置、プログラム、放射線画像表示方法、及び記憶媒体
WO2012056950A1 (ja) 放射線検出器および放射線画像撮影装置
JP5616238B2 (ja) 放射線画像撮影装置
JP2011196988A (ja) 放射線画像撮影装置
JP2012093259A (ja) 放射線撮影装置