JPWO2019107190A1 - Silicon single crystal and its manufacturing method and silicon wafer - Google Patents
Silicon single crystal and its manufacturing method and silicon wafer Download PDFInfo
- Publication number
- JPWO2019107190A1 JPWO2019107190A1 JP2019557153A JP2019557153A JPWO2019107190A1 JP WO2019107190 A1 JPWO2019107190 A1 JP WO2019107190A1 JP 2019557153 A JP2019557153 A JP 2019557153A JP 2019557153 A JP2019557153 A JP 2019557153A JP WO2019107190 A1 JPWO2019107190 A1 JP WO2019107190A1
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- silicon
- silicon single
- crystal
- oxygen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 164
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 150
- 239000010703 silicon Substances 0.000 title claims abstract description 150
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000001301 oxygen Substances 0.000 claims abstract description 80
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 80
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000010453 quartz Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims description 13
- 238000009826 distribution Methods 0.000 abstract description 31
- 238000010586 diagram Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 56
- 239000000523 sample Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- 239000000155 melt Substances 0.000 description 10
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/30—Mechanisms for rotating or moving either the melt or the crystal
- C30B15/305—Stirring of the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B30/00—Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
- C30B30/04—Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】酸素濃度が低く、酸素濃度及び抵抗率の面内分布の均一性が高いシリコン単結晶の製造方法並びにシリコンウェーハを提供する。【解決手段】カスプ磁場を印加しながら石英ルツボ11内のシリコン融液2からシリコン単結晶3を引き上げるMCZ法によるシリコン単結晶の製造方法であって、シリコン単結晶3を回転させながら引き上げる際の結晶回転速度が17rpm以上19rpm以下である。こうして引き上げられたシリコン単結晶3の酸素濃度は1×1017atoms/cm3以上8×1017atoms/cm3以下であり、結晶成長方向と直交する結晶断面内のROGは15%以下であり、結晶断面内のRRGは5%以下である。【選択図】図1PROBLEM TO BE SOLVED: To provide a method for producing a silicon single crystal having a low oxygen concentration and a high uniformity of in-plane distribution of oxygen concentration and resistivity, and a silicon wafer. SOLUTION: This is a method for producing a silicon single crystal by the MCZ method in which a silicon single crystal 3 is pulled up from a silicon melt 2 in a quartz crucible 11 while applying a cusp magnetic field, and when the silicon single crystal 3 is pulled up while rotating. The crystal rotation speed is 17 rpm or more and 19 rpm or less. The oxygen concentration of the silicon single crystal 3 thus pulled up is 1 × 1017 atoms / cm3 or more and 8 × 1017 atoms / cm3 or less, the ROG in the crystal cross section orthogonal to the crystal growth direction is 15% or less, and the RRG in the crystal cross section. Is less than 5%. [Selection diagram] Fig. 1
Description
本発明は、シリコン単結晶及びその製造方法並びにシリコンウェーハに関し、特に、MCZ(Magnetic field applied CZ)法によるシリコン単結晶の製造方法とこれにより製造されるシリコン単結晶及びシリコンウェーハに関する。 The present invention relates to a silicon single crystal, a method for producing the same, and a silicon wafer, and more particularly to a method for producing a silicon single crystal by the MCZ (Magnetic field applied CZ) method and a silicon single crystal and a silicon wafer produced by the method.
IGBT(Gate Insulated Bipolar Transistor)を中心としたパワー半導体向けのシリコンウェーハには格子間酸素濃度が低いシリコン単結晶が好ましく用いられている。そのようなシリコン単結晶の製造には、酸素の供給源となる石英ルツボを用いないFZ法が用いられることが多いが、量産性を向上させるためCZ法(チョクラルスキー法)により製造することも検討されている。 A silicon single crystal having a low interstitial oxygen concentration is preferably used for a silicon wafer for a power semiconductor centered on an IGBT (Gate Insulated Bipolar Transistor). The FZ method, which does not use a quartz crucible as an oxygen supply source, is often used to produce such a silicon single crystal, but it should be produced by the CZ method (Czochralski method) in order to improve mass productivity. Is also being considered.
低酸素濃度のシリコン単結晶を製造するCZ法の一つとして、磁場を印加しながらシリコン単結晶を引き上げるMCZ法が知られている。MCZ法によれば、融液対流を抑制することができ、石英ルツボの溶損によるシリコン融液中への酸素の溶け込みを抑制してシリコン単結晶中の酸素濃度を低減することができる。例えば特許文献1には、水平磁場又はカスプ磁場を用いるMCZ法において、水平磁場強度を2000G(ガウス)以上、石英ルツボの回転数を1.5rpm以下、結晶回転数7.0rpm以下とし、単結晶が転位クラスタ欠陥フリーとなる結晶引き上げ速度とすることで、格子間酸素濃度が6×1017atoms/cm3以下の単結晶を育成することが記載されている。As one of the CZ methods for producing a silicon single crystal having a low oxygen concentration, an MCZ method for pulling up a silicon single crystal while applying a magnetic field is known. According to the MCZ method, the melt convection can be suppressed, the dissolution of oxygen into the silicon melt due to the melting damage of the quartz crucible can be suppressed, and the oxygen concentration in the silicon single crystal can be reduced. For example, Patent Document 1 states that in the MCZ method using a horizontal magnetic field or a cusp magnetic field, the horizontal magnetic field strength is 2000 G (Gauss) or more, the rotation speed of a quartz rut is 1.5 rpm or less, and the crystal rotation speed is 7.0 rpm or less, and a single crystal. It is described that a single crystal having an interstitial oxygen concentration of 6 × 10 17 atoms / cm 3 or less is grown by setting the crystal pulling rate to be free of rearrangement cluster defects.
また特許文献2には、真空チャンバーに含まれる坩堝中で多結晶シリコンを溶融させて融液を形成する工程と、真空チャンバーの中にカスプ磁場を形成する工程と、種結晶を融液に浸漬する工程と、融液から種結晶を引き出して約150mmより大きな直径を有するシリコン単結晶インゴットを形成する工程とを有し、シリコンインゴットが約5ppmaより低い酸素濃度を有するように複数のプロセスパラメータを同時に調整することが記載されている。複数のプロセスパラメータは、坩堝の側壁温度、坩堝から単結晶への一酸化ケイ素(SiO)の移動、および融液からのSiOの蒸発速度を含み、ルツボ回転速度を1.3〜2.2rpm、結晶回転速度を8〜14rpm、固液界面における単結晶のエッジの磁場強度を0.02〜0.05T(テスラ)としている。 Further, Patent Document 2 describes a step of melting polycrystalline silicon in a chamber included in a vacuum chamber to form a melt, a step of forming a cusp magnetic field in the vacuum chamber, and a step of immersing a seed crystal in the melt. A plurality of process parameters are set so that the silicon ingot has an oxygen concentration lower than about 5 ppma, which comprises a step of drawing out a seed crystal from the melt to form a silicon single crystal ingot having a diameter larger than about 150 mm. It is stated that adjustments are made at the same time. Multiple process parameters include crucible sidewall temperature, silicon monoxide (SiO) transfer from the crucible to the single crystal, and the rate of SiO evaporation from the melt, with a crucible rotation speed of 1.3-2.2 rpm. The crystal rotation speed is 8 to 14 rpm, and the magnetic field strength of the edge of the single crystal at the solid-liquid interface is 0.02 to 0.05 T (tesla).
しかしながら、水平磁場を印加しながらシリコン単結晶を引き上げるHMCZ法では、シリコン単結晶の低酸素化を図ることができるが、酸素濃度や抵抗率の面内均一性が問題となる。例えば、特許文献1に記載された従来の製造方法は、ルツボ回転速度を1.5rpm以下、結晶回転速度を7rpm以下としているが、その製造条件を実際に適用すると、酸素濃度及び抵抗率の面内分布が均一にならないという問題がある。また、特許文献2に記載された従来の製造方法は、ルツボ回転速度を1.3〜2.2rpm、結晶回転速度を8〜14rpmとしているが、その製造条件を実際に適用すると、酸素濃度及び抵抗率の面内分布が均一にならないという問題がある。 However, in the HMCZ method in which the silicon single crystal is pulled up while applying a horizontal magnetic field, it is possible to reduce the oxygen content of the silicon single crystal, but the in-plane uniformity of the oxygen concentration and the resistivity becomes a problem. For example, in the conventional manufacturing method described in Patent Document 1, the crucible rotation speed is 1.5 rpm or less and the crystal rotation speed is 7 rpm or less, but when the manufacturing conditions are actually applied, the oxygen concentration and the resistivity are improved. There is a problem that the internal distribution is not uniform. Further, in the conventional manufacturing method described in Patent Document 2, the crucible rotation speed is 1.3 to 2.2 rpm and the crystal rotation speed is 8 to 14 rpm, but when the manufacturing conditions are actually applied, the oxygen concentration and the oxygen concentration and There is a problem that the in-plane distribution of resistivity is not uniform.
したがって、本発明の目的は、酸素濃度が低く、酸素濃度及び抵抗率の面内分布の均一性が高いシリコン単結晶を製造することが可能なカスプ磁場を印加したチョクラルスキー法によるシリコン単結晶の製造方法を提供することにある。また本発明は、酸素濃度が低く、酸素濃度及び抵抗率の面内分布の均一性が高いシリコン単結晶並びにシリコンウェーハを提供することにある。 Therefore, an object of the present invention is a silicon single crystal by the Czochralski method to which a cusp magnetic field is applied, which enables the production of a silicon single crystal having a low oxygen concentration and a high uniformity of in-plane distribution of oxygen concentration and resistivity. Is to provide a manufacturing method for. Another object of the present invention is to provide a silicon single crystal and a silicon wafer having a low oxygen concentration and a high uniformity of in-plane distribution of oxygen concentration and resistivity.
本願発明者は、シリコン単結晶中の酸素濃度や抵抗率の面内分布を変化させる要因について鋭意研究を重ねた結果、カスプ磁場を印加しながら単結晶を引き上げる場合には、単結晶を高速回転させても酸素濃度の増加や結晶変形(有転位化)を招くことなく、酸素濃度及び抵抗率の面内分布の均一性を高めることができることを見出した。通常、低酸素濃度のシリコン単結晶を製造するためには結晶回転を遅くする必要があるが、酸素濃度の面内均一性が悪くなる。しかし、カスプ磁場を用いることで結晶回転を速くしても低酸素濃度のシリコン単結晶が得られ、酸素濃度及び抵抗率の面内分布も安定することが明らかとなり、本発明をなし得たものである。 As a result of intensive studies on factors that change the in-plane distribution of oxygen concentration and resistivity in a silicon single crystal, the inventor of the present application rotates the single crystal at high speed when the single crystal is pulled up while applying a cusp magnetic field. It was found that the uniformity of the in-plane distribution of the oxygen concentration and the resistivity can be improved without causing an increase in the oxygen concentration or crystal deformation (dislocation). Normally, in order to produce a silicon single crystal having a low oxygen concentration, it is necessary to slow down the crystal rotation, but the in-plane uniformity of the oxygen concentration deteriorates. However, it has been clarified that a silicon single crystal having a low oxygen concentration can be obtained by using a cusp magnetic field even if the crystal rotation is accelerated, and the in-plane distribution of the oxygen concentration and the resistivity is stable, and the present invention can be achieved. Is.
本発明はこのような技術的知見に基づくものであり、本発明によるシリコン単結晶の製造方法は、カスプ磁場を印加しながらシリコン融液からシリコン単結晶を引き上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、前記シリコン単結晶を回転させながら引き上げる際の結晶回転速度が17rpm以上19rpm以下であることを特徴とする。 The present invention is based on such technical knowledge, and the method for producing a silicon single crystal according to the present invention is a method for producing a silicon single crystal by a Czochralski method in which a silicon single crystal is pulled up from a silicon melt while applying a cusp magnetic field. It is a manufacturing method, characterized in that the crystal rotation speed at the time of pulling up the silicon single crystal while rotating is 17 rpm or more and 19 rpm or less.
本発明において、前記シリコン融液を保持する石英ルツボの回転速度は4.5rpm以上8.5rpm以下であることが好ましい。また、前記カスプ磁場の磁場強度は500〜700Gであり、垂直方向の磁場中心位置は前記シリコン融液の液面位置に対し+40mmから−26mmまでの範囲であることが好ましい。この条件によれば、単結晶中の酸素濃度及び抵抗率の面内分布の均一性を高めることができる。 In the present invention, the rotation speed of the quartz crucible holding the silicon melt is preferably 4.5 rpm or more and 8.5 rpm or less. Further, the magnetic field strength of the cusp magnetic field is preferably 500 to 700 G, and the magnetic field center position in the vertical direction is preferably in the range of +40 mm to −26 mm with respect to the liquid level position of the silicon melt. According to this condition, the uniformity of the in-plane distribution of oxygen concentration and resistivity in the single crystal can be improved.
また、本発明によるシリコン単結晶は、酸素濃度が1×1017atoms/cm3以上8×1017atoms/cm3以下であり、結晶成長方向と直交する結晶断面内のROG(Radial Oxygen Gradient:酸素濃度勾配)が15%以下であり、前記結晶断面内のRRG(Radial Resistivity Gradient:抵抗率勾配)が5%以下であることを特徴とする。本発明によれば、パワー半導体向けのシリコンウェーハの材料として好適な酸素濃度が低いシリコン単結晶を提供することができる。Further, the silicon single crystal according to the present invention has an oxygen concentration of 1 × 10 17 atoms / cm 3 or more and 8 × 10 17 atoms / cm 3 or less, and ROG (Radial Oxygen Gradient:) in the crystal cross section orthogonal to the crystal growth direction. The oxygen concentration gradient) is 15% or less, and the RRG (Radial Resistivity Gradient) in the crystal cross section is 5% or less. According to the present invention, it is possible to provide a silicon single crystal having a low oxygen concentration, which is suitable as a material for a silicon wafer for a power semiconductor.
さらにまた、本発明によるシリコンウェーハは、酸素濃度が1×1017atoms/cm3以上8×1017atoms/cm3以下であり、ROGが15%以下であり、RRGが5%以下であることを特徴とする。本発明によれば、パワー半導体の基板材料として好適なシリコンウェーハを提供することができる。Furthermore, the silicon wafer according to the present invention has an oxygen concentration of 1 × 10 17 atoms / cm 3 or more and 8 × 10 17 atoms / cm 3 or less, a ROG of 15% or less, and an RRG of 5% or less. It is characterized by. According to the present invention, it is possible to provide a silicon wafer suitable as a substrate material for a power semiconductor.
本発明によれば、酸素濃度が低く、酸素濃度及び抵抗率の面内分布の均一性が高いシリコン単結晶の製造方法を提供することができる。また本発明によれば、酸素濃度が低く、酸素濃度及び抵抗率の面内分布の均一性が高いシリコン単結晶並びにシリコンウェーハを提供することができる。 According to the present invention, it is possible to provide a method for producing a silicon single crystal having a low oxygen concentration and a high uniformity of in-plane distribution of oxygen concentration and resistivity. Further, according to the present invention, it is possible to provide a silicon single crystal and a silicon wafer having a low oxygen concentration and a high uniformity of in-plane distribution of oxygen concentration and resistivity.
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の実施の形態による単結晶製造装置の構成を概略的に示す側面断面図である。 FIG. 1 is a side sectional view schematically showing a configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.
図1に示すように、単結晶製造装置1は、チャンバー10(CZ炉)と、チャンバー10内においてシリコン融液2を保持する石英ルツボ11と、石英ルツボ11を保持するグラファイト製のサセプタ12と、サセプタ12を支持する回転シャフト13と、回転シャフト13を回転及び昇降駆動するシャフト駆動機構14と、サセプタ12の周囲に配置されたヒーター15と、ヒーター15の外側であってチャンバー10の内面に沿って配置された断熱材16と、石英ルツボ11の上方に配置された熱遮蔽体17と、石英ルツボ11の上方であって回転シャフト13と同軸上に配置された単結晶引き上げ用のワイヤー18と、チャンバー10の上方に配置されたワイヤー巻き取り機構19とを備えている。 As shown in FIG. 1, the single crystal manufacturing apparatus 1 includes a chamber 10 (CZ furnace), a quartz crucible 11 that holds the silicon melt 2 in the chamber 10, and a graphite susceptor 12 that holds the quartz crucible 11. , A rotary shaft 13 that supports the susceptor 12, a shaft drive mechanism 14 that rotates and lifts the rotary shaft 13, a heater 15 arranged around the susceptor 12, and an outer surface of the heater 15 and an inner surface of the chamber 10. A heat insulating material 16 arranged along the line, a heat shield 17 arranged above the quartz crucible 11, and a wire 18 for pulling up a single crystal arranged above the quartz crucible 11 and coaxially with the rotating shaft 13. And a wire winding mechanism 19 arranged above the chamber 10.
また単結晶製造装置1は、チャンバー10の外側に配置された磁場発生装置21と、チャンバー10内を撮影するCCDカメラ22と、CCDカメラ22で撮影された画像を処理する画像処理部23と、画像処理部23の出力に基づいてシャフト駆動機構14、ヒーター15及びワイヤー巻き取り機構19を制御する制御部24とを備えている。 Further, the single crystal manufacturing apparatus 1 includes a magnetic field generator 21 arranged outside the chamber 10, a CCD camera 22 for photographing the inside of the chamber 10, an image processing unit 23 for processing an image captured by the CCD camera 22, and the like. It includes a shaft drive mechanism 14, a heater 15, and a control unit 24 that controls a wire winding mechanism 19 based on the output of the image processing unit 23.
チャンバー10は、メインチャンバー10aと、メインチャンバー10aの上部開口に連結された細長い円筒状のプルチャンバー10bとで構成されており、石英ルツボ11、サセプタ12、ヒーター15及び熱遮蔽体17はメインチャンバー10a内に設けられている。プルチャンバー10bにはチャンバー10内にアルゴンガス等の不活性ガス(パージガス)を導入するためのガス導入口10cが設けられており、メインチャンバー10aの下部には不活性ガスを排出するためのガス排出口10dが設けられている。また、メインチャンバー10aの上部には覗き窓10eが設けられており、シリコン単結晶3の育成状況(固液界面)を覗き窓10eから観察可能である。 The chamber 10 is composed of a main chamber 10a and an elongated cylindrical pull chamber 10b connected to the upper opening of the main chamber 10a, and the quartz crucible 11, the susceptor 12, the heater 15 and the heat shield 17 are the main chambers. It is provided in 10a. The pull chamber 10b is provided with a gas introduction port 10c for introducing an inert gas (purge gas) such as argon gas into the chamber 10, and a gas for discharging the inert gas is provided in the lower part of the main chamber 10a. A discharge port 10d is provided. Further, a viewing window 10e is provided above the main chamber 10a, and the growing state (solid-liquid interface) of the silicon single crystal 3 can be observed from the viewing window 10e.
石英ルツボ11は、円筒状の側壁部と湾曲した底部とを有する石英ガラス製の容器である。サセプタ12は、加熱によって軟化した石英ルツボ11の形状を維持するため、石英ルツボ11の外表面に密着して石英ルツボ11を包むように保持する。石英ルツボ11及びサセプタ12はチャンバー10内においてシリコン融液を支持する二重構造のルツボを構成している。 The quartz crucible 11 is a quartz glass container having a cylindrical side wall portion and a curved bottom portion. In order to maintain the shape of the quartz crucible 11 softened by heating, the susceptor 12 is held in close contact with the outer surface of the quartz crucible 11 so as to wrap the quartz crucible 11. The quartz crucible 11 and the susceptor 12 form a double-structured crucible that supports the silicon melt in the chamber 10.
サセプタ12は鉛直方向に延びる回転シャフト13の上端部に固定されている。また回転シャフト13の下端部はチャンバー10の底部中央を貫通してチャンバー10の外側に設けられたシャフト駆動機構14に接続されている。サセプタ12、回転シャフト13及びシャフト駆動機構14は石英ルツボ11の回転機構及び昇降機構を構成している。 The susceptor 12 is fixed to the upper end of the rotating shaft 13 extending in the vertical direction. The lower end of the rotating shaft 13 penetrates the center of the bottom of the chamber 10 and is connected to a shaft drive mechanism 14 provided on the outside of the chamber 10. The susceptor 12, the rotary shaft 13, and the shaft drive mechanism 14 constitute a rotary mechanism and an elevating mechanism of the quartz crucible 11.
ヒーター15は、石英ルツボ11内に充填されたシリコン原料を溶融して溶融状態を維持するために用いられる。ヒーター15はカーボン製の抵抗加熱式ヒーターであり、サセプタ12内の石英ルツボ11の全周を取り囲むように設けられた略円筒状の部材である。さらにヒーター15の外側は断熱材16に取り囲まれており、これによりチャンバー10内の保温性が高められている。 The heater 15 is used to melt the silicon raw material filled in the quartz crucible 11 and maintain the molten state. The heater 15 is a carbon resistance heating type heater, and is a substantially cylindrical member provided so as to surround the entire circumference of the quartz crucible 11 in the susceptor 12. Further, the outside of the heater 15 is surrounded by the heat insulating material 16, which enhances the heat retention in the chamber 10.
熱遮蔽体17は、シリコン融液2の温度変動を抑制して固液界面付近に適切なホットゾーンを形成するとともに、ヒーター15及び石英ルツボ11からの輻射熱によるシリコン単結晶3の加熱を防止するために設けられている。熱遮蔽体17は、シリコン単結晶3の引き上げ経路を除いたシリコン融液2の上方の領域を覆うグラファイト製の円筒部材である。 The heat shield 17 suppresses the temperature fluctuation of the silicon melt 2 to form an appropriate hot zone near the solid-liquid interface, and prevents the silicon single crystal 3 from being heated by the radiant heat from the heater 15 and the quartz crucible 11. It is provided for the purpose. The heat shield 17 is a cylindrical member made of graphite that covers the region above the silicon melt 2 excluding the pulling path of the silicon single crystal 3.
熱遮蔽体17の下端中央にはシリコン単結晶3の直径よりも大きな円形の開口が形成されており、シリコン単結晶3の引き上げ経路が確保されている。図示のように、シリコン単結晶3は熱遮蔽体17の開口を通過して上方に引き上げられる。熱遮蔽体17の開口の直径は石英ルツボ11の口径よりも小さく、熱遮蔽体17の下端部は石英ルツボ11の内側に位置するので、石英ルツボ11のリム上端を熱遮蔽体17の下端よりも上方まで上昇させても熱遮蔽体17が石英ルツボ11と干渉することはない。 A circular opening larger than the diameter of the silicon single crystal 3 is formed in the center of the lower end of the heat shield 17, and a pull-up path for the silicon single crystal 3 is secured. As shown, the silicon single crystal 3 passes through the opening of the heat shield 17 and is pulled upward. The diameter of the opening of the heat shield 17 is smaller than the diameter of the quartz crucible 11, and the lower end of the heat shield 17 is located inside the quartz crucible 11, so that the upper end of the rim of the quartz crucible 11 is from the lower end of the heat shield 17. The heat shield 17 does not interfere with the quartz crucible 11 even if it is raised upward.
シリコン単結晶3の成長と共に石英ルツボ11内の融液量は減少するが、融液面と熱遮蔽体17との間のギャップが一定になるように石英ルツボ11を上昇させることにより、シリコン融液2の温度変動を抑制すると共に、融液面近傍を流れるガスの流速を一定にしてシリコン融液2からのSiOガスの蒸発量を制御することができる。したがって、単結晶の引き上げ軸方向の結晶欠陥分布、酸素濃度分布、抵抗率分布等の安定性を向上させることができる。 Although the amount of melt in the quartz crucible 11 decreases with the growth of the silicon single crystal 3, the silicon melt is formed by raising the quartz crucible 11 so that the gap between the melt surface and the heat shield 17 becomes constant. It is possible to suppress the temperature fluctuation of the liquid 2 and control the evaporation amount of the SiO gas from the silicon melt 2 by keeping the flow velocity of the gas flowing near the melting surface constant. Therefore, it is possible to improve the stability of the crystal defect distribution, the oxygen concentration distribution, the resistivity distribution, etc. in the pulling axis direction of the single crystal.
石英ルツボ11の上方には、シリコン単結晶3の引き上げ軸であるワイヤー18と、ワイヤー18を巻き取るワイヤー巻き取り機構19が設けられている。ワイヤー巻き取り機構19はワイヤー18と共に単結晶を回転させる機能を有している。ワイヤー巻き取り機構19はプルチャンバー10bの上方に配置されており、ワイヤー18はワイヤー巻き取り機構19からプルチャンバー10b内を通って下方に延びており、ワイヤー18の先端部はメインチャンバー10aの内部空間まで達している。図1には、育成途中のシリコン単結晶3がワイヤー18に吊設された状態が示されている。単結晶の引き上げ時には種結晶をシリコン融液2に浸漬し、石英ルツボ11と種結晶をそれぞれ回転させながらワイヤー18を徐々に引き上げることにより単結晶を成長させる。 Above the quartz crucible 11, a wire 18 which is a pulling shaft of the silicon single crystal 3 and a wire winding mechanism 19 for winding the wire 18 are provided. The wire winding mechanism 19 has a function of rotating a single crystal together with the wire 18. The wire winding mechanism 19 is arranged above the pull chamber 10b, the wire 18 extends downward from the wire winding mechanism 19 through the inside of the pull chamber 10b, and the tip of the wire 18 is inside the main chamber 10a. It has reached the space. FIG. 1 shows a state in which the silicon single crystal 3 being grown is suspended from the wire 18. When pulling up the single crystal, the seed crystal is immersed in the silicon melt 2, and the single crystal is grown by gradually pulling up the wire 18 while rotating the quartz crucible 11 and the seed crystal, respectively.
プルチャンバー10bの上部にはチャンバー10内に不活性ガスを導入するためのガス導入口10cが設けられており、メインチャンバー10aの底部にはチャンバー10内の不活性ガスを排気するためのガス排出口10dが設けられている。不活性ガスはガス導入口10cからチャンバー10内に導入され、その導入量はバルブにより制御される。また密閉されたチャンバー10内の不活性ガスはガス排出口10dからチャンバー10の外部へ排気されるので、チャンバー10内で発生するSiOガスやCOガスを回収してチャンバー10内を清浄に保つことが可能となる。図示していないが、ガス排出口10dには配管を介して真空ポンプが接続されており、真空ポンプでチャンバー10内の不活性ガスを吸引しながらバルブでその流量を制御することでチャンバー10内は一定の減圧状態に保たれている。 A gas introduction port 10c for introducing an inert gas into the chamber 10 is provided in the upper part of the pull chamber 10b, and a gas exhaust for exhausting the inert gas in the chamber 10 is provided in the bottom of the main chamber 10a. An exit 10d is provided. The inert gas is introduced into the chamber 10 from the gas introduction port 10c, and the introduction amount thereof is controlled by a valve. Further, since the inert gas in the closed chamber 10 is exhausted from the gas discharge port 10d to the outside of the chamber 10, the SiO gas and CO gas generated in the chamber 10 should be recovered to keep the inside of the chamber 10 clean. Is possible. Although not shown, a vacuum pump is connected to the gas discharge port 10d via a pipe, and the inside of the chamber 10 is controlled by controlling the flow rate with a valve while sucking the inert gas in the chamber 10 with the vacuum pump. Is kept at a constant depressurized state.
磁場発生装置21は上下方向に対向する上部コイル21a及び下部コイル21bを用いて構成されており、一対の磁場発生用コイルにそれぞれ逆向きの電流を流すことによってチャンバー10内にカスプ磁場を発生させる。図中では、「・」は紙面から出てくる電流の流れを示し、「×」は紙面に入っていく電流の流れを示している。 The magnetic field generator 21 is configured by using an upper coil 21a and a lower coil 21b that face each other in the vertical direction, and generates a cusp magnetic field in the chamber 10 by passing a current in opposite directions to each of the pair of magnetic field generating coils. .. In the figure, "・" indicates the current flow coming out of the paper surface, and "x" indicates the current flow entering the paper surface.
カスプ磁場は引き上げ軸に対して軸対称であり、磁場中心点では互いの磁界が打ち消し合って垂直方向の磁場強度はゼロとなる。磁場中心点から外れた位置では垂直方向の磁場は存在し、半径方向に向かう水平磁場が形成される。またカスプ磁場の磁場中心位置はシリコン融液2の液面近傍であり、液面位置に対し+40mmから−26mmまでの範囲に設定されることが好ましい。このように、シリコン融液にカスプ磁場を印加することで磁力線に直交する方向の融液対流を抑制することができる。 The cusp magnetic field is axially symmetric with respect to the pulling axis, and at the center of the magnetic field, the magnetic fields cancel each other out and the magnetic field strength in the vertical direction becomes zero. A vertical magnetic field exists at a position deviating from the magnetic field center point, and a horizontal magnetic field is formed in the radial direction. The magnetic field center position of the cusp magnetic field is near the liquid level of the silicon melt 2, and is preferably set in the range of +40 mm to −26 mm with respect to the liquid level position. In this way, by applying the cusp magnetic field to the silicon melt, it is possible to suppress the melt convection in the direction orthogonal to the magnetic field lines.
カスプ磁場の磁場強度は500〜700Gであることが好ましい。磁場強度が500Gよりも小さい場合には8×1017atoms/cm3以下低酸素濃度のシリコン単結晶を引き上げることが難しくなるからである。また既存の磁場発生装置では700Gを超える磁場強度を安定的に出力することが難しく、消費電力の観点からもできるだけ低い磁場強度が望ましいからである。本願に記載のカスプ磁場の磁場強度の値は、垂直方向には磁場中心位置で、水平方向には石英ルツボの側壁位置である。The magnetic field strength of the cusp magnetic field is preferably 500 to 700 G. This is because when the magnetic field strength is smaller than 500 G, it becomes difficult to pull up a silicon single crystal having a low oxygen concentration of 8 × 10 17 atoms / cm 3 or less. Further, it is difficult for the existing magnetic field generator to stably output a magnetic field strength exceeding 700 G, and it is desirable that the magnetic field strength is as low as possible from the viewpoint of power consumption. The value of the magnetic field strength of the cusp magnetic field described in the present application is the position of the magnetic field center in the vertical direction and the position of the side wall of the quartz rut in the horizontal direction.
水平磁場を印加するHMCZ法の場合、磁力線の方向は一方向であるため、磁力線と直交する方向の対流を抑制する効果はあるが、磁力線と平行な方向の対流を抑制することはできない。一方、カスプ磁場の場合、磁力線の方向は放射状であり、引き上げ軸を中心に平面視で対称性を有するため、石英ルツボ11内の周方向の融液対流を抑制することができる。したがって、石英ルツボ11からの酸素の溶出を抑えてシリコン単結晶中の酸素濃度を低減することが可能となる。 In the case of the HMCZ method in which a horizontal magnetic field is applied, since the direction of the magnetic field lines is one direction, there is an effect of suppressing convection in the direction orthogonal to the magnetic field lines, but it is not possible to suppress convection in the direction parallel to the magnetic force lines. On the other hand, in the case of a cusp magnetic field, the directions of the magnetic field lines are radial and have symmetry in a plan view about the pulling axis, so that it is possible to suppress the convection of melt in the circumferential direction in the quartz crucible 11. Therefore, it is possible to suppress the elution of oxygen from the quartz crucible 11 and reduce the oxygen concentration in the silicon single crystal.
メインチャンバー10aの上部には内部を観察するための覗き窓10eが設けられており、CCDカメラ22は覗き窓10eの外側に設置されている。単結晶引き上げ工程中、CCDカメラ22は覗き窓10eから熱遮蔽体17の開口を通して見えるシリコン単結晶3とシリコン融液2との境界部の画像を撮影する。CCDカメラ22は画像処理部23に接続されており、撮影画像は画像処理部23で処理され、処理結果は制御部24において結晶引き上げ条件の制御に用いられる。 A viewing window 10e for observing the inside is provided in the upper part of the main chamber 10a, and the CCD camera 22 is installed outside the viewing window 10e. During the single crystal pulling process, the CCD camera 22 takes an image of the boundary between the silicon single crystal 3 and the silicon melt 2 which can be seen through the opening of the heat shield 17 through the viewing window 10e. The CCD camera 22 is connected to the image processing unit 23, the captured image is processed by the image processing unit 23, and the processing result is used by the control unit 24 to control the crystal pulling condition.
図2は、本発明の実施の形態によるシリコン単結晶の製造方法を説明するフローチャートである。また、図3は、シリコン単結晶インゴットの形状を示す略断面図である。 FIG. 2 is a flowchart illustrating a method for producing a silicon single crystal according to an embodiment of the present invention. Further, FIG. 3 is a schematic cross-sectional view showing the shape of the silicon single crystal ingot.
図2及び図3示すように、シリコン単結晶3の製造では、石英ルツボ11内のシリコン原料を加熱してシリコン融液2を生成する(ステップS11)。その後、ワイヤー18の先端部に取り付けられた種結晶を降下させてシリコン融液2に着液させる(ステップS12)。 As shown in FIGS. 2 and 3, in the production of the silicon single crystal 3, the silicon raw material in the quartz crucible 11 is heated to generate the silicon melt 2 (step S11). Then, the seed crystal attached to the tip of the wire 18 is lowered and landed on the silicon melt 2 (step S12).
次に、シリコン融液2との接触状態を維持しながら種結晶を徐々に引き上げて単結晶を育成する単結晶の引き上げ工程を実施する。単結晶の引き上げ工程では、無転位化のために結晶直径が細く絞られたネック部3aを形成するネッキング工程(ステップS13)と、規定の直径を得るために結晶直径が徐々に増加したショルダー部3bを形成するショルダー部育成工程(ステップS14)と、結晶直径が一定に維持されたボディー部3c(直胴部)を形成するボディー部育成工程(ステップS15)と、結晶直径が徐々に減少したテール部3dを形成するテール部育成工程(ステップS16)が順に実施され、単結晶が融液面から最終的に切り離されることによりテール部育成工程が終了する。以上により、単結晶の上端(トップ)から下端(ボトム)に向かって順に、ネック部3a、ショルダー部3b、ボディー部3c、及びテール部3dを有するシリコン単結晶インゴット3が完成する。 Next, a single crystal pulling step is carried out in which the seed crystal is gradually pulled up while maintaining the contact state with the silicon melt 2 to grow the single crystal. In the single crystal pulling step, a necking step (step S13) of forming a neck portion 3a in which the crystal diameter is narrowed for non-dislocation, and a shoulder portion in which the crystal diameter is gradually increased in order to obtain a specified diameter. The crystal diameter gradually decreased in the shoulder part growing step (step S14) for forming 3b and the body part growing step (step S15) for forming the body part 3c (straight body part) in which the crystal diameter was kept constant. The tail portion growing step (step S16) for forming the tail portion 3d is carried out in order, and the tail portion growing step is completed when the single crystal is finally separated from the melt surface. As described above, the silicon single crystal ingot 3 having the neck portion 3a, the shoulder portion 3b, the body portion 3c, and the tail portion 3d is completed in this order from the upper end (top) to the lower end (bottom) of the single crystal.
単結晶の引き上げ工程中は、シリコン単結晶3の直径及びシリコン融液2の液面位置を制御するため、CCDカメラ22でシリコン単結晶3とシリコン融液2との境界部の画像を撮影し、撮影画像から固液界面における単結晶の直径及び融液面と熱遮蔽体17との間隔(ギャップ)を算出する。制御部24は、シリコン単結晶3の直径が目標直径となるようにワイヤー18の引き上げ速度、ヒーター15のパワー等の引き上げ条件を制御する。また制御部24は、融液面と熱遮蔽体17との間隔が一定となるように石英ルツボ11の高さ位置を制御する。 During the single crystal pulling process, in order to control the diameter of the silicon single crystal 3 and the liquid level position of the silicon melt 2, the CCD camera 22 takes an image of the boundary between the silicon single crystal 3 and the silicon melt 2. , The diameter of the single crystal at the solid-liquid interface and the distance (gap) between the melt surface and the heat shield 17 are calculated from the photographed image. The control unit 24 controls the pulling conditions such as the pulling speed of the wire 18 and the power of the heater 15 so that the diameter of the silicon single crystal 3 becomes the target diameter. Further, the control unit 24 controls the height position of the quartz crucible 11 so that the distance between the melt surface and the heat shield 17 is constant.
本実施形態において、シリコン単結晶3の回転速度は17〜19rpmの範囲内に設定される。結晶回転速度が17rpmより小さい場合には、酸素濃度の面内分布の均一性を高めることができないからであり、また19rpmよりも大きい場合には結晶中の酸素濃度が高くなるだけでなく、結晶軸芯がずれていると偏心回転によって単結晶がスパイラル状に変形しやすく、結晶引上後に結晶を外径研削した際に、結晶直径がウェーハ直径未満となる不良箇所が発生するからである。また、結晶変形にともない有転位化しやすくなることも問題である。 In the present embodiment, the rotation speed of the silicon single crystal 3 is set in the range of 17 to 19 rpm. This is because when the crystal rotation speed is less than 17 rpm, the uniformity of the in-plane distribution of the oxygen concentration cannot be improved, and when it is higher than 19 rpm, not only the oxygen concentration in the crystal increases but also the crystal This is because if the axis is deviated, the single crystal is easily deformed into a spiral shape due to eccentric rotation, and when the crystal is ground to an outer diameter after the crystal is pulled up, a defective portion where the crystal diameter is less than the wafer diameter occurs. Another problem is that dislocations are likely to occur with crystal deformation.
結晶引き上げ中、石英ルツボ11の回転速度は4.5〜8.5rpmであることが好ましい。石英ルツボ11の回転速度が4.5rpmよりも小さい場合には、酸素濃度及び抵抗率の面内分布が悪化するからである。石英ルツボ11の回転速度が8.5rpmよりも大きい場合には、石英ルツボの溶損量が増加してシリコン融液中の酸素濃度が非常に高くなるからである。 During crystal pulling, the rotation speed of the quartz crucible 11 is preferably 4.5 to 8.5 rpm. This is because when the rotation speed of the quartz crucible 11 is smaller than 4.5 rpm, the in-plane distribution of the oxygen concentration and the resistivity deteriorates. This is because when the rotation speed of the quartz crucible 11 is higher than 8.5 rpm, the amount of melt damage of the quartz crucible increases and the oxygen concentration in the silicon melt becomes very high.
以上の結晶引き上げ条件下でシリコン単結晶を引き上げる場合、シリコン単結晶の格子間酸素濃度を低くすることができるだけでなく、単結晶の外周部での酸素濃度の低下を抑制することができ、酸素濃度の面内分布の均一化を実現することができる。 When the silicon single crystal is pulled up under the above crystal pulling conditions, not only the interstitial oxygen concentration of the silicon single crystal can be lowered, but also the decrease of the oxygen concentration at the outer peripheral portion of the single crystal can be suppressed, and oxygen can be pulled up. It is possible to realize uniform distribution of the concentration in the plane.
こうして引き上げられたシリコン単結晶3(図3参照)のボディー部3cの酸素濃度は1×1017atoms/cm3〜8×1017atoms/cm3となり、結晶成長方向と直交する結晶断面内のROGは15%以下となり、結晶断面内のRRGは5%以下となる。さらに、このシリコン単結晶3から切り出して加工されたシリコンウェーハも同様の品質となる。すなわち、酸素濃度が1×1017atoms/cm3以上8×1017atoms/cm3以下であり、ROGが15%以下であり、RRGが5%以下であるシリコンウェーハを得ることができる。なお本明細書中に規定する酸素濃度はすべてASTM F-121(1979)に規格されたFTIR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外分光法)による測定値である。また抵抗値は四探針法による測定値である。The oxygen concentration of the body portion 3c of the silicon single crystal 3 (see FIG. 3) pulled up in this way is 1 × 10 17 atoms / cm 3 to 8 × 10 17 atoms / cm 3 , which is within the crystal cross section orthogonal to the crystal growth direction. The ROG is 15% or less, and the RRG in the crystal cross section is 5% or less. Further, a silicon wafer cut out from the silicon single crystal 3 and processed has the same quality. That is, a silicon wafer having an oxygen concentration of 1 × 10 17 atoms / cm 3 or more and 8 × 10 17 atoms / cm 3 or less, a ROG of 15% or less, and an RRG of 5% or less can be obtained. All the oxygen concentrations specified in this specification are measured values by FTIR (Fourier Transform Infrared Spectroscopy) specified in ASTM F-121 (1979). The resistance value is a value measured by the four-probe method.
以上説明したように、本実施形態によるシリコン単結晶の製造方法は、カスプ磁場を印加するチョクラルスキー法において単結晶を17〜19rpmの回転速度で高速回転させながら引き上げることにより、酸素濃度が低く且つ酸素濃度及び抵抗率の面内分布ができるだけ均一なシリコン単結晶を製造することができる。したがって、IGBT用低酸素シリコンウェーハをFZ法ではなくCZ法により製造することができ、量産性を向上させることができる。 As described above, in the method for producing a silicon single crystal according to the present embodiment, the oxygen concentration is low by pulling up the single crystal while rotating it at a high speed of 17 to 19 rpm in the Czochralski method in which a cusp magnetic field is applied. Moreover, it is possible to produce a silicon single crystal in which the in-plane distribution of oxygen concentration and resistivity is as uniform as possible. Therefore, the low oxygen silicon wafer for IGBT can be manufactured by the CZ method instead of the FZ method, and mass productivity can be improved.
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention, and these are also the present invention. It goes without saying that it is included in the range.
例えば、上記実施形態においては、図1に示した単結晶製造装置1を用いる場合を例に挙げたが、単結晶製造装置の詳細な構成は特に限定されず、様々な構成のものを用いることができる。 For example, in the above embodiment, the case where the single crystal manufacturing apparatus 1 shown in FIG. 1 is used is given as an example, but the detailed configuration of the single crystal manufacturing apparatus is not particularly limited, and various configurations may be used. Can be done.
<実施例1>
カスプ(CUSP)磁場を用いたチョクラルスキー法による直径200mmウェーハ用のシリコン単結晶の引き上げにおいて、カスプ磁場及び結晶回転速度が酸素濃度及び抵抗率の面内分布に与える影響を評価した。結晶引き上げ工程では、カスプ磁場の磁場強度を600Gとし、磁場中心位置をシリコン融液の液面位置から上方に40mmの位置に設定した。またルツボ回転速度を6rpmとし、結晶回転速度を18rpmとした。その後、引き上げられた3本のシリコン単結晶インゴットを加工して直径200mmのシリコンウェーハのサンプルを2枚ずつ、合計6枚用意した。<Example 1>
In pulling up a silicon single crystal for a wafer with a diameter of 200 mm by the Czochralski method using a CUSP magnetic field, the effects of the cusp magnetic field and crystal rotation speed on the in-plane distribution of oxygen concentration and resistance were evaluated. In the crystal pulling step, the magnetic field strength of the cusp magnetic field was set to 600 G, and the magnetic field center position was set to a position 40 mm above the liquid level position of the silicon melt. The crucible rotation speed was 6 rpm, and the crystal rotation speed was 18 rpm. After that, the three pulled-up silicon single crystal ingots were processed to prepare two samples of silicon wafers having a diameter of 200 mm, for a total of six samples.
次に、シリコンウェーハサンプルの酸素濃度の面内分布を測定した。酸素濃度はウェーハの中心から径方向に5mmピッチで測定した。ウェーハの最外周部の酸素濃度を測定することはできないため、酸素濃度のウェーハ面内の測定範囲を、ウェーハの中心から径方向95mmまでの範囲とした(ウェーハ外周部の測定除外幅:5mm)。さらに酸素濃度の測定結果からシリコンウェーハのROG(Radial Oxygen Gradient:径方向酸素濃度分布)を求めた。測定範囲内における酸素濃度の最大値をDMax、最小値をDMinとするとき、ROGの計算式は次のようになる。
ROG(%)={(DMax−DMin)/DMin}×100Next, the in-plane distribution of oxygen concentration in the silicon wafer sample was measured. The oxygen concentration was measured at a pitch of 5 mm in the radial direction from the center of the wafer. Since it is not possible to measure the oxygen concentration at the outermost periphery of the wafer, the measurement range of the oxygen concentration within the wafer surface was set to the range from the center of the wafer to 95 mm in the radial direction (measurement exclusion width at the outer periphery of the wafer: 5 mm). .. Furthermore, the ROG (Radial Oxygen Gradient: radial oxygen concentration distribution) of the silicon wafer was obtained from the measurement result of the oxygen concentration. When the maximum value of oxygen concentration in the measurement range is D Max and the minimum value is D Min , the formula for calculating ROG is as follows.
ROG (%) = {(D Max −D Min ) / D Min } × 100
次に、シリコンウェーハサンプルの抵抗率の面内分布を測定した。抵抗率はウェーハの中心から径方向に2mmピッチで四探針法により測定した。ウェーハの最外周部の抵抗率を測定することはできないため、抵抗率のウェーハ面内の測定範囲を、ウェーハの中心から径方向96mmまでの範囲とした(ウェーハ外周部の測定除外幅:4mm)。さらに抵抗率の測定結果からシリコンウェーハのRRG(Radial Resistivity Gradient:径方向抵抗率分布)を求めた。測定範囲内における抵抗率の最大値をρMax、最小値をρMinとするとき、RRGの計算式は次のようになる。
RRG(%)={(ρMax−ρMin)/ρMin}×100Next, the in-plane distribution of the resistivity of the silicon wafer sample was measured. The resistivity was measured by the four-probe method at a pitch of 2 mm in the radial direction from the center of the wafer. Since it is not possible to measure the resistivity at the outermost periphery of the wafer, the resistivity measurement range within the wafer surface was set to the range from the center of the wafer to 96 mm in the radial direction (measurement exclusion width of the outer periphery of the wafer: 4 mm). .. Further, the RRG (Radial Resistivity Gradient: Radial Resistivity Gradient) of the silicon wafer was obtained from the measurement result of the resistivity. When the maximum value of the resistivity in the measurement range is ρ Max and the minimum value is ρ Min , the calculation formula of RRG is as follows.
RRG (%) = {(ρ Max −ρ Min ) / ρ Min } × 100
図4は、シリコンウェーハサンプルの酸素濃度分布を示すグラフである。図示のように、いずれのウェーハサンプルも面内の酸素濃度は3×1017atoms/cm3以下となり、ROGは7.1〜14.8%となった。FIG. 4 is a graph showing the oxygen concentration distribution of the silicon wafer sample. As shown in the figure, the in-plane oxygen concentration of each wafer sample was 3 × 10 17 atoms / cm 3 or less, and the ROG was 7.1 to 14.8%.
図5は、シリコンウェーハサンプルの抵抗率分布を示すグラフである。図示のように、いずれのシリコンウェーハも面内の抵抗率分布は3.5〜4.9%となった。 FIG. 5 is a graph showing the resistivity distribution of the silicon wafer sample. As shown in the figure, the in-plane resistivity distribution of each silicon wafer was 3.5 to 4.9%.
<実施例2>
結晶回転速度を17rpmにした点以外は実施例1と同一条件下でシリコン単結晶を引き上げた後、これを加工して得られたシリコンウェーハサンプルの酸素濃度分布及びROGを実施例1と同条件で求めた。その結果、図6に示すように、ウェーハ面内の酸素濃度は3×1017atoms/cm3以下となり、ROGは約12.3%となった。<Example 2>
After pulling up the silicon single crystal under the same conditions as in Example 1 except that the crystal rotation speed was set to 17 rpm, the oxygen concentration distribution and ROG of the silicon wafer sample obtained by processing this were the same conditions as in Example 1. I asked for it. As a result, as shown in FIG. 6, the oxygen concentration in the wafer surface was 3 × 10 17 atoms / cm 3 or less, and the ROG was about 12.3%.
<実施例3>
結晶回転速度を19rpmにした点以外は実施例1と同一条件下でシリコン単結晶を引き上げた後、これを加工して得られたシリコンウェーハサンプルの酸素濃度分布及びROGを実施例1と同条件で求めた。その結果、図7に示すように、ウェーハ面内の酸素濃度は3×1017atoms/cm3以下となり、ROGは約7.5%となった。<Example 3>
After pulling up the silicon single crystal under the same conditions as in Example 1 except that the crystal rotation speed was set to 19 rpm, the oxygen concentration distribution and ROG of the silicon wafer sample obtained by processing this were the same conditions as in Example 1. I asked for it. As a result, as shown in FIG. 7, the oxygen concentration in the wafer surface was 3 × 10 17 atoms / cm 3 or less, and the ROG was about 7.5%.
<実施例4>
カスプ磁場の中心位置をシリコン融液の液面位置から上方に7mmの位置に設定した点以外は実施例1と同一条件下でシリコン単結晶を引き上げた後、これを加工して得られたシリコンウェーハサンプルの酸素濃度分布及びROGを実施例1と同条件で求めた。その結果、図8に示すように、ウェーハ面内の酸素濃度は4.3×1017atoms/cm3以下となり、ROGは5.9〜11.7%となった。<Example 4>
Silicon obtained by pulling up a silicon single crystal under the same conditions as in Example 1 except that the central position of the cusp magnetic field was set to a position 7 mm above the liquid level position of the silicon melt, and then processing the silicon single crystal. The oxygen concentration distribution and ROG of the wafer sample were determined under the same conditions as in Example 1. As a result, as shown in FIG. 8, the oxygen concentration in the wafer surface was 4.3 × 10 17 atoms / cm 3 or less, and the ROG was 5.9 to 11.7%.
<実施例5>
カスプ磁場の中心位置をシリコン融液の液面位置から下方に26mmの位置に設定した点以外は実施例1と同一条件下でシリコン単結晶を引き上げた後、これを加工して得られたシリコンウェーハサンプルの酸素濃度分布及びROGを実施例1と同条件で求めた。その結果、図9に示すように、ウェーハ面内の酸素濃度は5.3×1017atoms/cm3以下となり、ROGは3.0〜10.4%となった。<Example 5>
Silicon obtained by pulling up a silicon single crystal under the same conditions as in Example 1 except that the central position of the cusp magnetic field was set to a position 26 mm below the liquid level position of the silicon melt, and then processing the silicon single crystal. The oxygen concentration distribution and ROG of the wafer sample were determined under the same conditions as in Example 1. As a result, as shown in FIG. 9, the oxygen concentration in the wafer surface was 5.3 × 10 17 atoms / cm 3 or less, and the ROG was 3.0 to 10.4%.
<比較例1>
結晶回転速度を9rpmにした点以外は実施例1と同一条件下でシリコン単結晶を引き上げた後、これを加工して得られたシリコンウェーハサンプルの酸素濃度分布及びROGを実施例1と同条件で求めた。その結果、図10に示すように、ウェーハ面内の酸素濃度は5.7×1017atoms/cm3以下となり、ROGは84.8〜135.1%となり、酸素濃度の面内均一性は非常に悪かった。<Comparative example 1>
After pulling up the silicon single crystal under the same conditions as in Example 1 except that the crystal rotation speed was set to 9 rpm, the oxygen concentration distribution and ROG of the silicon wafer sample obtained by processing this were the same conditions as in Example 1. I asked for it. As a result, as shown in FIG. 10, the oxygen concentration in the wafer surface was 5.7 × 10 17 atoms / cm 3 or less, the ROG was 84.8 to 135.1%, and the in-plane uniformity of the oxygen concentration was It was very bad.
<比較例2>
水平磁場を印加するHMCZ法によりシリコン単結晶を引き上げた。このときの結晶回転速度は5rpmとした。その後、シリコン単結晶を加工して得られたシリコンウェーハサンプルの酸素濃度及び抵抗率の面内分布を実施例1と同条件で求めた。その結果、図11に示すように、ウェーハ面内の酸素濃度は3.1×1017atoms/cm3以下となったが、ROGは57.3〜83.4%となり、酸素濃度の面内均一性は悪かった。また図12に示すように、RRGは3.2〜5.8%となり、抵抗率の面内均一性は良好であった。<Comparative example 2>
The silicon single crystal was pulled up by the HMCZ method in which a horizontal magnetic field was applied. The crystal rotation speed at this time was 5 rpm. Then, the in-plane distribution of the oxygen concentration and the resistivity of the silicon wafer sample obtained by processing the silicon single crystal was determined under the same conditions as in Example 1. As a result, as shown in FIG. 11, the oxygen concentration in the wafer surface was 3.1 × 10 17 atoms / cm 3 or less, but the ROG was 57.3 to 83.4%, and the oxygen concentration was in-plane. The uniformity was poor. Further, as shown in FIG. 12, the RRG was 3.2 to 5.8%, and the in-plane uniformity of the resistivity was good.
<比較例3>
FZ法により直径200mmウェーハ用のシリコン単結晶を製造した後、これを加工して得られた直径200mmシリコンウェーハサンプルの抵抗率の面内分布を実施例1と同条件で求めた。その結果、図13に示すように、RRGは7.7〜11.9%となり、抵抗率の面内均一性は実施例1よりも悪かった。<Comparative example 3>
After producing a silicon single crystal for a wafer having a diameter of 200 mm by the FZ method, the in-plane distribution of the resistivity of a silicon wafer sample having a diameter of 200 mm obtained by processing the single crystal was determined under the same conditions as in Example 1. As a result, as shown in FIG. 13, the RRG was 7.7 to 11.9%, and the in-plane uniformity of the resistivity was worse than that of Example 1.
以上の結果から、カスプ磁場を用いたチョクラルスキー法によるシリコン単結晶の引き上げにおいて結晶回転速度17〜19rpmとすることにより、シリコン単結晶中の酸素濃度を8×1017atoms/cm3以下にすることができ、RRG及びRRGも小さくなることが分かった。From the above results, the oxygen concentration in the silicon single crystal was reduced to 8 × 10 17 atoms / cm 3 or less by setting the crystal rotation speed to 17 to 19 rpm in the pulling up of the silicon single crystal by the Czochralski method using the cusp magnetic field. It was found that RRG and RRG were also reduced.
1 単結晶製造装置
2 シリコン融液
3 シリコン単結晶(インゴット)
3a ネック部
3b ショルダー部
3c ボディー部
3d テール部
10 チャンバー
10a メインチャンバー
10b プルチャンバー
10c ガス導入口
10d ガス排出口
10e 覗き窓
11 石英ルツボ
12 サセプタ
13 回転シャフト
14 シャフト駆動機構
15 ヒーター
16 断熱材
17 熱遮蔽体
18 ワイヤー
19 ワイヤー巻き取り機構
21 磁場発生装置
21a 上部コイル(磁場発生用コイル)
21b 下部コイル(磁場発生用コイル)
22 カメラ
23 画像処理部
24 制御部1 Single crystal manufacturing equipment 2 Silicon melt 3 Silicon single crystal (ingot)
3a Neck 3b Shoulder 3c Body 3d Tail 10 Chamber 10a Main chamber 10b Pull chamber 10c Gas inlet 10d Gas outlet 10e Peephole 11 Quartz rut 12 Suceptor 13 Rotating shaft 14 Shaft drive mechanism 15 Heater 16 Insulation 17 Heat Shield 18 Wire 19 Wire winding mechanism 21 Magnetic field generator 21a Upper coil (magnetic field generation coil)
21b Lower coil (magnetic field generation coil)
22 Camera 23 Image processing unit 24 Control unit
Claims (5)
前記シリコン単結晶を回転させながら引き上げる際の結晶回転速度が17rpm以上19rpm以下であることを特徴とするシリコン単結晶の製造方法。A method for producing a silicon single crystal by the Czochralski method in which a silicon single crystal is pulled up from a silicon melt while applying a cusp magnetic field.
A method for producing a silicon single crystal, wherein the crystal rotation speed when pulling up the silicon single crystal while rotating it is 17 rpm or more and 19 rpm or less.
結晶成長方向と直交する結晶断面内のROGが15%以下であり、
前記結晶断面内のRRGが5%以下であることを特徴とするシリコン単結晶。Oxygen concentration is 1 × 10 17 atoms / cm 3 or more and 8 × 10 17 atoms / cm 3 or less.
ROG in the crystal cross section orthogonal to the crystal growth direction is 15% or less.
A silicon single crystal having an RRG of 5% or less in the crystal cross section.
ROGが15%以下であり、
RRGが5%以下であることを特徴とするシリコンウェーハ。Oxygen concentration is 1 × 10 17 atoms / cm 3 or more and 8 × 10 17 atoms / cm 3 or less.
ROG is 15% or less,
A silicon wafer having an RRG of 5% or less.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017228983 | 2017-11-29 | ||
JP2017228983 | 2017-11-29 | ||
PCT/JP2018/042522 WO2019107190A1 (en) | 2017-11-29 | 2018-11-16 | Silicon single crystal, method for producing same, and silicon wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019107190A1 true JPWO2019107190A1 (en) | 2020-12-03 |
JP6958632B2 JP6958632B2 (en) | 2021-11-02 |
Family
ID=66664948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019557153A Active JP6958632B2 (en) | 2017-11-29 | 2018-11-16 | Silicon single crystal and its manufacturing method and silicon wafer |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6958632B2 (en) |
CN (1) | CN111615569A (en) |
DE (1) | DE112018006080T5 (en) |
WO (1) | WO2019107190A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114086241B (en) * | 2021-11-25 | 2023-03-28 | 西安奕斯伟材料科技有限公司 | Method for drawing silicon single crystal rod and silicon single crystal rod |
CN118461131A (en) * | 2024-04-24 | 2024-08-09 | 宁夏中欣晶圆半导体科技有限公司 | Method for drawing monocrystalline substrate silicon wafer with uniform distribution of oxygen content in plane |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5178720A (en) * | 1991-08-14 | 1993-01-12 | Memc Electronic Materials, Inc. | Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates |
US5902394A (en) * | 1997-03-31 | 1999-05-11 | Seh America, Inc. | Oscillating crucible for stabilization of Czochralski (CZ) silicon melt |
JPH1179889A (en) * | 1997-07-09 | 1999-03-23 | Shin Etsu Handotai Co Ltd | Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby |
JP4151148B2 (en) * | 1999-02-19 | 2008-09-17 | 株式会社Sumco | Method for producing silicon single crystal |
JP3783495B2 (en) * | 1999-11-30 | 2006-06-07 | 株式会社Sumco | Manufacturing method of high quality silicon single crystal |
WO2009025340A1 (en) * | 2007-08-21 | 2009-02-26 | Sumco Corporation | Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt |
JP2013129564A (en) * | 2011-12-21 | 2013-07-04 | Siltronic Ag | Silicon single crystal substrate and method of manufacturing the same |
DE102015226399A1 (en) * | 2015-12-22 | 2017-06-22 | Siltronic Ag | Silicon wafer with homogeneous radial oxygen variation |
-
2018
- 2018-11-16 JP JP2019557153A patent/JP6958632B2/en active Active
- 2018-11-16 DE DE112018006080.2T patent/DE112018006080T5/en active Granted
- 2018-11-16 CN CN201880077304.4A patent/CN111615569A/en active Pending
- 2018-11-16 WO PCT/JP2018/042522 patent/WO2019107190A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN111615569A (en) | 2020-09-01 |
WO2019107190A1 (en) | 2019-06-06 |
JP6958632B2 (en) | 2021-11-02 |
DE112018006080T5 (en) | 2020-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6583142B2 (en) | Method and apparatus for producing silicon single crystal | |
KR102095597B1 (en) | Manufacturing method of silicon single crystal | |
JP5240191B2 (en) | Silicon single crystal pulling device | |
JP5283543B2 (en) | Method for growing silicon single crystal | |
JP6958632B2 (en) | Silicon single crystal and its manufacturing method and silicon wafer | |
KR20070013843A (en) | Method of manufacturing silicon single crystal | |
JP7099175B2 (en) | Silicon single crystal manufacturing method and silicon wafer | |
KR20060028425A (en) | Method for producing single crystal and single crystal | |
TWI635199B (en) | Manufacturing method of single crystal silicon | |
JP4457584B2 (en) | Method for producing single crystal and single crystal | |
JP2018188338A (en) | Production method of silicon single crystal, and silicon single crystal | |
KR100991088B1 (en) | Apparatus and Method for manufacturing semiconductor single crystal ingot using CUSP magnetic field | |
JP3719088B2 (en) | Single crystal growth method | |
JP4151148B2 (en) | Method for producing silicon single crystal | |
JP2019210199A (en) | Manufacturing method of silicon single crystal | |
JP5668786B2 (en) | Method for growing silicon single crystal and method for producing silicon wafer | |
JP5617812B2 (en) | Silicon single crystal wafer, epitaxial wafer, and manufacturing method thereof | |
JP6729411B2 (en) | Method for producing silicon single crystal | |
CN109415842A (en) | The manufacturing method of monocrystalline silicon | |
JP7424282B2 (en) | Method for manufacturing single crystal silicon ingot | |
JP2020037499A (en) | Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal | |
JP2004059408A (en) | Apparatus for pulling silicon single crystal and method for pulling the silicon single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6958632 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |