JPWO2019188168A1 - Communicator and its manufacturing method - Google Patents
Communicator and its manufacturing method Download PDFInfo
- Publication number
- JPWO2019188168A1 JPWO2019188168A1 JP2020509813A JP2020509813A JPWO2019188168A1 JP WO2019188168 A1 JPWO2019188168 A1 JP WO2019188168A1 JP 2020509813 A JP2020509813 A JP 2020509813A JP 2020509813 A JP2020509813 A JP 2020509813A JP WO2019188168 A1 JPWO2019188168 A1 JP WO2019188168A1
- Authority
- JP
- Japan
- Prior art keywords
- mass
- metal layer
- riser
- less
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002184 metal Substances 0.000 claims abstract description 95
- 229910052751 metal Inorganic materials 0.000 claims abstract description 95
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 31
- 229910052718 tin Inorganic materials 0.000 claims abstract description 29
- 229910001369 Brass Inorganic materials 0.000 claims abstract description 24
- 239000010951 brass Substances 0.000 claims abstract description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 14
- 239000011347 resin Substances 0.000 claims abstract description 14
- 238000007747 plating Methods 0.000 claims abstract description 12
- 229910000679 solder Inorganic materials 0.000 claims description 52
- 239000011135 tin Substances 0.000 claims description 28
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 13
- 239000004332 silver Substances 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 6
- 238000005476 soldering Methods 0.000 claims description 6
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 86
- 229920005992 thermoplastic resin Polymers 0.000 description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000011701 zinc Substances 0.000 description 12
- 229910052725 zinc Inorganic materials 0.000 description 11
- 239000002245 particle Substances 0.000 description 8
- 239000004734 Polyphenylene sulfide Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 description 7
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- -1 natural graphite Chemical compound 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R39/00—Rotary current collectors, distributors or interrupters
- H01R39/02—Details for dynamo electric machines
- H01R39/04—Commutators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
- H01R43/06—Manufacture of commutators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K13/00—Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Motor Or Generator Current Collectors (AREA)
- Manufacture Of Motors, Generators (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Abstract
コンミュテータでは、樹脂ベース上に金属のライザ片が取り付けられ、金属層とカーボン層とから成るセグメントがライザ片に接合されている。金属層は、黄銅と錫及び0mass%以上5mass%未満のカーボンを含み、銅粉を含まず、金属層は表面のメッキ層無しにライザ片に半田により接合されている。セグメントをメッキ層無しにライザ片に半田付けできる。In the commutator, a metal riser piece is mounted on a resin base, and a segment composed of a metal layer and a carbon layer is joined to the riser piece. The metal layer contains brass and tin and carbon of 0 mass% or more and less than 5 mass%, does not contain copper powder, and the metal layer is soldered to the riser piece without a plating layer on the surface. Segments can be soldered to riser pieces without a plating layer.
Description
この発明は、カーボン層と金属層とから成るセグメントをライザ片に接合したコンミュテータとその製造方法に関する。 The present invention relates to a commutator in which a segment composed of a carbon layer and a metal layer is bonded to a riser piece, and a method for manufacturing the commutator.
特許文献1(JP5901279)は、カーボン層と金属層とから成るセグメントをライザ片に接合したコンミュテータを記載している。セグメントの表層がカーボン層、底部の層が金属層で、金属層は突起を備え、この突起がライザ片の孔に嵌合している。 Patent Document 1 (JP5901279) describes a commutator in which a segment composed of a carbon layer and a metal layer is joined to a riser piece. The surface layer of the segment is a carbon layer, the bottom layer is a metal layer, and the metal layer has protrusions, which are fitted into the holes of the riser piece.
発明者は、突起と孔の嵌合ではなく、セグメントをライザ片に半田付けすることを検討した。しかしながら特許文献1のセグメントでは、金属層が多量の黒鉛(例えば9.2mass%)を含むため、セグメント表面に半田が濡れず、セグメントを直接ライザ片に半田付けすることはできなかった。特許文献2(JP2001-95207)では、セグメントにニッケル、錫、銅などのメッキを施し、半田付けや鑞付けなどの金属被覆層を形成することで、安定した導電性を確保できるとしている。しかしながら、メッキを施した上で金属被覆層を形成すると、前後処理や工程間の細かな調整が必要であり、またメッキ廃液の処理も必要になる。 The inventor considered soldering the segment to the riser piece rather than fitting the protrusions and holes. However, in the segment of Patent Document 1, since the metal layer contains a large amount of graphite (for example, 9.2 mass%), the solder does not get wet on the segment surface, and the segment cannot be directly soldered to the riser piece. Patent Document 2 (JP2001-95207) states that stable conductivity can be ensured by plating the segments with nickel, tin, copper, etc., and forming a metal coating layer such as soldering or brazing. However, when the metal coating layer is formed after plating, pre- and post-treatment and fine adjustment between processes are required, and treatment of the plating waste liquid is also required.
この発明の課題は、セグメントをメッキ層無しにライザ片に半田付けすることにある。 An object of the present invention is to solder a segment to a riser piece without a plating layer.
この発明のコンミュテータは、樹脂ベース上に金属のライザ片が複数個取り付けられ、金属層とカーボン層とから成る複数個のセグメントが、金属層側でライザ片に接合されているコンミュテータであって、
金属層は、黄銅と錫及び0mass%以上5mass%未満のカーボンを含んで、銅粉を含まず、
金属層が、表面のメッキ層無しに、ライザ片に半田により接合されていることを特徴とする。The commutator of the present invention is a commutator in which a plurality of metal riser pieces are mounted on a resin base, and a plurality of segments composed of a metal layer and a carbon layer are joined to the riser pieces on the metal layer side.
The metal layer contains brass and tin and carbon of 0 mass% or more and less than 5 mass%, and does not contain copper powder.
The metal layer is bonded to the riser piece by solder without a plating layer on the surface.
この発明のコンミュテータの製造方法は、金属のライザ片を複数個互いに接続したライザ片母体上に、金属層とカーボン層とから成るセグメントを複数個互いに接続したリング状のセグメント母体を接合した後、ライザ片を固定する樹脂ベースを設けると共に、ライザ片母体とセグメント母体を切断し、個々のライザ片と個々のセグメントに分離する、コンミュテータの製造方法において、
金属層は、黄銅と錫及び0mass%以上5mass%未満のカーボンを含んで、銅粉を含まず、
セグメント母体の金属層を、金属層の表面にメッキを施すことなく、ライザ片に半田付けすることを特徴とする。この明細書において、コンミュテータに関する記載はそのままコンミュテータの製造方法にも当てはまる。In the method for manufacturing a commutator of the present invention, a ring-shaped segment base body in which a plurality of segments composed of a metal layer and a carbon layer are connected to each other is joined onto a riser piece base body in which a plurality of metal riser pieces are connected to each other. In a commutator manufacturing method in which a resin base for fixing a riser piece is provided, and the riser piece base and the segment base are cut and separated into individual riser pieces and individual segments.
The metal layer contains brass and tin and carbon of 0 mass% or more and less than 5 mass%, and does not contain copper powder.
The feature is that the metal layer of the segment base is soldered to the riser piece without plating the surface of the metal layer. In this specification, the description regarding the commutator also applies to the method for manufacturing the commutator as it is.
メッキ層無しでの半田付けを妨げる原因は、金属層と半田との濡れが悪いことである。銅は表面が容易に酸化され、半田との濡れ性が低い酸化被膜が生じやすい。このため、金属層に銅を含めない。また天然黒鉛、人造黒鉛、非晶質炭素、等のカーボンも半田との濡れ性を悪化させるので、金属層中のカーボン含有量を5mass%未満とし、好ましくは2mass%以下、より好ましくは1mass%以下とし、最も好ましくは金属層はカーボンを含まない。なおこの明細書において、銅を含まないとは不純物濃度(約0.1mass%)を超えて含まないことを意味し、カーボンを含まないとは不純物濃度(約0.1mass%)を超えて含まないことを意味する。 The cause of hindering soldering without a plating layer is poor wetting between the metal layer and the solder. The surface of copper is easily oxidized, and an oxide film having low wettability with solder is likely to be formed. Therefore, copper is not included in the metal layer. Further, carbon such as natural graphite, artificial graphite, amorphous carbon, etc. also deteriorates the wettability with the solder. Therefore, the carbon content in the metal layer is set to less than 5 mass%, preferably 2 mass% or less, more preferably 1 mass%. Most preferably, the metal layer does not contain carbon. In this specification, the absence of copper means that the impurity concentration (about 0.1 mass%) is not included, and the absence of carbon means that the impurity concentration (about 0.1 mass%) is not included. Means.
金属層の剛性を高めるため、PPS(ポリフェニレンサルファイド)あるいはPEEK(ポリエーテルエーテルケトン)等の熱可塑性樹脂を、金属層全体との質量比で2mass%以下含んでも良い。しかし熱可塑性樹脂等の樹脂は金属層と半田との濡れ性を悪化させるので、好ましくは金属層は熱可塑性樹脂、熱硬化性樹脂等の樹脂を含まない。 In order to increase the rigidity of the metal layer, a thermoplastic resin such as PPS (polyphenylene sulfide) or PEEK (polyetheretherketone) may be contained in an amount of 2 mass% or less in terms of mass ratio with the entire metal layer. However, since a resin such as a thermoplastic resin deteriorates the wettability between the metal layer and the solder, the metal layer preferably does not contain a resin such as a thermoplastic resin or a thermosetting resin.
黄銅は、銅に比べ半田との濡れ性がよいので、金属層の骨格材料とする。錫は比較的低い温度で溶融し金属層を焼結すると共に、半田との濡れ性を改善する。金属層中の全金属成分との割合で、錫を1mass%以上含むことが、メッキ無しでの半田付けを実現するための好ましい条件である。半田との濡れ性は錫含有量が高い程向上する。この一方で錫を25mass%を超えて含有すると、セグメントの成型時に錫粉が型に付着することがある。すると型を頻繁に清掃することが必要になり、コンミュテータの生産性が低下する。型への錫粉の付着は、錫含有量が高い程著しくなる。これらのことから、金属層中の全金属成分との割合で、錫含有量は例えば1mass%以上35mass%以下とし、より好ましくは3mass%以上20mass%以下とし、最も好ましくは5mass%以上15mass%以下とする。なお金属層中の全金属成分との割合は、金属層からカーボン、熱可塑性樹脂等の非金属成分を除いたものとの割合を意味する。 Since brass has better wettability with solder than copper, it is used as a skeleton material for a metal layer. Tin melts at a relatively low temperature to sinter the metal layer and improve wettability with solder. It is a preferable condition to realize soldering without plating that tin is contained in an amount of 1 mass% or more in proportion to the total metal components in the metal layer. The wettability with solder improves as the tin content increases. On the other hand, if tin is contained in excess of 25 mass%, tin powder may adhere to the mold during molding of the segment. This requires frequent cleaning of the mold, which reduces the productivity of the commutator. The adhesion of tin powder to the mold becomes more remarkable as the tin content increases. From these facts, the tin content is, for example, 1 mass% or more and 35 mass% or less, more preferably 3 mass% or more and 20 mass% or less, and most preferably 5 mass% or more and 15 mass% or less in terms of the ratio with the total metal components in the metal layer. And. The ratio of the total metal components in the metal layer means the ratio of the metal layer excluding non-metal components such as carbon and thermoplastic resin.
黄銅は銅と亜鉛の合金であり、黄銅中の亜鉛含有量が20mass%以上30mass%の付近で、半田との濡れ性が最良になる。また亜鉛含有量が40mass%を超えると、金属層を緻密に成型することが難しくなる。これらのことから、黄銅は亜鉛を5mass%以上40mass%以下、銅を95mass%以下60mass%以上含有することが好ましく、より好ましくは亜鉛を15mass%以上35mass%以下、銅を85mass%以下65mass%以上含有し、最も好ましくは亜鉛を15mass%以上32mass%以下、銅を85mass%以下68mass%以上含有する。
Brass is an alloy of copper and zinc, and when the zinc content in brass is around 20 mass% or more and 30 mass%, the wettability with solder is the best. If the zinc content exceeds 40 mass%, it becomes difficult to precisely mold the metal layer. From these facts, brass preferably contains zinc of 5 mass% or more and 40 mass% or less, copper of 95 mass% or less and 60 mass% or more, and more preferably zinc of 15 mass% or more and 35 mass% or less, and copper of 85 mass% or less and 65 mass% or more. It contains, most preferably
好ましくは、金属層は金属成分として黄銅と錫及び銀を含み、金属層中の全金属成分との割合で、銀の含有量は0.2mass%以上10mass%以下、より好ましくは0.5mass%以上9mass%以下、最も好ましくは1mass%以上9mass%以下である。銀は金属層と半田との濡れ性を顕著に改良し、さらに金属層の抵抗率を低下させる。しかしながら銀は高価な金属なので、含有量を10mass%以下とする。銀の含有量と共に濡れ性が改善するので、銀の含有量は好ましくは0.2mass%以上とし、より好ましくは含有量を0.5mass%以上とし、最も好ましくは1mass%以上とする。好ましくは銀含有量を9mass%以下とする。なお銀を含有する場合でも、黄銅と錫の合計中での錫含有量は例えば1mass%以上35mass%以下とし、好ましくは3mass%以上20mass%以下とし、最も好ましくは5mass%以上15mass%以下とする。 Preferably, the metal layer contains brass, tin and silver as metal components, and the silver content is 0.2 mass% or more and 10 mass% or less, more preferably 0.5 mass% or more and 9 masses in proportion to the total metal components in the metal layer. % Or less, most preferably 1 mass% or more and 9 mass% or less. Silver significantly improves the wettability between the metal layer and the solder, and further reduces the resistivity of the metal layer. However, since silver is an expensive metal, its content should be 10 mass% or less. Since the wettability improves with the silver content, the silver content is preferably 0.2 mass% or more, more preferably 0.5 mass% or more, and most preferably 1 mass% or more. Preferably, the silver content is 9 mass% or less. Even when silver is contained, the tin content in the total of brass and tin is, for example, 1 mass% or more and 35 mass% or less, preferably 3 mass% or more and 20 mass% or less, and most preferably 5 mass% or more and 15 mass% or less. ..
好ましくは、ライザ片に半田を収容する孔を設ける。コンミュテータの製造時にこの孔から半田をセグメント母体の金属層とライザ片母体の間へ注入する。金属層と半田との濡れ性は必ずしも高くない。このため上記の孔を設けず、例えばライザ片母体に半田ペーストを載せ、セグメントを下降させて半田付けすると、金属層とライザ片母体の間に半田が均一に拡がらず、半田がライザ片母体の外部へ逃げることがある。これに対してライザ片母体に孔を設けて、孔に半田ペースト等を注入すると、過剰の半田が金属層とライザ片母体の間からライザ片母体の外部へ漏れることはない。過剰の半田は孔に留まり、適量の半田が金属層とライザ片母体の間に拡がる。 Preferably, the riser piece is provided with a hole for accommodating the solder. During the manufacture of the commutator, solder is injected through this hole between the metal layer of the segment base and the riser single base. The wettability between the metal layer and the solder is not always high. Therefore, if the above holes are not provided, for example, when solder paste is placed on the riser single base and the segment is lowered and soldered, the solder does not spread uniformly between the metal layer and the riser single base, and the solder spreads on the riser single base. May escape to the outside of the. On the other hand, when a hole is provided in the riser single body and a solder paste or the like is injected into the hole, excess solder does not leak from between the metal layer and the riser single body to the outside of the riser single body. Excess solder stays in the holes and an appropriate amount of solder spreads between the metal layer and the riser slab.
金属層の成分は最も好ましくは、黄銅、錫、銀の3成分で、次に好ましくは黄銅と錫の2成分である。しかし金属層はこれらの他に、5mass%未満のカーボン及び2mass%未満の熱可塑性樹脂、不純物として混入した他の金属等を含んでも良い。
The components of the metal layer are most preferably three components of brass, tin and silver, and then preferably two components of brass and tin. However, in addition to these, the metal layer may contain less than 5 mass% of carbon, less than 2 mass% of thermoplastic resin, other metals mixed as impurities, and the like.
以下に本発明を実施するための最適実施例を示す。本発明は実施例に限定されるものではなく、特許請求の範囲に基づいて定められ、かつ実施例に当業者に公知の事項を加えて変形できる。 The optimum examples for carrying out the present invention are shown below. The present invention is not limited to the examples, but can be modified based on the claims and by adding matters known to those skilled in the art to the examples.
図1〜図3に実施例のコンミュテータ2の構造を示す。4は熱硬化性樹脂等から成る樹脂ベースで、複数個のライザ片6を支持し、ライザ片6はそれぞれセグメント8に半田層14により接合されている。ライザ片6は金属製で、フック9が突き出し、図示しない配線をフック9に巻き付ける。またコンミュテータ2はスリット15を備え、ライザ片6を互いに分離すると共に、及びセグメント8を互いに分離している。
1 to 3 show the structure of the
セグメント8は、表層のカーボン層10と、下層にあってライザ片6に接合されている金属層12の2層から成る。そして上記のように、金属層12は半田層14によりライザ片6に接合されている。半田層14の成分は錫を主成分とする錫半田であるが、成分は任意である。
The
図3に示すように、ライザ片6は好ましくは金属層12と向き合う孔16を備え、ライザ片6とセグメント8の間に拡がらなかった過剰の半田は、孔16に半田溜まり18として残っている。なお孔16は設けなくても良い。
As shown in FIG. 3, the
以下の材料を用いて、コンミュテータを試作した。また含有量の単位は全てmass%で有る。
黄銅粉: 平均粒径40μmで亜鉛含有量20mass%のもの、及び平均粒径38μmで亜鉛含有量30mass%のもの、他
錫粉: 平均粒径20μm
銀粉: 平均粒径20μm
銅粉: 平均粒径35μmの電解銅粉
カーボン: 平均粒径25μmの天然黒鉛
熱可塑性樹脂: 平均粒径15μmのPPS(ポリフェニレンサルファイド)
半田: 錫半田
ライザ片: 銅製A commutator was prototyped using the following materials. The unit of content is mass%.
Brass powder: with an average particle size of 40 μm and a zinc content of 20 mass%, and with an average particle size of 38 μm and a zinc content of 30 mass%, etc.
Tin powder: Average particle size 20 μm
Silver powder: Average particle size 20 μm
Copper powder: Electrolytic copper powder with an average particle size of 35 μm
Carbon: Natural graphite with an average particle size of 25 μm
Thermoplastic resin: PPS (polyphenylene sulfide) with an average particle size of 15 μm
Solder: Tin solder
Riser piece: Copper
黄銅粉と錫粉あるいは黄銅粉と錫粉及び銀粉から成る金属層材料(表1)を混合器で均一に混合し、金型内に投入した。カーボンと熱可塑性樹脂から成るカーボン層材料を混合器で均一に混合し、金型内に投入し金属層材料上に積層した。金属層材料とカーボン層材料をプレス成型し、例えば空気中で300℃で加熱焼成し、錫の溶融と熱可塑性樹脂の溶融により、リング状で2層のセグメント母体を製造した。 A metal layer material (Table 1) composed of brass powder and tin powder or brass powder and tin powder and silver powder was uniformly mixed with a mixer and charged into a mold. The carbon layer material composed of carbon and the thermoplastic resin was uniformly mixed with a mixer, put into a mold, and laminated on the metal layer material. The metal layer material and the carbon layer material were press-molded, for example, heated and fired at 300 ° C. in air, and a ring-shaped two-layer segment base was produced by melting tin and melting a thermoplastic resin.
金属層材料は表1に示すものの他に、表2に示すもの、及び黄銅中の亜鉛含有量を10mass%としたもの及び36mass%としたものを用いた。また金属層材料に熱可塑性樹脂を混合したセグメント母体を試作した。熱可塑性樹脂は金属層の剛性を増すが、半田との濡れ性を低下させるため好ましくなく、許容範囲は金属層の全量に対し2mass%以下で、熱可塑性樹脂の含有量は0mass%以上1.0mass%以下が好ましく、熱可塑性樹脂を含有させないことが最も好ましい。以下では、金属層が熱可塑性樹脂を含まないものについて説明する。黄銅中の亜鉛含有量が増すと半田との濡れ性が向上するが、30mass%を超えても半田との濡れ性はそれ以上向上しなかった。また亜鉛含有量を36mass%とすると、金属層を緻密に焼結できない場合があった。これらのことから亜鉛含有量が20mass%及び30mass%の黄銅を用い、表1,表2の試料を試作した。 In addition to the materials shown in Table 1, the metal layer materials used were those shown in Table 2, and those having a zinc content of 10 mass% and 36 mass% in brass. In addition, a segment base material in which a thermoplastic resin was mixed with a metal layer material was prototyped. The thermoplastic resin increases the rigidity of the metal layer, but is not preferable because it reduces the wettability with the solder. The allowable range is 2 mass% or less with respect to the total amount of the metal layer, and the content of the thermoplastic resin is 0 mass% or more and 1.0 mass. % Or less is preferable, and it is most preferable not to contain a thermoplastic resin. Hereinafter, the metal layer containing no thermoplastic resin will be described. As the zinc content in brass increased, the wettability with the solder improved, but even if it exceeded 30 mass%, the wettability with the solder did not improve any more. When the zinc content was 36 mass%, the metal layer could not be densely sintered. Based on these facts, the samples shown in Tables 1 and 2 were prototyped using brass with zinc contents of 20 mass% and 30 mass%.
カーボン層は、85mass%以上の平均粒径25μmの天然黒鉛と15mass%以下のPPSとから成り、PPS等の熱可塑性樹脂がカーボン層の強度と、カーボン層と金属層との接合を支えている。熱可塑性樹脂はPPSに限らずPEEK等でも良く、融点が230℃以上であることが好ましい。熱可塑性樹脂の含有量はカーボン層との質量比で3mass%以上15mass%以下が好ましく、特に5mass%以上15mass%以下が好ましい。 The carbon layer consists of natural graphite with an average particle size of 25 μm or more of 85 mass% or more and PPS of 15 mass% or less, and a thermoplastic resin such as PPS supports the strength of the carbon layer and the bonding between the carbon layer and the metal layer. .. The thermoplastic resin is not limited to PPS but may be PEEK or the like, and the melting point is preferably 230 ° C. or higher. The content of the thermoplastic resin is preferably 3 mass% or more and 15 mass% or less in terms of mass ratio with the carbon layer, and particularly preferably 5 mass% or more and 15 mass% or less.
複数個のライザ片を一体にしたライザ片母体とセグメント母体を重ね、錫半田により半田付けした。表1,表2でのライザ片の孔は図3の孔16を意味し、孔有りの場合、ライザ片母体を上にし、孔16から半田ペーストを注入し、炉で加熱し半田付けした。孔無しの場合、ライザ片母体に半田ペーストを塗布し、セグメント母体を上から重ね、半田がライザ片とセグメントの間に拡がる程度に加圧し、炉で加熱し半田付けした。
A riser piece base body in which a plurality of riser pieces were integrated and a segment base body were overlapped and soldered with tin solder. The holes in the riser pieces in Tables 1 and 2 mean the
半田付け後のライザ片母体とセグメント母体の周囲に熱硬化性樹脂の樹脂ベースを成型し、母体を切断し個々のライザ片とセグメントに分離した。またライザ片の露出部に錫メッキを施した。母体は、樹脂ベースの成型後に切断しても、成型前に切断しても良い。 A resin base of a thermosetting resin was molded around the riser piece base and the segment base after soldering, and the base was cut and separated into individual riser pieces and segments. In addition, the exposed part of the riser piece was tin-plated. The base body may be cut after molding the resin base or before molding.
金属層の電気抵抗率を以下のようにして測定した。表1,表2の各試料の金属層材料を均一に混合、プレス成形、空気中300℃で加熱処理し、電気抵抗測定用の試験片を作製した。次いで、試験片の長さ方向に直流電流を通電させ、規定長さ間の電圧降下を測定し、電気抵抗率を算出した。 The electrical resistivity of the metal layer was measured as follows. The metal layer materials of each sample in Tables 1 and 2 were uniformly mixed, press-molded, and heat-treated in air at 300 ° C. to prepare test pieces for measuring electrical resistance. Next, a direct current was applied in the length direction of the test piece, the voltage drop between the specified lengths was measured, and the electrical resistivity was calculated.
ライザ片と金属層とのとの半田濡れ性は以下のように評価した。
◎:溶融半田が金属層全体に濡れ拡がり接合できる。
○:溶融半田の一部に空洞(ボイド)が見られるものの接合には問題なし。
△:溶融半田に空洞(ボイド)が多くあり、接合にややバラツキが見られる。
×:溶融半田が金属層に濡れず接合不可。The solder wettability between the riser piece and the metal layer was evaluated as follows.
⊚: The molten solder can be wetted and spread over the entire metal layer for joining.
◯: There are cavities (voids) in a part of the molten solder, but there is no problem in joining.
Δ: There are many cavities (voids) in the molten solder, and there is some variation in the bonding.
X: The molten solder does not get wet with the metal layer and cannot be joined.
金属層が錫を多量に含む場合、錫粉が金型内に付着し、以降の成型を妨げることがあった。そこで金型への錫の付着の程度を評価し、以下の様に評価した。
◎:成形時に金型に付着無し。
○:定期的な金型清掃が必要。
△:金型清掃の頻度が増える。
×:金型に成形品が付着し分離不可(成形不可)。When the metal layer contains a large amount of tin, tin powder may adhere to the inside of the mold and hinder the subsequent molding. Therefore, the degree of adhesion of tin to the mold was evaluated and evaluated as follows.
⊚: No adhesion to the mold during molding.
◯: Regular mold cleaning is required.
Δ: The frequency of mold cleaning increases.
X: Molded product adheres to the mold and cannot be separated (molding is not possible).
表2の試料33,34から、金属層に銅を含有させると半田との濡れ性が低下することが判明した。また表2の試料35,36から、金属層中のカーボンが半田との濡れ性を低下させることが判明した。 From the samples 33 and 34 in Table 2, it was found that the wettability with the solder was lowered when the metal layer contained copper. Further, from the samples 35 and 36 in Table 2, it was found that the carbon in the metal layer reduces the wettability with the solder.
金属層中の錫が37mass%では、成型時に錫粉が型に付着しトラブルが生じた(試料29,30)。錫が0.5mass%では電気抵抗が高くなった。0.4mass%の銀は効果が小さい(試料23,24と試料1,2の比較)が、銀含有量が3mass%〜9mass%では半田との濡れ性が顕著に改善した(例えば試料13,14と試料2,3の比較)。またライザ片に孔を設けると、半田との濡れ性は顕著に改善した(例えば試料2,4,6,8と試料1,3,5,7の比較)。
When the tin content in the metal layer was 37 mass%, tin powder adhered to the mold during molding, causing trouble (samples 29, 30). When tin was 0.5 mass%, the electrical resistance was high. 0.4mass% silver has a small effect (comparison between samples 23 and 24 and samples 1 and 2), but when the silver content is 3mass% to 9mass%, the wettability with solder is significantly improved (for example, samples 13 and 14). Comparison of
2 コンミュテータ 4 樹脂ベース 6 ライザ片
8 セグメント 9 フック 10 カーボン層 12 金属層
14 半田層 15 スリット 16 孔 18 半田溜まり2
Claims (7)
前記金属層は、黄銅と錫及び0mass%以上5mass%未満のカーボンを含んで、銅粉を含まず、
前記金属層が、表面のメッキ層無しに、前記ライザ片に半田により接合されていることを特徴とする、コンミュテータ。A commutator in which a plurality of metal riser pieces are mounted on a resin base, and a plurality of segments composed of a metal layer and a carbon layer are joined to the riser pieces on the metal layer side.
The metal layer contains brass and tin and carbon of 0 mass% or more and less than 5 mass%, and does not contain copper powder.
A commutator in which the metal layer is bonded to the riser piece by solder without a plating layer on the surface.
前記金属層中の全金属成分に対する割合で、黄銅を80mass%以上99mass%以下、錫を20mass%以下で1mass%以上含有することを特徴とする、請求項1または2のコンミュテータ。The brass is an alloy of zinc 5 mass% or more and 40 mass% or less, and copper 95 mass% or less and 60 mass% or more.
The commutator according to claim 1 or 2, wherein the brass is contained in an amount of 80 mass% or more and 99 mass% or less, and tin is contained in an amount of 20 mass% or less and 1 mass% or more as a ratio to the total metal components in the metal layer.
前記金属層は、黄銅と錫及び0mass%以上5mass%未満のカーボンを含んで、銅粉を含まず、
前記セグメント母体の金属層を、金属層の表面にメッキを施すことなく、前記ライザ片に半田付けすることを特徴とする、コンミュテータの製造方法。 A ring-shaped segment base body in which a plurality of segments composed of a metal layer and a carbon layer are connected to each other is joined onto a riser piece base body in which a plurality of metal riser pieces are connected to each other, and then a resin base for fixing the riser pieces is provided. At the same time, in a method for manufacturing a commutator, which cuts a riser piece and a segment body and separates them into individual riser pieces and individual segments.
The metal layer contains brass and tin and carbon of 0 mass% or more and less than 5 mass%, and does not contain copper powder.
A method for manufacturing a commutator, which comprises soldering a metal layer of a segment base to the riser piece without plating the surface of the metal layer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018062306 | 2018-03-28 | ||
JP2018062306 | 2018-03-28 | ||
PCT/JP2019/009598 WO2019188168A1 (en) | 2018-03-28 | 2019-03-11 | Commutator and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019188168A1 true JPWO2019188168A1 (en) | 2021-04-01 |
JP6930775B2 JP6930775B2 (en) | 2021-09-01 |
Family
ID=68061544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020509813A Active JP6930775B2 (en) | 2018-03-28 | 2019-03-11 | Communicator and its manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6930775B2 (en) |
CN (1) | CN112042088B (en) |
WO (1) | WO2019188168A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023068102A1 (en) * | 2021-10-21 | 2023-04-27 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1032627A (en) * | 1962-01-29 | 1966-06-15 | Morganite Carbon Ltd | Commutator segments |
JP2658509B2 (en) * | 1989-06-16 | 1997-09-30 | 松下電器産業株式会社 | Method of forming electronic component, electrode paste and terminal electrode |
DE19525584A1 (en) * | 1995-07-13 | 1997-01-16 | Kautt & Bux Commutator Gmbh | Method of manufacturing a flat commutator |
US6222298B1 (en) * | 1997-06-08 | 2001-04-24 | Mitsuba Corporation | Carbon commutator and method for producing the same |
JP4596404B2 (en) * | 2001-06-05 | 2010-12-08 | 株式会社デンソー | Current-carrying member of direct current motor for fuel pump, manufacturing method thereof, and fuel pump |
JP2004242454A (en) * | 2003-02-07 | 2004-08-26 | Mitsuba Corp | Carbon base material |
JP4074546B2 (en) * | 2003-04-28 | 2008-04-09 | 株式会社日立製作所 | Fuel pump |
JP2007075836A (en) * | 2005-09-12 | 2007-03-29 | Heesung Material Ltd | Lead free alloy for soldering |
US7799430B2 (en) * | 2006-03-06 | 2010-09-21 | Mitsuba Corporation | Carbon commutator and process for producing the same |
CN102601542B (en) * | 2012-03-28 | 2015-08-26 | 华南理工大学 | A kind of brazing solder alloy |
DE102012220583A1 (en) * | 2012-11-12 | 2014-05-15 | Hoffmann & Co. Elektrokohle Ag | Process for the production of a carbon component and carbon abrasive piece |
CN103269004A (en) * | 2012-12-26 | 2013-08-28 | 宁波华瑞电器有限公司 | Graphite commutator |
JP5879464B1 (en) * | 2014-09-26 | 2016-03-08 | 三菱伸銅株式会社 | Copper alloy plate and method for producing copper alloy plate |
-
2019
- 2019-03-11 JP JP2020509813A patent/JP6930775B2/en active Active
- 2019-03-11 CN CN201980022931.2A patent/CN112042088B/en active Active
- 2019-03-11 WO PCT/JP2019/009598 patent/WO2019188168A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP6930775B2 (en) | 2021-09-01 |
CN112042088A (en) | 2020-12-04 |
WO2019188168A1 (en) | 2019-10-03 |
CN112042088B (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8896119B2 (en) | Bonding material for semiconductor devices | |
JP4753090B2 (en) | Solder paste and electronic device | |
US8303854B2 (en) | Sintering silver paste material and method for bonding semiconductor chip | |
JP6798093B2 (en) | Electronic components | |
JP6226424B2 (en) | Bonding material and method for manufacturing electronic component | |
JPH11192583A (en) | Solder material and manufacture of solder material | |
WO2013132954A1 (en) | Bonding method, bond structure, and manufacturing method for same | |
US2381025A (en) | Blocking-layer rectifier | |
KR20100124148A (en) | Conductive contactor for substrate surface mount | |
TWI492810B (en) | Tin-copper lead-free solder alloy | |
US11819915B2 (en) | Bonding member and bonding method | |
JPWO2009081929A1 (en) | Mounting substrate and manufacturing method thereof | |
JP2014180690A (en) | Sheet-like high-temperature solder joint material, and die bonding method using the same | |
JP6930775B2 (en) | Communicator and its manufacturing method | |
JP4134878B2 (en) | Conductor composition, mounting substrate using the conductor composition, and mounting structure | |
JPH0528829A (en) | Conductive coating and conductive film formation thereof | |
JP6011734B2 (en) | Structural material joining method and joining structure | |
JP6176854B2 (en) | Composite material with active metal brazing material layer | |
JP6332566B2 (en) | Joining member, method for producing joining member, and joining method | |
JP2013084701A (en) | Electronic component and method of manufacturing the same | |
JP2013171927A (en) | Method of manufacturing electronic apparatus | |
JP2007123674A (en) | Wiring substrate and electronic apparatus | |
US20220230830A1 (en) | Fuse element, fuse device and protection device | |
JP2002124755A (en) | Method and structure for bonding conductive adhesive and electrode | |
JP5482214B2 (en) | Manufacturing method of bonded structure and bonded structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20200819 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210719 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6930775 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |