JPWO2019198354A1 - Reservoir comprehensive decontamination method including environmental measures - Google Patents
Reservoir comprehensive decontamination method including environmental measures Download PDFInfo
- Publication number
- JPWO2019198354A1 JPWO2019198354A1 JP2019511798A JP2019511798A JPWO2019198354A1 JP WO2019198354 A1 JPWO2019198354 A1 JP WO2019198354A1 JP 2019511798 A JP2019511798 A JP 2019511798A JP 2019511798 A JP2019511798 A JP 2019511798A JP WO2019198354 A1 JPWO2019198354 A1 JP WO2019198354A1
- Authority
- JP
- Japan
- Prior art keywords
- excavation
- stirring
- bottom mud
- water
- laying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005202 decontamination Methods 0.000 title claims abstract description 62
- 230000007613 environmental effect Effects 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 186
- 239000002689 soil Substances 0.000 claims abstract description 142
- 238000005520 cutting process Methods 0.000 claims abstract description 127
- 238000009412 basement excavation Methods 0.000 claims abstract description 120
- 230000008569 process Effects 0.000 claims abstract description 80
- 238000010276 construction Methods 0.000 claims abstract description 44
- 230000003588 decontaminative effect Effects 0.000 claims abstract description 35
- 230000001105 regulatory effect Effects 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims description 130
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 98
- 238000000926 separation method Methods 0.000 claims description 30
- 229910052792 caesium Inorganic materials 0.000 claims description 29
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 29
- 239000003337 fertilizer Substances 0.000 claims description 29
- 230000018044 dehydration Effects 0.000 claims description 21
- 238000006297 dehydration reaction Methods 0.000 claims description 21
- 238000005259 measurement Methods 0.000 claims description 18
- 238000012790 confirmation Methods 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 7
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 5
- 235000011613 Pinus brutia Nutrition 0.000 claims description 5
- 241000018646 Pinus brutia Species 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 239000000941 radioactive substance Substances 0.000 abstract description 17
- 238000010586 diagram Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 57
- 241000196324 Embryophyta Species 0.000 description 31
- 238000013019 agitation Methods 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 239000013049 sediment Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002361 compost Substances 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241001247986 Calotropis procera Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000035613 defoliation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003895 organic fertilizer Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C9/00—Special pavings; Pavings for special parts of roads or airfields
- E01C9/08—Temporary pavings
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/88—Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
- E02F3/90—Component parts, e.g. arrangement or adaptation of pumps
- E02F3/92—Digging elements, e.g. suction heads
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Agronomy & Crop Science (AREA)
- Soil Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Architecture (AREA)
- Processing Of Solid Wastes (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
- Road Paving Structures (AREA)
- Fertilizers (AREA)
Abstract
【課題】本発明は、特に、放射性物質を含む雨水排水によって土壌等が高濃度に汚染された雨水調整池等の土壌層の除染作業において、泥濘んだ軟らかい土壌を、無限軌道による装軌車両を用いて掘削作業を行っても、土壌を撹拌することなく、また、打設した支持杭の撤去によって池の底を抜き、調整池等の本来の機能を発揮しなくなる問題を生じさせない汚染土壌層の掘削工法の提供。【解決手段】支持杭を打設する支持杭打設工程と敷板を敷設する敷板敷設工程と掘削工程と敷板の撤去工程と敷板撤去後の掘削工程と杭頭切断工程とから構成され、敷板敷設工程は、敷設された敷板の上を装軌車両が次の敷板を搬送して連設施工するという一連の工程と前記支持杭打設工程を繰り返すことで装軌車両の搬送路を施工するものであり、掘削工程は、敷板を撤去しながら掘削するものであり、杭頭切断工程は、掘削し終わった掘削面に合わせて杭頭を切断処理する手段を採用した。【選択図】図1PROBLEM TO BE SOLVED: To track mud-smooth soft soil by an endless track in a decontamination work of a soil layer such as a rainwater regulating pond in which the soil or the like is highly contaminated by rainwater drainage containing radioactive substances. Pollution that does not cause soiling problems even if excavation work is carried out using vehicles, and that the bottom of the pond is pulled out by removing the support piles that have been placed and the original function of the regulating pond etc. is not exerted. Providing excavation methods for soil layers. SOLUTION: This method includes a support pile driving step for driving support piles, a floorboard laying step for laying a floorboard, an excavation step, a floorboard removal step, an excavation step after floorboard removal, and a pile head cutting step. The process is to construct a transportation route for a tracked vehicle by repeating a series of steps in which a tracked vehicle conveys the next floored plate on a laid plate and performs continuous construction, and the support pile driving process. In the excavation process, excavation is performed while removing the floor plate, and in the pile head cutting process, a means for cutting the pile head according to the excavated surface after the excavation is adopted. [Selection diagram] Figure 1
Description
本発明は、溜池における汚染土壌を除去する工法に関し、詳しくは、調整池等の除染作業において、水の引いている軟土地部分では装軌車両の無限軌道による土壌の撹拌を防止し、効果的な掘削作業を行う汚染土壌層の掘削工法を用いることを基本とし、水が溜まっている水溜まり部では、底に溜まった底泥を水ごと吸引して、底泥を分離回収する撹拌剥離式吸引装置を用いた撹拌剥離式吸引システムを利用する撹拌剥離式吸引工法も利用可能とする溜め池総合除染工法に関するものである。 The present invention relates to a method for removing contaminated soil in a pond, and in detail, in decontamination work such as a regulating pond, in a soft land portion where water is drawn, it is possible to prevent stirring of soil by an endless track of a tracked vehicle, Basically, the method of excavating contaminated soil layers is used to perform typical excavation work.At a water pool where water is accumulated, the agitation method that sucks the bottom mud accumulated in the bottom and separates and collects the bottom mud The present invention relates to a reservoir pond comprehensive decontamination method in which a stirring and peeling type suction method utilizing a stirring and peeling type suction system using a suction device can be used.
平成23年3月11日に発生した東北地方太平洋沖地震により、東京電力福島第一原子力発電所が被災し、大量の放射性物質が環境中に放出され、福島県のみならず東日本の各地において、放射性物質による環境の汚染と、これに伴う人の健康又は生活環境への影響が危惧されており、これら影響を速やかに低減することが喫緊の課題となっている。調整池や溜め池等は、集中豪雨などの局地的な出水により、河川に流れ込む雨水を一時的に溜め、下流の河川や下水道雨水管への負担を軽減し、又は農業水利施設であって、一般の人たちの立ち入りが出来ないようにフェンス等で囲われるなどの管理がされ、調整池や溜め池内の放射線量が直接市民生活に影響を与えるものでないと、それ以前は考えられていた。 Due to the Tohoku-Pacific Ocean Earthquake that occurred on March 11, 2011, TEPCO's Fukushima Daiichi Nuclear Power Station was damaged, and a large amount of radioactive material was released into the environment. There is concern about environmental pollution due to radioactive substances and the resulting effects on human health or the living environment, and it is an urgent task to reduce these effects promptly. Adjustment ponds, reservoirs, etc. temporarily store rainwater flowing into rivers due to localized floods such as heavy rainfall, reduce the burden on downstream rivers and sewer rainwater pipes, or are agricultural irrigation facilities, Before that, it was thought that the radiation dose in the regulating ponds and reservoirs would not have a direct impact on the lives of citizens because the facilities were controlled by fences, etc. so that ordinary people could not enter.
しかしながら、雨水排水が集まる雨水調整池では、土壌・落葉等が集積するため、そこに放射性物質が濃集(蓄積)し、高い濃度の放射性物質が観測されている。多くの地方自治体が公表しているとおり、雨水調整池や溜め池、或いは下水道管理調整池等の放射線量測定結果が各自治体の規定する放射線量を大幅に超えているところがあり、特別措置法が制定された現在では、調整池等も局所的汚染箇所として認定されるケースが少なくない。
係る調整池等は、泥濘んだ軟らかい富栄養化した腐葉土壌であり、また、水分を多く含んでいることからバックホー等の装軌車両を持ち込んで土壌を掘削すると、無限軌道により土壌を混ぜ込んでしまうという事態が生じる。また、鉄板等の敷板を敷設するに先立ち、多数の杭を打設することとなるが、除染後に係る杭を撤去しようとして引き抜くと、池の底を抜いてしまい、調整池等の機能を発揮しなくなるという問題がある。However, in the rainwater control pond where rainwater drainage collects, soil and fallen leaves are accumulated, so radioactive substances are concentrated (accumulated) there, and high concentrations of radioactive substances are observed. As announced by many local governments, there are some cases where the radiation dose measurement results of rainwater control ponds, storage ponds, sewer control ponds, etc. greatly exceed the radiation dose prescribed by each local government. As of the time it was enacted, there are many cases where regulating ponds are also recognized as locally contaminated areas.
Such adjustment ponds are soft, eutrophic humus soils that are muddy, and because they contain a large amount of water, when a tracked vehicle such as a backhoe is brought in to excavate the soil, the soil is mixed in a track. The situation occurs. In addition, a large number of piles will have to be placed prior to laying a floor plate such as an iron plate.However, if the piles are to be removed after decontamination in order to remove them, the bottom of the pond will be pulled out, and the functions of the adjustment pond, etc. will be removed. There is a problem that it will not work.
そこで、従来より、係る問題を解決しようと、種々の技術が提案されている。具体的には、例えば、発明の名称を「汚染土壌の除染装置及び除染方法」とする技術が開示され公知技術となっている(特許文献1参照)。「簡易な構成で容易に設置・撤去でき、除染 作業を無人化し、さらに汚染土壌の除染対象範囲を土壌深層部に拡大することを課題とし、具体的には、除染装置は、土壌表面に敷設する電極シートと、電極シートを貫通して除染対象領域の土壌に差し込む複数の電極杭3と、汚染土壌中に浸透する浸透液と、汚染土壌中の浸透液の拡散を止める止水剤とを具備する。電極シートには、導電材及び汚染 物質吸着剤又は汚染物質分解剤を含む。電極杭は、注入口と吐出口が連通し、先端の電極部に上端のボルト端子が電気的に導通し、先端部を除く側面に絶縁被覆部を備える。絶縁被覆部の上端部にゴムブッシュを介して電極シートを押え込む押え片が突出させ、ボルト端子を設ける。電極シートと電極杭の間に直流電圧を印加し、浸透液が拡散した汚染土壌中の汚染物質を動電現象により電極シートに誘引する。」というものである。しかしながら、特許文献1には、汚染土壌の除染方法が記載され、シート状の電極部材を撤去することで、放射性物質が回収できるということから、本発明と同様に、重機の無限軌道等による撹拌・混ぜ込みがないという利点で共通しているものの、セシウムはイオン化傾向が大きいことから環境中でセシウム単体として存在する可能性は低く、化合物として土壌や樹木、様々な構造物等に付着して存在しているものと考えられ、電極部材に吸着させるための電極シートに吸着できる土量の絶対量は少なく、また、電極杭を撤去することにより、池の底抜きを起こす原因となるおそれもあり、本発明が対象とする空池の汚染土壌の除染には向かないものと考えられる。
Therefore, conventionally, various techniques have been proposed in order to solve the problem. Specifically, for example, a technology in which the title of the invention is “decontamination apparatus and method for decontaminating contaminated soil” is disclosed and is a known technology (see Patent Document 1). `` The challenge is to make it easy to install and remove with a simple structure, to make the decontamination work unattended, and to expand the decontamination target range of contaminated soil to the deep soil layer. An electrode sheet laid on the surface, a plurality of electrode piles 3 that penetrate the electrode sheet and are inserted into the soil in the decontamination target area, a penetrant liquid that permeates into the contaminated soil, and a stopper that stops the diffusion of the permeate liquid in the contaminated soil. The electrode sheet contains a conductive material and a pollutant adsorbent or a pollutant decomposer.The electrode pile communicates with the injection port and the discharge port, and the upper end bolt terminal is connected to the tip electrode part. It is electrically conductive and has an insulating coating on the side surface except the tip. A pressing piece for pressing the electrode sheet through a rubber bush is projected on the upper end of the insulating coating to provide a bolt terminal. DC voltage is applied between the piles and the penetrant diffuses And the contaminant contaminated soil to attract the electrokinetic phenomenon electrode sheet. "Is that. However,
また、発明の名称を「表土移植工法及び表土剥き取り機構」とする技術が開示され公知技術となっている(特許文献2参照)。「各種土木工事に当り、表土の自然環境及び生態 系を破壊することなくそのままそっくり移転し得る表土移植工法及び表土移植具並びに表土剥き取り機構の提 供することを課題とし、具体的には、予め、移植領域の剥き取り開始周辺部域に亙り所要深さを掘り取って表土段差を形成して置き、適宜手段を用いて表土段差に先端を臨ませた表土移植具により移植領域の所要深さまでの表土層を破壊することなく自然の状態を保持して差し込み剥き取、次いで、当該表土層を満載したまま当該表土移植具を運搬具として用いて適宜運搬手段に積載し移植目的地まで運搬し、その後、当該運搬手段から表土移植具を吊り上げて移植場所の真上まで持来し、引き続き、移植場所に降ろして行き、移植地面上に表土層をそつくり敷き詰めて移植を完了してなる特徴的構成手法の採用。」というものである。しかしながら、特許文献2に記載の発明は、堆積している土砂を浚渫するに際し、装軌車両の無限軌道で撹拌してしまうおそれがあると考えられる。 Further, a technology in which the name of the invention is “topsoil transplanting method and topsoil stripping mechanism” is disclosed and is a publicly known technology (see Patent Document 2). `` In various civil engineering works, it is an issue to provide a topsoil transplantation method, a topsoil transplanter, and a topsoil stripping mechanism that can be transferred as it is without destroying the natural environment and ecosystem of the topsoil. , Start peeling of the transplanted area Excavate the required depth over the peripheral area to form a topsoil step and place it, and use the appropriate means to bring the tip of the topsoil to the topsoil While maintaining the natural state without destroying the topsoil layer, remove the topsoil layer, and then use the topsoil transplanter as a transporter while fully loading the topsoil layer and load it on the transportation means and transport it to the transplant destination. After that, hoist the topsoil transplanter from the transportation means and bring it to just above the transplantation site, then lower it to the transplantation site, lay the topsoil layer on the transplantation ground and complete the transplantation. Adoption of the characteristic configuration method to be Te. "Is that. However, it is considered that the invention described in Patent Document 2 may cause stirring on the endless track of the tracked vehicle when dredging the accumulated soil.
また、発明の名称を「放射性セシウム含有土壌の処理方法」とする技術が開示され公知技術となっている(特許文献3参照)。「除染効率を向上させるとともに、廃棄物発生量を低減することのできる放射性セシウム含有土壌の処理方法を提供することを課題とし具体的には、放射性セシウムを含有する土壌を重液によって異なる比重の複数種の土壌に分離する比重分離工程と、前記比重分離された土壌に含まれるセシウムを除去するセシウム除去工程とを備える放射性セシウム含有土壌の処理方法を手段とする。」というものである。しかしながら、特許文献3に記載の発明は、重液を用いて比重を異ならせ、セシウム濃度の高い層と低い層に分離し、分離された土壌に含まれたセシウムを除去する方法について記載があるが、分離された土壌の除却手段については記載は無く、重機の移動のために鉄板等の敷板を敷設する工法に関する技術は皆無である。 In addition, a technology in which the title of the invention is “a method for treating radioactive cesium-containing soil” is disclosed and is a known technology (see Patent Document 3). “The objective is to provide a method for treating radioactive cesium-containing soil that can improve decontamination efficiency and reduce the amount of waste generated. Specifically, soil containing radioactive cesium will have different specific gravity depending on the heavy liquid. The method for treating radioactive cesium-containing soil, comprising: a specific gravity separation step of separating the soil into a plurality of types of soil; and a cesium removal step of removing cesium contained in the soil subjected to the specific gravity separation. " However, the invention described in Patent Document 3 describes a method of differentiating specific gravity using a heavy liquid to separate into a high cesium concentration layer and a low cesium concentration layer, and removing cesium contained in the separated soil. However, there is no description about the means for removing the separated soil, and there is no technology related to the method of laying a floor plate such as an iron plate for moving heavy equipment.
また、東日本大震災による福島第一原子力発電所の事故により放射性物質が広範囲に放出され 、その除染が大きな問題となっていることは前記の通りであるが、これら放射性物質は雨水によって徐々に湖沼等に運ばれ細かな泥に吸着された状態で底に堆積する。よって、湖沼等の除染にはこれら放射性物質が吸着した底泥を回収し、処理することも重要である。 In addition, as described above, radioactive substances were released over a wide area due to the accident at the Fukushima Daiichi Nuclear Power Station due to the Great East Japan Earthquake, and decontamination of them has become a major issue, but these radioactive substances are gradually being removed by rainwater. It is transported to the etc. and is deposited on the bottom in the state of being adsorbed on the fine mud. Therefore, for decontamination of lakes and marshes, it is important to collect and treat the bottom mud adsorbed with these radioactive substances.
このような湖沼等の底泥の浚渫装置として、例えば下記[特許文献4]に記載の発明が挙げられる。この[特許文献4]に記載の発明は、湖沼の水面にベース船を浮かべ、このベース船から吸引ポンプを搭載した吸引体を吊下げ、湖沼の底に堆積した底泥を水ごと吸 引して陸側の処理装置に圧送する技術である。しかしながら、湖沼等の底には枯死した植物が堆積していたり、水草や抽水植物の根等 が生い茂っている場合が多く、[特許文献4]に記載の吸引体ではこれらの異物が吸引口を詰まらせて吸引能力を著しく悪化させる。このため、定期的に吸引体を引き上げて吸引口に詰まった異物を除去する必要があり、作業効率が極めて悪いという問題点がある。 As an example of such a dredging device for bottom mud in lakes and marshes, the invention described in the following [Patent Document 4] can be given. In the invention described in [Patent Document 4], a base ship is floated on the surface of a lake, a suction body equipped with a suction pump is hung from the base ship, and the mud accumulated on the bottom of the lake is sucked together with water. It is a technology of sending by pressure to a processing unit on the land side. However, in many cases, dead plants are accumulated on the bottom of lakes and marshes, and roots of aquatic plants and extracted plants are overgrown, and in the suction body described in [Patent Document 4], these foreign substances cause suction holes. It will be clogged and the suction ability will be significantly deteriorated. For this reason, it is necessary to periodically pull up the suction body to remove the foreign matter clogged in the suction port, and there is a problem that the work efficiency is extremely low.
本発明は、特に、放射性物質を含む雨水排水によって土壌等が高濃度に汚染された雨水調整池、溜め池等の土壌層の除染作業において、水分を多く含み泥濘んだ軟らかい土壌を、無限軌道による装軌車両を用いて掘削作業を行っても、土壌を撹拌することなく、また、打設した支持杭の撤去によって池の底を抜いてしまい、調整池等の本来の機能を発揮しなくなるという問題を生じさせない汚染土壌層の掘削工法の提供、並びに、その汚染土壌層の掘削工法の提供とともに、水生植物等の異物を細かに切断して吸引する撹拌剥離式吸引装置を用いた撹拌剥離式吸引システムを利用する撹拌剥離式吸引工法を含めることができ、また、この富栄養化した底泥を処理再利用し、地球環境に対し付加を軽減させることができる溜め池総合除染工法の提供を課題とする。 The present invention, in particular, in the decontamination work of a soil layer such as a rainwater regulating pond and a reservoir pond in which the soil or the like is polluted to a high concentration by rainwater drainage containing a radioactive substance, a soft soil that contains a lot of water and mud is infinite. Even if excavation work is carried out using a track-tracked vehicle, the bottom of the pond will be pulled out without stirring the soil and by removing the support piles that have been placed, and the original function of the regulating pond etc. will be exhibited. Providing a method for excavating a contaminated soil layer that does not cause the problem of disappearing, and a method for excavating a contaminated soil layer, and agitation using an agitation peeling type suction device that finely cuts foreign substances such as aquatic plants and sucks them An agitation separation type suction method that uses a separation type suction system can be included, and this eutrophied bottom mud can be treated and reused to reduce the addition to the global environment. of Subjected to an object of the present invention.
本発明は、装軌車両の無限軌道によって土壌を攪拌せずに、除染作業を行う方法であって、支持杭を打設する支持杭打設工程と、敷板を敷設する敷板敷設工程と、掘削工程と、敷板の撤去工程と、敷板撤去後の掘削工程と、杭頭切断工程と、から構成され、前記敷板敷設工程は、敷設された前記敷板の上を前記装軌車両が次の敷板を搬送して連設施工するという一連の工程と前記支持杭打設工程を繰り返すことで前記装軌車両の搬送路を施工するものであり、前記掘削工程は、前記敷板を撤去しながら掘削するものであり、前記杭頭切断工程は、掘削し終わった場所の支持杭は掘削面に合わせて杭頭を切断処理する構成を採用するものである。 The present invention is a method of performing decontamination work without stirring soil by an endless track of a tracked vehicle, a support pile placing step of placing support piles, and a floorboard laying step of laying a floorboard, An excavation process, a removal process of a floor plate, an excavation process after the removal of the floor plate, and a pile head cutting process, and the floor plate laying process is performed by the track vehicle following the floor plate that has been laid. Is to construct a transportation path of the tracked vehicle by repeating a series of steps of transporting and constructing the support pile and the step of driving the support pile, and the excavation step excavates while removing the floor plate. In the pile head cutting step, the support pile at the location where the excavation is finished adopts a configuration in which the pile head is cut in accordance with the excavation surface.
また、本発明は、前記支持杭打設工程及び前記敷板敷設工程の後であって、前記掘削工程の前に、掘削パスの確認及び施工前掘削深さの確認工程と、粗除根工程を有し、前記敷板の撤去工程と、前記敷板撤去後の掘削工程の後であって前記杭頭切断工程の前に、施工後の掘削深さの確認工程と、掘削後の底泥の簡易セシウム濃度測定工程を有した構成を採用することもできる。 Further, the present invention includes a step of confirming an excavation path and a step of confirming an excavation depth before construction, and a rough root removal step after the support pile driving step and the floor plate laying step and before the excavating step. However, after the step of removing the floor plate, after the excavation step after removing the floor plate and before the pile head cutting step, a step of checking the excavation depth after construction, and a simple cesium concentration in the bottom mud after excavation It is also possible to adopt a configuration having a measurement step.
また、本発明は、前記撤去工程において、前記搬送路を敷設方向と略平行に置換え敷設して移設する構成手段を採用してもよい。 Further, in the present invention, in the removing step, constituent means may be adopted in which the transport path is replaced and laid and moved substantially parallel to the laying direction.
また、本発明は、前記支持杭に松材を用い、前記杭頭切断工程において、掘削後の地面より露出した前記杭頭を切断し、その余の支持杭を土壌内に残存させたままにして、調整池の底抜きを防止する構成を採用することもできる。 Further, the present invention, using a pine wood for the support pile, in the pile head cutting step, the pile head exposed from the ground after excavation is cut, leaving the remaining support pile in the soil. It is also possible to adopt a configuration that prevents the bottom of the regulating pond from being pulled out.
また、本発明は、前記敷板が金属製、または樹脂製である構成を採用してもよい。 Further, the present invention may employ a configuration in which the floor plate is made of metal or resin.
また、本発明は、前記掘削工程及び前記敷板撤去後の掘削工程において行う掘削を、バックホー又はバキュームで行う構成手段を採用してもよい。 Further, the present invention may employ a constituent means for performing the excavation performed in the excavation step and the excavation step after removing the floorboard with a backhoe or a vacuum.
また、本発明は、溜め池において、水が引いた部分は請求項1から請求項6の何れかに記載の汚染土壌層の掘削工法を用いることを基本構成とし、水が溜まっている部分は底泥Rを水ごと吸引する撹拌剥離式吸引工法を用いることで、溜め池全体を総合的に除染する工法であって、前記攪拌剥離式吸引工法が、前面と底面が開口し上面と奥面と両側面とが閉塞し、前面には、スライド可能に設置され、前記前面の開口の幅を変化させるスライド板を備えた筐体部を有するとともに、前方に位置し底泥Rを撹拌する撹拌ローラと、前記撹拌ローラの後方に位置し複数の円板刃が周面に設けられた第1の切断ローラと、前記第1の切断ローラの上方に位置し複数の円板刃が周面に設けられた第2の切断ローラと、前記第1の切断ローラと第2の切断ローラの後方に吸引口が位置し底泥Rを水ごと吸引するポンプ部と、前記ポンプ部と接続し吸引した底泥Rを前記台船側に送る送水ホースと、を有し、前記第1の切断ローラは前面視で下から上に回転するとともに、前記第2の切断ローラは前面視で上から下に回転し、前記第1の切断ローラと第2の切断ローラの間隙に巻き込んだ異物を前記第1の切断ローラと第2の切断ローラの円板刃が切断する撹拌剥離式吸引装置と、水面に位置するとともに前記撹拌剥離式吸引装置を水底に吊り下げる台船と、陸側に設けられた底泥処理装置と、前記撹拌剥離式吸引装置が吸引した底泥を前記底泥処理装置に送るホース部材と、前記撹拌剥離式吸引装置を移動させるための移動手段とを有し、該移動手段がワイヤによって前記撹拌剥離式吸引装置を牽引して移動させる牽引手段もしくは前記撹拌剥離式吸引装置に一端が固定されたシャフトを押し引きして移動させるシャフト式移動手段である撹拌剥離式吸引システムを用い、前記台船を水面の所定の位置に配置するステップと、前記台船から前記撹拌剥離式吸引装置を水底に下ろすステップと、前記撹拌剥離式吸引装置を動作させ、前記撹拌ローラが底泥を撹拌して掻き上げ、前記第1の切断ローラと前記第2の切断ローラとが異物を切断し、前記ポンプ部が底泥と切断された異物と水とを吸引するステップと、吸引した底泥と切断された異物と水とをホース部材を介して前記底泥処理装置に圧送するステップと、前記底泥処理装置が底泥を異物と水から分離して回収するステップと、前記撹拌剥離式吸引装置を水底で移動させるステップと、から成る構成手段を採用してもよい。
Further, the present invention is basically configured such that, in the reservoir, the portion where water is drawn uses the excavation method for the contaminated soil layer according to any one of
また、本発明は、前記汚染土壌層の掘削工法により掘削された底泥、又は前記攪拌剥離式吸引工法により吸引された底泥を、自然脱水若しくは加圧脱水する脱水工程、セシウム濃度測定・処理工程、並びに肥料成分調整・処理工程を経て肥料を得る前記溜め池総合除染工法を利用した堆肥・肥料製造方法とすることもできる。 Further, the present invention is a dehydration step of naturally dehydrating or pressurizing the bottom mud excavated by the method for excavating the contaminated soil layer, or the bottom mud aspirated by the stirring separation suction method, cesium concentration measurement / treatment. It is also possible to use a compost / fertilizer production method utilizing the above-mentioned reservoir basin comprehensive decontamination method in which fertilizer is obtained through a process and a fertilizer component adjustment / treatment process.
本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法によれば、搬送路となる敷設された敷板上を重機が移動するため、装軌車両の無限軌道によって汚染された土壌を攪拌せずに、掘削による除染作業を効果的に行うことが可能となる優れた効果を発揮する。 According to the method for excavating a contaminated soil layer used in the method for comprehensive decontamination of a reservoir according to the present invention, since the heavy equipment moves on the laid board that is the transport path, the soil contaminated by the endless track of the tracked vehicle It exhibits an excellent effect that the decontamination work by excavation can be effectively performed without stirring.
本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法によれば、敷板の置換え移設により使用する全敷板枚数を減らすことができるという優れた効果を発揮する。 According to the method for excavating a contaminated soil layer used in the integrated decontamination method for a reservoir according to the present invention, it is possible to reduce the number of all floor boards used by replacing and relocating the floor boards.
また、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法において、支持杭に松材を使用する構成を採用する構成では、支持杭を残したままとすることで、池の底を抜くことがないという効果を発揮する。 Further, in the method for excavating the contaminated soil layer used in the integrated decontamination method for the reservoir according to the present invention, in the configuration that uses the pine wood for the support pile, by leaving the support pile left, The effect of not pulling out the bottom of the.
また、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法における前記撤去工程において、前記搬送路を敷設方向と略平行に移設して置換え敷設する構成手段を採用した場合には、敷板の敷設作業を効率よく行うことができるという優れた効果を発揮する。 Further, in the removing step in the method for excavating a contaminated soil layer used in the integrated decontamination method for a reservoir according to the present invention, in the case of adopting a constituent means for transferring and laying the transfer path substantially parallel to the laying direction Has an excellent effect that the work of laying the floor plate can be efficiently performed.
また、本発明に係る溜め池総合除染工法の内、撹拌剥離式吸引工法で利用する撹拌剥離式吸引装置は、前面視で下から上に回転する第1の切断ローラと 、この第1の切断ローラの上方に位置し前面視で上から下の方向に回転する第2の切断ロ ーラとを有している。そして、これら第1、第2の切断ローラが水生植物等の異物をポンプ部が吸引可能なサイズに切断する。このためポンプ部の吸引口に異物が詰まることがなく、ポンプ部の吸引能力を良好な状態で維持することができる。これにより、底泥の吸引作業を長時間連続して行うことができる。また、本発明に係る撹拌剥離式吸引装置は、上面、奥面、両側面が閉塞し、前面開口部はスライド板によって適度な開口幅に調整されるから、撹拌剥離式吸引装置外の底泥を舞い上げることがなく、底泥の堆積状態を維持し効果的に回収を行う事ができる。また、水の 透明度を維持することができる。また、本発明に係る撹拌剥離式吸引装置は、スライド板により前面開口部の開口幅を増減 することができるため、送水する底泥の濃度を調整することができる。また、本発明に係る撹拌剥離式吸引システム及び撹拌剥離式吸引工法は、上記の撹拌剥離式吸引装置を有するため、底泥の吸引作業を効率良く長時間連続して行うことができるという効果を発揮するものである。 Further, among the integrated decontamination method of the reservoir according to the present invention, the stirring and peeling type suction device used in the stirring and peeling type suction method is a first cutting roller which rotates from bottom to top in front view, and the first cutting roller. And a second cutting roller which is located above the cutting roller and rotates from the top to the bottom in a front view. Then, the first and second cutting rollers cut foreign matter such as aquatic plants into a size that can be sucked by the pump unit. Therefore, the suction port of the pump unit is not clogged with foreign matter, and the suction capability of the pump unit can be maintained in a good state. As a result, the suction operation of the bottom mud can be continuously performed for a long time. Further, in the stirring and peeling type suction device according to the present invention, the upper surface, the back surface and both side surfaces are closed, and the front opening is adjusted to an appropriate opening width by the slide plate. It is possible to maintain the accumulated state of the bottom mud and to collect it effectively without raising it. In addition, the transparency of water can be maintained. Further, in the stirring / peeling suction device according to the present invention, the opening width of the front opening can be increased / decreased by the slide plate, so that the concentration of the bottom mud to be fed can be adjusted. Further, since the stirring and peeling type suction system and the stirring and peeling type suction method according to the present invention have the above stirring and peeling type suction device, there is an effect that the suction work of the bottom mud can be efficiently performed continuously for a long time. It is something to demonstrate.
本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1は、調整池等の局所的汚染箇所における汚染された土壌の掘削作業において、装軌車両の搬送路を敷板で敷設し、施工された搬送路上でのみ装軌車両を移動させる構成を採用したことを最大の特徴とするものである。以下、図面に基づいて説明する。
The
図1は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1の作業工程を示すフローチャート図である。図1(a)は、本発明に係る汚染土壌層の掘削工法1の基本フローを示し、図1(b)は、実施の除染作業に際して必要となる可能性のある工程を付加した作業工程を示すフローを示し、である。先ず、本発明に係る汚染土壌層の掘削工法1で使用する道具、装置、又は設備等について説明する。
FIG. 1 is a flow chart showing the work steps of a
装軌車両10は、無限軌道11を有する重機等をいい、本発明に係る汚染土壌層の掘削工法1に使用されるのは、掘削にはバックホー、水切りフレコンQ等に詰めた土壌Tの移動にはキャリアダンプ、該キャリアダンプの荷役ステージ43から水処理機械ヤード44まではクローラクレーン等を用いることとなる。特に掘削に使うものは、油圧ショベルと総称される建設機械の内、ショベル(バケット)を、オペレーター側に取り付けたバックホーであって、泥濘に強い無限軌道11を備え、上部の車体全体を旋回させる機能を有するものであることが必要であり、ショベルが前向きのものは適さない。理由は、敷板上でのみ装軌車両10の移動を可能とすることで無限軌道11による土壌Tの攪拌を防止するためである。
The tracked
無限軌道11は、起動輪、転輪、遊動輪を囲むように一体に接続された履板、シューの環であり、起動輪で該環を動かすことによって不整地での装軌車両10の移動を可能にするものである。
The
支持杭20は、敷板30を敷設する予定の場所に打設する杭であり、素材や寸法について特に限定されるものではないく、木杭以外の綱杭やコンクリート杭、或いは樹脂杭でも良いが、図5、図6に示した実施例に基づき、具体的な例示をすると、直径200ミリ×2.0メートルの松材を用いて1.5×3.0メートルの敷板30の一枚当たりに8本程度用いることが望ましい。松は他の針葉樹と比較して密度が大きく硬いという施工上の利点があるとともに、水中でも耐腐食性が高いからである。特に本発明では、杭頭21を切り取った残りの支持杭20は地中に残すため、有機材を使用することが環境保全に資することになる。
The
杭頭21は、敷板30を除去しながら掘削し、掘削泥を水切りフレコン9に入れて搬出する際に、掘削し終わったパスの支持杭20の池底面に合わせて切断処理する部分である。係る掘削後の杭頭を切断することによって池底の凹凸をなくす。
The
敷板30は、鉄板、若しくは樹脂製の硬質な板状部材であり、例えば鉄製の1.5メートル×3メートル等のサイズで、縦横比が2:1であることが望ましい。その理由は、図5及び図6に示すように、横向きに2枚の敷板を敷いた後、その上に縦に2枚敷設して交互に繰り返すなどすることで、面方向の撓みに対する強度を高めることが可能となるからである。
The
搬送路40は、敷設開始位置41から、敷設方向50に向かって装軌車両10の移動するルートに敷板を敷いて作りだす道である。また、敷設方向50は、基本的には撤去方向60と逆向きとなり、置き換えによる敷設方向50も略平行に移動しながら行われ、広範囲な掘削を行えるように施工する。
The
土壌Tは、除染作業による掘削の対象物であり、雨水排水が集まる雨水調整池、溜め池等において、そこに放射性物質を含む土壌・落葉等の集積により、高い濃度の放射性物質が濃集(蓄積)された可能性の高い土、又は富栄養化した腐葉土をいう。 Soil T is an object of excavation due to decontamination work, and in a rainwater regulating pond, a reservoir pond, etc. where rainwater drainage collects, a high concentration of radioactive substances is concentrated due to the accumulation of soil and leaves that contain radioactive substances. Soil that is likely to be (accumulated) or eutrophic mulch.
調整池、溜め池Pは、集中豪雨などの局地的な出水により、河川に流れ込む雨水を一時的に溜め、下流の河川や下水道雨水管への負担を軽減し、又農業水利施設であって、一般の人たちの立ち入りが出来ないようにフェンス等で囲われるなどの管理がされている溜め池である。 The regulating pond and the storage pond P temporarily store rainwater flowing into the river due to localized flood such as heavy rain, reduce the burden on the downstream river and the sewer rainwater pipe, and are agricultural irrigation facilities, It is a storage pond that is managed by being fenced in so that the general public cannot enter.
次に、図1(a)に基づいて、本発明の基本構成を成す各工程について説明する。
本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1は、装軌車両10の無限軌道11によって土壌Tを攪拌せずに、除染作業を行う方法であって、支持杭打設工程Aと、敷板敷設工程Bと、掘削工程Eと、敷板30の撤去工程Fと、敷板撤去後の掘削工程Gと、杭頭切断工程Jと、から構成される、汚染土壌層を掘削する工法である。Next, based on FIG. 1A, each step constituting the basic structure of the present invention will be described.
The
図2は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1における支持杭打設工程及び敷板敷設工程を説明する工程説明図であり、図2(a)が支持杭打設工程Aを示し、図2(b)が敷板敷設工程Bを示している。
FIG. 2 is a process explanatory view for explaining a support pile laying process and a laying plate laying process in the
支持杭打設工程Aは、支持杭20を土壌Tへ打ち込む工程であるが、敷板30を敷設する予定の場所に支持杭20を打設するポイントをメジャー等で図り、バックホー等の重機を用いて打設する工程である。なお、係る支持杭20の打設以前に、土壌Tに草木等の植物が育成している場合は、これを刈り取る工程、及び土嚢等に詰めて搬出し、有機物用扱いとして一時保管場所に保管する工程が存在することはいうまでもない。
The support pile driving step A is a step of driving the support piles 20 into the soil T, but the point of driving the support piles 20 at the place where the
敷板敷設工程Bは、鉄板等の敷板30を池の地表面に敷設する工程であり、具体的には打設した支持杭20にバランスよく配置することが必要である。具体的には、例えば図6(a)に示すように、敷板30に合わせて打ち込まれた支持杭20に対して横向きに2枚敷き、その上に直行するように縦向きに2枚敷くことによって、曲げや撓みに対する強度を高めた重機等の搬送路を施工する工程である。なお、敷設方向50が変化する部分や、荷役ステージ43等では、3枚以上の敷板30を重畳的に配置することで、上敷板と下敷板との繋ぎ部を補強することが望ましい。
The laying board laying step B is a step of laying the laying
図3は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1における掘削工程E及び敷板30の撤去工程Fを説明する工程説明図であり、図3(a)が掘削工程Eを示し、図3(b)が敷板の撤去工程Fを示している。
FIG. 3 is a process explanatory diagram for explaining the excavation process E and the removal process F of the
掘削工程Eは、バックホー等でパス内の掘削を行い、掘削した土は水切りフレコンQに詰め、キャリアダンプに積んで荷役ステージ43まで運び、クレーンで水処理機械ヤード44まで吊り上げる工程である。その後は一般的な脱水工程へ進んで処理される。なお、土壌Tの水分が多い場合はバキュームにより、吸入して汚染土壌を除去することも有効である。
The excavation step E is a step of excavating the inside of the path with a backhoe or the like, packing the excavated soil in a drainage flexible container Q, loading it on a carrier dump, carrying it to the cargo handling stage 43, and lifting it to the water
敷板の撤去工程Fは、パス内の敷板部分以外の掘削が終わったら、敷板を撤去すると同時に、これから施工する施工範囲の敷板30の敷設を行う工程である。 The floorboard removing step F is a step of removing the floorboard and laying the floorboard 30 in a construction range to be constructed after the excavation of the floorboard portion other than the floorboard portion in the path is completed.
図4は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1における敷板撤去後の掘削工程G及び杭頭切断工程Jを説明する工程説明図であり、図4(a)が敷板撤去後の掘削工程Gを示し、図4(b)が杭頭切断工程Jを示している。
FIG. 4 is a process explanatory diagram for explaining the excavation process G and the pile head cutting process J after removal of the floor plate in the
敷板撤去後の掘削工程Gは、敷板撤去後のエリア内を掘削する。掘削した土は水切りフレコンQに詰め、キャリアダンプに積んで荷役ステージ43まで運び、クレーンで水処理機械ヤード44まで吊り上げる工程である。なお、その後は一般的な脱水工程へ進んで処理される。
In the excavation process G after removing the floor plate, the area after the floor plate is removed is excavated. The excavated soil is packed in a drainage flexible container Q, loaded on a carrier dump, carried to a cargo handling stage 43, and lifted to a water
杭頭切断工程Jは、パス内の施工効果が確認できたら掘削後の池底より露出した杭頭21をチェーンソー等で切断する工程である。
The pile head cutting step J is a step of cutting the
次に、図1(b)に基づいて、本発明の基本構成となる工程の他に、土壌Tの掘削による除染作業において一般的に必要となる各工程について説明する。 Next, based on FIG. 1 (b), each step generally required in the decontamination work by excavating the soil T will be described in addition to the step which is the basic configuration of the present invention.
掘削パスの確認及び施工前掘削深さの確認工程Cは、敷板撤去後の掘削工程Gの後に行う工程であって、トータルステーションを用いて座標管理により掘削パスの四隅に目印の杭を打設する工程と、レーザレベルを設置し、検出側ロープを装着した伸縮式竿を施工前の池底等に下し、レーザーが示す検出側ロープの数値を確認する工程である。 Confirmation of the excavation path and confirmation of the excavation depth before construction Step C is a step performed after the excavation step G after the removal of the floor plate, and places piles of marks at the four corners of the excavation path by coordinate management using a total station. It is the process of setting the laser level and lowering the telescopic rod equipped with the detection-side rope to the pond bottom before construction and confirming the numerical value of the detection-side rope indicated by the laser.
粗除根工程Dは、掘削工程Eの前に行う工程であって、バックホーに除根用の特殊バケットを装着してエリア内を粗除根する工程である。なお、粗除根された根は耐候性土嚢に詰めてキャリアダンプに積み、荷役ステージ43まで運び、クレーンで堤体S上まで吊り上げ、有機物用扱いとして一時保管場所に保管する。 The rough root removal step D is a step performed before the excavation step E, and is a step of roughly rooting the area by mounting a special root removal bucket on the backhoe. The roots that have been roughly removed are packed in a weatherproof sandbag, loaded into a carrier dump, transported to the cargo handling stage 43, hoisted above the bank S by a crane, and stored in a temporary storage location for handling organic matter.
施工後の掘削深さの確認工程Hは、敷板撤去後の掘削工程Gの後に行う工程であって、レーザーレベルを設置し、検側ロープを装着した伸縮式竿を施工後の池底に下ろし、レーザーが示す検測ロープの数値を確認する工程である。 The step H of confirming the excavation depth after construction is a step performed after the excavation step G after removal of the floor plate, in which a laser level is set and the telescopic rod equipped with the inspection rope is lowered to the pond bottom after construction. It is a process to confirm the numerical value of the inspection rope indicated by the laser.
掘削後の底泥の簡易セシウム濃度測定工程Iは、施工後の掘削深さの確認工程Hの後に行う工程であって、長い柄のスコップ等を用いて、パスの中心点付近の土を採泥し、容器に詰め、土の詰まった容器はポリメーターに入れ、既定の方法で簡易セシウム濃度測定をする工程である。 The simple cesium concentration measurement step I after excavation is a step performed after the excavation depth confirmation step H after construction, in which soil near the center point of the path is collected using a long-handled scoop or the like. It is a process of muding, filling in a container, putting a container filled with soil in a polymeter, and performing a simple cesium concentration measurement by a predetermined method.
図5は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1における敷板30の敷設方向及び敷板30の配置を説明する施工手順説明図である。なお、係る図1に示した調整池、溜池Pは、係る配置や手順を説明するための一例であり、係る実施例に限定されるものではない。配置や施工手順は、本発明の技術的思想として同一性を失わない範囲内において変更することが可能である。
FIG. 5 is a construction procedure explanatory diagram for explaining the laying direction of the
図5に示した溜池の除染では、図の左下の荷役ステージ43を敷設開始位置41として、上方へ向かう敷設方向50から右へ向かう敷設方向50へと敷板30を敷設し(一次敷設敷板)、撤去開始位置42から、掘削パス内の掘削を行い、該掘削後、撤去方向60へと敷板を撤去し、敷板撤去後の掘削を行い、これを繰り返しながら撤去した敷板を、一次敷設した撤去方向60と逆方向であって並行する置換え敷設方向70なるように敷設する。係る並行移設を繰り返し最後の搬送路を撤去方向90に向かって撤去する。なお、係る実施例では、一次敷設枚数が217枚、置換え枚数が474枚であり、全使用枚数474枚で、支持杭本数は1,834本であった
In the decontamination of the pond shown in FIG. 5, with the cargo handling stage 43 at the lower left of the figure as the laying start position 41, the laying
図6は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法1における敷板30及び支持杭20の配置関係を説明する配置構成説明図であり、図6(a)は敷板30の配置関係を示し、図6(b)は敷板30及び支持杭20の配置関係を示している。
FIG. 6 is an arrangement configuration explanatory view for explaining an arrangement relationship between the
図6(a)に示す通り、例えば、縦横が1524mm(3尺)×3048mm(10尺)の定尺寸法のように、縦横比が2:1の敷板30とすることにより、横向きに2枚の敷板30を敷いた後、その上に縦に2枚敷板30を敷設して交互に繰り返すなどすることで、面方向の撓みに対する強度を高めつつ搬送路40を施工することが可能となる。また、図6(b)に示す通り、下側に敷設した敷板一枚につき直径200mm、長さ2.0mの支持杭を8本打設することが望ましい。なお、係る敷板30の寸法と敷設30の枚数や、支持杭20の寸法と打設数はあくまでも例示であって、これらに限定されるものではなく、地耐力や支持杭強度等に影響されるが、これに具現された発明と同一性を失わない範囲内において変更することが可能である。
As shown in FIG. 6 (a), for example, by using a
図7は、本発明に係る溜め池総合除染工法で利用する汚染土壌層の掘削工法を利用する領域と撹拌剥離式吸引工法を利用する領域を示す領域説明図であり、図7(a)は、上面視により、溜め池Pの全体を示し図7(b)は、ため池Pの縦断面を示している。堤体Sによって溜まった水域の底層から表層までの領域を撹拌剥離式吸引工法を利用し、吸水や乾水により表層の高さが低下した領域の軟土Nに対しては汚染土壌層の掘削工法を利用する。 なお、汚染土壌層の掘削工法及び攪拌剥離式吸引工法の順序については水量・水域等によって適宜選択すればよく、例えば攪拌剥離式吸引工法により底泥Rまで吸引し吸引後の土壌Tを汚染土壌層の掘削工法により掘削して除染するのでもよく、他方、汚染土壌層の掘削工法により表層が低下した領域軟土Nを掘削し、水の溜まっている溜池Pの領域については攪拌剥離式吸引工法により底泥Rを水ごと吸引してもよい。 FIG. 7 is a region explanatory view showing a region using a method for excavating a contaminated soil layer used in the integrated decontamination method for a reservoir according to the present invention and a region using a stirring separation suction method, and FIG. Shows the whole of the reservoir P in a top view, and FIG. 7B shows a vertical cross section of the reservoir P. The area from the bottom layer to the surface layer of the water body accumulated by the bank body S is agitated and peeled off, and the contaminated soil layer is excavated for the soft soil N in the area where the height of the surface layer is lowered by water absorption or dry water. Use the construction method. The order of the excavation method for the contaminated soil layer and the stirring separation suction method may be appropriately selected according to the amount of water, the water area, etc. For example, the stirring separation suction method sucks up to the bottom mud R and the soil T after suction is contaminated soil. Alternatively, the soil excavation method may be used for decontamination. On the other hand, the soft soil N in which the surface layer is lowered by the contaminated soil layer excavation method is excavated, and the area of the reservoir P where water is accumulated is agitated and separated. The bottom mud R may be sucked together with water by a suction method.
図8は、本発明に係る溜め池総合除染工法における汚染土壌層の掘削工法及び撹拌剥離式吸引工法の全体の流れを示すフローチャート図である。図8に示す通り本発明は汚染土壌層の掘削工法1を利用することを基本構成とし、水の存在しない部分は係る掘削工法を用いる。他方、水が存在する場合には低層から表層まで攪拌剥離式吸引工法を用いる。即ち支持杭打設工程A、敷板敷設工程B、掘削工程E、敷板撤去工程F、敷板撤去後の掘削工程、杭頭切断工程からなる汚染土壌層の掘削工法1を基本構成とし、これに加えて、台船配置ステップK1、攪拌剥離吸引装置降下ステップK2、攪拌・吸引ステップK3、圧送ステップK4、分離・回収ステップK5、水底移動ステップK6を有するフローとすることもできるものである。
FIG. 8 is a flow chart showing the overall flow of the method for excavating a contaminated soil layer and the agitation and peeling type suction method in the integrated decontamination method for a reservoir according to the present invention. As shown in FIG. 8, the present invention is basically configured to use the
係るフローは、水の存在する水量や水域によってどちらの工法を用いてもよいことは前記のとおりであるが、いずれの工程、ステップにおいても排出される土壌Tには植物水生植物や枯れ枝等の植物堆積物が多く存在し有機肥料としての栄養分を十分に含んでいることもあり、係る土壌の有効利用を図るべく、掘削工程Eまたは、分離回収ステップK5の後に自然脱水、もしくは加圧脱水する脱水工程X、セシウム濃度測定・処理工程Y、並びに肥料成分調整・処理工程Zを経て肥料を得る肥料製造方法とするフローが追加されている構成も有効である。 As for the flow concerned, which construction method may be used depending on the amount of water present and the water area, as described above, the soil T discharged in any of the steps and steps may include plants such as aquatic plants and dead branches. Since there are many plant deposits and sufficient nutrients as organic fertilizers are included, natural dehydration or pressure dehydration is performed after the excavation process E or the separation and recovery step K5 in order to effectively utilize the soil. It is also effective to add a flow as a fertilizer manufacturing method for obtaining a fertilizer through the dehydration step X, the cesium concentration measurement / treatment step Y, and the fertilizer component adjustment / treatment step Z.
図9(a)に示す通り、 As shown in FIG. 9 (a),
つぎに、本発明に係る溜め池総合除染工法で利用する撹拌剥離式吸引装置180、撹拌剥離式吸引システム102及び撹拌剥離式吸引工法の実施の形態について図9から図13に基づいて説明する。ここで、図9、図10は本発明に係る撹拌剥離式吸引システム102の全体を示す図である。また、図11(a)は本発明に係る撹拌剥離式吸引装置180の内部構造を示す模式断面図であり、図11(b)は撹拌剥離式吸引装置180を前面から見た図である。また、図12は撹拌剥離式吸引装置180の内部の第1の切断ローラ130a、第2の切断ローラ130bを前面側から見た略図である。また、図13は撹拌剥離式吸引装置180の撹拌ローラ140の例を示す図である。
Next, embodiments of the stirring and peeling
図9に示す本発明に係る撹拌剥離式吸引システム102は、貯水池、池、湖沼、掘等の底泥Rを水ごと吸引するものであり、水面に位置する台船110と、この台船110から水底に吊り下げられる撹拌剥離式吸引装置180と、陸側に設けられた底泥処理装置114と、撹拌剥離式吸引装置180と底泥処理装置114とを繋ぐホース部材と、台船110や陸地に設置され撹拌剥離式吸引装置180を移動させるための移動手段150と、を有している。尚、ホース部材は、台船110に周知の中継ポンプ116を設置して、撹拌剥離式吸引装置180と接続した送水ホース112と、底泥処理装置114と接続した中継ホース118とを中継ポンプ116を介して接続して構成することが好ましい。この構成によれば、中継ポンプ116が撹拌剥離式吸引装置180の吸引した底泥R等の圧送を補助するため、ホース部材の総延長が長い場合でも底泥R等の底泥処理装置114への圧送を滞りなく行うことができる。
The agitation and separation type suction system 102 according to the present invention shown in FIG. 9 sucks the bottom mud R of a reservoir, a pond, a lake, a digging, etc. together with water, and a
また、台船110は作業者が主に撹拌剥離式吸引装置180の操作や移動を行う足場であり、フロート等で水面に浮かせても良いし、水上に陸側から鋼材を架け渡すなどして、水面に固定しても良い。
Further, the
また、底泥処理装置114は撹拌剥離式吸引装置180が水ごと吸引した底泥Rを分離回収するものであり、如何なる装置を用いても良い。尚、一般的な底泥処理装置114は、吸引した底泥Rと異物等とを分離する周知の分離手段と、底泥Rと水とを分離する周知の底泥分離手段と、分離した底泥Rを脱水して回収する周知の脱水手段と、を有している。
Further, the bottom
また、移動手段150は撹拌剥離式吸引装置180の水底での移動等を行うものであり如何なる装置を用いても構わない。ここで、移動手段150の好適な一例として、牽引手段150a及びシャフト式移動手段150bの構成に関して説明する。先ず牽引手段150aは、撹拌剥離式吸引装置180と接続したワイヤ154と、このワイヤ154の巻上、巻伸ばしが可能なクレーン152とを有している。この構成ではクレーン152の倒伏動作とワイヤ154の巻上、巻伸ばし動作により、撹拌剥離式吸引装置180の吊下げ、吊上げ、水底での前方及び横方向の移動を行うことができる。また、底泥Rの回収を行う湖沼を挟むようにして牽引手段150aを2台設け、撹拌剥離式吸引装置180を前進、後退可能とするようにしても良い。
Further, the moving means 150 is for moving the stirring and peeling
また、シャフト式移動手段150bは図10に示すように撹拌剥離式吸引装置180の例えば筐体部128にシャフト156の一端が固定され、このシャフト156を台船110もしくは陸地から押し引きすることで撹拌剥離式吸引装置180を移動させる。尚、シャフト式移動手段150bでは撹拌剥離式吸引装置180の吊下げ、吊上げを周知のウインチ等で行うようにしても良い。さらに、移動手段150は牽引手段150aとシャフト式移動手段150bとを組み合わせて、例えば撹拌剥離式吸引装置180の前進は牽引手段150aを用いて行い、撹拌剥離式吸引装置180の後退はシャフト式移動手段150bを用いて行うようにしても良い。そして、特に撹拌剥離式吸引装置180の前進、後退が可能な移動手段150を用いた構成では、撹拌剥離式吸引装置180の横位置を順次ずらすことで底泥Rの浚渫を連続して効率良く行う事ができる。
Further, as shown in FIG. 10, the shaft
次に、本発明の特徴的な構成である撹拌剥離式吸引装置180に関して説明する。本発明に係る撹拌剥離式吸引装置180は、前述の台船110から水底に吊り下げて底泥Rを水ごと吸引するものであり、筐体部128と、この筐体部128の前方に位置し底泥Rを撹拌する撹拌ローラ140と、撹拌ローラ140の後方に位置し複数の円板刃134aが周面に設けられた第1の切断ローラ130aと、第1の切断ローラ130aの上方に位置し複数の円板刃134bが周面に設けられた第2の切断ローラ130bと、これら第1の切断ローラ130aと第2の切断ローラ130bの後方に位置し底泥Rを水ごと吸引するポンプ部120と、このポンプ部120と接続し吸引した底泥Rを台船110側に送る送水ホース112と、を有している。また、撹拌剥離式吸引装置180は、ポンプ部120の前に設けられ、ポンプ部120の吸引口に付着した異物を除去する剥離ローラ160をさらに有していても良い。
Next, the stirring /
また、撹拌剥離式吸引装置180を構成する筐体部128は、図11(a)、(b)に示すように、撹拌ローラ140の前方に位置する前面と底面とが開口し、上面と奥面と両側面128aとが閉塞し、さらに奥面が斜面となった箱型を呈している。そして、この斜面にポンプ部120が吸引口を内側にして固定する。また、筐体部128の前面の開口部には、スライド板129がスライド可能に設置される。そして、スライド板129の位置を下げて前面開口部の開口幅を狭めて固定することで、撹拌剥離式吸引装置180が取り込む底泥Rの比率を増やし、底泥処理装置114に送る底泥Rの濃度を上昇させることができる。また、スライド板129の位置を上げ前面開口部の開口幅を拡げて固定することで、底泥Rの厚みが厚い場合に対応することができる。また、水の取り込み量を増やして底泥処理装置114に送る底泥Rの濃度を低下させることができる。
In addition, as shown in FIGS. 11A and 11B, the
尚、筐体部128は上面、奥面、両側面128aが閉塞し、前面開口部はスライド板129によって適度な開口幅に調整されるから、撹拌剥離式吸引装置180内で撹拌された底泥Rは筐体部128内からほとんど漏れず、底泥Rの効果的な回収を行うことができる。また筐体部128内の撹拌ローラ140、切断ローラ130a、130b等の回転によって生じる水流は筐体部128が遮蔽するため、外部の底泥Rを舞い上げることがなく、底泥Rの堆積状態を維持して効果的な浚渫を行う事ができる。また、底泥Rの舞い上げを防止することで水の透明度を維持することができる。特に底泥Rが放射性物質を含んでいる場合には、これら放射性物質を再拡散することなく、効率的な除染を行うことができる。
The top surface, back surface, and both
また、筐体部128の上面には、図11、図12に示すように、第1の切断ローラ130a、第2の切断ローラ130bを回転させる第1のモータ170aと、撹拌ローラ140と剥離ローラ160とを回転させる第2のモータ170bとが固定する。
As shown in FIGS. 11 and 12, a
撹拌ローラ140は、図13に示すように円柱状のローラ142と、このローラ142の周面に設置された撹拌部材144と有している。尚、撹拌部材144の形状に関しては特に限定はなく、図13(a)に示すようにワイヤブラシとしても良いし、図13(b)に示すように板状体としても良い。また、図13(c)に示すように板刃としても良い。さらに、撹拌ローラ140を付け替え可能としても良い。この構成によれば、例えば藻などの沈水植物が多い場合にはワイヤブラシの撹拌ローラ140を用い、ガマや葦のような抽水植物が多い場合には板刃の撹拌ローラ140を用いるなど、水底の環境、特に水草の種類や繁茂状態に応じて適切な撹拌ローラ140を選択することができる。
As shown in FIG. 13, the stirring
そして、撹拌ローラ140はベアリング等の周知の軸受を介して筐体部128に回転可能に軸着される。尚、撹拌ローラ140の設置位置は固定式としても良いし、筐体部128の上下方向や斜め方向に位置調整を可能としても良い。また、ローラ142の一端には歯車146が固定され、この歯車146はチェーン等の図示しない動力伝達機構を介して第2のモータ170bの減速歯車172bと接続する。そして、第2のモータ170bが回転動作することで、その回転力は減速歯車172b、動力伝達機構、歯車146を介して撹拌ローラ140に伝達し、これにより撹拌ローラ140が回転する。尚、このときの撹拌ローラ140の回転方向は図11の矢印に示す、前面視で上から下に回転する方向が好ましい。
The agitating
また、第1の切断ローラ130a、第2の切断ローラ130bは、円柱状のローラ132a、132bと、このローラ132a、132bの周面に略等間隔で設置された複数の円板刃134a、134bと、この円板刃134a、134bの近傍に設置されたスクレイパ138a、138bと、を有している。尚、円板刃134a、134bは水生植物等の異物を切断するためのものであり、その設置間隔は概ね5cm〜15cm程度が好ましい。また、スクレイパ138a、138bは水生植物等の異物を引っ掛けて引き込んだり、破砕したりする機能を有する。
The
そして、第1、第2の切断ローラ130a、130bの両端は周知の軸受を介して筐体部128に回転可能に軸着される。このとき、第2の切断ローラ130bは、第1の切断ローラ130aの上方、例えば真上や斜め前方に設置する。また、第1の切断ローラ130aと第2の切断ローラ130bとの設置間隔は、第1の切断ローラ130aの円板刃134aと第2の切断ローラ130bの円板刃134bとが側面視で重なる位置とすることが好ましい。よって、円板刃134a、134b、スクレイパ138a、138bの位置は第1の切断ローラ130aと第2の切断ローラ130bとで軸線方向に若干ずらして構成することが好ましい。また、円板刃134aと円板刃134bとは近接して配置することが好ましく、図4に示すように、一方の円板刃134a(134b)とスクレイパ138a(138b)との間に他方の円板刃134b(134a)を位置させることが最も好ましい。この構成によれば、第1、第2の切断ローラ130a、130bが巻き込んだ水生植物等の異物を下側の円板刃134aと上側の円板刃134bとが挟み込んで効果的に切断することができる。
Both ends of the first and
また、第1、第2の切断ローラ130a、130bの一端には歯車136a、136bが固定され、この歯車136a、136bは動力伝達機構174を介して第1のモータ170aの減速歯車172aと接続する。尚、ここでは減速歯車172aと第1の切断ローラ130aの歯車136aとを動力伝達機構174としてのチェーンを介して接続し、第2の切断ローラ130bの歯車136bは第1の切断ローラ130aに固定した伝達歯車136cを介して接続する例を示している。そして、第1のモータ170aが回転動作することで、その回転力は減速歯車172a、チェーン(動力伝達機構174)、歯車136aを介して第1の切断ローラ130aに伝達し、これにより第1の切断ローラ130aが回転する。尚、このときの第1の切断ローラ130aの回転方向は図11の矢印に示す前面視で下から上に回転する方向とする。また、第1の切断ローラ130aが回転することで伝達歯車136cが回転し、この回転力は伝達歯車136cと噛合する歯車136bによって第2の切断ローラ130bに伝達し、これにより第2の切断ローラ130bが図11の矢印に示す第1の切断ローラ130aとは逆方向の前面視で上から下の方向に回転する。
またこのとき、歯車136bのギア比を伝達歯車136cよりも大きくするなどして、第2の切断ローラ130bの回転速度を第1の切断ローラ130aの回転速度より遅くすることが好ましい。この構成によれば第1の切断ローラ130aの円板刃134aと第2の切断ローラ130bの円板刃134bとが異なる速度で回転し、異物等に対する切断能力をさらに向上させることができる。また、下側の第1の切断ローラ130aの回転速度を速くすることで、第1の切断ローラ130aが底泥Rを撹拌する役割も果たすことができる。尚、第1の切断ローラ130aと第2の切断ローラ130bとの回転速度の比は、1:4〜1:8程度が好ましく、1:6程度が最も好ましい。
At this time, it is preferable to make the rotation speed of the
また、剥離ローラ160は円柱状のローラ162と、このローラ164の周面に設置された剥離部材164と、を有している。そして、剥離ローラ160の両端は周知の軸受を介して筐体部128に回転可能に軸着される。このときの剥離ローラ160の位置は剥離部材164がポンプ部120の吸引口に接触もしくは近接する位置とする。尚、剥離部材164に関しては特に限定はなく、合成樹脂製のブラシやヘラ部材等を用いることができる。そして、剥離ローラ160の一端には図示しない歯車が固定され、この歯車はチェーン等の図示しない動力伝達機構を介して第2のモータ170bの減速歯車172bと接続する。そして、第2のモータ170bが回転動作することで、その回転力は減速歯車172b、動力伝達機構、歯車を介して剥離ローラ160に伝達し、これにより剥離ローラ160が回転する。尚、このときの剥離ローラ160の回転方向に特に限定はないが、図11の矢印に示す前面視で上から下に回転する方向が機械構成上好ましい。
Further, the peeling
また、ポンプ部120に関してはある程度の粘性を有する流動体を吸引可能な物であれば特に限定はなく、中でも周知の水中サンドポンプを用いることが特に好ましい。
The
次に、本発明に係る撹拌剥離式吸引装置180と撹拌剥離式吸引システム102の動作及びこれらを用いた本発明に係る撹拌剥離式吸引工法に関して説明する。
Next, the operations of the stirring and peeling
先ず、底泥処理装置114を浚渫を行う貯水池、池、湖沼、掘等の陸側に設置する。次に、撹拌剥離式吸引装置180及び中継ポンプ116を搭載した台船110を水面の所定の位置に配置する。このときの台船110の設置方法には特に限定はない。次に、中継ポンプ116と撹拌剥離式吸引装置180とを送水ホース112で接続し、中継ポンプ116と底泥処理装置114とを中継ホース118で接続する。次に、作業者はスライド板129の位置を調整し、前面開口部の開口幅を適切なものとする。
First, the bottom
次に、作業者が移動手段150等を操作して撹拌剥離式吸引装置180を台船110から水底に下ろす。次に作業者が撹拌剥離式吸引システム102を動作させる。これにより、撹拌剥離式吸引装置180の第1のモータ170aと第2のモータ170bとが回転動作し、撹拌ローラ140と剥離ローラ160とが前面視で上から下に回転する。また、第1の切断ローラ130aが前面視で下から上に回転し、第2の切断ローラ130bが前面視で上から下に回転する。また、ポンプ部120、中継ポンプ116が稼働して吸引動作を行う。これにより、撹拌ローラ140が水底に堆積した底泥R、土砂等の堆積物を撹拌し第1の切断ローラ130a側に舞い上げるとともに、水生植物や枯れ枝等の植物性堆積物、ゴミ等の異物を舞い上げもしくは引き抜いて第1の切断ローラ130a側に送る。そして、舞い上げられた底泥Rや土砂等の比較的粒子の細かなものは第1の切断ローラ130a及び第2の切断ローラ130bの間隙を通過してポンプ部120側に移動する。また、水生植物、植物性堆積物、ゴミ等の異物は第1の切断ローラ130aと第2の切断ローラ130bの間隙に巻き込まれ、第1の切断ローラ130aの円板刃134aと第2の切断ローラ130bの円板刃134bによって適度な長さに切断される。そして、後方のポンプ部120側に排出される。尚、前述のように筐体部128の上面、奥面、両側面128aは閉塞されているから、舞い上げられた底泥R等が筐体部128の外側に漏れることはほとんど無く、水の透明度を維持しながら作業することができる。
Next, the operator operates the moving means 150 or the like to lower the stirring /
ポンプ部120はこれら底泥R及び切断された異物等を水ごと吸引し送水ホース112を通して中継ポンプ116側に圧送する。尚、異物は前述のように第1、第2の切断ローラ130a、130bによって適度な大きさに切断されているため、ポンプ部120の吸引口に引っ掛かることはない。また、仮にポンプ部120の吸引口に引っ掛かった場合でも剥離ローラ160がこれを除去し第1、第2切断ローラ130a、130bの側に送る。そして、第1、第2の切断ローラ130a、130bによって再度、切断処理される。これにより、ポンプ部120の吸引口に異物が詰まることはなく、ポンプ部120の吸引能力を良好な状態で維持することができる。そして、作業者は移動手段150を適宜操作して撹拌剥離式吸引装置180を水底で移動させる。これにより、新たな底泥Rがスライド板129で制限された前面開口部を通して筐体部128内に取り込まれ、連続して吸引、圧送される。
The
ポンプ部120によって吸引された底泥R、土砂、水、異物等は、送水ホース112を通って中継ポンプ116に送られ、中継ホース118を介して底泥処理装置114に圧送される。そして先ず、篩や遠心分離装置等の周知の分離手段によって異物や小石、砂等が分離除去される。次に、沈殿槽などの周知の底泥R分離手段に溜められ、例えば凝集剤が投入される。これにより、底泥Rが凝集沈殿し水と分離する。分離した水は放水管115を通して元の池等に放流される。また、沈殿濃縮した底泥Rは例えば脱水手段に送られて脱水された後、回収され、然るべき処理に付される。
The bottom mud R, earth and sand, water, foreign matter, etc. sucked by the
以上のように、本発明に係る撹拌剥離式吸引装置180は、前面視で下から上に回転する第1の切断ローラ130aと、この第1の切断ローラ130aの上方に位置し前面視で上から下の方向に回転する第2の切断ローラ130bとを有している。そして、これら第1、第2の切断ローラ130a、130bが水底に堆積もしくは繁茂している水生植物等の異物をポンプ部120が吸引可能なサイズに切断する。このためポンプ部120の吸引口に異物が詰まることがなく、ポンプ部120の吸引能力を良好な状態で維持することができる。これにより、底泥Rの吸引作業を長時間連続して行うことができる。
As described above, the stirring and peeling
また、本発明に係る撹拌剥離式吸引装置180は、第1、第2の切断ローラ130a、130bの前側に撹拌ローラ140を有している。この撹拌ローラ140は水底に堆積した底泥R、土砂等の堆積物を撹拌してポンプ部120での吸引を補助するとともに、水生植物や枯れ枝等の植物性堆積物、ゴミ等の異物を舞い上げもしくは引き抜いて第1の切断ローラ130a側に送る。これにより、第1、第2の切断ローラ130a、130bへの負荷が軽減し、異物の 切断を円滑に行うことができる。
Further, the stirring and peeling
このとき、本発明に係る撹拌剥離式吸引装置180は、筐体部128の上面、奥面、両側面128aが閉塞されているため、筐体部128内で撹拌された底泥R等が筐体部128の外側に漏れることは無く、湖沼の透明度を維持しながら作業することができる。また、底泥Rの堆積状態を維持して効果的な回収作業を行う事ができる。特に底泥Rが放射性物質を含んでいる場合には、これら放射性物質を再拡散することなく、効率的な除染を行うことができる。さらに、底泥Rの厚み等に応じてスライド板129の位置を調整し前面開口部の開口幅を最適化することで、適した濃度の底泥Rを底泥処理装置114側へ圧送することができる。
At this time, in the stirring and peeling-
またさらに、本発明に係る撹拌剥離式吸引装置180は、ポンプ部120の吸引口の近傍に剥離ローラ160を有している。この剥離ローラ160はポンプ部120の吸引口をスイープして、仮に異物がポンプ部120の吸引口に引っ掛かった場合でもこれを除去することができる。これにより、底泥Rの吸引作業を安定して長時間連続して行うことができる。
Furthermore, the stirring and peeling
そして、この撹拌剥離式吸引装置180を備えた本発明に係る撹拌剥離式吸引システム102及び撹拌剥離式吸引工法は、底泥Rの吸引作業を効率良く長時間連続して行うことができる。
The stirring and peeling suction system 102 and the stirring and peeling suction method according to the present invention including the stirring and peeling
尚、本例で示した撹拌剥離式吸引装置180、撹拌剥離式吸引システム102の各部の形状、構成、動作機構、配置、配管経路等は一例であり、本発明の要旨を逸脱しない範囲で変更して実施することが可能である。
It should be noted that the shapes, configurations, operating mechanisms, arrangements, piping paths, etc. of the respective parts of the stirring and peeling
脱水工程Xは、掘削された底泥R又は土壌Tから水分を除去するための自然脱水もしくは加圧脱水する工程であり、具体的には、底泥R又は土壌Tを水切りフレコンQに詰めて余分な水分を排出する工程である。 The dehydration step X is a step of performing natural dehydration or pressure dehydration for removing water from the excavated bottom mud R or the soil T. Specifically, the bottom mud R or the soil T is packed in a draining flexible container Q. This is a process of discharging excess water.
セシウム濃度測定・処理工程Yは、フレコンに詰めた底泥R又は土壌Tの放射性セシウムを含む濁水等からその濃度を測定し細粒分に分級し、脱水処理機へ用いて線量の拡散が生じないように処理を行う工程である。 In the cesium concentration measurement / treatment step Y, the concentration is measured from the turbid water containing radioactive cesium in the bottom mud R or soil T packed in the flexible container, and the concentration is classified into fine particles. This is a process of performing processing so that there is no such problem.
肥料成分調整・処理工程Zは、脱水処理後の土壌Tにおいて有機肥料を含む土壌として使用できる部分を有効利用するための工程であり、係る土壌の成分を分析し作物の種類に対応するように、肥料の三大栄養素といわれる窒素、リン酸、カリウムを添加し、望ましくはこれにカルシウム、マグネシウム、更には銅、亜鉛などの必須元素を添加し、各種の植物の種類や栽培方法に適合した土壌を得る工程である。係る工程を経ることにより処理すべき土壌と有効利用可能な土壌を区別し地球環境への負荷を軽減することができる。 The fertilizer component adjustment / treatment process Z is a process for effectively utilizing the portion of the soil T after dehydration that can be used as soil containing organic fertilizer, and analyzes the components of the soil so as to correspond to the type of crop. , Nitrogen, phosphoric acid, and potassium, which are said to be the three major nutrients of fertilizers, are added, and preferably calcium, magnesium, and further essential elements such as copper and zinc are added to suit various plant types and cultivation methods. This is the process of obtaining soil. By going through such a step, it is possible to distinguish the soil to be treated from the soil that can be effectively used, and reduce the load on the global environment.
本発明は、雨水排水が集まる雨水調整池、溜め池P等のような、土砂・落葉等が集積することにより放射性物質が濃集(蓄積)し、高い濃度の放射性物質が観測される調整池、溜め池等の除染作業において、装軌車両の無限軌道による土壌Tの攪拌を防止するとともに、効果的な除染作業を行うことを可能にするものであり、除染作業に伴う土木の分野において、産業上の利用可能性は高いものと思慮される。 INDUSTRIAL APPLICABILITY The present invention is a control pond in which radioactive substances are concentrated (accumulated) by accumulating sediment, defoliation, etc., such as rainwater control ponds where rainwater drainage collects, reservoir ponds P, etc., and high concentrations of radioactive substances are observed. In the decontamination work such as a storage pond, it is possible to prevent the soil T from being agitated by the endless track of the tracked vehicle and to perform the effective decontamination work. In the field, industrial availability is considered to be high.
1 汚染土壌層の掘削工法
10 装軌車両
11 無限軌道
20 支持杭
21 杭頭
30 敷板
40 搬送路
41 敷設開始位置
42 撤去開始位置
43 荷役ステージ
44 水処理機械ヤード
50 敷設方向
60 撤去方向
70 置換え敷設方向
80 置換え撤去方向
90 撤去方向
A 支持杭打設工程
B 敷板敷設工程
C 掘削パスの確認及び施工前掘削深さの確認工程
D 粗除根工程
E 掘削工程
F 撤去工程
G 敷板撤去後の掘削工程
H 施工後の掘削深さの確認工程
I 簡易セシウム濃度測定工程
J 杭頭切断工程
K ステップ
R 底泥
S 堤体
T 土壌
N 汚染土壌層の掘削工法領域
P 溜め池(撹拌剥離式吸引工法領域)
101 撹拌剥離式吸引工法
102 撹拌剥離式吸引システム
110 台船
112 送水ホース
114 底泥処理装置
120 ポンプ部
128 筐体部
128a 側面
129 スライド板
130a 第1の切断ローラ
130b 第2の切断ローラ
134a、134b 円板刃
140 撹拌ローラ
150 移動手段
150a 牽引手段
150b シャフト式移動手段
154 ワイヤ
156 シャフト
160 剥離ローラ
180 撹拌剥離式吸引装置
201 肥料製造方法1 Excavation Method for Contaminated
N Excavation method area for contaminated soil layer P Reservoir (stir-separation suction method area)
101 Agitating and Peeling Type Suction Method 102 Agitating and Peeling
120 pump section
128 housing
128a side
129 slide plate
130a First cutting roller
130b Second cutting roller
134a, 134b Disc blade
140 stirring roller
150 means of transportation
150a traction means
150b Shaft type moving means
154 wire
156 shaft
160 peeling roller
180 Agitating and peeling type suction device
201 Fertilizer manufacturing method
本発明は、特に、放射性物質を含む雨水排水によって土壌等が高濃度に汚染された雨水調整池、溜め池等の土壌層の除染作業において、水分を多く含み泥濘んだ軟らかい土壌を、無限軌道による装軌車両を用いて掘削作業を行っても、土壌を撹拌することなく、また、打設した支持杭の撤去によって池の底を抜いてしまい、調整池等の本来の機能を発揮しなくなるという問題を生じさせない汚染土壌層の掘削工法の提供、並びに、その汚染土壌層の掘削工法の提供とともに、水生植物等の異物を細かに切断して吸引する撹拌剥離式吸引装置を用いた撹拌剥離式吸引システムを利用する撹拌剥離式吸引工法を含めることができ、また、この富栄養化した底泥を処理再利用し、地球環境に対し負荷を軽減させることができる溜め池総合除染工法の提供を課題とする。 The present invention, in particular, in the decontamination work of a soil layer such as a rainwater regulating pond and a reservoir pond in which the soil or the like is polluted to a high concentration by rainwater drainage containing a radioactive substance, a soft soil that contains a lot of water and mud is infinite. Even if excavation work is carried out using a track-tracked vehicle, the bottom of the pond will be pulled out without stirring the soil and by removing the support piles that have been placed, and the original function of the regulating pond etc. will be exhibited. Providing a method for excavating a contaminated soil layer that does not cause the problem of disappearing, and a method for excavating a contaminated soil layer, and agitation using an agitation peeling type suction device that finely cuts foreign substances such as aquatic plants and sucks them An agitation separation type suction method that uses a separation type suction system can be included, and this eutrophied bottom mud can be treated and reused to reduce the load on the global environment. of Subjected to an object of the present invention.
また、本発明は、前記汚染土壌層の掘削工法により掘削された底泥、又は前記攪拌剥離式吸引工法により吸引された底泥を、自然脱水若しくは加圧脱水する脱水工程、セシウム濃度測定・処理工程、並びに肥料成分調整・処理工程を経て肥料培養土を得る前記溜め池総合除染工法を利用した肥料培養土製造方法とすることもできる。 Further, the present invention is a dehydration step of naturally dehydrating or pressurizing the bottom mud excavated by the method for excavating the contaminated soil layer, or the bottom mud aspirated by the stirring separation suction method, cesium concentration measurement / treatment. step, and can be said pond comprehensive decontamination method fertilizer potting manufacturing method utilizing the through fertilizer component adjustment and processing steps to obtain a fertilizer potting.
掘削後の底泥の簡易セシウム濃度測定工程Iは、施工後の掘削深さの確認工程Hの後に行う工程であって、長い柄のスコップ等を用いて、パスの中心点付近の土を採泥し、容器に詰め、土の詰まった容器はコリメーターに入れ、既定の方法で簡易セシウム濃度測定をする工程である。 The simple cesium concentration measurement step I after excavation is a step performed after the excavation depth confirmation step H after construction, in which soil near the center point of the path is collected using a long-handled scoop or the like. and mud, packed in containers, packed containers soil placed in co Rimeta is a process for the simple cesium concentration measurements in the default way.
係るフローは、水の存在する水量や水域によってどちらの工法を用いてもよいことは前記のとおりであるが、いずれの工程、ステップにおいても排出される土壌Tには植物水生植物や枯れ枝等の植物堆積物が多く存在し有機肥料としての栄養分を十分に含んでいることもあり、係る土壌の有効利用を図るべく、掘削工程Eまたは、分離回収ステップK5の後に自然脱水、もしくは加圧脱水する脱水工程X、セシウム濃度測定・処理工程Y、並びに肥料成分調整・処理工程Zを経て肥料培養土を得る肥料培養土製造方法とするフローが追加されている構成も有効である。 As for the flow concerned, which construction method may be used depending on the amount of water present and the water area, as described above, the soil T discharged in any of the steps and steps may include plants such as aquatic plants and dead branches. Since there are many plant deposits and sufficient nutrients as organic fertilizers are included, natural dehydration or pressure dehydration is performed after the excavation process E or the separation and recovery step K5 in order to effectively utilize the soil. It is also effective to add a flow as a fertilizer culture soil manufacturing method for obtaining a fertilizer culture soil through a dehydration step X, a cesium concentration measurement / treatment step Y, and a fertilizer component adjustment / treatment step Z.
1 汚染土壌層の掘削工法
10 装軌車両
11 無限軌道
20 支持杭
21 杭頭
30 敷板
40 搬送路
41 敷設開始位置
42 撤去開始位置
43 荷役ステージ
44 水処理機械ヤード
50 敷設方向
60 撤去方向
70 置換え敷設方向
80 置換え撤去方向
90 撤去方向
A 支持杭打設工程
B 敷板敷設工程
C 掘削パスの確認及び施工前掘削深さの確認工程
D 粗除根工程
E 掘削工程
F 撤去工程
G 敷板撤去後の掘削工程
H 施工後の掘削深さの確認工程
I 簡易セシウム濃度測定工程
J 杭頭切断工程
K ステップ
R 底泥
S 堤体
T 土壌
N 汚染土壌層の掘削工法領域
P 溜め池(撹拌剥離式吸引工法領域)
101 撹拌剥離式吸引工法
102 撹拌剥離式吸引システム
110 台船
112 送水ホース
114 底泥処理装置
120 ポンプ部
128 筐体部
128a 側面
129 スライド板
130a 第1の切断ローラ
130b 第2の切断ローラ
134a、134b 円板刃
140 撹拌ローラ
150 移動手段
150a 牽引手段
150b シャフト式移動手段
154 ワイヤ
156 シャフト
160 剥離ローラ
180 撹拌剥離式吸引装置
201 肥料培養土製造方法
1 Excavation Method for Contaminated
N Excavation method area for contaminated soil layer P Reservoir (stir-separation suction method area)
101 Agitating and Peeling Type Suction Method 102 Agitating and Peeling
120 pump section
128 housing
128a side
129 slide plate
130a First cutting roller
130b Second cutting roller
134a, 134b Disc blade
140 stirring roller
150 means of transportation
150a traction means
150b Shaft type moving means
154 wire
156 shaft
160 peeling roller
180 Agitating and peeling type suction device
201 Fertilizer culture soil manufacturing method
また、本発明は、前記汚染土壌層の掘削工法により掘削された底泥、又は前記撹拌剥離式吸引工法により吸引された底泥を、自然脱水若しくは加圧脱水する脱水工程、セシウム濃度測定・処理工程、並びに肥料成分調整・処理工程を経て肥料を得る前記溜め池総合除染工法を利用した肥料製造方法とすることもできる。
The present invention also sediment was drilled by the drilling method of the contaminated soil layers, or sucked sediments by the 撹拌peelable suction method, natural dehydration or under圧脱water to the dehydration step, the cesium concentration measurement, can process steps, and also to the pond comprehensive decontamination method fertilizer Manufacturing method utilizing to obtain the fertilizer through the fertilizer component adjustment and processing steps.
係るフローは、水の存在する水量や水域によってどちらの工法を用いてもよいことは前記のとおりであるが、いずれの工程、ステップにおいても排出される土壌Tには植物水生植物や枯れ枝等の植物堆積物が多く存在し有機肥料としての栄養分を十分に含んでいることもあり、係る土壌の有効利用を図るべく、掘削工程Eまたは、分離回収ステップK5の後に自然脱水、もしくは加圧脱水する脱水工程X、セシウム濃度測定・処理工程Y、並びに肥料成分調整・処理工程Zを経て肥料を得る肥料製造方法とするフローが追加されている構成も有効である。
As for the flow concerned, which construction method may be used depending on the amount of water present and the water area, as described above, the soil T discharged in any of the steps and steps may include plants such as aquatic plants and dead branches. Since there are many plant deposits and sufficient nutrients as organic fertilizers are included, natural dehydration or pressure dehydration is performed after the excavation process E or the separation and recovery step K5 in order to effectively utilize the soil. configuration flow for a dehydration step X, cesium concentration measurement and processing steps Y, and fertilizer Manufacturing method of obtaining a fertilizer through a fertilizer component adjustment and process Z is added is also effective.
1 汚染土壌層の掘削工法
10 装軌車両
11 無限軌道
20 支持杭
21 杭頭
30 敷板
40 搬送路
41 敷設開始位置
42 撤去開始位置
43 荷役ステージ
44 水処理機械ヤード
50 敷設方向
60 撤去方向
70 置換え敷設方向
80 置換え撤去方向
90 撤去方向
A 支持杭打設工程
B 敷板敷設工程
C 掘削パスの確認及び施工前掘削深さの確認工程
D 粗除根工程
E 掘削工程
F 撤去工程
G 敷板撤去後の掘削工程
H 施工後の掘削深さの確認工程
I 簡易セシウム濃度測定工程
J 杭頭切断工程
K ステップ
R 底泥
S 堤体
T 土壌
N 汚染土壌層の掘削工法領域
P 溜め池(撹拌剥離式吸引工法領域)
101 撹拌剥離式吸引工法
102 撹拌剥離式吸引システム
110 台船
112 送水ホース
114 底泥処理装置
120 ポンプ部
128 筐体部
128a 側面
129 スライド板
130a 第1の切断ローラ
130b 第2の切断ローラ
134a、134b 円板刃
140 撹拌ローラ
150 移動手段
150a 牽引手段
150b シャフト式移動手段
154 ワイヤ
156 シャフト
160 剥離ローラ
180 撹拌剥離式吸引装置
201 肥料製造方法
1 Excavation Method for Contaminated
N Excavation method area for contaminated soil layer P Reservoir (stir-separation suction method area)
101 Agitating and Peeling Type Suction Method 102 Agitating and Peeling
120 pump section
128 housing
128a side
129 slide plate
130a First cutting roller
130b Second cutting roller
134a, 134b Disc blade
140 stirring roller
150 means of transportation
150a traction means
150b Shaft type moving means
154 wire
156 shaft
160 peeling roller
180 Agitating and peeling type suction device
201 fertilizer Manufacturing method
Claims (8)
支持杭(20)を打設する支持杭打設工程(A)と、
敷板(30)を敷設する敷板敷設工程(B)と、
掘削工程(E)と、
敷板(30)の撤去工程(F)と、
敷板撤去後の掘削工程(G)と、
杭頭切断工程(J)と、
から構成され、
前記敷板敷設工程(B)は、敷設された前記敷板(30)の上を前記装軌車両(10)が次の敷板(30)を搬送して連設施工するという一連の工程と前記支持杭打設工程(A)を繰り返すことで前記装軌車両(10)の搬送路(40)を施工するものであり、
前記掘削工程(E)は、前記敷板(30)を撤去しながら掘削するものであり、
前記杭頭切断工程(J)は、掘削し終わった場所の支持杭(20)は掘削面に合わせて杭頭(21)を切断処理するものであることを特徴とする汚染土壌層の掘削工法(1)。A method of performing decontamination work without stirring soil (T) by an endless track (11) of a tracked vehicle (10),
A support pile placing step (A) for placing the support pile (20),
A laying plate laying step (B) of laying a laying plate (30),
Excavation process (E),
Removal step (F) of the floor plate (30),
Excavation process (G) after removal of the floorboard,
Pile head cutting process (J),
Consists of
In the laying board laying step (B), a series of steps in which the track vehicle (10) conveys the next laying board (30) on the laid down laying board (30) for continuous construction and the support piles. By constructing the transport path (40) of the tracked vehicle (10) by repeating the driving step (A),
The excavation step (E) is for excavating while removing the floor plate (30),
In the pile head cutting step (J), the support pile (20) at the location where the excavation is finished cuts the pile head (21) according to the excavation surface, and the method for excavating a contaminated soil layer. (1).
掘削パスの確認及び施工前掘削深さの確認工程(C)と、
粗除根工程(D)を有し、
前記敷板(30)の撤去工程(F)と、
前記敷板撤去後の掘削工程(G)の後であって前記杭頭切断工程(J)の前に、
施工後の掘削深さの確認工程(H)と、
掘削後の底泥Rの簡易セシウム濃度測定工程(I)を有して構成されることを特徴とする請求項1に記載の汚染土壌層の掘削工法(1)。After the support pile placing step (A) and the laying board laying step (B), but before the excavating step (E),
Confirmation process of excavation path and confirmation of excavation depth before construction (C),
Having a rough root removal step (D),
A step (F) of removing the floor plate (30),
After the excavation step (G) after removal of the floorboard and before the pile head cutting step (J),
Confirmation process (H) of excavation depth after construction,
The method for excavating a contaminated soil layer (1) according to claim 1, characterized in that the method comprises a simple cesium concentration measurement step (I) of the bottom mud R after excavation.
前記攪拌剥離式吸引工法(101)が、
前面と底面が開口し上面と奥面と両側面(128a)とが閉塞し、
前面には、スライド可能に設置され、前記前面の開口の幅を変化させるスライド板(129)を備えた筐体部(128)を有するとともに、
前方に位置し底泥Rを撹拌する撹拌ローラ(140)と、前記撹拌ローラ(140)の後方に位置し複数の円板刃(134a)が周面に設けられた第1の切断ローラ(130a)と、前記第1の切断ローラ(130a)の上方に位置し複数の円板刃(134b)が周面に設けられた第2の切断ローラ(130b)と、前記第1の切断ローラ(130a)と第2の切断ローラ(130b)の後方に吸引口が位置し底泥(R)を水ごと吸引するポンプ部(120)と、前記ポンプ部(120)と接続し吸引した底泥(R)を前記台船(110)側に送る送水ホース(112)と、を有し、前記第1の切断ローラ(130a)は前面視で下から上に回転するとともに、前記第2の切断ローラ(130b)は前面視で上から下に回転し、前記第1の切断ローラ(130a)と第2の切断ローラ(130b)の間隙に巻き込んだ異物を前記第1の切断ローラ(130a)と第2の切断ローラ(130b)の円板刃(134a、134b)が切断する撹拌剥離式吸引装置(180)と、
水面に位置するとともに前記撹拌剥離式吸引装置(180)を水底に吊り下げる台船(110)と、
陸側に設けられた底泥処理装置(114)と、
前記撹拌剥離式吸引装置(180)が吸引した底泥(R)を前記底泥処理装置(114)に送るホース部材と、
前記撹拌剥離式吸引装置(180)を移動させるための移動手段(150)とを有し、該移動手段(150)がワイヤ(154)によって前記撹拌剥離式吸引装置(180)を牽引して移動させる牽引手段(150a)もしくは前記撹拌剥離式吸引装置(180)に一端が固定されたシャフト(156)を押し引きして移動させるシャフト式移動手段(150b)である撹拌剥離式吸引システム(102)を用い、
前記台船(110)を水面の所定の位置に配置するステップ(K1)と、
前記台船(110)から前記撹拌剥離式吸引装置(180)を水底に下ろすステップ(K2)と、
前記撹拌剥離式吸引装置(180)を動作させ、前記撹拌ローラ(140)が底泥(R)を撹拌して掻き上げ、前記第1の切断ローラ(130a)と前記第2の切断ローラ(130b)とが異物を切断し、前記ポンプ部(120)が底泥(R)と切断された異物と水とを吸引するステップ(K3)と、
吸引した底泥(R)と切断された異物と水とをホース部材を介して前記底泥処理装置(114)に圧送するステップ(K4)と、
前記底泥処理装置(114)が底泥(R)を異物と水から分離して回収するステップ(K5)と、
前記撹拌剥離式吸引装置(180)を水底で移動させるステップ(K6)と、
から成る工法であることを特徴とする溜め池総合除染工法(3)。In the storage pond, the part where water is drawn is basically configured to use the contaminated soil layer excavation method (1) according to any one of claims 1 to 6, and the part where water is collected is the bottom mud ( A method of comprehensively decontaminating the entire reservoir by using the stirring and peeling type suction method (101) of sucking R) together with water,
The stirring and peeling suction method (101)
The front surface and bottom surface are open, and the top surface, back surface, and both side surfaces (128a) are closed,
The front surface has a housing portion (128) slidably installed and provided with a slide plate (129) for changing the width of the opening on the front surface,
An agitating roller (140) located forward and agitating the bottom mud R, and a first cutting roller (130a) located behind the agitating roller (140) and provided with a plurality of disc blades (134a) on its peripheral surface. ), A second cutting roller (130b) located above the first cutting roller (130a) and provided with a plurality of disc blades (134b) on its peripheral surface, and the first cutting roller (130a). ) And the second cutting roller (130b) has a suction port located behind the pump unit (120) for sucking the bottom mud (R) together with water, and the bottom mud (R) sucked by connecting with the pump unit (120). ) For sending water to the side of the barge (110), the first cutting roller (130a) rotates from bottom to top in front view, and the second cutting roller (130a). 130b) rotates from top to bottom in front view, The disc blades (134a, 134b) of the first cutting roller (130a) and the second cutting roller (130b) cut the foreign matter caught in the gap between the roller (130a) and the second cutting roller (130b). A stirring and peeling type suction device (180),
A pontoon (110) located on the water surface and suspending the stirring and peeling suction device (180) on the water bottom;
A bottom mud treatment device (114) provided on the land side,
A hose member for sending the bottom mud (R) sucked by the stirring separation type suction device (180) to the bottom mud treatment device (114),
A moving means (150) for moving the stirring and peeling suction device (180), and the moving means (150) pulls and moves the stirring and peeling suction device (180) by a wire (154). traction means (150a) or the stirring peeling type suction device (180) to press the shaft (156) which is fixed one end pulled by the shaft-type moving means for moving (150b) stirred peelable aspiration system Ru der to (102 ),
Arranging the ship (110) at a predetermined position on the water surface (K1),
A step (K2) of lowering the stirring and peeling type suction device (180) from the pontoon (110) to the water bottom;
The stirring / peeling suction device (180) is operated, the stirring roller (140) stirs and scrapes up the bottom mud (R), and the first cutting roller (130a) and the second cutting roller (130b). ) And a step (K3) of cutting the foreign matter and the pump part (120) sucking the bottom mud (R), the cut foreign matter and water.
A step (K4) of pumping the sucked bottom mud (R), the cut foreign matter and water to the bottom mud treatment device (114) via a hose member;
A step (K5) in which the bottom mud treatment device (114) separates and collects the bottom mud (R) from foreign matter and water;
Moving the stirring and peeling suction device (180) at the water bottom (K6),
Sumitomoike comprehensive decontamination method (3), which is characterized by
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018186626A JP6439072B1 (en) | 2018-10-01 | 2018-10-01 | Excavation method for contaminated soil layer |
PCT/JP2019/006959 WO2019198354A1 (en) | 2018-04-12 | 2019-02-25 | Comprehensive reservoir decontamination method including environmental measures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6615410B1 JP6615410B1 (en) | 2019-12-04 |
JPWO2019198354A1 true JPWO2019198354A1 (en) | 2020-04-30 |
Family
ID=64668548
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018186626A Active JP6439072B1 (en) | 2018-04-12 | 2018-10-01 | Excavation method for contaminated soil layer |
JP2019511798A Expired - Fee Related JP6615410B1 (en) | 2018-10-01 | 2019-02-25 | Reservoir pond decontamination method including environmental measures |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018186626A Active JP6439072B1 (en) | 2018-04-12 | 2018-10-01 | Excavation method for contaminated soil layer |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6439072B1 (en) |
WO (1) | WO2019198354A1 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6034641B2 (en) * | 1979-05-14 | 1985-08-09 | 松井 鈴子 | Mat with top-shaped protrusions |
JPS60197299A (en) * | 1984-03-16 | 1985-10-05 | Sanyo Chem Ind Ltd | Dehydration assistant and method |
JP2872503B2 (en) * | 1992-11-02 | 1999-03-17 | 宇部興産株式会社 | Dredging equipment |
JPH06280283A (en) * | 1993-03-30 | 1994-10-04 | Eniwa Kensetsu Kk | Dredging bucket |
JP2597197Y2 (en) * | 1993-07-14 | 1999-06-28 | 株式会社小松製作所 | Breaker type pile head processing machine |
JPH09184163A (en) * | 1995-12-28 | 1997-07-15 | Hayamizugumi:Kk | Dredging device |
JP3748000B2 (en) * | 1998-12-07 | 2006-02-22 | 同和鉱業株式会社 | Remediation method for oil-contaminated soil |
JP3605561B2 (en) * | 2000-12-18 | 2004-12-22 | 角田工業株式会社 | Topsoil transplantation method and topsoil stripping mechanism |
JP2004298828A (en) * | 2003-04-01 | 2004-10-28 | Meidensha Corp | Recycling resource material and its manufacturing method |
NO323455B1 (en) * | 2005-10-31 | 2007-05-14 | Agronova As | Process for the production of hygienic organic sludge |
JP5337497B2 (en) * | 2009-01-08 | 2013-11-06 | 日本車輌製造株式会社 | Work machine |
RU2458027C1 (en) * | 2011-01-24 | 2012-08-10 | Закрытое Акционерное Общество "Твин Трейдинг Компани" | Method of producing granular organo-mineral fertiliser from organic wastes and apparatus for realising said method |
JP6549372B2 (en) * | 2014-12-16 | 2019-07-24 | 吉田 英夫 | Method and system for decontaminating soil and contaminated water with tritium water |
-
2018
- 2018-10-01 JP JP2018186626A patent/JP6439072B1/en active Active
-
2019
- 2019-02-25 JP JP2019511798A patent/JP6615410B1/en not_active Expired - Fee Related
- 2019-02-25 WO PCT/JP2019/006959 patent/WO2019198354A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP6439072B1 (en) | 2018-12-19 |
JP6615410B1 (en) | 2019-12-04 |
WO2019198354A1 (en) | 2019-10-17 |
JP2020054943A (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6582361B2 (en) | Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship. | |
EP2520726B1 (en) | Device and method for removing material deposits from the reservoir of a hydrotechnical structure | |
JP2019060221A (en) | Agitating peeling type suction device, agitating peeling type suction system and agitating peeling type suction method | |
CA2854522C (en) | Systems and methods for storage and treatment of remediation materials | |
EP0438683B1 (en) | Method and device for dumping fine material on the sea bed or slopes during dredging | |
US20140338233A1 (en) | Methods, apparatus and systems for pond remediation | |
JP6615410B1 (en) | Reservoir pond decontamination method including environmental measures | |
KR101400017B1 (en) | the dredging vessel with gantry crane in which the spoil transfer using the compressed air | |
JP4469627B2 (en) | Sediment mud recovery device and method | |
DE69624315T2 (en) | Process for removing a liquid from a mixture | |
RU2460843C1 (en) | Method of cleaning silted ponds | |
JP4718126B2 (en) | Sediment mud recovery device and method | |
CN1081733A (en) | River course dry type desilting (excavation) method and equipment | |
CN117461510B (en) | Ecological restoration habitat construction method for mangrove forest | |
Fussell et al. | Revised inland oil spill clean-up manual | |
JP6746556B2 (en) | Lake decontamination method | |
CN113684815B (en) | Solid-liquid separation method for high-water-content soft material | |
Marlin | Evaluation of sediment removal options and beneficial use of dredged material for Illinois river restoration: Preliminary report | |
KR20120117607A (en) | Deep cement mixing equipment equipped with slime gathering facility and environmently friendly deep cement mixing method using the same | |
Environmental Laboratory (US Army Engineer Waterways Experiment Station) et al. | Assessment of certain European dredging practices and dredged material containment and reclamation methods | |
JPS6073920A (en) | Settled-mud dredger | |
KR101369765B1 (en) | A pollution prevention and surface layer improvement method for dredged soils | |
Marlin et al. | Beneficial use of Illinois River sediment for agricultural and landscaping applications | |
Marlin et al. | Investigation of the excavation, transport and beneficial use of Illinois River dredged material | |
US20120261350A1 (en) | Method for Using Air to Remove Precipitated Contaminating Oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190227 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190227 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190227 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6615410 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |