Nothing Special   »   [go: up one dir, main page]

JPWO2011074536A1 - Copolyamide - Google Patents

Copolyamide Download PDF

Info

Publication number
JPWO2011074536A1
JPWO2011074536A1 JP2011504275A JP2011504275A JPWO2011074536A1 JP WO2011074536 A1 JPWO2011074536 A1 JP WO2011074536A1 JP 2011504275 A JP2011504275 A JP 2011504275A JP 2011504275 A JP2011504275 A JP 2011504275A JP WO2011074536 A1 JPWO2011074536 A1 JP WO2011074536A1
Authority
JP
Japan
Prior art keywords
acid
nylon
copolymerized polyamide
polyamide
copolyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011504275A
Other languages
Japanese (ja)
Inventor
順一 中尾
順一 中尾
貴司 清水
貴司 清水
藤井 泰人
泰人 藤井
信宏 吉村
信宏 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2011074536A1 publication Critical patent/JPWO2011074536A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

極めて低い吸水性に加え、成形性及び耐衝撃性を高度に満足する新規なポリアミドを提供する。(a)デカンジアミンとテレフタル酸との等量モル塩から得られる構成単位50〜98モル%、及び(b)11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、ラウリルラクタム及びこれらの混合物からなる群より選ばれた構成単位50〜2モル%からなることを特徴とする共重合ポリアミド。In addition to extremely low water absorption, the present invention provides a novel polyamide highly satisfying moldability and impact resistance. (A) 50-98 mol% of structural units obtained from an equimolar molar salt of decanediamine and terephthalic acid, and (b) 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, lauryllactam, and mixtures thereof A copolyamide comprising 50 to 2 mol% of a structural unit selected from the group consisting of:

Description

本発明は、極めて低い吸水性に加え、成形性及び耐衝撃性を高度に満足する新規な共重合ポリアミドに関する。   The present invention relates to a novel copolyamide which has a very high moldability and impact resistance in addition to extremely low water absorption.

自動車部品、電気電子部品への高融点化、高い耐熱老化性などの要求から、6ナイロンや66ナイロンの代替として半芳香族ポリアミドが使用されている。代表的な半芳香族ポリアミドであるヘキサメチレンジアミンとテレフタル酸より作製される6Tナイロンは、単体では融点が高いため大量のアジピン酸やイソフタル酸、2−メチル−1,5ペンタンジアミンなどを共重合することにより、融点を330℃から270℃に低下させる変性ポリアミド6Tとすることで使用している。しかしながら、共重合成分により、結晶成分である6T成分の結晶化が阻害され、結晶速度の低下や結晶化度の低下を引き起こし、加工性や高温物性が低下することが問題となっている。また、低吸水なポリアミドである11ナイロンや12ナイロンと比較すると、6T成分は、骨格内にアミド結合を多く含むため吸水性が高く、表面実装用の電気・電子用途で行われるリフローハンダ工程において部品表面に膨れが生じたり、自動車部品の冷却部品で使用されるクーラント液などの薬品に対しても耐性は好ましくない。一方、ノナメチレンジアミンとテレフタル酸より得られる9Tナイロンは、ジアミン成分の炭素数が奇数個であるため、炭素数が偶数個であるジアミンと比較し、水素結合が取りにくい構造であるため結晶速度や結晶化度が低下し、最終製品においても高温物性が低下するなどの問題が発生する。また、リフローハンダ工程における膨れにおいても、変性6Tナイロンに対し改善傾向は見られるもののまだまだ不十分である。このように、より高い加工性を有し、かつさらに低吸水性のポリアミド樹脂が求められている。   Semi-aromatic polyamide is used as an alternative to 6 nylon and 66 nylon because of demands for high melting point and high heat aging resistance for automobile parts and electric / electronic parts. 6T Nylon made from hexamethylenediamine, a typical semi-aromatic polyamide, and terephthalic acid has a high melting point as a single substance, so a large amount of adipic acid, isophthalic acid, 2-methyl-1,5-pentanediamine, etc. are copolymerized. By doing so, the modified polyamide 6T is used which has a melting point lowered from 330 ° C. to 270 ° C. However, the copolymerization component hinders crystallization of the 6T component, which is a crystal component, causing a decrease in crystallization speed and a decrease in crystallinity, resulting in a problem in that workability and high-temperature physical properties are deteriorated. Compared with 11 nylon and 12 nylon, which are polyamides with low water absorption, 6T component has high water absorption because it contains many amide bonds in the skeleton, and in the reflow soldering process performed in electrical and electronic applications for surface mounting. It is not preferable that the surface of the component is swollen or that it is resistant to chemicals such as a coolant used in a cooling component of an automobile component. On the other hand, 9T nylon obtained from nonamethylenediamine and terephthalic acid has an odd number of carbon atoms in the diamine component, so it has a structure in which hydrogen bonding is difficult to take compared to a diamine having an even number of carbon atoms. As a result, the crystallinity is lowered and the high-temperature properties are lowered in the final product. Further, the swelling in the reflow soldering process is still insufficient, although an improvement trend is seen with respect to the modified 6T nylon. Thus, there is a demand for a polyamide resin having higher processability and having a low water absorption.

特許文献1及び2には、結晶性と優れた低吸水性を有するポリアミドとして、1,10−デカンジアミン(10)とテレフタル酸(T)との重縮合反応により合成される10Tナイロンが開示されている。これらの10Tナイロンは結晶性が良好であるものの、結晶性の高さゆえ、非常に速く結晶化し、射出成形中にノズル内で凍結したり、または、十分な流動性を有さない等の加工性に問題があり、さらに成型品においてはウェルド強度や耐衝撃性が劣るなどの問題がある。   Patent Documents 1 and 2 disclose 10T nylon synthesized by a polycondensation reaction of 1,10-decanediamine (10) and terephthalic acid (T) as a polyamide having crystallinity and excellent low water absorption. ing. These 10T nylons have good crystallinity, but because of their high crystallinity, they crystallize very quickly, freeze in the nozzle during injection molding, or do not have sufficient fluidity In addition, there are problems such as poor weld strength and impact resistance in molded products.

また、特許文献3及び4には、10Tナイロンに他成分を共重合したポリアミドが開示されている。これらの文献において実施されているポリアミドは10Tナイロンに6Tナイロンを共重合したものであり、耐衝撃性の改善効果が無いだけでなく、10Tナイロンの本来持つ低吸水の特性が、6T成分の共重合により低下してしまっている(特許文献4の図2参照)。   Patent Documents 3 and 4 disclose polyamides obtained by copolymerizing 10T nylon with other components. The polyamide implemented in these documents is a copolymer of 10T nylon and 6T nylon, which not only has no impact resistance improvement effect, but also has the inherent low water absorption property of 10T nylon. It has fallen by superposition | polymerization (refer FIG. 2 of patent document 4).

このように、従来公知の10T系ナイロンには、極めて低い吸水率を維持しつつ、成形性と耐衝撃性を高度に満足するものはなかった。   As described above, none of the conventionally known 10T nylons have a high level of moldability and impact resistance while maintaining an extremely low water absorption rate.

特開平06−239990号公報Japanese Patent Laid-Open No. 06-239990 特開2002−293926号公報JP 2002-293926 A 特開2002−293927号公報JP 2002-293927 A 特開2008−274288号公報JP 2008-274288 A

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、極めて低い吸水率に加え、成形性及び耐衝撃性を高度に満足する共重合ポリアミドを提供することにある。   The present invention has been made in view of the current state of the prior art, and an object of the present invention is to provide a copolymerized polyamide that is highly satisfactory in moldability and impact resistance in addition to extremely low water absorption.

本発明者は、上記目的を達成するために、10Tナイロンに共重合する成分の種類及びその量について鋭意検討した結果、11ナイロン及び/又は12ナイロンを特定の割合で共重合することによって、極めて低い吸水率に加え、成形性と耐衝撃性を高度に満足する共重合ポリアミドを提供することができることを見出し、本発明の完成に至った。   In order to achieve the above object, the present inventor has intensively studied the types and amounts of components copolymerized with 10T nylon, and as a result, by copolymerizing 11 nylon and / or 12 nylon at a specific ratio, The present inventors have found that it is possible to provide a copolyamide having a high degree of moldability and impact resistance in addition to a low water absorption rate, and have completed the present invention.

即ち、本発明は、以下の(1)〜(6)の構成を有するものである。
(1)(a)デカンジアミンとテレフタル酸との等量モル塩から得られる構成単位50〜98モル%、及び(b)11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、ラウリルラクタム及びこれらの混合物からなる群より選ばれた構成単位50〜2モル%からなることを特徴とする共重合ポリアミド。
(2)(a)デカンジアミンとテレフタル酸との等量モル塩から得られる構成単位75〜98モル%、及び(b)11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、ラウリルラクタム及びこれらの混合物からなる群より選ばれた構成単位25〜2モル%からなることを特徴とする(1)に記載の共重合ポリアミド。
(3)共重合ポリアミドが、(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大30モル%まで含有することを特徴とする(1)または(2)に記載の共重合ポリアミド。
(4)共重合ポリアミドの融点(Tm)が240〜315℃であり、ガラス転移温度(Tg)が70〜120℃であることを特徴とする(1)〜(3)のいずれかに記載の共重合ポリアミド。
(5)(1)〜(4)のいずれかに記載の共重合ポリアミド100重量部に対して繊維状強化材が最大250重量部配合されていることを特徴とする共重合ポリアミド樹脂組成物。
(6)自動車部品または電子部品の成形材料に使用することを特徴とする(5)に記載の共重合ポリアミド樹脂組成物。
That is, the present invention has the following configurations (1) to (6).
(1) (a) 50 to 98 mol% of structural units obtained from an equimolar molar salt of decanediamine and terephthalic acid, and (b) 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, lauryllactam and A copolymerized polyamide comprising 50 to 2 mol% of a structural unit selected from the group consisting of these mixtures.
(2) (a) 75-98 mol% of structural units obtained from an equimolar molar salt of decanediamine and terephthalic acid, and (b) 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, lauryllactam and The copolyamide according to (1), comprising 25 to 2 mol% of a structural unit selected from the group consisting of these mixtures.
(3) Copolyamide is (c) a structural unit obtained from an equivalent molar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, or an aminocarboxylic acid or lactam other than the structural unit of (b) The copolyamide according to (1) or (2), which comprises up to 30 mol% of structural units obtained from
(4) The melting point (Tm) of the copolymerized polyamide is 240 to 315 ° C., and the glass transition temperature (Tg) is 70 to 120 ° C. Copolyamide.
(5) A copolymerized polyamide resin composition, wherein a fibrous reinforcing material is blended at a maximum of 250 parts by weight with respect to 100 parts by weight of the copolymerized polyamide according to any one of (1) to (4).
(6) The copolymerized polyamide resin composition as described in (5), which is used as a molding material for automobile parts or electronic parts.

本発明の共重合ポリアミドは、主成分の10Tナイロンに11ナイロン及び/又は12ナイロンが特定の割合で共重合されているので、高融点、摺動性、低吸水率などの10Tナイロンの特性を活かしつつ、成形性及び耐衝撃性を高度に満足することができる。   The copolymerized polyamide of the present invention has the characteristics of 10T nylon such as high melting point, slidability, and low water absorption because 11Nylon and / or 12nylon are copolymerized at a specific ratio to the main component 10T nylon. While being utilized, the moldability and impact resistance can be highly satisfied.

以下、本発明の共重合ポリアミドについて詳述する。本発明の共重合ポリアミドは、10Tナイロンに相当する(a)成分と11ナイロンおよび/又は12ナイロンに相当する(b)成分を特定の割合で含有するものであり、10Tナイロンの欠点である成形性、耐衝撃性が改良されているのみならず、低吸水性も高度に満足するという特徴を有する。   Hereinafter, the copolymerized polyamide of the present invention will be described in detail. The copolymerized polyamide of the present invention contains (a) component corresponding to 10T nylon and (b) component corresponding to 11 nylon and / or 12 nylon in a specific ratio, and is a drawback of 10T nylon. In addition to improved properties and impact resistance, it also has a feature that low water absorption is highly satisfactory.

(a)成分は、1,10−デカンジアミン(10)とテレフタル酸(T)を等量モルで共縮重合させることにより得られる10Tナイロンに相当するものであり、具体的には、下記式(I)で表されるものである。   The component (a) corresponds to 10T nylon obtained by co-condensation polymerization of equimolar amounts of 1,10-decanediamine (10) and terephthalic acid (T). It is represented by (I).

Figure 2011074536
Figure 2011074536

(a)成分は、本発明の共重合ポリアミドの主成分であり、共重合ポリアミドに優れた耐熱性、低吸水性、耐薬品性、摺動性などを付与する役割を有する。共重合ポリアミド中の(a)成分の配合割合は、50〜98モル%であり、好ましくは75〜98モル%、さらに好ましくは80〜95モル%である。(a)成分の配合割合が上記下限未満の場合、結晶成分である10Tナイロンが共重合成分により結晶阻害を受け、成形性や耐熱性の低下を招くおそれがあり、一方上記上限を超える場合、加工性や耐衝撃性が著しく低下するため好ましくない。   The component (a) is a main component of the copolymerized polyamide of the present invention, and has a role of imparting excellent heat resistance, low water absorption, chemical resistance, slidability and the like to the copolymerized polyamide. The blending ratio of the component (a) in the copolymerized polyamide is 50 to 98 mol%, preferably 75 to 98 mol%, more preferably 80 to 95 mol%. When the blending ratio of the component (a) is less than the above lower limit, 10T nylon which is a crystal component is subject to crystal inhibition by the copolymer component, which may lead to a decrease in moldability and heat resistance. This is not preferable because workability and impact resistance are significantly reduced.

(b)成分は、11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、又はラウリルラクタムを重縮合させることにより得られる11ナイロン、12ナイロンに相当するものであり、具体的には、下記式(II)、(III)で表されるものである。これらは単独で使用しても良いし、混合物を使用することもできる。   The component (b) corresponds to 11 nylon or 12 nylon obtained by polycondensation of 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, or lauryl lactam. Those represented by formulas (II) and (III). These may be used alone or in a mixture.

Figure 2011074536
Figure 2011074536

Figure 2011074536
Figure 2011074536

(b)成分は、(a)成分の欠点を改良するためのものであり、共重合ポリアミドの耐衝撃性、加工性、低吸水性の全てを改善する役割を有する。共重合ポリアミド中の(b)成分の配合割合は、50〜2モル%であり、好ましくは25〜2モル%、さらに好ましくは20〜5モル%である。(b)成分の配合割合が上記下限未満の場合、共重合ポリアミドの耐衝撃性が向上せず、低吸水化の効果も不十分である。上記上限を超える場合、共重合ポリアミドの結晶性が大幅に低下し、結晶化速度が遅くなり成形性が悪くなるだけでなく耐衝撃性が劣るおそれがある。また、10Tナイロンに相当する(a)成分の量が少なくなり、耐熱性や摺動性が不足するおそれがあり、好ましくない。   The component (b) is for improving the drawbacks of the component (a) and has a role of improving all of the impact resistance, workability and low water absorption of the copolymerized polyamide. The blending ratio of the component (b) in the copolymerized polyamide is 50 to 2 mol%, preferably 25 to 2 mol%, more preferably 20 to 5 mol%. When the blending ratio of the component (b) is less than the above lower limit, the impact resistance of the copolymer polyamide is not improved, and the effect of reducing water absorption is insufficient. When the above upper limit is exceeded, the crystallinity of the copolymerized polyamide is greatly lowered, the crystallization rate is slowed, the moldability is deteriorated, and the impact resistance may be deteriorated. Further, the amount of the component (a) corresponding to 10T nylon is decreased, and heat resistance and slidability may be insufficient.

本発明の共重合ポリアミドは、上記(a)成分及び(b)成分以外に、(c)上記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または上記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大30モル%共重合しても良い。ここで(c)成分の共重合量は、(a)、(b)、(c)の合計を100モル%とした場合の量である。(c)成分は、共重合ポリアミドに10Tナイロンや11ナイロン、12ナイロンによっては得られない他の特性を付与したり、10Tナイロンや11ナイロン、12ナイロンによって得られる特性をさらに改良するために添加される。   The copolymerized polyamide of the present invention comprises (c) a structural unit obtained from an equivalent molar salt of diamine and dicarboxylic acid other than the structural unit of (a) above, in addition to the above components (a) and (b), or the above A structural unit obtained from aminocarboxylic acid or lactam other than the structural unit of (b) may be copolymerized at a maximum of 30 mol%. Here, the copolymerization amount of the component (c) is an amount when the total of (a), (b) and (c) is 100 mol%. Component (c) is added to give other characteristics not obtainable with 10T nylon, 11 nylon, and 12 nylon to copolymer polyamide, and to further improve the characteristics obtained with 10T nylon, 11 nylon, and 12 nylon. Is done.

(c)成分に用いる共重合成分は、具体的には以下のような共重合成分が挙げられる。ジアミン成分としては、1,2−エチレンジアミン、1,3−トリメチレンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、2−メチル−1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、1,9−ノナメチレンジアミン、2−メチル−1,8−オクタメチレンジアミン、1,10−デカメチレンジアミン、1,11−ウンデカメチレンジアミン、1,12−ドデカメチレンジアミン、1,13−トリデカメチレンジアミン、1,16−ヘキサデカメチレンジアミン、1,18−オクタデカメチレンジアミン、2,2,4(または2,4,4)−トリメチルヘキサメチレンジアミンのような脂肪族ジアミン、ピペラジン、シクロヘキサンジアミン、ビス(3−メチル−4−アミノヘキシル)メタン、ビス−(4,4’−アミノシクロヘキシル)メタン、イソホロンジアミンのような脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミン、パラフェニレンジアミン、メタフェニレンジアミンなどの芳香族ジアミンおよびこれらの水添物等が挙げられる。
ジカルボン酸成分としては、以下に示すジカルボン酸、もしくは酸無水物を使用できる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボンル酸、4,4’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、5−スルホン酸ナトリウムイソフタル酸、5−ヒドロキシイソフタル酸等の芳香族ジカルボン酸、フマル酸、マレイン酸、コハク酸、イタコン酸、アジピン酸、アゼライン酸、セバシン酸、1,11−ウンデカン二酸、1,12−ドデカン二酸、1,14−テトラデカン二酸、1,18−オクタデカン二酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、4−メチル−1,2−シクロヘキサンジカルボン酸、ダイマー酸等の脂肪族や脂環族ジカルボン酸等が挙げられる。また、ε−カプロラクタムなどのラクタムおよびこれらが開環した構造であるアミノカルボン酸などが挙げられる。
Specific examples of the copolymer component used as the component (c) include the following copolymer components. As the diamine component, 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 2-methyl-1,5-pentamethylenediamine, 1,6 -Hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 2-methyl-1,8-octamethylenediamine, 1,10-decamethylenediamine, 1 , 11-Undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4 (or 2,4,4) -aliphatic diamines such as trimethylhexamethylenediamine, piperazi Cyclohexanediamine, bis (3-methyl-4-aminohexyl) methane, bis- (4,4′-aminocyclohexyl) methane, cycloaliphatic diamines such as isophoronediamine, metaxylylenediamine, paraxylylenediamine, Examples thereof include aromatic diamines such as paraphenylenediamine and metaphenylenediamine, and hydrogenated products thereof.
As the dicarboxylic acid component, the following dicarboxylic acids or acid anhydrides can be used. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, and 2,2′-diphenyldicarboxylic acid. 4,4'-diphenyl ether dicarboxylic acid, 5-sulfonic acid sodium isophthalic acid, 5-hydroxyisophthalic acid and other aromatic dicarboxylic acids, fumaric acid, maleic acid, succinic acid, itaconic acid, adipic acid, azelaic acid, sebacic acid 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,18-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedi Carboxylic acids, such as aliphatic or alicyclic dicarboxylic acids such as dimer acid. In addition, lactams such as ε-caprolactam and aminocarboxylic acids having a ring-opened structure are exemplified.

具体的な(c)成分としては、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカメチレンアジパミド(ナイロン116)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリパラキシリレンアジパミド(ナイロンPXD6)、ポリテトラメチレンセバカミド(ナイロン410)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリデカメチレンアジパミド(ナイロン106)、ポリデカメチレンセバカミド(ナイロン1010)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンドデカミド(ナイロン1012)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリテトラメチレンテレフタルアミド(ナイロン4T)、ポリペンタメチレンテレフタルアミド(ナイロン5T)、ポリ−2−メチルペンタメチレンテレフタルアミド(ナイロンM−5T)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンヘキサヒドロテレフタルアミド(ナイロン6T(H))ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリドデカメチレンテレフタルアミド(ナイロン12T)、ポリビス(3−メチル−4−アミノヘキシル)メタンテレフタルアミド(ナイロンPACMT)、ポリビス(3−メチル−4−アミノヘキシル)メタンイソフタルアミド(ナイロンPACMI)、ポリビス(3−メチル−4−アミノヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3−メチル−4−アミノヘキシル)メタンテトラデカミド(ナイロンPACM14)などが挙げられる。   Specific examples of the component (c) include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyundecamethylene adipamide (nylon 116). ), Polymetaxylylene adipamide (nylon MXD6), polyparaxylylene adipamide (nylon PXD6), polytetramethylene sebacamide (nylon 410), polyhexamethylene sebacamide (nylon 610), polydecamethylene Adipamide (nylon 106), polydecamethylene sebamide (nylon 1010), polyhexamethylene dodecamide (nylon 612), polydecamethylene dodecamide (nylon 1012), polyhexamethylene isophthalamide (nylon 6I), poly Tetramethylene terephthalate Amide (nylon 4T), polypentamethylene terephthalamide (nylon 5T), poly-2-methylpentamethylene terephthalamide (nylon M-5T), polyhexamethylene terephthalamide (nylon 6T), polyhexamethylene hexahydroterephthalamide ( Nylon 6T (H)) Polynonamethylene terephthalamide (nylon 9T), Polyundecamethylene terephthalamide (nylon 11T), Polydodecamethylene terephthalamide (nylon 12T), Polybis (3-methyl-4-aminohexyl) methane terephthalate Amide (nylon PACMT), polybis (3-methyl-4-aminohexyl) methane isophthalamide (nylon PACMI), polybis (3-methyl-4-aminohexyl) methandecamide (Nai Down PACM12), and the like polybis (3-methyl-4-amino-hexyl) methane tetra deca (nylon PACM14).

前記構成単位の中でも、好ましい(c)成分の例としては、加工性、低吸水性、耐衝撃性向上のためにポリドデカメチレンテレフタルアミド(ナイロン12T)やポリデカメチレンセバカミド(ナイロン1010)、ポリデカメチレンドデカアミド(ナイロン1012)などが挙げられる。共重合ポリアミド中の(c)成分の配合割合は、最大30モル%までであることが好ましく、さらに好ましくは5〜20モル%である。(c)成分の割合が少ない場合、(c)成分による効果が十分発揮されないおそれがあり、上記上限を超える場合、必須成分である(a)成分や(b)成分の量が少なくなり、本発明の共重合ポリアミドの本来意図される効果が十分発揮されないおそれがあり、好ましくない。   Among the structural units, examples of a preferable component (c) include polydodecamethylene terephthalamide (nylon 12T) and polydecamethylene sebacamide (nylon 1010) for improving processability, low water absorption, and impact resistance. And polydecamethylene dodecamide (nylon 1012). The blending ratio of the component (c) in the copolymerized polyamide is preferably up to 30 mol%, more preferably 5 to 20 mol%. When the proportion of the component (c) is small, the effect of the component (c) may not be sufficiently exhibited. When the above upper limit is exceeded, the amount of the essential component (a) or component (b) is reduced. The originally intended effect of the copolymerized polyamide of the invention may not be sufficiently exhibited, which is not preferable.

本発明の共重合ポリアミドは、植物由来の原料を用いることが、低炭素社会、環境調和を目指す上で好ましい。植物由来原料としては、食用と競合しないヒマシ油由来原料を用いることが好ましく、本発明の共重合ポリアミドの(a)成分中のデカンジアミン、(b)成分中としてのアミノウンデカン酸、(c)成分としてのセバシン酸は植物由来原料を用いることが好ましい。本発明の共重合ポリアミドの好ましい組成としては、これらの植物由来原料を高い比率で使用するナイロン10T/11、ナイロンPA10T/1010/11が挙げられる。   The copolymerized polyamide of the present invention preferably uses plant-derived raw materials in order to achieve a low carbon society and environmental harmony. As a plant-derived raw material, it is preferable to use a castor oil-derived raw material that does not compete with food, decanediamine in the component (a) of the copolymerized polyamide of the present invention, (b) aminoundecanoic acid in the component, (c) Sebacic acid as a component is preferably a plant-derived material. Preferable compositions of the copolymerized polyamide of the present invention include nylon 10T / 11 and nylon PA10T / 1010/11 using these plant-derived raw materials in a high ratio.

本発明の共重合ポリアミドの融点は、好ましくは240〜315℃、より好ましくは280〜315℃である。Tmが上記上限を超える場合、共重合ポリアミドを射出成形法などにより成形する際に必要となる加工温度が極めて高くなるため、加工時に分解し、目的の物性や外観が得られない場合がある。逆にTmが上記下限未満の場合、結晶化速度が遅くなり、いずれも成形が困難になりうる。また、ガラス転移温度(Tg)は、好ましくは70℃〜120℃、より好ましくは85℃〜110℃である。Tgが上記上限を超える場合、共重合ポリアミドを射出成形法などにより成形する際に、必要とされる金型温度が高くなり成形が困難になるだけでなく、射出成形の短いサイクルの中では十分に結晶化が進まない場合があり、離型不足等の成形難を引き起こしたり、後の使用において、高温下で結晶化が進行し二次収縮による変形などが問題となる。逆にTgが上記下限未満の場合、物性の大きな低下や、吸水後の物性が維持できないなどの問題が発生しうる。   The melting point of the copolymerized polyamide of the present invention is preferably 240 to 315 ° C, more preferably 280 to 315 ° C. When Tm exceeds the above upper limit, the processing temperature required when the copolymerized polyamide is molded by an injection molding method or the like becomes extremely high, so that it may be decomposed during processing and the desired physical properties and appearance may not be obtained. On the other hand, when Tm is less than the lower limit, the crystallization rate is slow, and in any case, molding may be difficult. The glass transition temperature (Tg) is preferably 70 ° C to 120 ° C, more preferably 85 ° C to 110 ° C. When Tg exceeds the above upper limit, when molding a copolymerized polyamide by injection molding or the like, not only the mold temperature required becomes high and molding becomes difficult, but it is sufficient in a short cycle of injection molding. In some cases, crystallization does not proceed, causing molding difficulties such as insufficient mold release, and in subsequent use, crystallization proceeds at a high temperature and deformation due to secondary shrinkage becomes a problem. On the other hand, when Tg is less than the above lower limit, problems such as a large decrease in physical properties and inability to maintain physical properties after water absorption may occur.

電子部品の成形においては、280℃以上の高融点、低吸水であることに加え、薄肉、ハイサイクルな成型が求められている。ポリデカメチレンテレフタルアミド重合体(10T)においては、耐熱性は良好であるものの、成形性及び耐衝撃性に劣る。また、ガラス転移温度が高いことから成型時に高い金型温度が必要となるため、射出成型加工性に難がある。たとえ低温金型で成型できても使用時の結晶化進行による二次収縮が問題となる。上記のような背景より、高融点および低吸水、易成形性を有する樹脂が求められており、本発明の共重合ポリアミドにおいては、10Tナイロンに特定量の11ナイロンおよび/又は12ナイロンを共重合することにより、耐衝撃性を改良できるだけでなく、射出成形時の金型温度が低く抑えられ、射出成形の加工性を改善できる。以上のように、本発明の共重合ポリアミドは様々な用途に使用できるが、なかでも高融点の共重合ポリアミドは、電子部品用途や自動車エンジンルーム内への展開に必要な耐熱性、易加工性、低吸水性、及び耐衝撃性を全て高度に満足する。高融点の共重合ポリアミドは、(a)成分を75〜98モル%、(b)成分を25〜2モル%とし、必要に応じて、(c)成分を最大30モル%まで共重合することにより得られる。   In the molding of electronic parts, in addition to a high melting point of 280 ° C. or higher and low water absorption, thin-walled, high-cycle molding is required. The polydecamethylene terephthalamide polymer (10T) has good heat resistance but is inferior in moldability and impact resistance. In addition, since the glass transition temperature is high, a high mold temperature is required at the time of molding, so that there is a difficulty in injection molding processability. Even if it can be molded with a low temperature mold, secondary shrinkage due to crystallization during use becomes a problem. From the background described above, a resin having a high melting point, low water absorption, and easy moldability is required. In the copolymerized polyamide of the present invention, a specific amount of 11 nylon and / or 12 nylon is copolymerized with 10T nylon. By doing so, not only the impact resistance can be improved, but the mold temperature during injection molding can be kept low, and the processability of injection molding can be improved. As described above, the copolymerized polyamide of the present invention can be used for various applications. Among them, the high melting point copolymerized polyamide is required for use in electronic parts and for deployment in an automobile engine room, and easy processability. In addition, low water absorption and impact resistance are all highly satisfied. The high-melting point copolymerized polyamide should have a component (a) of 75 to 98 mol%, a component (b) of 25 to 2 mol%, and a copolymer (c) up to 30 mol% as necessary. Is obtained.

本発明の共重合ポリアミドを製造するに際に使用する触媒としては、リン酸、亜リン酸、次亜リン酸もしくはその金属塩やアンモニウム塩、エステルが挙げられる。金属塩の金属種としては、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモンなどが挙げられる。エステルとしては、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどを添加することができる。また、溶融滞留安定性向上の観点から、水酸化ナトリウムを添加することが好ましい。   Examples of the catalyst used for producing the copolymerized polyamide of the present invention include phosphoric acid, phosphorous acid, hypophosphorous acid or a metal salt, ammonium salt and ester thereof. Examples of the metal species of the metal salt include potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, and antimony. As the ester, ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, phenyl ester and the like can be added. Moreover, it is preferable to add sodium hydroxide from the viewpoint of improving the melt residence stability.

本発明の共重合ポリアミドの96%濃硫酸中20℃で測定した相対粘度(RV)は、好ましくは0.4〜4.0であり、より好ましくは1.0〜3.5、さらに好ましくは1.5〜3.0である。ポリアミドの相対粘度を一定範囲とする方法としては、分子量を調整する手段が挙げられる。   The relative viscosity (RV) of the copolymerized polyamide of the present invention measured at 20 ° C. in 96% concentrated sulfuric acid is preferably 0.4 to 4.0, more preferably 1.0 to 3.5, still more preferably. 1.5-3.0. Examples of a method for setting the relative viscosity of the polyamide within a certain range include a means for adjusting the molecular weight.

本発明の共重合ポリアミドは、アミノ基量とカルボキシル基とのモル比を調整して重縮合する方法や末端封止剤を添加する方法によって、ポリアミドの末端基量および分子量を調整することができる。アミノ基量とカルボキシル基とのモル比を一定比率で重縮合する場合には、使用する全ジアミンと全ジカルボン酸のモル比をジアミン/ジカルボン酸=1.00/1.05から1.10/1.00の範囲に調整することが好ましい。   The copolymer polyamide of the present invention can adjust the end group amount and molecular weight of the polyamide by a method of polycondensation by adjusting the molar ratio of the amino group amount to the carboxyl group or a method of adding a terminal blocking agent. . When polycondensation is performed at a constant ratio of the molar ratio of the amino group and the carboxyl group, the molar ratio of all diamines to all dicarboxylic acids used is diamine / dicarboxylic acid = 1.00 / 1.05 to 1.10 / It is preferable to adjust to the range of 1.00.

末端封止剤を添加する時期としては、原料仕込み時、重合開始時、重合後期、または重合終了時が挙げられる。末端封止剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、モノカルボン酸またはモノアミン、無水フタル酸等の酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを使用することができる。末端封止剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸、安息香酸、トルイル酸、α−ナフタレンカルボン酸、β−ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸、無水マレイン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の酸無水物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン、アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン等が挙げられる。   Examples of the timing for adding the end-capping agent include raw material charging, polymerization initiation, polymerization late, or polymerization termination. The end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but acid anhydrides such as monocarboxylic acid or monoamine, phthalic anhydride, Monoisocyanates, monoacid halides, monoesters, monoalcohols and the like can be used. Examples of the end capping agent include aliphatic monoacids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Alicyclic monocarboxylic acids such as carboxylic acid and cyclohexanecarboxylic acid, benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid and other aromatic monocarboxylic acids, maleic anhydride Acid, phthalic anhydride, acid anhydrides such as hexahydrophthalic anhydride, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc. Aliphatic monoamines, Examples thereof include alicyclic monoamines such as cyclohexylamine and dicyclohexylamine, and aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine.

本発明の共重合ポリアミドの酸価およびアミン価としては、それぞれ0〜200eq/ton、0〜100eq/tonであることが好ましい。末端官能基が200eq/tonを超えると、溶融滞留時にゲル化や劣化が促進されるだけでなく、使用環境下においても、着色や加水分解等の問題を引き起こしうる。一方、ガラスファイバーやマレイン酸変性ポリオレフィンなどの反応性化合物をコンパウンドする際は、反応性および反応基に合わせ、酸価および/又はアミン価を5〜100eq/tonとすることが好ましい。   The acid value and amine value of the copolymerized polyamide of the present invention are preferably 0 to 200 eq / ton and 0 to 100 eq / ton, respectively. When the terminal functional group exceeds 200 eq / ton, not only gelation and deterioration are promoted during the melt residence, but also problems such as coloring and hydrolysis may be caused even in the use environment. On the other hand, when a reactive compound such as glass fiber or maleic acid-modified polyolefin is compounded, it is preferable that the acid value and / or the amine value be 5 to 100 eq / ton in accordance with the reactivity and the reactive group.

本発明の共重合ポリアミドには、従来のポリアミド用の各種添加剤を使用することができる。添加剤としては、繊維状強化材・充填材、安定剤、衝撃改良材、難燃剤、離型剤、摺動性改良材、着色剤、可塑剤、結晶核剤、本発明の共重合ポリアミドとは異なるポリアミド、ポリアミド以外の熱可塑性樹脂などが挙げられる。   Various conventional additives for polyamide can be used for the copolymerized polyamide of the present invention. Additives include fibrous reinforcements / fillers, stabilizers, impact modifiers, flame retardants, mold release agents, slidability improvers, colorants, plasticizers, crystal nucleating agents, and copolymerized polyamides of the present invention. Are different polyamides, thermoplastic resins other than polyamide, and the like.

繊維状強化材としては、ガラス繊維、カーボン繊維、金属ファイバー、セラミック繊維、有機繊維、ウィスカーなどが挙げられるが、その中でもガラス繊維が好ましい。これら繊維状強化材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。ここで用いられるガラス繊維としては、0.1mm〜100mmの長さを有するチョップドストランドまたは連続フィラメント繊維を使用することが可能である。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。ガラス繊維の断面形状としては、物性面より非円形断面のガラス繊維が好ましい。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.5〜8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1〜50μm、長径2〜100μm程度である。また、ガラス繊維は繊維束となって、繊維長1〜20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。繊維状強化材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大250重量部、好ましくは5〜150重量部、より好ましくは10〜100重量部を添加することが可能である。   Examples of the fibrous reinforcing material include glass fiber, carbon fiber, metal fiber, ceramic fiber, organic fiber, whisker, etc. Among them, glass fiber is preferable. These fibrous reinforcing materials may be used not only alone but also in combination of several kinds. As the glass fiber used here, chopped strands or continuous filament fibers having a length of 0.1 mm to 100 mm can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. As the cross-sectional shape of the glass fiber, a glass fiber having a non-circular cross-section is preferable from the viewpoint of physical properties. Non-circular cross-sectional glass fibers include those that are substantially oval, substantially oval, and substantially bowl-shaped in a cross section perpendicular to the length direction of the fiber length, and have a flatness of 1.5 to 8. It is preferable. Here, the flatness is assumed to be a rectangle with the smallest area circumscribing a cross section perpendicular to the longitudinal direction of the glass fiber, the length of the long side of the rectangle is the major axis, and the length of the short side is the minor axis. It is the ratio of major axis / minor axis. The thickness of the glass fiber is not particularly limited, but the minor axis is about 1 to 50 μm and the major axis is about 2 to 100 μm. Moreover, the glass fiber becomes a fiber bundle, and the thing of the chopped strand shape cut | disconnected by about 1-20 mm of fiber length can use it preferably. The optimum amount of the fibrous reinforcing material may be selected, but a maximum of 250 parts by weight, preferably 5 to 150 parts by weight, more preferably 10 to 100 parts by weight is added to 100 parts by weight of the copolymer polyamide. Is possible.

充填材(フィラー)としては、目的別には強化用フィラーや導電性フィラー、磁性フィラー、難燃フィラー、熱伝導フィラーなどが挙げられ、具体的にはガラスビーズ、ガラスフレーク、ガラスバルーン、シリカ、タルク、カオリン、ワラストナイト、マイカ、アルミナ、ハイドロタルサイト、モンモリロナイト、ヒドロキシアパタイト、グラファイト、カーボンナノチューブ、フラーレン、酸化亜鉛、酸化インジウム、酸化錫、酸化鉄、酸化チタン、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、赤燐、炭酸カルシウム、チタン酸カリウム、チタン酸ジルコン酸鉛、チタン酸バリウム、窒化アルミニウム、窒化ホウ素、ホウ酸亜鉛、ホウ酸アルミニウム、硫酸バリウム、硫酸マグネシウム、硫化亜鉛、鉄、アルミ、銅、銀等が挙げられる。これら充填材は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。形状としては、特に限定されないが、針状、球状、板状、不定形などを使用することが可能である。充填材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大250重量部、好ましくは20〜150重量部の充填材を添加することが可能である。また、繊維状強化材、充填材はポリアミド樹脂との親和性を向上させるため、カップリング剤処理したもの、またはカップリング剤と併用することが好ましく、カップリング剤としては、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤のいずれを使用しても良いが、その中でも、特にアミノシランカップリング剤、エポキシシランカップリング剤が好ましい。   As fillers (fillers), reinforcing fillers, conductive fillers, magnetic fillers, flame retardant fillers, thermal conductive fillers and the like are listed according to purpose. Specifically, glass beads, glass flakes, glass balloons, silica, talc , Kaolin, wollastonite, mica, alumina, hydrotalcite, montmorillonite, hydroxyapatite, graphite, carbon nanotube, fullerene, zinc oxide, indium oxide, tin oxide, iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, water Magnesium oxide, red phosphorus, calcium carbonate, potassium titanate, lead zirconate titanate, barium titanate, aluminum nitride, boron nitride, zinc borate, aluminum borate, barium sulfate, magnesium sulfate, zinc sulfide, iron, aluminum, Copper, silver And the like. These fillers may be used not only alone but also in combination of several kinds. Although it does not specifically limit as a shape, A needle shape, spherical shape, plate shape, an indeterminate form, etc. can be used. An optimum amount of filler may be selected, but a maximum of 250 parts by weight, preferably 20 to 150 parts by weight of filler can be added to 100 parts by weight of the copolyamide. Moreover, in order to improve the affinity with the polyamide resin, the fibrous reinforcing material and the filler are preferably used in combination with a coupling agent-treated or coupling agent. As the coupling agent, a silane coupling agent is used. Any of titanate coupling agents and aluminum coupling agents may be used, and among them, aminosilane coupling agents and epoxysilane coupling agents are particularly preferable.

安定剤としては、ヒンダードフェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などの有機系酸化防止剤や熱安定剤、ヒンダードアミン系、ベンゾフェノン系、イミダゾール系等の光安定剤や紫外線吸収剤、金属不活性化剤、銅化合物などが挙げられる。銅化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、燐酸第二銅、ピロリン酸第二銅、硫化銅、硝酸銅、酢酸銅などの有機カルボン酸の銅塩などを用いることができる。さらに銅化合物以外の構成成分としては、ハロゲン化アルカリ金属化合物を含有することが好ましく、ハロゲン化アルカリ金属化合物としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウムなどが挙げられる。これら添加剤は、1種のみの単独使用だけではなく、数種を組み合わせて用いても良い。安定剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大5重量部を添加することが可能である。   Stabilizers include organic antioxidants such as hindered phenol antioxidants, sulfur antioxidants, phosphorus antioxidants, heat stabilizers, light stabilizers such as hindered amines, benzophenones, and imidazoles. Examples include ultraviolet absorbers, metal deactivators, and copper compounds. Copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cupric chloride, cupric bromide, cupric iodide, cupric phosphate, cupric pyrophosphate, Copper salts of organic carboxylic acids such as copper sulfide, copper nitrate, and copper acetate can be used. Further, as a component other than the copper compound, an alkali metal halide compound is preferably contained. Examples of the alkali metal halide compound include lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, bromide. Examples thereof include sodium, sodium iodide, potassium fluoride, potassium chloride, potassium bromide, potassium iodide and the like. These additives may be used alone or in combination of several kinds. An optimum amount of the stabilizer may be selected, but a maximum of 5 parts by weight can be added to 100 parts by weight of the copolyamide.

また、本発明の共重合ポリアミドは、本発明の共重合ポリアミドとは異なる組成のポリアミドをポリマーブレンドしても良い。本発明の共重合ポリアミドと異なる組成のポリアミドとしては、特に制限は無いが、ポリカプロアミド(ナイロン6)、ポリウンデカンアミド(ナイロン11)、ポリドデカンアミド(ナイロン12)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリパラキシリレンアジパミド(ナイロンPXD6)、ポリテトラメチレンセバカミド(ナイロン410)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリデカメチレンアジパミド(ナイロン106)、ポリデカメチレンセバカミド(ナイロン1010)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンドデカミド(ナイロン1012)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリヘキサメチレンイソフタルアミド(ナイロン6I)、ポリテトラメチレンテレフタルアミド(ナイロン4T)、ポリペンタメチレンテレフタルアミド(ナイロン5T)、ポリ−2−メチルペンタメチレンテレフタルアミド(ナイロンM−5T)、ポリヘキサメチレンヘキサヒドロテレフタルアミド(ナイロン6T(H))、ポリ2−メチル−オクタメチレンテレフタルアミド、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)、ポリウンデカメチレンテレフタルアミド(ナイロン11T)、ポリドデカメチレンテレフタルアミド(ナイロン12T)、ポリビス(3−メチル−4−アミノヘキシル)メタンテレフタルアミド(ナイロンPACMT)ポリビス(3−メチル−4−アミノヘキシル)メタンイソフタルアミド(ナイロンPACMI)、ポリビス(3−メチル−4−アミノヘキシル)メタンドデカミド(ナイロンPACM12)、ポリビス(3−メチル−4−アミノヘキシル)メタンテトラデカミド(ナイロンPACM14)、ポリアルキルエーテル共重合ポリアミドなどの単体、もしくはこれらの共重合ポリアミドを単独または二種以上を使用しても良い。これらの中でも、結晶速度を向上させるために、ナイロン66やナイロン6T66などをポリマーブレンドしても良い。本発明の共重合ポリアミドとは異なる組成のポリアミドの添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大50重量部を添加することが可能である。   The copolymer polyamide of the present invention may be polymer blended with a polyamide having a composition different from that of the copolymer polyamide of the present invention. The polyamide having a composition different from that of the copolymerized polyamide of the present invention is not particularly limited, but polycaproamide (nylon 6), polyundecanamide (nylon 11), polydodecanamide (nylon 12), polytetramethylene adipamide (Nylon 46), polyhexamethylene adipamide (nylon 66), polymetaxylylene adipamide (nylon MXD6), polyparaxylylene adipamide (nylon PXD6), polytetramethylene sebacamide (nylon 410), Polyhexamethylene sebamide (nylon 610), polydecamethylene adipamide (nylon 106), polydecamethylene sebamide (nylon 1010), polyhexamethylene dodecamide (nylon 612), polydecamethylene dodecamide (nylon) 1012), Polyhe Samethylene terephthalamide (nylon 6T), polyhexamethylene isophthalamide (nylon 6I), polytetramethylene terephthalamide (nylon 4T), polypentamethylene terephthalamide (nylon 5T), poly-2-methylpentamethylene terephthalamide (nylon) M-5T), polyhexamethylene hexahydroterephthalamide (nylon 6T (H)), poly-2-methyl-octamethylene terephthalamide, polynonamethylene terephthalamide (nylon 9T), polydecamethylene terephthalamide (nylon 10T), Polyundecamethylene terephthalamide (nylon 11T), Polydodecamethylene terephthalamide (nylon 12T), Polybis (3-methyl-4-aminohexyl) methane terephthalamide ( Iron PACMT) polybis (3-methyl-4-aminohexyl) methane isophthalamide (nylon PACMI), polybis (3-methyl-4-aminohexyl) methane dodecamide (nylon PACM12), polybis (3-methyl-4-amino) Hexyl) methanetetradecamide (nylon PACM14), polyalkyl ether copolymerized polyamide or the like, or these copolymerized polyamides may be used alone or in combination. Among these, nylon 66, nylon 6T66, or the like may be polymer blended in order to improve the crystallization speed. The addition amount of the polyamide having a composition different from that of the copolymerized polyamide of the present invention may be selected, but a maximum of 50 parts by weight can be added to 100 parts by weight of the copolymerized polyamide.

本発明の共重合ポリアミドには、本発明の共重合ポリアミドとは異なる組成のポリアミド以外の熱可塑性樹脂を添加しても良い。ポリアミド以外のポリマーとしては、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル−スチレン共重合体(AS)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)が挙げられ、相溶性が悪い場合は、反応性化合物やブロックポリマー等の相溶化剤を添加するか、ポリアミド以外のポリマーを変性(特に酸変性が好ましい)することが重要である。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明の共重合ポリアミドに分散しても良い。熱可塑性樹脂の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大50重量部を添加することが可能である。   A thermoplastic resin other than the polyamide having a composition different from that of the copolymer polyamide of the present invention may be added to the copolymer polyamide of the present invention. Polymers other than polyamide include polyphenylene sulfide (PPS), liquid crystal polymer (LCP), aramid resin, polyetheretherketone (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyether ketone ketone (PEKK), polyphenylene ether (PPE), polyether sulfone (PES), polysulfone (PSU), polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene Phthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene ( S), polymethyl methacrylate, acrylonitrile-styrene copolymer (AS), and acrylonitrile-butadiene-styrene copolymer (ABS). If the compatibility is poor, compatibilization of reactive compounds, block polymers, etc. It is important to add an agent or to modify a polymer other than polyamide (particularly acid modification is preferred). These thermoplastic resins can be blended in a molten state by melt kneading. However, the thermoplastic resin may be made into a fiber or particle and dispersed in the copolymerized polyamide of the present invention. An optimum amount of the thermoplastic resin may be selected, but a maximum of 50 parts by weight can be added to 100 parts by weight of the copolymer polyamide.

衝撃改良材としては、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエンゴム(EPDM)、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、エチレン酢酸ビニル共重合体等のポリオレフィン系樹脂、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)、スチレン−イソプレン−スチレン共重合体(SIS)、アクリル酸エステル共重合体等のビニルポリマー系樹脂、ポリブチレンテレフタレートまたはポリブチレンナフタレートをハードセグメントとし、ポリテトラメチレングリコールまたはポリカプロラクトンまたはポリカーボネートジオールをソフトセグメントとしたポリエステルブロック共重合体、ナイロンエラストマー、ウレタンエラストマー、アクリル系エラストマー、シリコーンゴム、フッ素系ゴム、異なる2種のポリマーより構成されたコアシェル構造を有するポリマー粒子などが挙げられる。衝撃改良材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大30重量部を添加することが可能である。   As impact modifiers, ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as methacrylic acid ester copolymer, ethylene vinyl acetate copolymer, styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene -Polytetramethylene glycol, polycaprolactone, or poly (polyethylene glycol) as a hard segment made of vinyl polymer resin such as styrene copolymer (SIS), acrylate copolymer, polybutylene terephthalate or polybutylene naphthalate. Polyester block copolymer in which the ball sulfonate diol as a soft segment, a nylon elastomer, urethane elastomer, acrylic elastomer, silicone rubber, fluorinated rubber, and the like polymer particles having a core-shell structure constituted from two different polymers. The impact modifier may be added in an optimum amount, but a maximum of 30 parts by weight can be added to 100 parts by weight of the copolyamide.

本発明の共重合ポリアミドに対して、本発明におけるポリアミド樹脂以外の熱可塑性樹脂および耐衝撃改良材を添加する場合にはポリアミドと反応可能な反応性基が共重合されていることが好ましく、反応性基としてはポリアミド樹脂の末端基であるアミノ基、カルボキシル基及び主鎖アミド基と反応しうる基である。具体的にはカルボン酸基、酸無水物基、エポキシ基、オキサゾリン基、アミノ基、イソシアネート基等が例示されるが、それらの中でも酸無水物基が最も反応性に優れている。このようにポリアミド樹脂と反応する反応性基を有する熱可塑性樹脂はポリアミド中に微分散するため、粒子間の距離が短くなり、耐衝撃性が大幅に改良される。   When a thermoplastic resin other than the polyamide resin in the present invention and an impact resistance improving material are added to the copolymerized polyamide of the present invention, it is preferable that a reactive group capable of reacting with the polyamide is copolymerized. The functional group is a group capable of reacting with an amino group, a carboxyl group and a main chain amide group which are terminal groups of the polyamide resin. Specific examples include a carboxylic acid group, an acid anhydride group, an epoxy group, an oxazoline group, an amino group, an isocyanate group, etc. Among them, an acid anhydride group is most excellent in reactivity. Since the thermoplastic resin having a reactive group that reacts with the polyamide resin is finely dispersed in the polyamide, the distance between the particles is shortened, and the impact resistance is greatly improved.

難燃剤としては、ハロゲン系難燃剤と難燃助剤の組み合わせが良く、ハロゲン系難燃剤としては、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン及び臭素化架橋芳香族重合体等が好ましく、難燃助剤としては、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム等のアンチモン化合物や錫酸亜鉛等が好ましい。中でも、熱安定性の面よりジブロムポリスチレンとアンチモン酸ナトリウムおよび/または錫酸亜鉛との組み合わせが好ましい。また、非ハロゲン系難燃剤としては、メラミンシアヌレート、赤リン、ホスフィン酸の金属塩、含窒素リン酸系の化合物が挙げられる。特に、フォスフィン酸金属塩と含窒素リン酸系化合物との組み合わせが好ましく、含窒素リン酸系化合物としては、メラミン、または、メラム、メロンのようなメラミンの縮合物とポリリン酸の反応性生物またはそれらの混合物を含む。その際、金型等の金属腐食防止のために、ハイドロタルサイト系化合物の添加が好ましい。その他の難燃剤、難燃助剤としては、ホウ酸亜鉛、硫化亜鉛、モリブデン化合物、酸化鉄、水酸化アルミニウム、水酸化マグネシウム、シリコーン樹脂、フッ素樹脂、モンモリロナイト、シリカ、炭酸金属塩等が挙げられる。難燃剤の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大50重量部を添加することが可能である。   As a flame retardant, a combination of a halogen flame retardant and a flame retardant aid is good. As a halogen flame retardant, brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride Polymers, brominated epoxy resins, brominated phenoxy resins, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated cross-linked aromatic polymers, etc. are preferred. Antimony compounds such as antimony, antimony pentoxide, and sodium antimonate, and zinc stannate are preferred. Among these, a combination of dibromopolystyrene and sodium antimonate and / or zinc stannate is preferable from the viewpoint of thermal stability. Non-halogen flame retardants include melamine cyanurate, red phosphorus, phosphinic acid metal salts, and nitrogen-containing phosphoric acid compounds. In particular, a combination of a phosphinic acid metal salt and a nitrogen-containing phosphoric acid compound is preferable. Examples of the nitrogen-containing phosphoric acid compound include melamine or a melamine condensate such as melam and melon and polyphosphoric acid reactive organisms or Including mixtures thereof. At that time, it is preferable to add a hydrotalcite-based compound in order to prevent metal corrosion of a mold or the like. Other flame retardants and flame retardant aids include zinc borate, zinc sulfide, molybdenum compounds, iron oxide, aluminum hydroxide, magnesium hydroxide, silicone resin, fluororesin, montmorillonite, silica, metal carbonate, etc. . The optimum amount of the flame retardant may be selected, but a maximum of 50 parts by weight can be added to 100 parts by weight of the copolyamide.

離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコーン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12−ヒドロキシステアリン酸、ベヘン酸、モンタン酸などが挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミドなどが挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。離型材の添加量は最適な量を選択すれば良いが、共重合ポリアミド100重量部に対して最大5重量部を添加することが可能である。   Examples of the release agent include long chain fatty acids or esters thereof, metal salts, amide compounds, polyethylene wax, silicone, polyethylene oxide, and the like. The long chain fatty acid preferably has 12 or more carbon atoms, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, and montanic acid. Partial or total carboxylic acid is esterified with monoglycol or polyglycol. Or a metal salt may be formed. Examples of the amide compound include ethylene bisterephthalamide and methylene bisstearyl amide. These release agents may be used alone or as a mixture. An optimum amount of the release material may be selected, but a maximum of 5 parts by weight can be added to 100 parts by weight of the copolyamide.

摺動性改良材としては、高分子量ポリエチレン、酸変性高分子量ポリエチレン、フッ素樹脂粉末、二硫化モリブデン、シリコーン樹脂、シリコーンオイル、亜鉛、グラファイト、鉱物油等が挙げられる。樹脂摺動性改良材は共重合ポリアミド100重量部に対して最大3重量部を添加することができる。   Examples of the sliding property improving material include high molecular weight polyethylene, acid-modified high molecular weight polyethylene, fluororesin powder, molybdenum disulfide, silicone resin, silicone oil, zinc, graphite, mineral oil, and the like. The resin slidability improving material can be added up to 3 parts by weight with respect to 100 parts by weight of the copolymerized polyamide.

本発明の共重合ポリアミドは、従来公知の方法で製造することができるが、例えば、(a)成分の原料モノマーであるデカンジアミン、テレフタル酸、及び(b)成分である11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、ラウリルラクタム及びこれらの混合物からなる群より選ばれた原料モノマー、並びに必要により(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる原料モノマーを共縮合反応させることによって容易に合成することができる。共縮重合反応の順序は特に限定されず、全ての原料モノマーを一度に反応させてもよいし、一部の原料モノマーを先に反応させ、続いて残りの原料モノマーを反応させてもよい。また、重合方法は特に限定されないが、原料仕込からポリマー作製までを連続的な工程で進めても良いし、一度オリゴマーを作製した後、別工程で押出し機などにより重合を進める、もしくはオリゴマーを固相重合により高分子量化するなどの方法を用いても良い。原料モノマーの仕込み比率を調整することにより、合成される共重合ポリアミド中の各構成単位の割合を制御することができる。   The copolymerized polyamide of the present invention can be produced by a conventionally known method. For example, decanediamine, terephthalic acid, which is a raw material monomer of component (a), and 11-aminoundecanoic acid, which is component (b), A raw material monomer selected from the group consisting of 12-aminododecanoic acid, undecane lactam, lauryl lactam, and mixtures thereof, and (c) an equimolar molar salt of a diamine other than the structural unit of (a) and dicarboxylic acid if necessary, Or it can synthesize | combine easily by carrying out the cocondensation reaction of the raw material monomer obtained from aminocarboxylic acid or lactam other than the structural unit of said (b). The order of the copolycondensation reaction is not particularly limited, and all the raw material monomers may be reacted at once, or a part of the raw material monomers may be reacted first, followed by the remaining raw material monomers. The polymerization method is not particularly limited, but from raw material charging to polymer production may proceed in a continuous process, and after producing an oligomer once, the polymerization is advanced by an extruder or the like in another process, or the oligomer is solidified. A method of increasing the molecular weight by phase polymerization may be used. By adjusting the charging ratio of the raw material monomer, the proportion of each structural unit in the copolymerized polyamide to be synthesized can be controlled.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.

(1)相対粘度
ポリアミド樹脂0.25gを96%硫酸25mlに溶解し、オストワルド粘度計を用いて20℃で測定した。
(1) Relative viscosity 0.25 g of polyamide resin was dissolved in 25 ml of 96% sulfuric acid and measured at 20 ° C. using an Ostwald viscometer.

(2)融点(Tm)およびガラス転移温度(Tg)
105℃で15時間減圧乾燥したポリアミドをアルミニウム製パン(TA Instruments社製、品番900793.901)に10mg計量し、アルミニウム製蓋(TA Instruments社製、品番900794.901)で密封状態にして、測定試料を調製した後、示差走査熱量計DSCQ100(TA INSTRUMENTS製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した後に測定試料パンを取出し、液体窒素に漬け込み、急冷させた。その後、液体窒素からサンプルを取出し、室温で30分間放置した後、再び、示差走査熱量計DSCQ100(TA INSTRUMENTS製)を用いて室温から20℃/分で昇温し、350℃で3分間保持した。その際の融解による吸熱のピーク温度を融点(Tm)とした。また、ガラス転移温度(Tg)は、2度目の昇温過程でガラス転移点以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度で求めた。
(2) Melting point (Tm) and glass transition temperature (Tg)
10 mg of the polyamide dried under reduced pressure at 105 ° C. for 15 hours was weighed in an aluminum pan (TA Instruments, product number 900793.901) and sealed with an aluminum lid (TA Instruments, product number 900794.901). After preparing the sample, use a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS) to raise the temperature from room temperature to 20 ° C./min, hold at 350 ° C. for 3 minutes, take out the measurement sample pan, soak in liquid nitrogen, and quench rapidly I let you. Thereafter, the sample was taken out from the liquid nitrogen, allowed to stand at room temperature for 30 minutes, and then heated again from room temperature at 20 ° C./minute using a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS) and held at 350 ° C. for 3 minutes. . The endothermic peak temperature due to melting at that time was defined as the melting point (Tm). The glass transition temperature (Tg) is the intersection of the base line extension below the glass transition point and the tangent line indicating the maximum slope from the peak rising portion to the peak apex in the second temperature rising process. Determined by temperature.

(3)成形性
東芝機械製射出成形機EC−100を用い、シリンダー温度は、樹脂の融点+20℃に設定した。金型は縦100mm、横100mm、厚み1mmtの平板作成用金型を使用した。金型温度は140℃に設定し射出速度50mm/sec、保圧30MPa、射出時間10秒、冷却時間10秒で成型を行い、成形性の良悪は以下のような評価を実施した。
○:樹脂の分解が見られず、かつ問題なく成型品が得られる。
△:成型時に発泡、外観不良など分解の兆候が見られる。
×:離型性が不十分であり、成型品が金型に貼り付いたり、変形する。
(3) Formability Using an injection molding machine EC-100 manufactured by Toshiba Machine, the cylinder temperature was set to the melting point of the resin + 20 ° C. As the mold, a mold for producing a flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was used. The mold temperature was set to 140 ° C., molding was performed at an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 10 seconds. The moldability was evaluated as follows.
○: No decomposition of the resin is observed, and a molded product can be obtained without problems.
(Triangle | delta): The sign of decomposition | disassembly, such as foaming and an external appearance defect, is seen at the time of molding.
X: The releasability is insufficient, and the molded product sticks to the mold or deforms.

(4)飽和吸水率
飽和吸水率の評価には、上記縦100mm、横100mm、厚み1mmの平板を作製し、これを80℃熱水中に浸漬させ、以下の式より求めた。
飽和吸水率(%)={(飽和吸水時の重量−乾燥時重量)/乾燥時重量} ×100
(4) Saturated water absorption For evaluation of the saturated water absorption, a flat plate having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm was prepared and immersed in 80 ° C. hot water, and obtained from the following formula.
Saturated water absorption (%) = {(weight when saturated water absorption−weight when dried) / weight when dried} × 100

(5)シャルピー衝撃強度
シャルピー衝撃強度は、ISO 179に準じて、23℃、ノッチありで評価を行った。テストピースは、東芝機械製射出成形機EC−100を用い、シリンダー温度は、樹脂の融点+20℃に設定した。金型温度は140℃に設定し射出速度50mm/sec、保圧30MPa、射出時間10秒、冷却時間16秒で成型を行った。
(5) Charpy impact strength Charpy impact strength was evaluated according to ISO 179 at 23 ° C and with a notch. The test piece was an injection molding machine EC-100 manufactured by Toshiba Machine, and the cylinder temperature was set to the melting point of the resin + 20 ° C. Molding was performed at a mold temperature of 140 ° C., an injection speed of 50 mm / sec, a holding pressure of 30 MPa, an injection time of 10 seconds, and a cooling time of 16 seconds.

〔実施例1〕
デカメチレンジアミン12.38kg、テレフタル酸11.95kg、11−アミノウンデカン酸1.61kg、触媒としてジ亜リン酸ナトリウム9g、末端調整剤として酢酸40gおよびイオン交換水17.52kgを50リットルのオートクレーブに仕込み、常圧から0.05MPaまでNで加圧し、放圧させ、常圧に戻した。この操作を3回行い、N置換を行った後、攪拌下135℃、0.3MPaにて均一溶解させた。その後、溶解液を送液ポンプにより、連続的に供給し、加熱配管で240℃まで昇温させ、1時間、熱を加えた。その後、加圧反応缶に反応混合物が供給され、290℃に加熱され、缶内圧を3MPaで維持するように、水の一部を留出させ、低次縮合物を得た。その後、この低次縮合物を、溶融状態を維持したまま直接二軸押出し機(スクリュー径37mm、L/D=60)に供給し、樹脂温度を330℃、3箇所のベントから水を抜きながら溶融下で重縮合を進め、共重合ポリアミドを得た。この非強化共重合ポリアミドの原料モノマーの仕込み比率と特性、及びこの共重合ポリアミドから得られた成形品の評価結果を表1に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、強化共重合ポリアミド樹脂組成物を作製した。具体的には、同方向二軸押出し機を用い、シリンダー温度をホッパー側から320℃−330℃−330℃−320℃に設定し、ガラス繊維(日本電気硝子(株)製 T−275H)をサイドフィードから投入して行った。得られたストランドを水槽で冷却した後、ストランドカッターでペレット化し、125℃にて5時間乾燥し、強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
[Example 1]
Decamethylenediamine (12.38 kg), terephthalic acid (11.95 kg), 11-aminoundecanoic acid (1.61 kg), sodium diphosphite (9 g), terminal conditioner (40 g) acetic acid and ion-exchanged water (17.52 kg) in a 50 liter autoclave The pressure was charged with N 2 from normal pressure to 0.05 MPa, the pressure was released, and the pressure was returned to normal pressure. This operation was performed 3 times, N 2 substitution was performed, and then uniform dissolution was performed at 135 ° C. and 0.3 MPa with stirring. Thereafter, the solution was continuously supplied by a liquid feed pump, heated to 240 ° C. with a heating pipe, and heated for 1 hour. Thereafter, the reaction mixture was supplied to a pressure reaction can, heated to 290 ° C., and a part of water was distilled off so as to maintain the internal pressure of the can at 3 MPa to obtain a low-order condensate. Thereafter, this low-order condensate is directly supplied to a twin-screw extruder (screw diameter 37 mm, L / D = 60) while maintaining a molten state, and the resin temperature is 330 ° C. while water is being removed from three vents. Polycondensation proceeded under melting to obtain a copolymerized polyamide. Table 1 shows the charging ratio and characteristics of the raw monomer of the non-reinforced copolyamide and the evaluation results of the molded product obtained from the copolyamide. Next, glass fibers were added to the obtained copolymer polyamide to prepare a reinforced copolymer polyamide resin composition. Specifically, using the same direction twin screw extruder, the cylinder temperature is set to 320 ° C.-330 ° C.-330 ° C.-320 ° C. from the hopper side, and glass fiber (T-275H manufactured by Nippon Electric Glass Co., Ltd.) is used. I put it in from the side feed. After cooling the obtained strand in a water tank, it was pelletized with a strand cutter and dried at 125 ° C. for 5 hours to obtain a reinforced copolymerized polyamide resin composition. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例2〕
デカメチレンジアミンの量を8.26kgに変更し、テレフタル酸の量を7.97kgに変更し、11−アミノウンデカン酸の量を6.43kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。この非強化共重合ポリアミドの原料モノマーの仕込み比率と特性、及びこの共重合ポリアミドから得られた成形品の評価結果を表1に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
[Example 2]
In the same manner as in Example 1, except that the amount of decamethylenediamine was changed to 8.26 kg, the amount of terephthalic acid was changed to 7.97 kg, and the amount of 11-aminoundecanoic acid was changed to 6.43 kg. Polymerized polyamide was synthesized. Table 1 shows the charging ratio and characteristics of the raw monomer of the non-reinforced copolyamide and the evaluation results of the molded product obtained from the copolyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例3〕
デカメチレンジアミンの量を11.01kgに変更し、テレフタル酸の量を10.62kgに変更し、11−アミノウンデカン酸の量を3.22kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
Example 3
In the same manner as in Example 1, except that the amount of decamethylenediamine was changed to 11.01 kg, the amount of terephthalic acid was changed to 10.62 kg, and the amount of 11-aminoundecanoic acid was changed to 3.22 kg. Polymerized polyamide was synthesized. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例4〕
11−アミノウンデカン酸3.22kgをウンデカンラクタム2.93kgに変更した以外は実施例3と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
Example 4
A copolymer polyamide was synthesized in the same manner as in Example 3 except that 3.22 kg of 11-aminoundecanoic acid was changed to 2.93 kg of undecane lactam. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例5〕
11−アミノウンデカン酸3.22kgを12−アミノドデカン酸3.44kgに変更した以外は実施例3と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
Example 5
A copolymer polyamide was synthesized in the same manner as in Example 3 except that 3.22 kg of 11-aminoundecanoic acid was changed to 3.44 kg of 12-aminododecanoic acid. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例6〕
11−アミノウンデカン酸3.22kgをラウリルラクタム3.15kgに変更した以外は実施例3と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
Example 6
A copolymerized polyamide was synthesized in the same manner as in Example 3 except that 3.22 kg of 11-aminoundecanoic acid was changed to 3.15 kg of lauryl lactam. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例7〕
テレフタル酸11.95kgをテレフタル酸10.62kgとセバシン酸1.62kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
Example 7
Copolyamide was synthesized in the same manner as in Example 1 except that 11.95 kg of terephthalic acid was changed to 10.62 kg of terephthalic acid and 1.62 kg of sebacic acid. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔実施例8〕
デカメチレンジアミンの量を13.07kgに変更し、テレフタル酸の量を12.62kgに変更し、11−アミノウンデカン酸の量を0.80kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
Example 8
In the same manner as in Example 1, except that the amount of decamethylenediamine was changed to 13.07 kg, the amount of terephthalic acid was changed to 12.62 kg, and the amount of 11-aminoundecanoic acid was changed to 0.80 kg. Polymerized polyamide was synthesized. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔比較例1〕
11−アミノウンデカン酸は使用せず、デカメチレンジアミンの量を13.76kgに変更し、テレフタル酸の量を13.28kgに変更した以外は、実施例1と同様にして、共重合ポリアミドを得た。この非強化共重合ポリアミドの原料モノマーの仕込み比率と特性、及びこの共重合ポリアミドから得られた成形品の評価結果を表1に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
[Comparative Example 1]
11-aminoundecanoic acid was not used, the amount of decamethylenediamine was changed to 13.76 kg, and the amount of terephthalic acid was changed to 13.28 kg. It was. Table 1 shows the charging ratio and characteristics of the raw monomer of the non-reinforced copolyamide and the evaluation results of the molded product obtained from the copolyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔比較例2〕
11−アミノウンデカン酸は使用せず、デカメチレンジアミン12.38kgをデカメチレンジアミン8.26kgとヘキサメチレンジアミン3.71kgに変更し、テレフタル酸の量を13.28kgに変更した以外は実施例1と同様にして、共重合ポリアミドを得た。この非強化共重合ポリアミドの原料モノマーの仕込み比率と特性、及びこの共重合ポリアミドから得られた成形品の評価結果を表1に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
[Comparative Example 2]
Example 1 except that 11-aminoundecanoic acid was not used, 12.38 kg of decamethylenediamine was changed to 8.26 kg of decamethylenediamine and 3.71 kg of hexamethylenediamine, and the amount of terephthalic acid was changed to 13.28 kg. In the same manner as above, a copolymerized polyamide was obtained. Table 1 shows the charging ratio and characteristics of the raw monomer of the non-reinforced copolyamide and the evaluation results of the molded product obtained from the copolyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔比較例3〕
デカメチレンジアミンの量を5.50kgに変更し、テレフタル酸の量を5.31kgに変更し、11−アミノウンデカン酸の量を9.65kgに変更した以外は実施例1と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
[Comparative Example 3]
In the same manner as in Example 1, except that the amount of decamethylenediamine was changed to 5.50 kg, the amount of terephthalic acid was changed to 5.31 kg, and the amount of 11-aminoundecanoic acid was changed to 9.65 kg. Polymerized polyamide was synthesized. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

〔比較例4〕
11−アミノウンデカン酸3.22kgをε−カプロラクタム1.81kgに変更した以外は実施例3と同様にして、共重合ポリアミドを合成した。この共重合ポリアミドの原料モノマーの仕込み比率と特性を表2に示す。次に、得られた共重合ポリアミドにガラス繊維を添加して、実施例1と同様に強化共重合ポリアミド樹脂組成物を得た。この強化共重合ポリアミド樹脂組成物の組成比率、成形性、及びこの共重合ポリアミド樹脂組成物から得られた成形品の評価結果を表2に示す。
[Comparative Example 4]
A copolymerized polyamide was synthesized in the same manner as in Example 3 except that 3.22 kg of 11-aminoundecanoic acid was changed to 1.81 kg of ε-caprolactam. Table 2 shows the charging ratio and characteristics of the raw material monomers of this copolymerized polyamide. Next, glass fiber was added to the obtained copolyamide to obtain a reinforced copolyamide resin composition in the same manner as in Example 1. Table 2 shows the composition ratio of the reinforced copolymerized polyamide resin composition, moldability, and evaluation results of molded products obtained from the copolymerized polyamide resin composition.

Figure 2011074536
Figure 2011074536

Figure 2011074536
Figure 2011074536

表1、2から明らかなように、実施例1〜8の共重合ポリアミドおよびガラス繊維強化樹脂は、成形性、低吸水率、及び耐衝撃性の三つの特性の全てを高度に満足している。一方、11ナイロンまたは12ナイロンの成分が共重合されていない比較例1の共重合ポリアミドは、成型時に発泡による成型不良を引き起こすだけでなく、吸水率も高く、さらには、得られた成型品は脆いものとなる。また、デカンジアミンの一部にヘキサメチレンを共重合させた比較例2の共重合ポリアミドは、ガラス転移温度が高すぎるため、結晶化が十分に進まず、離型時に変形が生じた。また、ヘキサメチレンジアミンが共重合されたため、吸水率が大幅に増加した。アミノウンデカン酸の共重合量を増やした比較例3の共重合ポリアミドは、11ナイロン成分の増加により、極めて良好な低吸水性と耐衝撃性を示したが、結晶成分である10T成分の結晶化が阻害され成型時に離型不良が生じた。アミノウンデカン酸の代わりに同じくアミノカルボン酸であるε−カプロラクタムを共重合した比較例4の共重合ポリアミドは、衝撃改良の効果が無いだけでなく、吸水率の大幅な悪化を引き起こした。   As is clear from Tables 1 and 2, the copolymerized polyamides and glass fiber reinforced resins of Examples 1 to 8 are highly satisfied with all three properties of moldability, low water absorption, and impact resistance. . On the other hand, the copolymerized polyamide of Comparative Example 1 in which the 11 nylon or 12 nylon components are not copolymerized not only causes molding failure due to foaming during molding, but also has a high water absorption rate. It becomes brittle. In addition, the copolymerized polyamide of Comparative Example 2 in which hexamethylene was copolymerized with a part of decanediamine had a glass transition temperature that was too high, so that crystallization did not proceed sufficiently and deformation occurred during mold release. Moreover, since hexamethylenediamine was copolymerized, the water absorption rate increased significantly. The copolymerized polyamide of Comparative Example 3 in which the amount of aminoundecanoic acid was increased showed extremely good low water absorption and impact resistance due to the increase in the 11 nylon component, but the 10T component, which is a crystal component, was crystallized. Was hindered, resulting in poor mold release during molding. The copolymerized polyamide of Comparative Example 4 in which ε-caprolactam, which is also an aminocarboxylic acid instead of aminoundecanoic acid, was copolymerized, not only had no effect of impact improvement, but also caused a significant deterioration in water absorption.

本発明の共重合ポリアミドは、主成分の10Tナイロンに11ナイロンおよび/又は12ナイロンが特定の割合で共重合されているので、高融点、摺動性などの10Tナイロンの特性を活かしつつ、成形性、低吸水率及び耐衝撃性を高度に満足することができるため、自動車や電子部品用の成形材料や摺動用材料として好適に使用することができる。   The copolymerized polyamide of the present invention is molded while 11 nylon and / or 12 nylon is copolymerized in a specific ratio with 10T nylon as a main component, while utilizing the characteristics of 10T nylon such as high melting point and slidability. Therefore, it can be suitably used as a molding material or a sliding material for automobiles and electronic parts.

Claims (6)

(a)デカンジアミンとテレフタル酸との等量モル塩から得られる構成単位50〜98モル%、及び(b)11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、ラウリルラクタム及びこれらの混合物からなる群より選ばれた構成単位50〜2モル%からなることを特徴とする共重合ポリアミド。   (A) 50-98 mol% of structural units obtained from an equimolar molar salt of decanediamine and terephthalic acid, and (b) 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, lauryllactam, and mixtures thereof A copolyamide comprising 50 to 2 mol% of a structural unit selected from the group consisting of: (a)デカンジアミンとテレフタル酸との等量モル塩から得られる構成単位75〜98モル%、及び(b)11−アミノウンデカン酸、12−アミノドデカン酸、ウンデカンラクタム、ラウリルラクタム及びこれらの混合物からなる群より選ばれた構成単位25〜2モル%からなることを特徴とする請求項1に記載の共重合ポリアミド。   (A) 75-98 mol% of structural units obtained from an equimolar molar salt of decanediamine and terephthalic acid, and (b) 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, lauryllactam, and mixtures thereof The copolymerized polyamide according to claim 1, comprising 25 to 2 mol% of a structural unit selected from the group consisting of: 共重合ポリアミドが、(c)前記(a)の構成単位以外のジアミンとジカルボン酸の等量モル塩から得られる構成単位、または前記(b)の構成単位以外のアミノカルボン酸もしくはラクタムから得られる構成単位を最大30モル%まで含有することを特徴とする請求項1または2に記載の共重合ポリアミド。   The copolymerized polyamide is obtained from (c) a structural unit obtained from an equivalent molar salt of a diamine other than the structural unit of (a) and a dicarboxylic acid, or an aminocarboxylic acid or lactam other than the structural unit of (b). The copolyamide according to claim 1 or 2, which comprises up to 30 mol% of structural units. 共重合ポリアミドの融点(Tm)が240〜315℃であり、ガラス転移温度(Tg)が70〜120℃であることを特徴とする請求項1〜3のいずれかに記載の共重合ポリアミド。   The copolymer polyamide according to any one of claims 1 to 3, wherein the copolymer polyamide has a melting point (Tm) of 240 to 315 ° C and a glass transition temperature (Tg) of 70 to 120 ° C. 請求項1〜4のいずれかに記載の共重合ポリアミド100重量部に対して繊維状強化材が最大250重量部配合されていることを特徴とする共重合ポリアミド樹脂組成物。   A copolymerized polyamide resin composition, wherein a fibrous reinforcing material is blended at a maximum of 250 parts by weight with respect to 100 parts by weight of the copolymerized polyamide according to any one of claims 1 to 4. 自動車部品または電子部品の成形材料に使用することを特徴とする請求項5に記載の共重合ポリアミド樹脂組成物。   The copolymerized polyamide resin composition according to claim 5, which is used as a molding material for automobile parts or electronic parts.
JP2011504275A 2009-12-14 2010-12-13 Copolyamide Pending JPWO2011074536A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009282912 2009-12-14
JP2009282912 2009-12-14
PCT/JP2010/072386 WO2011074536A1 (en) 2009-12-14 2010-12-13 Copolyamide

Publications (1)

Publication Number Publication Date
JPWO2011074536A1 true JPWO2011074536A1 (en) 2013-04-25

Family

ID=44167288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011504275A Pending JPWO2011074536A1 (en) 2009-12-14 2010-12-13 Copolyamide

Country Status (3)

Country Link
JP (1) JPWO2011074536A1 (en)
TW (1) TW201130886A (en)
WO (1) WO2011074536A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954773B1 (en) * 2009-12-24 2013-01-04 Arkema France SEMI-AROMATIC POLYAMIDE, PROCESS FOR PREPARING THE SAME, COMPOSITION COMPRISING SUCH POLYAMIDE AND USES THEREOF
JP5648426B2 (en) * 2010-11-01 2015-01-07 東洋紡株式会社 Polyamide resin composition and polyamide resin foam molding
US8691911B2 (en) * 2011-01-31 2014-04-08 E I Du Pont De Nemours And Company Melt-blended thermoplastic composition
JP2014062139A (en) * 2011-06-14 2014-04-10 Toyobo Co Ltd Copolymerized polyamide film
CN103087310B (en) * 2013-01-14 2014-10-15 金发科技股份有限公司 Polyamide resin and application thereof as well as polyamide composition consisting of same
FR3002233B1 (en) 2013-02-18 2016-01-22 Arkema France THERMOPLASTIC STRUCTURE FOR TRANSPORTING REFRIGERANT FLUID
FR3002180B1 (en) 2013-02-18 2017-12-29 Arkema France USE OF SEMI-AROMATIC COPOLYAMIDE FOR THE TRANSPORT OF REFRIGERANT FLUID
JP6146062B2 (en) * 2013-03-08 2017-06-14 東洋紡株式会社 Carbon long fiber reinforced polyamide composite for compression molding
JP6075691B2 (en) * 2013-04-16 2017-02-08 東洋紡株式会社 Polyamide resin composition with excellent vibration characteristics when absorbing water
CN103254422B (en) * 2013-05-20 2016-04-27 金发科技股份有限公司 A kind of polyamide resin and consisting of daiamid composition
JP5800096B2 (en) * 2013-08-05 2015-10-28 東洋紡株式会社 Flame retardant polyamide resin composition
JP2015071668A (en) * 2013-10-02 2015-04-16 東レ株式会社 Polyamide resin composition
CN103554905B (en) * 2013-10-14 2016-09-07 上海俊尓新材料有限公司 A kind of Elevator roller special PA66 composite and preparation method thereof
JP2015129243A (en) * 2014-01-08 2015-07-16 旭化成ケミカルズ株式会社 Polyamide composition and molded product
CN112226074A (en) * 2020-10-30 2021-01-15 郭勇 Chopped glass fiber reinforced PA10T copolymer composite material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606783B2 (en) * 2000-03-02 2005-01-05 三井化学株式会社 Process for producing polyamide and polyamide composition
US20040077769A1 (en) * 2002-08-09 2004-04-22 Martens Marvin M. Polyamide molding compositions and electrical and electronic components molded therefrom having improved heat stability
DE10239326A1 (en) * 2002-08-27 2004-03-18 Ems-Chemie Ag Highly viscous molding compounds with nanoscale fillers
FR2858626B1 (en) * 2003-08-05 2005-10-07 Atofina SOFT SEMI AROMATIC POLYAMIDES WITH LOW HUMIDITY RESUME
US20060293435A1 (en) * 2005-06-10 2006-12-28 Marens Marvin M Light-emitting diode assembly housing comprising high temperature polyamide compositions
FR2896571B1 (en) * 2006-01-20 2009-06-12 Arkema Sa POLYAMIDE FLEXIBLE PIPES FOR COMPRESSED AIR
FR2926024B1 (en) * 2008-01-07 2010-04-09 Teknimed BIOMATERIAL FOR OSTEOSYNTHESIS

Also Published As

Publication number Publication date
TW201130886A (en) 2011-09-16
WO2011074536A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JPWO2011074536A1 (en) Copolyamide
JP5800096B2 (en) Flame retardant polyamide resin composition
JPWO2011052464A1 (en) Copolyamide
JP4998841B2 (en) Polyamide resin composition used for reflector for surface mount LED
JP5964964B2 (en) Polyamide, polyamide composition and molded article
JPWO2012093722A1 (en) Copolyamide
JP5696959B1 (en) High melting point polyamide resin composition with excellent vibration characteristics upon water absorption
WO2012161064A1 (en) Polyamide resin composition for optical components
JPWO2017077901A1 (en) Semi-aromatic polyamide resin and method for producing the same
JP5728969B2 (en) Polyamide resin composition for engine cooling water system parts and engine cooling water system parts using the same
JP2011111576A (en) Copolyamide
JP6269044B2 (en) High melting point polyamide resin composition with excellent vibration characteristics and hot rigidity during water absorption
JP5804313B2 (en) Polyamide resin composition for sliding members
JP6210217B2 (en) Carbon fiber reinforced polyamide resin composition
JP5818184B2 (en) High melting point polyamide resin composition with excellent vibration and appearance at the time of water absorption
JP6075691B2 (en) Polyamide resin composition with excellent vibration characteristics when absorbing water
JP2012102232A (en) Copolyamide
CN114644826A (en) Filled polyamide moulding compounds, moulded bodies produced therefrom and use of filled polyamide moulding compounds
JP6067254B2 (en) Copolyamide
JPWO2014132883A1 (en) Flame retardant polyamide resin composition for use in surface mount electrical and electronic parts
JP7567798B2 (en) Inorganic reinforced semi-aromatic polyamide resin composition
JP2012136643A (en) Copolyamide
JP5959190B2 (en) Polyamide resin composition and molded product
JP7514449B2 (en) Carbon fiber reinforced polyamide resin composition and molded article thereof
JP2013001836A (en) Polyamide welded molding