Nothing Special   »   [go: up one dir, main page]

JPWO2018199146A1 - Catalyst for conversion of ester to amide using oxime / hydroxyamine as substrate - Google Patents

Catalyst for conversion of ester to amide using oxime / hydroxyamine as substrate Download PDF

Info

Publication number
JPWO2018199146A1
JPWO2018199146A1 JP2019514567A JP2019514567A JPWO2018199146A1 JP WO2018199146 A1 JPWO2018199146 A1 JP WO2018199146A1 JP 2019514567 A JP2019514567 A JP 2019514567A JP 2019514567 A JP2019514567 A JP 2019514567A JP WO2018199146 A1 JPWO2018199146 A1 JP WO2018199146A1
Authority
JP
Japan
Prior art keywords
group
substituent
compound
amino
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019514567A
Other languages
Japanese (ja)
Inventor
山本 尚
尚 山本
渉 村松
渉 村松
裕章 辻
裕章 辻
英彦 児玉
英彦 児玉
勇斗 赤井
勇斗 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University Educational Foundation
Original Assignee
Chubu University Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu University Educational Foundation filed Critical Chubu University Educational Foundation
Publication of JPWO2018199146A1 publication Critical patent/JPWO2018199146A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/12Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C239/00Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof
    • C07C239/08Hydroxylamino compounds or their ethers or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • C07C249/12Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes by reactions not involving the formation of oxyimino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/36Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/38Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atoms of the oxyimino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/14Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

高立体化学選択的にアミド化合物を製造する新規な方法を提供する。本発明のアミド化合物の製造方法は、金属化合物からなる触媒の存在下に、下記一般式(1)で表されるアミノエステル化合物と、アミノ化合物とを反応させて、前記アミノエステル化合物のエステル基をアミド化するアミド化工程を備える。A novel method for producing an amide compound with high stereochemical selectivity is provided. The method for producing an amide compound according to the present invention comprises reacting an amino ester compound represented by the following general formula (1) with an amino compound in the presence of a catalyst comprising a metal compound to form an ester group of the amino ester compound. An amidation step of amidating

Description

本発明は、アミド化合物の製造方法に関する。   The present invention relates to a method for producing an amide compound.

従来、ペプチドに代表されるアミド化合物は、医薬品、化粧品、機能性食品をはじめ、幅広い分野で利用されており、その合成法の開発は、合成化学における重要な研究課題として精力的に実施されてきた(非特許文献1〜6)。しかし、そのペプチド合成に最も重要であるアミド化反応には有効な触媒が殆ど存在していない。従って、副生成物を生ずる当量の試薬を用いざるを得ず、しかも多段階の反応を繰り返すペプチド合成はアトム・エコノミー(原子収率)の観点から極めて非効率な合成であり、副生成物は膨大な量となり、また、有効な精製手段も少ない。その結果、副生成物の廃棄と精製にかかるコストがペプチド合成の殆どの必要経費を占め、この分野の発展における最大障壁の一つとなっている。   Conventionally, amide compounds represented by peptides have been used in a wide range of fields, including pharmaceuticals, cosmetics, and functional foods, and the development of their synthetic methods has been vigorously carried out as an important research topic in synthetic chemistry. (Non-Patent Documents 1 to 6). However, there are few effective catalysts for the amidation reaction which is most important for the peptide synthesis. Therefore, the use of an equivalent amount of a reagent that generates a by-product must be used, and peptide synthesis that repeats a multi-step reaction is a very inefficient synthesis from the viewpoint of atom economy (atomic yield). The amount is enormous, and there are few effective purification means. As a result, the costs of disposing and purifying by-products account for most of the necessary costs for peptide synthesis and are one of the biggest barriers in the development of this field.

Annu. Rev. Biophys. Biomol. Struct., 2005, 34, 91−118Annu. Rev .. Biophys. Biomol. Struct. , 2005, 34, 91-118. Tetrahedron, 2005, 6, 10827−10852Tetrahedron, 2005, 6, 10827-10852 Chem. Rev., 2007, 107, 5759−5812Chem. Rev .. , 2007, 107, 5759-5812. Chem. Rev., 2011, 111, 6557−6602Chem. Rev .. , 2011, 111, 6557-6602 Org. Process Res. Dev., 2016, 20(2), 140−177Org. Process Res. Dev. , 2016, 20 (2), 140-177. Chem. Rev., 2016, 116, 12029−12122Chem. Rev .. , 2016, 116, 12029-12122

アミノ酸又はその誘導体を原料とするペプチド合成では、高立体選択的にアミド化反応を行うことが求められる。高立体選択的なアミド化反応としては、生体内での酵素反応が挙げられる。例えば、生体内では、酵素と水素結合を巧みに利用して、極めて高立体選択的にペプチドを合成している。しかしながら、酵素反応は、大量生産には不向きであり、合成化学に適用すると、膨大な金銭的・時間的なコストが必要となる。   In peptide synthesis using an amino acid or a derivative thereof as a raw material, it is required to perform an amidation reaction with high stereoselectivity. A highly stereoselective amidation reaction includes an enzymatic reaction in a living body. For example, in vivo, peptides are extremely highly stereoselectively synthesized by skillfully utilizing enzymes and hydrogen bonds. However, enzymatic reactions are not suitable for mass production, and when applied to synthetic chemistry, enormous financial and time costs are required.

合成化学においても、触媒を用いたアミド化反応が検討されているが、従来の手法では、主にカルボン酸を活性化する手法によりアミド結合を形成しており、ラセミ化の進行が速く、高立体選択的にペプチドを合成することは困難である。このように、合成化学においては、触媒を用いて高立体選択的にペプチドを合成する方法は、未だ実用化されていないのが現状である。このような背景のもと、高立体化学選択的アミド化反応の開発が望まれている。   In synthetic chemistry, amidation reaction using a catalyst is also being studied, but in the conventional method, an amide bond is formed mainly by activating a carboxylic acid. It is difficult to synthesize peptides in a stereoselective manner. As described above, in synthetic chemistry, a method for synthesizing peptides in a highly stereoselective manner using a catalyst has not yet been put to practical use. Against this background, development of a highly stereoselective amidation reaction has been desired.

このような状況下、本発明は、高立体化学選択的にアミド化合物を製造する新規な方法を提供することを主な目的とする。   Under such circumstances, an object of the present invention is to provide a novel method for producing an amide compound with high stereochemical selectivity.

本発明者らは、前記課題を解決すべく鋭意検討を行った。その結果、金属化合物からなる触媒の存在下に、下記一般式(1)で表されるアミノエステル化合物と、アミノ化合物とを反応させて、アミノエステル化合物のエステル基をアミド化するアミド化工程を備える、新規なアミド化合物の製造方法よれば、高い立体化学選択的にアミド化反応が進行することを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。   The present inventors have conducted intensive studies to solve the above problems. As a result, an amidation step of reacting an amino ester compound represented by the following general formula (1) with the amino compound in the presence of a catalyst comprising a metal compound to amidate the ester group of the amino ester compound is performed. It has been found that according to the novel method for producing an amide compound, the amidation reaction proceeds with high stereochemical selectivity. The present invention has been completed by further study based on such findings.

Figure 2018199146
Figure 2018199146

一般式(1)において、基R1は、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。基R2及び基R3は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位の窒素原子との結合が二重結合である場合には、基R3は存在しない。基Aは、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基を示す。pは、0または1である。基R4は、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位窒素原子との結合が二重結合である場合には、基R4は電子対である。In the general formula (1), the group R 1 is an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or an alicyclic group which may have a substituent. And a heterocyclic group which may have a group or a substituent. The groups R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, and a substituent. It represents an alicyclic group which may be possessed or a heterocyclic group which may be possessed by a substituent. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 3 does not exist. The group A represents a linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent. p is 0 or 1. The group R 4 is a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or an alicyclic ring which may have a substituent. It represents a formula group or a heterocyclic group which may have a substituent. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 4 is an electron pair.

即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 金属化合物からなる触媒の存在下に、下記一般式(1)で表されるアミノエステル化合物と、アミノ化合物とを反応させて、前記アミノエステル化合物のエステル基をアミド化するアミド化工程を備える、アミド化合物の製造方法。

Figure 2018199146
[式(1)中、
基R1は、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。基R2及び基R3は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位の窒素原子との結合が二重結合である場合には、基R3は存在しない。
基Aは、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基を示す。pは、0または1である。
基R4は、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位窒素原子との結合が二重結合である場合には、基R4は電子対である。]
項2. 前記アミド化工程の後、得られたアミド化合物において、前記一般式(1)で表されるアミノエステル化合物に由来するβ位の基N−O−Hをアミノ基に変換する還元工程をさらに備えている、項1に記載のアミド化合物の製造方法。
項3. 金属化合物からなる触媒の存在下に、前記一般式(1)で表されるアミノエステル化合物と、項2で得られたアミノ基を有するアミド化合物とを反応させて、前記アミノエステル化合物のエステル基をアミド化するアミド化工程をさらに備える、項2に記載のアミド化合物の製造方法。
項4. 前記一般式(1)で表される化合物が、下記一般式(11)で表されるオキシム化合物である、項1〜3のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[式(11)中、基R1、基R2、及び基Aは、それぞれ、前記一般式(1)と同じである。]
項5. 前記一般式(1)で表される化合物が、下記一般式(12)で表されるヒドロキシアミノ化合物である、項1〜3のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[式(12)中、基R1、基R2、基R3、基R4、及び基Aは、それぞれ、前記一般式(1)と同じである。]
項6. 前記アミノ化合物が、下記一般式(3)で表されるアミノ化合物である、項1〜5のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[基Ra及び基Rbは、それぞれ独立に、水素原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。また、RaとRbは、結合する窒素原子と共に飽和または不飽和の複素環を形成してもよい。該複素環基には置換基を有していてもよい。]
項7. 前記アミノ化合物が、アミノ酸もしくはその塩、又はアミノ酸エステルもしくはその塩である、項6に記載のアミド化合物の製造方法。
項8. 前記アミノエステル化合物を100mol%とした場合に、前記触媒の使用量が、12mol%以下である、項1〜7のいずれかに記載のアミド化合物の製造方法。
項9. アミド化反応は、塩基の存在下で行われる、項1〜8のいずれかに記載のアミド化合物の製造方法。
項10. アミド化反応で得られるアミド化合物が、下記一般式(4)である、項1〜9のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[式(4)中、基R2、基R3、基R4、及び基Aは、それぞれ、前記一般式(1)と同じであり、基Ra及び基Rbは、それぞれ独立に、水素原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。また、RaとRbは、結合する窒素原子と共に飽和または不飽和の複素環を形成してもよい。該複素環基には置換基を有していてもよい。]
項11. 下記反応式に従い、酸性溶媒中において、下記一般式(21)に示される基R5及び基R6の結合する不斉炭素原子を有するオキシム化合物のオキシム基を、立体選択的にアミノ基に変換して、下記一般式(22)に示されるアミノ化合物を製造する方法。
Figure 2018199146
[式(21)及び(22)中、
基R2は、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。
基Aは、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基を示す。pは、0または1である。
基R5及び基R6は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。
基R7は、水酸基、基OR7a、アミノ基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示し、
基R7aは、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。]That is, the present invention provides the following aspects of the invention.
Item 1. An amidation step of reacting an amino ester compound represented by the following general formula (1) with an amino compound in the presence of a catalyst comprising a metal compound to amidate the ester group of the amino ester compound; A method for producing an amide compound.
Figure 2018199146
[In equation (1),
The group R 1 is an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or a group which has a substituent. And a heterocyclic group which may be substituted. The groups R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, and a substituent. It represents an alicyclic group which may be possessed or a heterocyclic group which may be possessed by a substituent. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 3 does not exist.
The group A represents a linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent. p is 0 or 1.
The group R 4 is a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or an alicyclic ring which may have a substituent. It represents a formula group or a heterocyclic group which may have a substituent. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 4 is an electron pair. ]
Item 2. After the amidation step, the obtained amide compound further includes a reduction step of converting a β-position group NOH derived from the amino ester compound represented by the general formula (1) into an amino group. Item 13. The method for producing an amide compound according to Item 1.
Item 3. The amino ester compound represented by the general formula (1) is reacted with the amide compound having an amino group obtained in item 2 in the presence of a catalyst comprising a metal compound to form an ester group of the amino ester compound. Item 3. The method for producing an amide compound according to Item 2, further comprising an amidation step of amidating.
Item 4. Item 4. The method for producing an amide compound according to any one of Items 1 to 3, wherein the compound represented by the general formula (1) is an oxime compound represented by the following general formula (11).
Figure 2018199146
[In the formula (11), the group R 1 , the group R 2 , and the group A are the same as those in the general formula (1). ]
Item 5. Item 4. The method for producing an amide compound according to any one of Items 1 to 3, wherein the compound represented by the general formula (1) is a hydroxyamino compound represented by the following general formula (12).
Figure 2018199146
[In the formula (12), the groups R 1 , R 2 , R 3 , R 4 , and A are the same as those in the general formula (1). ]
Item 6. Item 6. The method for producing an amide compound according to any one of Items 1 to 5, wherein the amino compound is an amino compound represented by the following general formula (3).
Figure 2018199146
[The groups Ra and Rb each independently have a hydrogen atom, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, An alicyclic group or a heterocyclic group which may have a substituent. R a and R b may form a saturated or unsaturated heterocyclic ring together with the nitrogen atom to which they are bonded. The heterocyclic group may have a substituent. ]
Item 7. Item 7. The method for producing an amide compound according to Item 6, wherein the amino compound is an amino acid or a salt thereof, or an amino acid ester or a salt thereof.
Item 8. Item 10. The method for producing an amide compound according to any one of Items 1 to 7, wherein the amount of the catalyst used is 12 mol% or less when the aminoester compound is 100 mol%.
Item 9. Item 9. The method for producing an amide compound according to any one of Items 1 to 8, wherein the amidation reaction is performed in the presence of a base.
Item 10. Item 10. The method for producing an amide compound according to any one of Items 1 to 9, wherein the amide compound obtained by the amidation reaction has the following general formula (4).
Figure 2018199146
[In the formula (4), the group R 2 , the group R 3 , the group R 4 , and the group A are respectively the same as those in the general formula (1), and the groups Ra and Rb are each independently A hydrogen atom, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or Represents a heterocyclic group which may be substituted. R a and R b may form a saturated or unsaturated heterocyclic ring together with the nitrogen atom to which they are bonded. The heterocyclic group may have a substituent. ]
Item 11. According to the following reaction formula, the oxime group of the oxime compound having an asymmetric carbon atom to which the groups R 5 and R 6 shown in the following general formula (21) bind in an acidic solvent is stereoselectively converted to an amino group. To produce an amino compound represented by the following general formula (22).
Figure 2018199146
[In the formulas (21) and (22),
The group R 2 is a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, Or a heterocyclic group which may have a substituent.
The group A represents a linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent. p is 0 or 1.
The groups R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or a substituent. It represents an alicyclic group which may be possessed or a heterocyclic group which may be possessed by a substituent.
The group R 7 is a hydroxyl group, a group OR 7a , an amino group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or an aliphatic group which may have a substituent. A cyclic group, or a heterocyclic group which may have a substituent,
The group R 7a is an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or a group which has a substituent. And a heterocyclic group which may be substituted. ]

本発明によれば、高立体化学選択的にアミド化合物を製造する新規な方法を提供することができる。   According to the present invention, it is possible to provide a novel method for producing an amide compound in a highly stereochemically selective manner.

本発明のアミド化合物の製造方法は、金属化合物からなる触媒の存在下に、下記一般式(1)で表されるアミノエステル化合物と、アミノ化合物とを反応させて、アミノエステル化合物のエステル基をアミド化するアミド化工程を備えることを特徴としている。   The method for producing an amide compound of the present invention comprises reacting an amino ester compound represented by the following general formula (1) with an amino compound in the presence of a catalyst comprising a metal compound to form an ester group of the amino ester compound. It is characterized by comprising an amidation step of amidating.

Figure 2018199146
Figure 2018199146

以下、本発明のアミド化合物の製造方法について、詳述する。なお、後述の通り、本発明においては、上記一般式(1)に示されているアミノエステル化合物のエステル基と、アミノ化合物が備えているアミノ基とが反応することにより、アミド結合が形成されて、本発明のアミド化合物が製造される。   Hereinafter, the method for producing the amide compound of the present invention will be described in detail. As described later, in the present invention, an amide bond is formed by reacting the ester group of the amino ester compound represented by the general formula (1) with the amino group of the amino compound. Thus, the amide compound of the present invention is produced.

本明細書において、数値範囲を示す「〜」の表示は、その左側に付している数値以上且つその右側に付している数値以下であることを示し、例えば数値範囲「X〜Y」の表記はX以上Y以下であることを意味する。   In the present specification, the display of “-” indicating a numerical range indicates that the numerical value is greater than or equal to the numerical value attached to the left side and equal to or less than the numerical value attached to the right side thereof. The notation means that it is X or more and Y or less.

上記一般式(1)に示されているアミノエステル化合物物(以下、アミノエステル化合物(1)ということがある)において、基R1は、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。In the amino ester compound represented by the general formula (1) (hereinafter sometimes referred to as the amino ester compound (1)), the group R 1 is an aliphatic group which may have a substituent, It represents an aromatic group which may have a group, an alicyclic group which may have a substituent, or a heterocyclic group which may have a substituent.

また、基R2及び基R3は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位の窒素原子との結合が二重結合である場合には、基R3は存在しない。Further, the groups R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, An alicyclic group which may have a group or a heterocyclic group which may have a substituent is shown. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 3 does not exist.

また、基Aは、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基を示す。pは、0または1である。   The group A represents a linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent. p is 0 or 1.

また、基R4は、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位窒素原子との結合が二重結合である場合には、基R4は電子対である。Further, the group R 4 may have a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, and a substituent. An alicyclic group or a heterocyclic group which may have a substituent is shown. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 4 is an electron pair.

基R1、基R2、基R3、及び基R4が有し得る前記置換基(脂肪族基、脂環式基、及び複素環式基の置換基)としては、本発明のアミド化工程が進行すれば特に制限されず、それぞれ独立に、例えば、アルキル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルキル基)、アルケニル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルケニル基)、アルキニル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルキニル基)、アルコキシ基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基)、水酸基、ハロゲン原子、ニトロ基、チオール基、シアノ基、基−COOR1(R1は前記に同じ)、フェニル基などが挙げられる。また、基R1、基R2、基R3、及び基R4における脂肪族基、芳香族基、脂環式基、または複素環式基が、置換基を有する場合、置換基の数としては特に制限されないが、それぞれ独立に、例えば、1〜10、1〜5、1〜3、1〜2、1が挙げられる。また、置換基を複数有する場合、置換基は、1種類であってもよいし、2種類以上であってもよい。なお、脂肪族基及び芳香族基は、それぞれ、ヘテロ原子を含んでいてもよい。また、脂肪族基、脂環式基、及び複素環式基は、それぞれ、飽和であってもよいし、不飽和であってもよい。Examples of the substituents (substituents of an aliphatic group, an alicyclic group, and a heterocyclic group) that the group R 1 , the group R 2 , the group R 3 , and the group R 4 may have include amidation of the present invention The process is not particularly limited as long as the process proceeds. For example, each independently includes, for example, an alkyl group (for example, a linear or branched alkyl group having 1 to 10 carbon atoms) and an alkenyl group (for example, 1 to 10 carbon atoms). 10 straight-chain or branched alkenyl groups), alkynyl groups (for example, straight-chain or branched-chain alkynyl groups having 1 to 10 carbon atoms), and alkoxy groups (for example, 1 to 10 carbon atoms). straight or branched alkoxy group), a hydroxyl group, a halogen atom, a nitro group, a thiol group, a cyano group, group -COOR1 (R 1 is the same), and a phenyl group. When the aliphatic group, aromatic group, alicyclic group, or heterocyclic group in the groups R 1 , R 2 , R 3 , and R 4 has a substituent, the number of substituents is Is not particularly limited, but each independently includes, for example, 1 to 10, 1 to 5, 1 to 3, 1 to 2, and 1. In the case of having a plurality of substituents, one type of substituent may be used, or two or more types may be used. In addition, the aliphatic group and the aromatic group may each contain a hetero atom. The aliphatic group, alicyclic group, and heterocyclic group may be saturated or unsaturated, respectively.

基R1としては、置換基を有していてもよい炭素数が1〜20の脂肪族基、置換基を有していてもよい炭素数が4〜20の芳香族基、置換基を有していてもよい炭素数が3〜20の脂環式基、または置換基を有していてもよい炭素数が2〜20の複素環式基であることが好ましく、置換基を有していてもよい炭素数が1〜10の脂肪族基、置換基を有していてもよい炭素数が4〜10の芳香族基、置換基を有していてもよい炭素数が3〜10の脂環式基、または置換基を有していてもよい炭素数が2〜10の複素環式基であることがより好ましい。基R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、プロパルギル基等の炭素数が1〜10の直鎖または分枝鎖状のアルキル基、フェニル基、ベンジル基等のアルキル部分の炭素数が1〜10の直鎖または分枝鎖状のアルキル基であるフェニルアルキル基、アリル基等の1〜10の直鎖または分枝鎖状のアルケニル基などが挙げられる。なお、基R1の置換基については、前述の通りである。Examples of the group R 1 include an aliphatic group having 1 to 20 carbon atoms which may have a substituent, an aromatic group having 4 to 20 carbon atoms which may have a substituent, and a substituent. It is preferably an alicyclic group having 3 to 20 carbon atoms which may be substituted, or a heterocyclic group having 2 to 20 carbon atoms which may be substituted, and having a substituent. An aliphatic group having 1 to 10 carbon atoms, an aromatic group having 4 to 10 carbon atoms which may have a substituent, and 3 to 10 carbon atoms optionally having a substituent. More preferably, it is an alicyclic group or a heterocyclic group having 2 to 10 carbon atoms which may have a substituent. Specific examples of the group R 1 include a straight-chain or branched group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group and a propargyl group. A linear alkyl group, a phenyl group, a phenylalkyl group having 1 to 10 carbon atoms in an alkyl portion such as a benzyl group or a branched alkyl group, a phenylalkyl group having 1 to 10 linear groups, And a branched alkenyl group. The substituents of the group R 1 are as described above.

また、一般式(1)において、α位の炭素原子に結合している基R2及び基R3としては、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい炭素数が1〜20の脂肪族基、置換基を有していてもよい炭素数が4〜20の芳香族基、置換基を有していてもよい炭素数が3〜20の脂環式基、または置換基を有していてもよい炭素数が2〜20の複素環式基、基−COOR1(R1は前記に同じ)であることが好ましく、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい炭素数が1〜10の脂肪族基、置換基を有していてもよい炭素数が4〜10の芳香族基、置換基を有していてもよい炭素数が3〜10の脂環式基、または置換基を有していてもよい炭素数が2〜10の複素環式基、基−COOR1(R1は前記に同じ)であることがより好ましい。基R2及び基R3の具体例としては、それぞれ独立に、水素原子、水酸基、ニトロ基、チオール基、シアノ基、フェニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert−ブチル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキル基;エチレン基、プロピレン基、ブチレン基などの炭素数が1〜10の直鎖または分枝鎖状のアルケニル基;プロパルギル基などの炭素数が1〜10のアルキニル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基などの炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基、2−(tert−ブトキシカルボニル)エチル基、2−(メトキシカルボニル)エチル基、tert−ブトキシカルボニルメチル基などのアルキル部分の炭素数が1〜10の直鎖または分枝鎖状アルキル基である炭素数1〜10の直鎖または分枝鎖状アルコキシカルボニルアルキル基、tert−ブトキシカルボニル等の炭素数1〜10の直鎖または分枝鎖状アルコキシカルボニル基、ベンジル基等のアルキル部分の炭素数が1〜10の直鎖または分枝鎖状アルキル基であるフェニルアルキル基などが挙げられる。In the general formula (1), the groups R 2 and R 3 bonded to the carbon atom at the α-position may each independently have a hydrogen atom, a halogen atom, a hydroxyl group, or a substituent. An aliphatic group having 1 to 20 carbon atoms, an aromatic group having 4 to 20 carbon atoms which may have a substituent, an alicyclic group having 3 to 20 carbon atoms which may have a substituent It is preferably a group or a heterocyclic group having 2 to 20 carbon atoms which may have a substituent, a group -COOR 1 (R 1 is the same as described above), and a hydrogen atom, a halogen atom, a hydroxyl group, An aliphatic group having 1 to 10 carbon atoms which may have a substituent, an aromatic group having 4 to 10 carbon atoms which may have a substituent, and a carbon atom which may have a substituent An alicyclic group having 3 to 10 carbon atoms or a heterocyclic group having 2 to 10 carbon atoms which may have a substituent, a group -COOR 1 (R 1 Is the same as described above). Specific examples of the groups R 2 and R 3 each independently include a hydrogen atom, a hydroxyl group, a nitro group, a thiol group, a cyano group, and a phenyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; A linear or branched alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group and a tert-butyl group; a carbon atom such as an ethylene group, a propylene group and a butylene group; A linear or branched alkenyl group having 1 to 10 carbon atoms; an alkynyl group having 1 to 10 carbon atoms such as a propargyl group; methoxy group, ethoxy group, propoxy group, butoxy group, sec-butoxy group, tert- A linear or branched alkoxy group having 1 to 10 carbon atoms, such as a butoxy group, a 2- (tert-butoxycarbonyl) ethyl group, a 2- (methoxycarbonyl) I) a straight-chain or branched-chain alkoxycarbonylalkyl having 1 to 10 carbon atoms, wherein the alkyl portion such as an ethyl group or a tert-butoxycarbonylmethyl group is a straight-chain or branched-chain alkyl group having 1 to 10 carbon atoms; A straight-chain or branched alkoxycarbonyl group having 1 to 10 carbon atoms, such as a tert-butoxycarbonyl group, or a straight-chain or branched alkyl group having 1 to 10 carbon atoms in an alkyl portion such as a benzyl group. And a phenylalkyl group.

なお、基R2及び基R3の置換基については、それぞれ、前述の通りである。また、前述の通り、α位の炭素原子とβ位の窒素原子との結合が二重結合である場合(すなわち、アミノエステル化合物(1)が、後述の一般式(11)で表されるオキシム化合物である場合)には、基R3は存在しない。The substituents of the groups R 2 and R 3 are as described above. Further, as described above, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond (that is, the amino ester compound (1) is an oxime represented by the following general formula (11)) In the case of a compound), the group R 3 is not present.

また、一般式(1)において、β位の窒素原子に結合している基R4としては、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい炭素数が1〜20の脂肪族基、置換基を有していてもよい炭素数が4〜20の芳香族基、置換基を有していてもよい炭素数が3〜20の脂環式基、または置換基を有していてもよい炭素数が2〜20の複素環式基であることが好ましく、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい炭素数が1〜10の脂肪族基、置換基を有していてもよい炭素数が4〜10の芳香族基、置換基を有していてもよい炭素数が3〜10の脂環式基、または置換基を有していてもよい炭素数が2〜10の複素環式基であることがより好ましい。基R4の具体例としては、水素原子、水酸基、ベンジル基、フェニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキル基;エチレン基、プロピレン基、ブチレン基などの炭素数が1〜10の直鎖または分枝鎖状のアルケニル基;プロパルギル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキニル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基などの炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基などが挙げられる。In the general formula (1), the group R 4 bonded to the β-position nitrogen atom is a hydrogen atom, a halogen atom, a hydroxyl group, or an aliphatic group having 1 to 20 carbon atoms which may have a substituent. Group, an aromatic group having 4 to 20 carbon atoms which may have a substituent, an alicyclic group having 3 to 20 carbon atoms which may have a substituent, or having a substituent Is preferably a heterocyclic group having 2 to 20 carbon atoms, a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group having 1 to 10 carbon atoms which may have a substituent, An aromatic group having 4 to 10 carbon atoms which may have a group, an alicyclic group having 3 to 10 carbon atoms which may have a substituent, or a substituent More preferably, it is a heterocyclic group having 2 to 10 carbon atoms. Specific examples of the group R 4, a hydrogen atom, a hydroxyl group, a benzyl group, a phenyl group; a fluorine atom, a chlorine atom, a bromine atom, a halogen atom such as iodine atom; a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group A linear or branched alkyl group having 1 to 10 carbon atoms, such as an alkyl group; a linear or branched alkenyl group having 1 to 10 carbon atoms, such as an ethylene group, a propylene group, or a butylene group; a propargyl group A linear or branched alkynyl group having 1 to 10 carbon atoms such as methoxy group, ethoxy group, propoxy group, butoxy group, sec-butoxy group, tert-butoxy group; A linear or branched alkoxy group may, for example, be mentioned.

なお、基R4の置換基については、それぞれ、前述の通りである。また、前述の通り、α位の炭素原子とβ位窒素原子との結合が二重結合である場合(すなわち、アミノエステル化合物(1)が、後述の一般式(11)で表されるオキシム化合物である場合)には、基R4は電子対である。The substituents of the group R 4 are as described above. As described above, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond (that is, the amino ester compound (1) is an oxime compound represented by the following general formula (11)) ), The group R 4 is an electron pair.

基Aにおいて、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基等が挙げられる。また、置換基としては、前記基R1、基R2、基R3、及び基R4で例示した置換基に同じである。In the group A, examples of the linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent include a methylene group, an ethylene group, and a propylene group. The substituent is the same as the substituent exemplified for the groups R 1 , R 2 , R 3 and R 4 .

本発明において、アミノエステル化合物(1)は、塩酸塩などの塩の形態でアミド化工程に供してもよい。   In the present invention, the amino ester compound (1) may be subjected to the amidation step in the form of a salt such as a hydrochloride.

前記一般式(1)で表されるアミノエステル化合物において、α位の炭素原子とβ位窒素原子との結合が二重結合である場合、当該アミノエステル化合物は、下記一般式(11)で表されるオキシム化合物である。   In the amino ester compound represented by the general formula (1), when the bond between the α-position carbon atom and the β-position nitrogen atom is a double bond, the amino ester compound is represented by the following general formula (11). Is an oxime compound.

Figure 2018199146
Figure 2018199146

一般式(11)において、基R1、基R2、及び基Aは、それぞれ、前記一般式(1)と同じである。In the general formula (11), the groups R 1 , R 2 , and A are the same as those in the general formula (1).

また、アミノエステル化合物(1)において、α位の炭素原子とβ位窒素原子との結合が単結合である場合、アミノエステル化合物(1)は、下記一般式(12)で表されるヒドロキシアミノ化合物である。   In the amino ester compound (1), when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a single bond, the amino ester compound (1) is a hydroxyamino compound represented by the following general formula (12). Compound.

Figure 2018199146
Figure 2018199146

一般式(12)において、基R1、基R2、基R3、及び基R4、及び基Aは、それぞれ、前記一般式(1)と同じである。In the general formula (12), the groups R 1 , R 2 , R 3 , R 4 , and A are the same as those in the general formula (1).

また、本発明において、アミノ化合物としては、アミノエステル化合物(1)と反応してアミド基を形成できるものであれば特に制限されないが、エステル基との反応性が高いことから、例えば、1級アミン、2級アミンが好ましい。   In the present invention, the amino compound is not particularly limited as long as it can react with the amino ester compound (1) to form an amide group. Amines and secondary amines are preferred.

好ましいアミノ化合物を一般式で表すと、例えば、下記一般式(3)で表すことができる。   When a preferred amino compound is represented by the general formula, for example, it can be represented by the following general formula (3).

Figure 2018199146
Figure 2018199146

一般式(3)で表されるアミノ化合物(以下、アミノ化合物(3)ということがある)において、基Ra及び基Rbは、それぞれ独立に、水素原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。また、RaとRbは、結合する窒素原子と共に飽和または不飽和の複素環を形成してもよい。該複素環基には置換基を有していてもよい。In the amino compound represented by the general formula (3) (hereinafter sometimes referred to as amino compound (3)), the groups Ra and Rb each independently have a hydrogen atom or a substituent. It represents a good aliphatic group, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or a heterocyclic group which may have a substituent. R a and R b may form a saturated or unsaturated heterocyclic ring together with the nitrogen atom to which they are bonded. The heterocyclic group may have a substituent.

基Ra及び基Rb及び結合する窒素原子と共に形成した複素環における前記置換基としては、アミノエステル化合物(1)と反応してアミド基を形成できるものであれば特に制限されず、それぞれ独立に、例えば、アルキル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルキル基)、アルケニル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルケニル基)、アルキニル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルキニル基)、アルコキシ基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基)、水酸基、ハロゲン原子、ニトロ基、チオール基、シアノ基、炭素数が1〜10の直鎖または分枝鎖状のアルキルメルカプト基、アルキル基部分の炭素数が1〜10の直鎖または分枝鎖状のアルキル基であるフェニルアルキル基、アルコキシ基部分の炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基であるフェニルアルコキシカルボニル基、アルキル基部分の炭素数が1〜10の直鎖または分枝鎖状のアルキル基であるフェニルアルキルメルカプト基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいグアジニル基、基−COOR1(R1は前記に同じ)、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基などが挙げられる。(ここで、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいグアジニル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基における置換基は、前記基Ra及び基Rbの定義に同じである。アリール基としては、フェニル基等が挙げられる。複素環基としては、インドリル基、イミダゾリル基等が挙げられる。)また、基Ra及び基Rb及び連結して形成した環構造における脂肪族基、芳香族基、脂環式基、または複素環式基が、置換基を有する場合、置換基の数としては特に制限されないが、それぞれ独立に、例えば、1〜10、1〜5、1〜3、1〜2、1が挙げられる。また、置換基を複数有する場合、置換基は、1種類であってもよいし、2種類以上であってもよい。なお、脂肪族基及び芳香族基は、それぞれ、ヘテロ原子を含んでいてもよい。また、脂肪族基、脂環式基、及び複素環式基は、それぞれ、飽和であってもよいし、不飽和であってもよい。Examples of the substituent in the heterocyclic ring formed together with the group R a and radicals R b and bonded to the nitrogen atom is not particularly limited as long as it reacts with the amino ester compound (1) can form an amide group, each independently For example, an alkyl group (for example, a linear or branched alkyl group having 1 to 10 carbon atoms), an alkenyl group (for example, a linear or branched alkenyl group having 1 to 10 carbon atoms) ), An alkynyl group (for example, a linear or branched alkynyl group having 1 to 10 carbon atoms), an alkoxy group (for example, a linear or branched alkoxy group having 1 to 10 carbon atoms), Hydroxyl group, halogen atom, nitro group, thiol group, cyano group, linear or branched alkyl mercapto group having 1 to 10 carbon atoms, linear or branched chain having 1 to 10 carbon atoms in the alkyl group portion Alkyl A phenylalkyl group which is a group, a phenylalkoxycarbonyl group which is a linear or branched alkoxy group having 1 to 10 carbon atoms in an alkoxy group portion, and a straight or branched chain having 1 to 10 carbon atoms in an alkyl group portion. A phenylalkylmercapto group which is a branched alkyl group, an amino group which may have a substituent, an amide group which may have a substituent, a guanidinyl group which may have a substituent, —COOR 1 (R 1 is as defined above), an aryl group which may have a substituent, a heterocyclic group which may have a substituent, and the like. (Here, an amino group which may have a substituent, an amide group which may have a substituent, a guanidinyl group which may have a substituent, and an aryl which may have a substituent group, substituent of the heterocyclic group which may have a substituent, wherein the same to the definition of the group R a and radicals R b. the aryl group, as. heterocyclic group and a phenyl group Represents an indolyl group, an imidazolyl group, or the like.) In addition, an aliphatic group, an aromatic group, an alicyclic group, or a heterocyclic group in the ring structure formed by connecting the groups R a and R b and When it has a substituent, the number of substituents is not particularly limited, but for example, each independently includes, for example, 1 to 10, 1 to 5, 1 to 3, 1 to 2, and 1. In the case of having a plurality of substituents, one type of substituent may be used, or two or more types may be used. In addition, the aliphatic group and the aromatic group may each contain a hetero atom. The aliphatic group, alicyclic group, and heterocyclic group may be saturated or unsaturated, respectively.

アミノ化合物(3)の基Ra及び基Rbは、それぞれ独立に、水素原子、置換基を有していてもよい炭素数が1〜20の脂肪族基、置換基を有していてもよい炭素数が4〜20の芳香族基、置換基を有していてもよい炭素数が3〜20の脂環式基、または置換基を有していてもよい炭素数が2〜20の複素環式基であることが好ましく、水素原子、置換基を有していてもよい炭素数が1〜10の脂肪族基、置換基を有していてもよい炭素数が4〜10の芳香族基、置換基を有していてもよい炭素数が3〜10の脂環式基、または置換基を有していてもよい炭素数が2〜10の複素環式基であることが好ましい。ただし、基Ra及び基Rbが共に水素原子である場合(すなわち、アミノ化合物(3)がアンモニアである場合)については、低沸点であるため、好ましくない。なお、基Ra及び基Rbの置換基については、それぞれ、前述の通りである。The group R a and the group R b of the amino compound (3) each independently represent a hydrogen atom, an aliphatic group having 1 to 20 carbon atoms which may have a substituent or a substituent. An aromatic group having 4 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms which may have a substituent, or 2 to 20 carbon atoms which may have a substituent It is preferably a heterocyclic group, a hydrogen atom, an aliphatic group having 1 to 10 carbon atoms which may have a substituent, and an aromatic group having 4 to 10 carbon atoms which may have a substituent. A group, an alicyclic group having 3 to 10 carbon atoms which may have a substituent, or a heterocyclic group having 2 to 10 carbon atoms which may have a substituent is preferable. . However, the case where both the group Ra and the group Rb are hydrogen atoms (that is, the case where the amino compound (3) is ammonia) is not preferable because it has a low boiling point. The substituents of the groups Ra and Rb are as described above.

aとRbとが結合する窒素原子と共に形成する飽和または不飽和の複素環の具体例としては、ピロリニル、ピロリル、2,3−ジヒドロ−1H−ピロリル、ピぺリジニル、ピペラジニル、ホモピペラジニル、モルホリノ、チオモルホリノ、1,2,4,6−テトラヒドロピリジル、ヘキサヒドロピリミジル、ヘキサヒドロピリダジル、1,2,4,6−テトラヒドロピリジル、1,2,4,6−テトラヒドロピリダジル、3,4−ジヒドロピリジル、イミダゾリル、4,5−ジヒドロ−1H−イミダゾリル、2,3−ジヒドロ−1H−イミダゾリル、ピラゾリル、4,5−ジヒドロ−1H−ピラゾリル、2,3−ジヒドロ−1H−ピラゾリル、オキサゾリル、4,5−ジヒドロ−1,3−オキサゾリル、2,3−ジヒドロ−1,3−オキサゾリル、2,5−ジヒドロ−1,3−オキサゾリル、チアゾリル、4,5−ジヒドロ−1,3−チアゾリル、2,3−ジヒドロ−1,3−チアゾリル、2,5−ジヒドロ−1,3−チアゾリル等の5〜6員環の飽和または不飽和の複素環基を挙げることができる。Specific examples of the saturated or unsaturated heterocyclic ring formed together with the nitrogen atom to which R a and R b are bonded include pyrrolinyl, pyrrolyl, 2,3-dihydro-1H-pyrrolyl, piperidinyl, piperazinyl, homopiperazinyl, morpholino , Thiomorpholino, 1,2,4,6-tetrahydropyridyl, hexahydropyrimidyl, hexahydropyridazyl, 1,2,4,6-tetrahydropyridyl, 1,2,4,6-tetrahydropyridyl , 3,4-dihydropyridyl, imidazolyl, 4,5-dihydro-1H-imidazolyl, 2,3-dihydro-1H-imidazolyl, pyrazolyl, 4,5-dihydro-1H-pyrazolyl, 2,3-dihydro-1H- Pyrazolyl, oxazolyl, 4,5-dihydro-1,3-oxazolyl, 2,3-dihydro-1,3-oxazo Ryl, 2,5-dihydro-1,3-oxazolyl, thiazolyl, 4,5-dihydro-1,3-thiazolyl, 2,3-dihydro-1,3-thiazolyl, 2,5-dihydro-1,3- Examples thereof include a 5- or 6-membered saturated or unsaturated heterocyclic group such as thiazolyl.

本発明においては、アミノ化合物が、アミノ酸もしくはその塩、又はアミノ酸エステルもしくはその塩であることが特に好ましい。本発明のアミド化合物の製造方法は、高立体化学選択的にアミド化合物を製造することができるため、アミノエステル化合物(1)と、不斉中心を有する、アミノ酸もしくはその塩、又はアミノ酸エステルもしくはその塩とを反応させることにより、高立体化学選択的にペプチドを合成することができる。前述のアミノ化合物(3)には、アミノ酸もしくはその塩、又はアミノ酸エステルもしくはその塩が含まれる。   In the present invention, the amino compound is particularly preferably an amino acid or a salt thereof, or an amino acid ester or a salt thereof. The method for producing an amide compound of the present invention can produce an amide compound with high stereochemical selectivity. Therefore, the amino ester compound (1) and an amino acid or a salt thereof, or an amino acid ester or a salt thereof having an asymmetric center are provided. By reacting with a salt, a peptide can be synthesized with high stereochemical selectivity. The amino compound (3) includes an amino acid or a salt thereof, or an amino acid ester or a salt thereof.

アミノ酸としては、特に制限されず、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、これらのうち少なくとも1種を含むアミノ酸の多量体(通常、二量体から十量体)などの公知のアミノ酸が挙げられる。また、アミノ酸のエステルとしては、これらのアミノ酸のカルボキシル基が、炭素数が1〜10の直鎖または分枝鎖状のアルキル基、プロパルギル基等の炭素数が1〜10の直鎖または分枝鎖状のアルキニル基、アリール基などでエステル化されたものなどが挙げられる。また、アミノ酸の塩またはアミノ酸エステルの塩としては、それぞれ、これらのアミノ酸又はアミノ酸エステルの塩酸塩、硫酸塩、シュウ酸塩、リン酸塩などが挙げられる。   The amino acid is not particularly limited and is alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Known amino acids such as multimers of amino acids containing at least one of these (usually dimers to decamers) are exemplified. Further, as esters of amino acids, the carboxyl group of these amino acids may be a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms, such as a propargyl group. Those esterified with a chain alkynyl group, an aryl group, or the like can be given. Examples of the salts of amino acids or salts of amino acid esters include hydrochlorides, sulfates, oxalates, and phosphates of these amino acids or amino acid esters, respectively.

本発明のアミド化合物の製造方法において、例えば、アミノエステル化合物(1)と、アミノ化合物(3)との反応は、下記反応式により示すことができる。本発明では、下記の反応により、アミド化合物(4)を好適に製造することができる。   In the method for producing an amide compound of the present invention, for example, the reaction between the amino ester compound (1) and the amino compound (3) can be represented by the following reaction formula. In the present invention, the amide compound (4) can be suitably produced by the following reaction.

Figure 2018199146
Figure 2018199146

本発明のアミド化合物の製造方法におけるアミノエステル化合物(1)とアミノ化合物とのモル比としては、特に制限されないが、アミノエステル化合物(1)1モルに対して、アミノ化合物を0.1モル〜10モル程度、好ましくは0.1モル〜5モル程度、1モル〜10モル程度、1モル〜5モル程度使用すればよい。   The molar ratio between the amino ester compound (1) and the amino compound in the method for producing an amide compound of the present invention is not particularly limited, but the molar ratio of the amino compound is 0.1 mol to 1 mol per 1 mol of the amino ester compound (1). About 10 mol, preferably about 0.1 mol to 5 mol, about 1 mol to 10 mol, and about 1 mol to 5 mol may be used.

ただし、アミド化工程の後、得られたアミド化合物(例えば、上記一般式(4)で表される化合物)において、一般式(1)で表されるアミノエステル化合物に由来するβ位の基N−O−Hをアミノ基に変換する還元工程を経て、アミノ化合物を製造し、当該アミノ化合物を、上記アミノエステル化合物(1)と反応させてジペプチドを製造する場合や、これを繰り返して、複数のペプチド結合を形成してオリゴペプチドを製造する際には、反応に用いるアミノ化合物に対して、アミノエステル化合物を過剰に用いる方が、コスト的には有利である。すなわち、本発明において、アミノエステル化合物(1)は、アミノ化合物に順次結合させるアミノ酸単位として利用することができ、アミノ酸から誘導されるアミノエステル化合物(1)(オキシム化合物又はヒドロキシアミノ化合物)は、比較的安価に用意することができる。   However, after the amidation step, in the obtained amide compound (for example, the compound represented by the general formula (4)), the group N at the β-position derived from the aminoester compound represented by the general formula (1) An amino compound is produced through a reduction step of converting —O—H into an amino group, and the amino compound is reacted with the amino ester compound (1) to produce a dipeptide. When an oligopeptide is produced by forming a peptide bond of the above, it is more cost-effective to use an amino ester compound in excess of the amino compound used in the reaction. That is, in the present invention, the amino ester compound (1) can be used as an amino acid unit sequentially bonded to the amino compound, and the amino ester compound (1) (oxime compound or hydroxyamino compound) derived from an amino acid is It can be prepared relatively inexpensively.

本発明のアミド化合物の製造方法において、触媒として用いられる金属化合物としては、アミノエステル化合物のエステル基をアミド化するアミド化工程を促進できるものであれば、特に制限されない。金属化合物としては、ルイス酸として機能する金属化合物が好ましい。   In the method for producing an amide compound of the present invention, the metal compound used as a catalyst is not particularly limited as long as it can promote the amidation step of amidating the ester group of the aminoester compound. As the metal compound, a metal compound that functions as a Lewis acid is preferable.

金属化合物を構成している金属としては、元素周期律表の第2族から第15族に位置する幅広い金属が挙げられる。金属化合物を構成している金属の具体例としては、ホウ素、マグネシウム、アルミニウム、ガリウム、インジウム、珪素、カルシウム、鉛、ビスマス、水銀の他、遷移金属、ランタノイ系元素が挙げられる。遷移金属の具体例としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金などが挙げられる。また、ランタノイド系元素の具体例としては、ランタン、セリウム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、ホルミウム、エルビウム、ツリウム、イッテルビウムなどが挙げられる。これらの中でも、優れた反応促進効果を発揮し、高立体化学選択的にアミド化合物を製造する観点から、タンタル、ホウ素、バナジウム、タングステン、ハフニウム、ニオブ、ネオジム、鉄、鉛、コバルト、銅、銀、パラジウムなどが特に好ましい。   Examples of the metal constituting the metal compound include a wide range of metals located in Groups 2 to 15 of the Periodic Table of the Elements. Specific examples of the metal constituting the metal compound include boron, magnesium, aluminum, gallium, indium, silicon, calcium, lead, bismuth, and mercury, as well as transition metals and lanthanoy elements. Specific examples of transition metals include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, hafnium, Examples include tantalum, tungsten, rhenium, osmium, iridium, platinum, gold and the like. In addition, specific examples of the lanthanoid element include lanthanum, cerium, neodymium, samarium, europium, gadolinium, holmium, erbium, thulium, ytterbium, and the like. Among them, tantalum, boron, vanadium, tungsten, hafnium, niobium, neodymium, iron, lead, cobalt, copper, silver exhibit a superior reaction promoting effect and produce an amide compound in a highly stereochemically selective manner. And palladium are particularly preferred.

触媒は、これらの金属化合物を1種類単独で含んでいてもよいし、2種類以上含んでいてもよい。   The catalyst may contain one of these metal compounds alone, or may contain two or more thereof.

特に、アミノエステル化合物(1)がオキシム化合物(11)である場合に、優れた反応促進効果を発揮し、高立体化学選択的にアミド化合物を製造する観点からは、これらの中でも、タンタル化合物、ニオブ化合物、バナジウム化合物、タングステン化合物、ハフニウム化合物、ネオジム化合物、鉄化合物、鉛化合物、コバルト化合物、及び銅化合物の少なくとも1種の金属化合物が触媒に含まれることが好ましく、タンタル化合物及びニオブ化合物の少なくとも1種が触媒に含まれることがより好ましい。   Particularly, when the amino ester compound (1) is an oxime compound (11), from the viewpoint of exhibiting an excellent reaction promoting effect and producing an amide compound with high stereochemical selectivity, among these, a tantalum compound, The catalyst preferably contains at least one metal compound of a niobium compound, a vanadium compound, a tungsten compound, a hafnium compound, a neodymium compound, an iron compound, a lead compound, a cobalt compound, and a copper compound, and at least one of a tantalum compound and a niobium compound. More preferably, one is included in the catalyst.

金属化合物の配位子としては、金属の種類に応じて適宜選択される。配位子の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などの炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;炭素数が1〜10のアリロキシ基、アセチルアセトナート基(acac)、アセトキシ基(AcO)、トリフルオロメタンスルホナート基(TfO)、炭素数が1〜10の直鎖または分枝鎖状のアルキル基、フェニル基、酸素原子、硫黄原子、基:−SR、基:−NRR’、シクロペンタジエニル(Cp)基などが挙げられる。基:−SRのRは、炭素数が1〜10程度直鎖または分枝鎖状の、アルキル基、アルケニル基、アリール基などである。基:−NRR’のR及びR’は、それぞれ独立に、水素原子、炭素数が1〜10程度直鎖または分枝鎖状の、アルキル基、アルケニル基、アリール基などである。   The ligand of the metal compound is appropriately selected according to the type of the metal. Specific examples of the ligand include a linear or branched alkoxy group having 1 to 10 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group; a fluorine atom, a chlorine atom, a bromine atom and an iodine. A halogen atom such as an atom; an alloxy group having 1 to 10 carbon atoms, an acetylacetonate group (acac), an acetoxy group (AcO), a trifluoromethanesulfonate group (TfO), and a straight or branched chain having 1 to 10 carbon atoms. Examples include a branched alkyl group, a phenyl group, an oxygen atom, a sulfur atom, a group: -SR, a group: -NRR ', and a cyclopentadienyl (Cp) group. R in the group: -SR is an alkyl group, an alkenyl group, an aryl group, or the like, having about 1 to 10 carbon atoms in a straight or branched chain. R and R 'of the group: -NRR' are each independently a hydrogen atom, a linear or branched alkyl group, alkenyl group, aryl group or the like having about 1 to 10 carbon atoms.

例えば、好ましいタンタル化合物の具体例としては、TaX1 5(但し、5つのX1は、それぞれ独立に、前記で例示した配位子である。通常、5つのX1は同じ基である)で表されるタンタル化合物が挙げられる。X1のアルコキシ基としては、好ましくは炭素数1〜10の直鎖または分枝鎖状のアルコキシ基、より好ましくは炭素数1〜5の直鎖または分枝鎖状のアルコキシ基、さらに好ましくは炭素数1〜3の直鎖または分枝鎖状のアルコキシ基が挙げられる。また、アリロキシ基としては、好ましくは炭素数1〜20のアリロキシ基、より好ましくは炭素数1〜15のアリロキシ基、さらに好ましくは炭素数1〜10のアリロキシ基が挙げられる。ハロゲン原子としては、好ましくは塩素原子、臭素原子が挙げられる。これらの中でも、タンタルアルコキシド化合物(例えば、X1がアルコキシ基)であることが好ましく、例えばTa(OMe)5、Ta(OEt)5、Ta(OBu)5、Ta(NMe25、Ta(acac)(OEt)4、TaCl5、TaBr5、TaCl4(THF)、Ta(OCH2CCH)5などが好ましい。For example, specific examples of preferred tantalum compound, TaX 1 5 (where 5 X 1 is independently a exemplified ligands above. Usually, five X 1 is the same group) at The tantalum compound represented is mentioned. As the alkoxy group for X 1 , preferably a straight-chain or branched alkoxy group having 1 to 10 carbon atoms, more preferably a straight-chain or branched alkoxy group having 1 to 5 carbon atoms, further preferably A linear or branched alkoxy group having 1 to 3 carbon atoms is exemplified. The aryloxy group is preferably an allyloxy group having 1 to 20 carbon atoms, more preferably an allyloxy group having 1 to 15 carbon atoms, and further preferably an allyloxy group having 1 to 10 carbon atoms. The halogen atom preferably includes a chlorine atom and a bromine atom. Among them, a tantalum alkoxide compound (for example, X 1 is an alkoxy group) is preferable, and for example, Ta (OMe) 5 , Ta (OEt) 5 , Ta (OBu) 5 , Ta (NMe 2 ) 5 , Ta ( Acac) (OEt) 4 , TaCl 5 , TaBr 5 , TaCl 4 (THF), Ta (OCH 2 CCH) 5 and the like are preferable.

また、好ましいニオブ化合物の具体例としては、NbX2 5(但し、5つのX2は、それぞれ独立に、前記で例示した配位子である。通常、5つのX2は同じ基である)で表されるニオブ化合物が挙げられる。X2のアルコキシ基としては、好ましくは炭素数1〜10の直鎖または分枝鎖状のアルコキシ基、より好ましくは炭素数1〜5の直鎖または分枝鎖状のアルコキシ基、さらに好ましくは炭素数1〜3の直鎖または分枝鎖状のアルコキシ基が挙げられる。また、アリロキシ基としては、好ましくは炭素数1〜20のアリロキシ基、より好ましくは炭素数1〜15のアリロキシ基、さらに好ましくは炭素数1〜10のアリロキシ基が挙げられる。ハロゲン原子としては、好ましくは塩素原子、臭素原子が挙げられる。これらの中でも、ニオブアルコキシド化合物(例えば、X2がアルコキシ基)であることが好ましく、例えばNbCl5、NbCl4(THF)、Nb(OEt)5などが好ましい。Specific examples of preferred niobium compound, NBX 2 5 (provided that the five X 2 are each independently a a exemplified ligands in. Usually, five X 2 are the same group) at The niobium compounds represented are mentioned. As the alkoxy group for X 2 , preferably a straight-chain or branched alkoxy group having 1 to 10 carbon atoms, more preferably a straight-chain or branched alkoxy group having 1 to 5 carbon atoms, still more preferably A linear or branched alkoxy group having 1 to 3 carbon atoms is exemplified. The aryloxy group is preferably an allyloxy group having 1 to 20 carbon atoms, more preferably an allyloxy group having 1 to 15 carbon atoms, and further preferably an allyloxy group having 1 to 10 carbon atoms. The halogen atom preferably includes a chlorine atom and a bromine atom. Among these, a niobium alkoxide compound (for example, X 2 is an alkoxy group) is preferable, and for example, NbCl 5 , NbCl 4 (THF), Nb (OEt) 5 and the like are preferable.

また、好ましいバナジウム化合物の具体例としては、VX3 3(但し、3つのX3は、それぞれ独立に、前記で例示した配位子である。通常、3つのX3は同じ基である)、VO(X45(但し、5つのX4は、それぞれ独立に、前記で例示した配位子である。通常、5つのX4は同じ基である)で表されるバナジウム化合物が挙げられ、例えば、VO(OEt)5などが好ましい。Specific examples of preferred vanadium compounds, VX 3 3 (provided that three X 3 are each independently exemplified ligands above. Usually, three X 3 are the same group), A vanadium compound represented by VO (X 4 ) 5 (provided that five X 4 s are each independently the ligands exemplified above; usually, five X 4 s are the same group). For example, VO (OEt) 5 is preferable.

また、好ましいハフニウム化合物の具体例としては、例えば、HfX5 4(4つのX5は、それぞれ独立に、前記で例示した配位子である。通常、4つのX5は同じ基である。)で表されるハフニウム化合物が挙げられる。X5のアルコキシ基としては、好ましくは炭素数1〜10の直鎖または分枝鎖状のアルコキシ基、より好ましくは炭素数1〜5の直鎖または分枝鎖状のアルコキシ基、さらに好ましくは炭素数1〜4の直鎖または分枝鎖状のアルコキシ基が挙げられる。また、アリロキシ基としては、好ましくは炭素数1〜20のアリロキシ基、より好ましくは炭素数1〜15のアリロキシ基、さらに好ましくは炭素数1〜10のアリロキシ基が挙げられる。ハロゲン原子としては、好ましくは塩素原子、臭素原子が挙げられる。これらの中でも、ハフニウムアルコキシド化合物(例えば、X5がアルコキシ基)であることが好ましく、例えば、Hf(OEt)4などが好ましい。Specific examples of preferred hafnium compound, for example, HFX 5 4 (four X 5 are each independently, said a exemplified ligands in. Usually, a four X 5 are the same group.) A hafnium compound represented by The alkoxy group for X 5 is preferably a straight-chain or branched alkoxy group having 1 to 10 carbon atoms, more preferably a straight-chain or branched alkoxy group having 1 to 5 carbon atoms, and still more preferably. A linear or branched alkoxy group having 1 to 4 carbon atoms is exemplified. The aryloxy group is preferably an allyloxy group having 1 to 20 carbon atoms, more preferably an allyloxy group having 1 to 15 carbon atoms, and further preferably an allyloxy group having 1 to 10 carbon atoms. The halogen atom preferably includes a chlorine atom and a bromine atom. Among these, a hafnium alkoxide compound (for example, X 5 is an alkoxy group) is preferable, and for example, Hf (OEt) 4 is preferable.

また、好ましいタングステン化合物の具体例としては、例えば、WX6 6(6つのX6は、それぞれ独立に、前記で例示した配位子である。通常、6つのX6は同じ基である。)で表されるタングステン化合物が挙げられる。X6のアルコキシ基としては、好ましくは炭素数1〜10の直鎖または分枝鎖状のアルコキシ基、より好ましくは炭素数1〜5の直鎖または分枝鎖状のアルコキシ基、さらに好ましくは炭素数1〜4の直鎖または分枝鎖状のアルコキシ基が挙げられる。また、アリロキシ基としては、好ましくは炭素数1〜20のアリロキシ基、より好ましくは炭素数1〜15のアリロキシ基、さらに好ましくは炭素数1〜10のアリロキシ基が挙げられる。ハロゲン原子としては、好ましくは塩素原子、臭素原子が挙げられる。これらの中でも、タングステンアルコキシド化合物(例えば、X6がアルコキシ基)であることが好ましく、例えば、W(OEt)6などが好ましい。Specific examples of preferred tungsten compounds, for example, WX 6 6 (6 X 6 are each independently, said a exemplified ligands in. Usually, six X 6 are the same group.) And a tungsten compound represented by the following formula: As the alkoxy group for X 6 , preferably a straight-chain or branched alkoxy group having 1 to 10 carbon atoms, more preferably a straight-chain or branched alkoxy group having 1 to 5 carbon atoms, still more preferably A linear or branched alkoxy group having 1 to 4 carbon atoms is exemplified. The aryloxy group is preferably an allyloxy group having 1 to 20 carbon atoms, more preferably an allyloxy group having 1 to 15 carbon atoms, and further preferably an allyloxy group having 1 to 10 carbon atoms. The halogen atom preferably includes a chlorine atom and a bromine atom. Among these, a tungsten alkoxide compound (for example, X 6 is an alkoxy group) is preferable, and for example, W (OEt) 6 is preferable.

また、好ましいネオジム化合物の具体例としては、例えば、NdX7 5(5つのX7は、それぞれ独立に、前記で例示した配位子である。通常、5つのX7は同じ基である。)で表されるタングステン化合物が挙げられる。X7のアルコキシ基としては、好ましくは炭素数1〜10の直鎖または分枝鎖状のアルコキシ基、より好ましくは炭素数1〜5の直鎖または分枝鎖状のアルコキシ基、さらに好ましくは炭素数1〜4の直鎖または分枝鎖状のアルコキシ基が挙げられる。また、アリロキシ基としては、好ましくは炭素数1〜20のアリロキシ基、より好ましくは炭素数1〜15のアリロキシ基、さらに好ましくは炭素数1〜10のアリロキシ基が挙げられる。ハロゲン原子としては、好ましくは塩素原子、臭素原子が挙げられる。これらの中でも、ネオジムアルコキシド化合物(例えば、X7がアルコキシ基)であることが好ましく、例えばNd(OEt)5などが好ましい。Further, specific examples of preferable neodymium compounds include, for example, NdX 7 5 (5 X 7 are each independently a ligand exemplified above. Usually, 5 X 7 are the same group). And a tungsten compound represented by the following formula: The alkoxy group represented by X 7 is preferably a straight-chain or branched-chain alkoxy group having 1 to 10 carbon atoms, more preferably a straight-chain or branched-chain alkoxy group having 1 to 5 carbon atoms, and still more preferably. A linear or branched alkoxy group having 1 to 4 carbon atoms is exemplified. The aryloxy group is preferably an allyloxy group having 1 to 20 carbon atoms, more preferably an allyloxy group having 1 to 15 carbon atoms, and further preferably an allyloxy group having 1 to 10 carbon atoms. The halogen atom preferably includes a chlorine atom and a bromine atom. Among these, a neodymium alkoxide compound (for example, X 7 is an alkoxy group) is preferable, and for example, Nd (OEt) 5 is preferable.

また、好ましい鉄化合物の具体例としては、FeX8 2(但し、2つのX8は、それぞれ独立に、前記で例示した配位子である。通常、2つのX8は同じ基である)、FeX9 3(但し、3つのX9は、それぞれ独立に、前記で例示した配位子である。通常、3つのX9は同じ基である)で表される鉄化合物が挙げられる。これらの中でも、例えばFe(OAc)2、Fe(OTf)2、Fe(OTf)3などが好ましい。Specific examples of preferred iron compound, FeX 8 2 (provided that the two X 8 are each independently exemplified ligands above. Usually, the two X 8 are the same group), An iron compound represented by FeX 9 3 (however, three X 9 are each independently the ligand exemplified above; usually, three X 9 are the same group). Among these, for example, Fe (OAc) 2 , Fe (OTf) 2 , and Fe (OTf) 3 are preferable.

また、好ましい鉛化合物の具体例としては、PbX10 2(但し、2つのX10は、それぞれ独立に、前記で例示した配位子である。通常、2つのX10は同じ基である)、PbX11 4(但し、4つのX11は、それぞれ独立に、前記で例示した配位子である。通常、4つのX11は同じ基である)で表される鉛化合物が挙げられる。これらの中でも、例えばPb(OTf)2、Pb(OAc)4などが好ましい。Specific examples of preferred lead compounds include PbX 10 2 (however, two X 10 are each independently the ligands exemplified above. Usually, two X 10 are the same group), A lead compound represented by PbX 11 4 (however, four X 11 are each independently the ligands exemplified above; usually, four X 11 are the same group). Among them, for example, Pb (OTf) 2 and Pb (OAc) 4 are preferable.

また、好ましい銅化合物の具体例としては、CuX12 2(但し、2つのX12は、それぞれ独立に、前記で例示した配位子である。通常、2つのX12は同じ基である)、CuX13(但し、X13は、前記で例示した配位子である。)で表される銅化合物が挙げられる。これらの中でも、例えばCu(Et)2、Cu(OAc)2、Cu(acac)2、CuO、CuOAc、CuSなどが好ましい。Specific examples of preferred copper compound, CuX 12 2 (provided that the two X 12 independently wherein an exemplified ligands in. Usually, the two X 12 are the same group), A copper compound represented by CuX 13 (where X 13 is a ligand exemplified above) is exemplified. Among these, for example, Cu (Et) 2 , Cu (OAc) 2 , Cu (acac) 2 , CuO, CuOAc, CuS and the like are preferable.

また、好ましいコバルト化合物の具体例としては、CoX14 2(但し、2つのX14は、それぞれ独立に、前記で例示した配位子である。通常、2つのX14は同じ基である)、CoX15 3(但し、X15は、前記で例示した配位子である。通常、3つのX15は同じ基である)で表される銅化合物が挙げられる。これらの中でも、例えばCoCl2、CoBr2などが好ましい。Specific examples of preferred cobalt compounds, CoX 14 2 (provided that the two X 14 is independently a exemplified ligands above. Usually, the two X 14 are the same group), A copper compound represented by CoX 15 3 (where X 15 is the ligand exemplified above, usually three X 15 are the same group) is exemplified. Among them, for example, CoCl 2 and CoBr 2 are preferable.

また、好ましいパラジウム化合物の具体例としては、PdX15 2(但し、2つのX15は、それぞれ独立に、前記で例示した配位子である。通常、2つのX15は同じ基である)で表されるパラジウム化合物が挙げられる。これらの中でも、例えばPd(OAc)2などが好ましい。Specific examples of preferred palladium compound, PdX 15 2 (provided that the two X 15 independently is a exemplified ligands above. Usually, two X 15 are the same groups) with The palladium compound represented is mentioned. Among them, for example, Pd (OAc) 2 is preferable.

その他、金属化合物の具体例としては、AgOAc、Pd(OAc)2、Pd(OCOCF32、Mg(OAc)2、Mg(OTf)2、AlCl3、Ca(OTf)2、Sc(OTf)3、In(OTf)3、La(OTf)3、CeCl3、Gd(OTf)3、Sm(OTf)3、Ho(OTf)3、Er(OTf)3、Tm(OTf)3、Bi(OTf)3、BF3SMe2、Ti(OBu)4、TiCl2(Oi−Pr)2、Fe(OTf)2、ZrCl4、Zr(OEt)4、Sn(OAc)2、SbCl3、SbF3、Sb(OMe)3、Sm(Oi−Pr)3などが挙げられる。In addition, specific examples of the metal compound include AgOAc, Pd (OAc) 2 , Pd (OCOCCF 3 ) 2 , Mg (OAc) 2 , Mg (OTf) 2 , AlCl 3 , Ca (OTf) 2 , Sc (OTf) 3, In (OTf) 3, La (OTf) 3, CeCl 3, Gd (OTf) 3, Sm (OTf) 3, Ho (OTf) 3, Er (OTf) 3, Tm (OTf) 3, Bi (OTf ) 3 , BF 3 SMe 2 , Ti (OBu) 4 , TiCl 2 (Oi-Pr) 2 , Fe (OTf) 2 , ZrCl 4 , Zr (OEt) 4 , Sn (OAc) 2 , SbCl 3 , SbF 3 , Sb (OMe) 3 , Sm (Oi-Pr) 3 and the like.

また、アミノエステル化合物(1)がヒドロキシアミノ化合物(12)である場合に、特に優れた反応促進効果を発揮し、高立体化学選択的にアミド化合物を製造する観点からは、触媒として用いる金属化合物としては、ホウ素化合物が好ましい。好ましいホウ素化合物の具体例としては、3,4,5−F362B(OH)2、3,5−(CF3263B(OH)2、4−(CF3)C64B(OH)2、3−NO264B(OH)2、4−NO264B(OH)2、2−IC64B(OH)2、PhB(OH)2などの芳香族ホウ酸化合物、ジクロロフェニルボラン(PhBCl2)などが挙げられる。Further, when the amino ester compound (1) is a hydroxyamino compound (12), a metal compound used as a catalyst exhibits a particularly excellent reaction promoting effect, and from the viewpoint of producing an amide compound with high stereochemical selectivity. Is preferably a boron compound. Specific examples of preferred boron compounds, 3,4,5-F 3 C 6 H 2 B (OH) 2, 3,5- (CF 3) 2 C 6 H 3 B (OH) 2, 4- (CF 3) C 6 H 4 B ( OH) 2, 3-NO 2 C 6 H 4 B (OH) 2, 4-NO 2 C 6 H 4 B (OH) 2, 2-IC 6 H 4 B (OH) 2 , aromatic boric acid compounds such as PhB (OH) 2 and dichlorophenylborane (PhBCl 2 ).

触媒は、担体に担持されていてもよい。触媒を担持する担体としては、特に制限されず、公知のものが使用できる。また、触媒を担体に担持させる方法としても、公知の方法が採用できる。   The catalyst may be supported on a carrier. The carrier for supporting the catalyst is not particularly limited, and a known carrier can be used. In addition, as a method of supporting the catalyst on the carrier, a known method can be adopted.

触媒の使用量としては、特に制限されないが、アミノエステル化合物(1)を100mol%とした場合に、20mol%以下であることが好ましく、0.1mol%〜10mol%程度であることがより好ましい。   The use amount of the catalyst is not particularly limited, but is preferably 20 mol% or less, more preferably about 0.1 mol% to 10 mol%, when the aminoester compound (1) is 100 mol%.

本発明のアミド化合物の製造方法は、反応効率を高める観点から、塩基の存在下で行ってもよい。塩基としては、特に制限されないが、例えば、トリエチルアミン(Et3N)、ジイソプロピルアミン(i−Pr2NH)、ジイソプロピルエチルアミン(i−Pr2EtN)等の炭素数1〜10の直鎖または分枝鎖状のアルキル基を1〜3個有するアミンなどが挙げられる。The method for producing an amide compound of the present invention may be performed in the presence of a base from the viewpoint of increasing the reaction efficiency. The base is not particularly limited, for example, triethylamine (Et 3 N), diisopropylamine (i-Pr 2 NH), straight-chain or branched having 1 to 10 carbon atoms, such as diisopropylethylamine (i-Pr 2 EtN) Examples thereof include amines having 1 to 3 chain alkyl groups.

塩基の使用量としては、特に制限されないが、アミノエステル化合物(1)を100mol%とした場合に、20〜120mol%程度であることが好ましく、50〜100mol%程度であることがより好ましい。   The amount of the base used is not particularly limited, but is preferably about 20 to 120 mol%, more preferably about 50 to 100 mol%, when the amount of the amino ester compound (1) is 100 mol%.

本発明のアミド化合物の製造方法は、反応効率を高める観点から、有機溶媒中で行ってもよい。有機溶媒としては、特に制限されないが、例えば、トルエン、キシレン等の芳香族炭化水素類、ペンタン、石油エーテル、1−メチルテトラヒドロフラン(1−MeTHF)、ジイソプロピルエーテル(i−Pr2O)、ジエチルエーテル(Et2O)、シクロペンチルメチルエーテル(CPME)等のエーテル類、酢酸エチル(AcOEt)等のエステル類などが挙げられる。有機溶媒は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。また、反応系中のアミノエステル化合物(1)の濃度としては、特に制限されないが、反応効率を高める観点からは、2体積%〜70体積%とすることが好ましい。The method for producing an amide compound of the present invention may be performed in an organic solvent from the viewpoint of increasing the reaction efficiency. The organic solvent is not particularly restricted but includes, for example, aromatic hydrocarbons such as toluene and xylene, pentane, petroleum ether, 1-methyltetrahydrofuran (1-MeTHF), diisopropyl ether (i-Pr 2 O), diethyl ether (Et 2 O), ethers such as cyclopentyl methyl ether (CPME), and esters such as ethyl acetate (AcOEt). One organic solvent may be used alone, or two or more organic solvents may be used in combination. The concentration of the amino ester compound (1) in the reaction system is not particularly limited, but is preferably 2% by volume to 70% by volume from the viewpoint of increasing the reaction efficiency.

また、本発明のアミド化合物の製造方法における反応温度としては、特に制限されないが、反応効率を高める観点から、0℃〜150℃程度であることが好ましい。また、反応時間としては、特に制限されないが、例えば10分間〜50時間程度が挙げられる。   The reaction temperature in the method for producing an amide compound of the present invention is not particularly limited, but is preferably about 0 ° C to 150 ° C from the viewpoint of increasing the reaction efficiency. The reaction time is not particularly limited, but may be, for example, about 10 minutes to 50 hours.

本発明のアミド化合物の製造方法は、常圧下、減圧下、加圧下のいずれでも行うことができるが、反応を簡便に行う観点からは、常圧下で行えばよい。また、アミド化合物の製造は、アルゴン、窒素などの不活性ガスの雰囲気下に行うことが好ましい。   The method for producing the amide compound of the present invention can be carried out under normal pressure, under reduced pressure, or under increased pressure. From the viewpoint of performing the reaction simply, it may be carried out under normal pressure. The production of the amide compound is preferably performed in an atmosphere of an inert gas such as argon or nitrogen.

かくして、本発明の製造方法により、アミド化合物が、好適に生成される。   Thus, the amide compound is suitably produced by the production method of the present invention.

本発明のアミド化合物の製造方法によって生成されたアミド化合物は、常法に従って精製することができ、単離して種々の用途に使用することができる。   The amide compound produced by the method for producing an amide compound of the present invention can be purified according to a conventional method, isolated and used for various purposes.

また、本発明のアミド化合物の製造方法においては、前述のアミド化工程の後、得られたアミド化合物において、アミノエステル化合物(1)に由来するβ位の基N−O−Hをアミノ基に変換する還元工程をさらに備えていてもよい。当該還元工程により、アミド化合物にアミノ基を導入することができる。   Further, in the method for producing an amide compound of the present invention, after the above-mentioned amidation step, in the obtained amide compound, the β-group NOH derived from the aminoester compound (1) is converted to an amino group. A reduction step for converting may be further provided. By the reduction step, an amino group can be introduced into the amide compound.

さらに、還元工程によりアミノ基が導入されたアミド化合物(すなわち、アミノ基を有するアミド化合物)を用い、前述の金属化合物からなる触媒の存在下に、アミノエステル化合物(1)と、当該アミノ基を有するアミド化合物とを反応させて、アミノエステル化合物(1)のエステル基をアミド化するアミド化工程を行うことができる。   Further, using an amide compound having an amino group introduced in the reduction step (that is, an amide compound having an amino group), the amino ester compound (1) and the amino group are reacted in the presence of the catalyst comprising the metal compound described above. The amidation step of amidating the ester group of the amino ester compound (1) by reacting the amide compound with the amide compound can be performed.

このように、本発明においては、繰り返して付加させるアミノエステル化合物(1)の構造を種々選択してアミド化工程を行うことにより、所望の構造を有するアミノ酸単位がペプチド結合で連結されたアミン化合物を合成し、所望のオリゴペプチドを高立体化学選択的に製造することができる。   As described above, in the present invention, the structure of the amino ester compound (1) to be repeatedly added is variously selected and the amidation step is performed, whereby the amino compound having the desired structure is linked by a peptide bond. Can be synthesized to produce a desired oligopeptide with high stereochemical selectivity.

基N−O−Hをアミノ基に変換する還元工程において、還元方法としては、特に制限されず、公知の還元方法を採用することができる。例えば、アミノエステル化合物(1)がオキシム化合物(11)である場合であれば、水素ガスの存在下に、還元触媒を用いて還元する方法が挙げられる。還元触媒としては、例えば、パラジウム、水酸化パラジウム−炭素、酸化パラジウム、酸化白金、白金−炭素、Rh−炭素、イリジウムブラックなどの金属触媒が挙げられる。同様に、アミノエステル化合物(1)がヒドロキシアミノ化合物(12)である場合にも、水素ガスの存在下に、還元触媒としてパラジウムなどの金属触媒を用いて還元する方法が挙げられる。さらに、アミノエステル化合物(1)がオキシム化合物(11)である場合、下記のとおり、オキシム基を立体選択的にアミノ基に変換することもできる。   In the reduction step of converting the group N—O—H into an amino group, the reduction method is not particularly limited, and a known reduction method can be employed. For example, when the amino ester compound (1) is the oxime compound (11), a method of reducing with the use of a reduction catalyst in the presence of hydrogen gas may be mentioned. Examples of the reduction catalyst include metal catalysts such as palladium, palladium hydroxide-carbon, palladium oxide, platinum oxide, platinum-carbon, Rh-carbon, and iridium black. Similarly, when the amino ester compound (1) is a hydroxyamino compound (12), a method of reducing the compound using a metal catalyst such as palladium as a reducing catalyst in the presence of hydrogen gas may be used. Further, when the amino ester compound (1) is an oxime compound (11), the oxime group can be stereoselectively converted to an amino group as described below.

本発明においては、下記反応式に従い、酸性溶媒中において、下記一般式(21)に示される基R5及び基R6の結合する不斉炭素原子を有するオキシム化合物(以下、オキシム化合物(21)ということがある)のオキシム基を、立体選択的にアミノ基に変換して、下記一般式(22)に示されるアミノ化合物(以下、アミノ化合物(22)ということがある)を製造する方法を提供することができる。そして、得られたアミノ化合物(22)を、本発明のアミド化合物の製造方法において、アミノエステル化合物(1)と反応させるアミノ化合物として利用することもできる。

Figure 2018199146
In the present invention, an oxime compound having an asymmetric carbon atom to which groups R 5 and R 6 represented by the following general formula (21) are bonded in an acidic solvent according to the following reaction formula (hereinafter referred to as oxime compound (21)) The oxime group of the formula (1) may be stereoselectively converted to an amino group to produce an amino compound represented by the following general formula (22) (hereinafter sometimes referred to as amino compound (22)). Can be provided. The obtained amino compound (22) can also be used as an amino compound to be reacted with the amino ester compound (1) in the method for producing an amide compound of the present invention.
Figure 2018199146

本発明においては、上記反応式に従い、酸性溶媒中で還元反応を行うことができるため、還元に供するオキシム化合物の溶媒(アルコールなどの一般的な有機溶媒)に対する溶解性が低い場合にも、酸性溶媒中に溶解性の高いものについて、還元反応を好適に進行させることができる。また、酸性溶媒は、一般に、沸点が高いため、高温環境下で反応させることも可能となる。さらに、還元反応終了後には、反応液を水と混合すれば、生成物が析出するため、精製が容易である。   In the present invention, since the reduction reaction can be carried out in an acidic solvent according to the above reaction formula, even when the solubility of the oxime compound to be subjected to the reduction in a solvent (a common organic solvent such as alcohol) is low, the acidic For those highly soluble in the solvent, the reduction reaction can be favorably advanced. In addition, since the acidic solvent generally has a high boiling point, the reaction can be performed in a high-temperature environment. Further, after the completion of the reduction reaction, if the reaction solution is mixed with water, the product is precipitated, which facilitates purification.

酸性溶媒としては、酸性環境で還元反応を進行させることができれば特に制限されず、例えば、塩酸等の鉱酸、カルボキシ基を有する有機酸を含む溶媒、さらに、カルボキシ基を有する有機酸からなる溶媒などが挙げられる。好ましい酸性溶媒の具体例としては、塩酸、酢酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、イソ吉草酸、ピバル酸、などの有機酸が挙げられる。酸性溶媒は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
該還元反応には、D−酒石酸、D,L−酒石酸、L−酒石酸、D−乳酸、D,L−乳酸、L−乳酸、D−マンデル酸、D,L−マンデル酸、L―マンデル酸等の酸を添加剤として使用してもよい。該添加剤は、還元する化合物に対して、0.1〜10当量程度使用するのがよい。
The acidic solvent is not particularly limited as long as the reduction reaction can proceed in an acidic environment, and examples thereof include a mineral acid such as hydrochloric acid, a solvent containing an organic acid having a carboxy group, and a solvent containing an organic acid having a carboxy group. And the like. Specific examples of preferred acidic solvents include organic acids such as hydrochloric acid, acetic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, and pivalic acid. The acidic solvent may be used alone or as a mixture of two or more.
The reduction reaction includes D-tartaric acid, D, L-tartaric acid, L-tartaric acid, D-lactic acid, D, L-lactic acid, L-lactic acid, D-mandelic acid, D, L-mandelic acid, L-mandelic acid And the like may be used as additives. The additive is preferably used in an amount of about 0.1 to 10 equivalents to the compound to be reduced.

また、酸性溶媒中には、他の有機溶媒が含まれていてもよい。他の有機溶媒としては、メタノール、エタノール等の低級アルコール類、酢酸エチルなどのエステル類、石油エーテル、1−メチルテトラヒドロフラン(1−MeTHF)、ジイソプロピルエーテル(i−Pr2O)、ジエチルエーテル(Et2O)、シクロペンチルメチルエーテル(CPME)等のエーテル類などが挙げられる。有機溶媒は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。Further, another organic solvent may be contained in the acidic solvent. Other organic solvents include lower alcohols such as methanol and ethanol, esters such as ethyl acetate, petroleum ether, 1-methyltetrahydrofuran (1-MeTHF), diisopropyl ether (i-Pr 2 O), and diethyl ether (Et). 2 O), and the like ethers such as cyclopentyl methyl ether (CPME). One organic solvent may be used alone, or two or more organic solvents may be used in combination.

当該還元反応においても、前述のように、水素ガスの存在下に、還元触媒として、パラジウム、水酸化パラジウム−炭素、酸化パラジウム、酸化白金、白金−炭素、Rh−炭素、イリジウムブラックなどの金属触媒を用いて還元する方法を用いることができる。   In the reduction reaction, as described above, a metal catalyst such as palladium, palladium hydroxide-carbon, palladium oxide, platinum oxide, platinum-carbon, Rh-carbon, or iridium black is used as a reduction catalyst in the presence of hydrogen gas. Can be used.

当該還元反応においては、オキシム化合物(21)の基R5及び基R6が結合している不斉炭素原子の立体構造が、オキシム基の還元の際に、α位の炭素原子の立体構造に影響を与え、α位において立体選択的にアミノ基を導入することができる。さらに、当該還元工程においては、還元触媒として不斉触媒を用いることにより、基R5及び基R6が結合している不斉炭素原子の立体構造と共に、α位の不斉炭素原子の立体構造を制御することもできる。例えば、基R5及び基R6が結合している不斉炭素原子がR体である場合に、α位の炭素原子をR体又はS体としてアミノ基を導入することができる。同様に、基R5及び基R6が結合している不斉炭素原子がS体である場合に、α位の炭素原子をR体又はS体としてアミノ基を導入することができる。水素による還元に使用する不斉触媒としては、公知のものが容易に入手可能である。In the reduction reaction, the steric structure of the asymmetric carbon atom to which the groups R 5 and R 6 of the oxime compound (21) are bonded changes to the steric structure of the carbon atom at the α-position during the reduction of the oxime group. Affected, and an amino group can be introduced stereoselectively at the α-position. Further, in the reduction step, by using an asymmetric catalyst as the reduction catalyst, the three-dimensional structure of the asymmetric carbon atom at the α-position together with the three-dimensional structure of the asymmetric carbon atom to which the groups R 5 and R 6 are bonded. Can also be controlled. For example, when the asymmetric carbon atom to which the groups R 5 and R 6 are bonded is an R-form, an amino group can be introduced with the α-position carbon atom as an R-form or an S-form. Similarly, when the asymmetric carbon atom to which the groups R 5 and R 6 are bonded is an S-form, an amino group can be introduced with the α-position carbon atom as the R-form or the S-form. As the asymmetric catalyst used for reduction with hydrogen, known catalysts can be easily obtained.

一般式(21)及び(22)において、基R2及び基Aは、それぞれ、前記の一般式(1)と同じである。In the general formulas (21) and (22), the group R 2 and the group A are the same as those in the general formula (1).

また、基R5及び基R6は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。Further, the groups R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, An alicyclic group which may have a group or a heterocyclic group which may have a substituent is shown.

また、基R7は、水酸基、基OR7a、アミノ基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示し、基R7aは、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。Further, the group R 7 is a hydroxyl group, a group OR 7a , an amino group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or a group which has a substituent. A good alicyclic group or a heterocyclic group which may have a substituent, and the group R 7a is an aliphatic group which may have a substituent or may have a substituent; It represents an aromatic group, an alicyclic group which may have a substituent, or a heterocyclic group which may have a substituent.

基R5、基R6、及び基R7が有し得る前記置換基(脂肪族基、脂環式基、及び複素環式基の置換基)としては、還元反応が進行すれば特に制限されず、それぞれ独立に、例えば、アルキル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルキル基)、アルケニル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルケニル基)、アルキニル基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルキニル基)、アルコキシ基(例えば、炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基)、水酸基、ハロゲン原子、ニトロ基、チオール基、シアノ基、アルキル基部分の炭素数が1〜10の直鎖または分枝鎖状のアルキル基であるフェニルアルキル基、炭素数が1〜10の直鎖または分枝鎖状のアルキルメルカプト基、アルコキシ基部分の炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基であるフェニルアルコキシカルボニル基、アルキル基部分の炭素数が1〜10の直鎖または分枝鎖状のアルキル基であるフェニルアルキルメルカプト基、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいグアジニル基、基−COOR1(R1は前記に同じ)、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基などが挙げられる。(ここで、置換基を有していてもよいアミノ基、置換基を有していてもよいアミド基、置換基を有していてもよいグアジニル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基における置換基は、前記基R5、R6及び基R7の定義に同じである。アリール基としては、フェニル基等が挙げられる。複素環基としては、インドリル基、イミダゾリル基等が挙げられる。)また、基R5、基R6、及び基R7における脂肪族基、芳香族基、脂環式基、または複素環式基が、置換基を有する場合、置換基の数としては特に制限されないが、それぞれ独立に、例えば、1〜10、1〜5、1〜3、1〜2、1が挙げられる。また、置換基を複数有する場合、置換基は、1種類であってもよいし、2種類以上であってもよい。なお、脂肪族基及び芳香族基は、それぞれ、ヘテロ原子を含んでいてもよい。また、脂肪族基、脂環式基、及び複素環式基は、それぞれ、飽和であってもよいし、不飽和であってもよい。The substituents (substituents of an aliphatic group, an alicyclic group, and a heterocyclic group) that the groups R 5 , R 6 , and R 7 may have are not particularly limited as long as the reduction reaction proceeds. Independently, for example, an alkyl group (for example, a linear or branched alkyl group having 1 to 10 carbon atoms) and an alkenyl group (for example, a linear or branched chain group having 1 to 10 carbon atoms) Alkenyl group), an alkynyl group (for example, a linear or branched alkynyl group having 1 to 10 carbon atoms), an alkoxy group (for example, a linear or branched chain having 1 to 10 carbon atoms) An alkoxy group), a hydroxyl group, a halogen atom, a nitro group, a thiol group, a cyano group, a phenylalkyl group which is a straight-chain or branched alkyl group having 1 to 10 carbon atoms in the alkyl group portion, and having 1 to 1 carbon atoms. 10 linear or branched alkyl mercapto groups, A phenylalkoxycarbonyl group, which is a linear or branched alkoxy group having 1 to 10 carbon atoms in a alkoxy group portion, a linear or branched alkyl group having 1 to 10 carbon atoms in an alkyl group portion; A phenylalkyl mercapto group, an amino group which may have a substituent, an amide group which may have a substituent, a guanidinyl group which may have a substituent, a group -COOR 1 (R 1 is The same applies to the above), an aryl group which may have a substituent, a heterocyclic group which may have a substituent, and the like. (Here, an amino group which may have a substituent, an amide group which may have a substituent, a guanidinyl group which may have a substituent, and an aryl which may have a substituent The substituents in the group and the heterocyclic group which may have a substituent are the same as the definitions of the groups R 5 , R 6 and the group R 7. Examples of the aryl group include a phenyl group. Examples of the cyclic group include an indolyl group and an imidazolyl group.) Further, the aliphatic group, the aromatic group, the alicyclic group, or the heterocyclic group in the groups R 5 , R 6 , and R 7 is When it has a substituent, the number of substituents is not particularly limited, but for example, each independently includes, for example, 1 to 10, 1 to 5, 1 to 3, 1 to 2, and 1. In the case of having a plurality of substituents, one type of substituent may be used, or two or more types may be used. In addition, the aliphatic group and the aromatic group may each contain a hetero atom. The aliphatic group, alicyclic group, and heterocyclic group may be saturated or unsaturated, respectively.

基R5及び基R6としては、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい炭素数が1〜20の脂肪族基、置換基を有していてもよい炭素数が4〜20の芳香族基、置換基を有していてもよい炭素数が3〜20の脂環式基、または置換基を有していてもよい炭素数が2〜20の複素環式基であることが好ましく、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい炭素数が1〜10の脂肪族基、置換基を有していてもよい炭素数が4〜10の芳香族基、置換基を有していてもよい炭素数が3〜10の脂環式基、または置換基を有していてもよい炭素数が2〜10の複素環式基であることがより好ましい。基R5及び基R6の具体例としては、それぞれ独立に、水素原子、水酸基、ニトロ基、チオール基、シアノ基、フェニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などの炭素数が1〜10のアルキル直鎖または分枝鎖状の基;エチレン基、プロピレン基、ブチレン基などの炭素数が1〜10の直鎖または分枝鎖状のアルケニル基;プロパルギル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキニル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基などの炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基などが挙げられる。As the groups R 5 and R 6 , each independently represents a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group having 1 to 20 carbon atoms which may have a substituent or a substituent. An aromatic group having 4 to 20 carbon atoms, an alicyclic group having 3 to 20 carbon atoms which may have a substituent, or 2 to 20 carbon atoms which may have a substituent It is preferably a heterocyclic group, a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group having 1 to 10 carbon atoms which may have a substituent, and a carbon number which may have a substituent. An aromatic group having 4 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms which may have a substituent, or a heterocyclic group having 2 to 10 carbon atoms which may have a substituent Is more preferable. Specific examples of the group R 5 and the group R 6 each independently include a hydrogen atom, a hydroxyl group, a nitro group, a thiol group, a cyano group, and a phenyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; A linear or branched alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group or a butyl group; a carbon atom having 1 to 10 carbon atoms such as an ethylene group, a propylene group or a butylene group; A linear or branched alkenyl group having 1 to 10 carbon atoms such as a propargyl group; a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a sec-butoxy group And a tert-butoxy group, such as a linear or branched alkoxy group having 1 to 10 carbon atoms.

基R7としては、水酸基、基OR7a、アミノ基、置換基を有していてもよい炭素数が1〜20の脂肪族基、置換基を有していてもよい炭素数が4〜20の芳香族基、置換基を有していてもよい炭素数が3〜20の脂環式基、または置換基を有していてもよい炭素数が2〜20の複素環式基であることが好ましく、水酸基、基OR7a、アミノ基、置換基を有していてもよい炭素数が1〜10の脂肪族基、置換基を有していてもよい炭素数が4〜10の芳香族基、置換基を有していてもよい炭素数が3〜10の脂環式基、または置換基を有していてもよい炭素数が2〜10の複素環式基であることがより好ましい。Examples of the group R 7 include a hydroxyl group, a group OR 7a , an amino group, an aliphatic group having 1 to 20 carbon atoms which may have a substituent, and an aliphatic group having 4 to 20 carbon atoms which may have a substituent. An aromatic group, an alicyclic group having 3 to 20 carbon atoms which may have a substituent, or a heterocyclic group having 2 to 20 carbon atoms which may have a substituent Is preferably a hydroxyl group, a group OR 7a , an amino group, an aliphatic group having 1 to 10 carbon atoms which may have a substituent, and an aromatic group having 4 to 10 carbon atoms which may have a substituent. It is more preferable that the group is an alicyclic group having 3 to 10 carbon atoms which may have a substituent or a heterocyclic group having 2 to 10 carbon atoms which may have a substituent. .

基OR7aのR7aとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキル基、フェニル基などが挙げられる。 Examples of R 7a in the group OR 7a include a linear or branched alkyl group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, and a phenyl group.

基R7の具体例としては、それぞれ独立に、水酸基、アミノ基、フェニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキル基;エチレン基、プロピレン基、ブチレン基などの炭素数が1〜10直鎖または分枝鎖状のアルケニル基;プロパルギル基などの炭素数が1〜10の直鎖または分枝鎖状のアルキニル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基などの炭素数が1〜10の直鎖または分枝鎖状のアルコキシ基、フェニル基などが挙げられる。Specific examples of the group R 7 include, independently of each other, a hydroxyl group, an amino group, a phenyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. A linear or branched alkyl group having 1 to 10 carbon atoms such as a group; a linear or branched alkenyl group having 1 to 10 carbon atoms such as an ethylene group, a propylene group or a butylene group; a propargyl group A linear or branched alkynyl group having 1 to 10 carbon atoms such as methoxy group, ethoxy group, propoxy group, butoxy group, sec-butoxy group, tert-butoxy group; A straight-chain or branched alkoxy group, a phenyl group and the like can be mentioned.

アミノ化合物(22)の製造において、還元触媒の使用量としては、特に制限されないが、オキシム化合物(21)を100wt%とした場合に、30wt%以下であることが好ましく、0.1wt%〜10wt%程度であることがより好ましい。   In the production of the amino compound (22), the amount of the reduction catalyst to be used is not particularly limited. % Is more preferable.

また、反応系中のオキシム化合物(21)の濃度としては、特に制限されないが、反応効率を高める観点からは、2体積%〜70体積%とすることが好ましい。   The concentration of the oxime compound (21) in the reaction system is not particularly limited, but is preferably 2% by volume to 70% by volume from the viewpoint of increasing the reaction efficiency.

また、アミノ化合物(22)の製造における反応温度としては、特に制限されないが、反応効率を高める観点から、0℃〜150℃程度であることが好ましい。また、反応時間としては、特に制限されないが、例えば10分間〜60時間程度が挙げられる。   The reaction temperature in the production of the amino compound (22) is not particularly limited, but is preferably about 0 ° C to 150 ° C from the viewpoint of increasing the reaction efficiency. The reaction time is not particularly limited, but may be, for example, about 10 minutes to 60 hours.

本発明のアミド化合物の製造方法は、常圧下、減圧下、加圧下のいずれでも行うことができるが、反応を簡便に行う観点からは、常圧下で行えばよい。   The method for producing the amide compound of the present invention can be carried out under normal pressure, under reduced pressure, or under increased pressure. From the viewpoint of performing the reaction simply, it may be carried out under normal pressure.

以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。なお、以下の実施例において、それぞれ、catは触媒、r.t.は室温(約23℃)を意味する。また、特に断りの無い限り、収率は、ドデカンを内部標準としたGC分析法、または、テトラメチルシランまたは、重クロロホルムを内部標準とした1H NMR分析法、または、クロマトを用いて単離することにより求めた値である。また、生成物の同定は、1H NMR分析法及び液体クロマトグラム質量分析法(LC―MS)により行った。Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiments. In the following examples, cat is a catalyst and r. t. Means room temperature (about 23 ° C.). Unless otherwise specified, the yield was determined by GC analysis using dodecane as an internal standard, 1 H NMR analysis using tetramethylsilane or deuterated chloroform as an internal standard, or chromatography. It is a value obtained by performing The product was identified by 1 H NMR analysis and liquid chromatography mass spectrometry (LC-MS).

<実施例1:オキシム化合物とアラニンメチルエステルとのアミド化反応(触媒の検討)>
下記式に示すように、窒素ガス雰囲気下、触媒としての表1に示す金属化合物(10mol%)及びトルエン溶媒(2.5mL)の存在下、オキシム化合物1(0.5mmol)と、アミノ化合物としてのL−アラニンメチルエステル(L−Ala−OMe)3.0当量とを、100℃下に24時間反応させて、下記式6aで表されるアミド化合物(ジペプチド前駆体)を合成した。収率を表1に示す。
<Example 1: Amidation reaction between oxime compound and alanine methyl ester (examination of catalyst)>
As shown in the following formula, in a nitrogen gas atmosphere, in the presence of a metal compound (10 mol%) shown in Table 1 as a catalyst and a toluene solvent (2.5 mL), an oxime compound 1 (0.5 mmol) and an amino compound Was reacted with 3.0 equivalents of L-alanine methyl ester (L-Ala-OMe) at 100 ° C. for 24 hours to synthesize an amide compound (dipeptide precursor) represented by the following formula 6a. The yield is shown in Table 1.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

<実施例2:オキシム化合物とアラニンt−ブチルエステル塩酸塩とのアミド化反応(触媒の検討)>
下記式に示す条件にて、窒素ガス雰囲気下、触媒としてのTa(OEt)5(2mol%)と、塩基としてのトリエチルアミン(Et3N)1当量の存在下、下記式のオキシム化合物1(1.05当量)と、アミノ化合物としてのL−アラニンt−ブチルエステル塩酸塩(H−L−Ala−Ot−Bu・HCl)1.0mmolとを、50℃下に24時間反応させて、下記式6bで表されるアミド化合物(ジペプチド前駆体)を合成した。収率を表2に示す。
<Example 2: Amidation reaction between oxime compound and alanine t-butyl ester hydrochloride (examination of catalyst)>
Oxime compound 1 (1) of the following formula under the conditions shown in the following formula under a nitrogen gas atmosphere in the presence of Ta (OEt) 5 (2 mol%) as a catalyst and 1 equivalent of triethylamine (Et 3 N) as a base. 0.05 equivalents) and 1.0 mmol of L-alanine t-butyl ester hydrochloride (HL-Ala-Ot-Bu.HCl) as an amino compound were reacted at 50 ° C for 24 hours to obtain the following formula An amide compound (dipeptide precursor) represented by 6b was synthesized. The yield is shown in Table 2.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

<実施例3:オキシム化合物とフェニルアラニンメチルエステルのアミド化反応(触媒の検討)>
下記式に示すように、窒素ガス雰囲気下、触媒としての表3に示す金属化合物(10mol%)及びトルエン溶媒(2.5mL)の存在下、オキシム化合物1(0.5mmol)と、アミノ化合物としてのL−フェニルアラニンメチルエステル(L−Phe−OMe)3.0当量とを、100℃下に24時間反応させて、下記式6cで表されるアミド化合物(ジペプチド前駆体)を合成した。収率を表3に示す。
<Example 3: Amidation reaction between oxime compound and phenylalanine methyl ester (examination of catalyst)>
As shown in the following formula, in a nitrogen gas atmosphere, in the presence of a metal compound (10 mol%) shown in Table 3 as a catalyst and a toluene solvent (2.5 mL), an oxime compound 1 (0.5 mmol) and an amino compound And 3.0 equivalents of L-phenylalanine methyl ester (L-Phe-OMe) were reacted at 100 ° C. for 24 hours to synthesize an amide compound (dipeptide precursor) represented by the following formula 6c. The yield is shown in Table 3.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

<比較例1:オキシム化合物とL−フェニルアラニンメチルエステルとのアミド化反応(触媒なし)>
実施例3において、触媒を用いなかったこと以外は、実施例3と同様にして、オキシム化合物とL−フェニルアラニンメチルエステルとのアミド化反応行ったところ、アミド化合物の収率は1%未満であった。
<Comparative Example 1: Amidation reaction between oxime compound and L-phenylalanine methyl ester (without catalyst)>
When the amidation reaction of the oxime compound and L-phenylalanine methyl ester was carried out in the same manner as in Example 3 except that the catalyst was not used in Example 3, the yield of the amide compound was less than 1%. Was.

表3において、注釈aについては、反応溶媒のトルエンを2.0mL使用した。注釈bについては、反応溶媒のトルエンを1.5mL使用した。   In Table 3, for annotation a, 2.0 mL of toluene as a reaction solvent was used. For annotation b, 1.5 mL of the reaction solvent toluene was used.

<実施例4:オキシム化合物とL−アラニンt−ブチルエステル塩酸塩とのマイクロウェーブを用いたアミド化反応>
下記式に示すように、窒素ガス雰囲気下、表4に記載の反応条件(additional conditions)において、触媒としてのNb(OEt)5(2.0mol%)、塩基としてのトリエチルアミン(Et3N)1当量の存在下、オキシム化合物1と、アミノ化合物としてのL−アラニンt−ブチルエステル塩酸塩(H−L−Ala−Ot−Bu・HCl)1.0mmolとを、50℃下にマイクロウェーブ下(MW)に反応させて、下記式6bで表されるアミド化合物(ジペプチド前駆体)を合成した。収率を表4に示す。
<Example 4: Amidation reaction of oxime compound and L-alanine t-butyl ester hydrochloride using microwave>
As shown in the following formula, Nb (OEt) 5 (2.0 mol%) as a catalyst and triethylamine (Et 3 N) 1 as a base under a nitrogen gas atmosphere under the reaction conditions (additional conditions) shown in Table 4 In the presence of an equivalent amount, the oxime compound 1 and 1.0 mmol of L-alanine t-butyl ester hydrochloride (HL-Ala-Ot-Bu.HCl) as an amino compound were subjected to microwave treatment at 50 ° C under a microwave ( MW) to synthesize an amide compound (dipeptide precursor) represented by the following formula 6b. The yield is shown in Table 4.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

表4において、注釈aについては、H−L−Ala−Ot−Bu・HClを0.5mmol用いた。また、CPMEは、シクロペンチルメチルエーテルを意味する。   In Table 4, for annotation a, 0.5 mmol of HL-Ala-Ot-Bu.HCl was used. CPME means cyclopentyl methyl ether.

<実施例5:オキシム化合物とL−アラニンt−ブチルエステル塩酸塩とのアミド化反応(塩基の検討)>
下記式に示すように、窒素ガス雰囲気下、触媒としてのTa(OEt)5(2mol%)
と、塩基としてのジイソプロピルアミン(i−Pr2NH)1当量の存在下、オキシム化合物1(1.05当量)と、L−アラニンt−ブチルエステル塩酸塩(H−L−Ala−Ot−Bu・HCl)1.0mmolとを、50℃下に24時間反応させて、下記式6bで表されるアミド化合物を合成した。
<Example 5: Amidation reaction between oxime compound and L-alanine t-butyl ester hydrochloride (examination of base)>
As shown in the following formula, Ta (OEt) 5 (2 mol%) as a catalyst under a nitrogen gas atmosphere
And oxime compound 1 (1.05 eq.) And L-alanine t-butyl ester hydrochloride (HL-Ala-Ot-Bu) in the presence of 1 eq. Of diisopropylamine (i-Pr 2 NH) as a base -HCl) was reacted with 1.0 mmol at 50 ° C for 24 hours to synthesize an amide compound represented by the following formula 6b.

Figure 2018199146
Figure 2018199146

<実施例6:オキシム化合物とL−アラニンt−ブチルエステル塩酸塩とのアミド化反応(基質の検討)>
下記式に示すように、窒素ガス雰囲気下、触媒(表5に記載の量)としてのNb(OEt)5、塩基としてのトリエチルアミン(Et3N)1当量の存在下、オキシム化合物1bと、アミノ化合物としてのL−アラニンt−ブチルエステル塩酸塩(H−L−Ala−Ot−Bu・HCl)1.0mmolとを、50℃下に24時間反応させて、下記式6bで表されるアミド化合物を合成した。収率を表5に示す。
<Example 6: Amidation reaction between oxime compound and L-alanine t-butyl ester hydrochloride (examination of substrate)>
As shown in the following formula, in the presence of Nb (OEt) 5 as a catalyst (amount shown in Table 5) and 1 equivalent of triethylamine (Et 3 N) as a base under an atmosphere of nitrogen gas, an oxime compound 1b and an amino acid An amide compound represented by the following formula 6b is reacted with 1.0 mmol of L-alanine t-butyl ester hydrochloride (HL-Ala-Ot-Bu.HCl) as a compound at 50 ° C for 24 hours. Was synthesized. The yield is shown in Table 5.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

<実施例7:オキシム化合物とアミノ酸t−ブチルエステル塩酸塩とのアミド化反応(基質の検討1)>
下記反応式に示すように、窒素ガス雰囲気下、触媒としてのNb(OEt)5(2mol%)と、塩基としてのトリエチルアミン(Et3N)1当量の存在下、下記式の各種オキシム化合物(それぞれ1.05当量)と、下記式の各種アミノ酸t−ブチルエステル塩酸塩1.0mmolとを、50℃下に24時間反応させて、各種アミド化合物2(ジペプチド前駆体)を合成した。合成した各アミド化合物(2b)〜(2sc)は下記に示す通りである。なお、下記式中において、原料として用いたオキシム化合物の基R2及びアミノ化合物の基R1は、それぞれ、生成した各アミド化合物(2b)〜(2sc)の基R2及び基R1に対応している。収率は生成した各アミド化合物と共に示す。
<Example 7: Amidation reaction between oxime compound and amino acid t-butyl ester hydrochloride (examination of substrate 1)>
As shown in the following reaction formula, in a nitrogen gas atmosphere, in the presence of Nb (OEt) 5 (2 mol%) as a catalyst and 1 equivalent of triethylamine (Et 3 N) as a base, various oxime compounds of the following formulas (each 1.05 equivalents) and 1.0 mmol of various amino acid t-butyl ester hydrochlorides of the following formula were reacted at 50 ° C. for 24 hours to synthesize various amide compounds 2 (dipeptide precursors). The synthesized amide compounds (2b) to (2sc) are as shown below. Note that in the following formulas, the radicals R 1 of R 2 and the amino compound of the oxime compound used as the starting material, respectively, correspond to the radicals R 2 and groups R 1 of the amide compound produced (2b) ~ (2sc) are doing. The yield is shown together with each amide compound produced.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

上記の各アミド化合物(2b)〜(2sc)の式において、各注釈は次のとおりである。aについては80℃で反応を行った。また、bについては、収率は1H NMR分析で測定した。cについては、触媒を4mol%使用した。dについては、塩基を存在させずに、アミノ化合物としてアミノ酸:H−Tyr−Ot−Buを用い、アミノ酸の塩酸塩を用いなかった。eについては、70℃で反応を行った。fについては、触媒を3mol%使用した。gについては、回転異性体の割合は1H NMR分析で測定した。hについては、触媒を5mol%使用した。In the above formulas of the amide compounds (2b) to (2sc), the respective annotations are as follows. For a, the reaction was carried out at 80 ° C. For b, the yield was measured by 1 H NMR analysis. For c, 4 mol% of the catalyst was used. As for d, the amino acid: H-Tyr-Ot-Bu was used as the amino compound without using a base, and the hydrochloride of the amino acid was not used. Regarding e, the reaction was carried out at 70 ° C. For f, 3 mol% of the catalyst was used. For g, the rotamer ratio was determined by 1 H NMR analysis. For h, the catalyst was used at 5 mol%.

<実施例8:オキシム化合物とアミノ酸t−ブチルエステル塩酸塩とのアミド化反応(基質の検討2)>
下記反応式に示すように、窒素ガス雰囲気下、触媒としてのNb(OEt)5(2mol%)と、塩基としてのトリエチルアミン(Et3N)1当量の存在下、下記式の各種オキシム化合物(それぞれ1.05当量)と、下記式の各種アミノ酸t−ブチルエステル塩酸塩1.0mmolとを、50℃下に24時間反応させて、各種アミド化合物2(ジペプチド前駆体)を合成した。合成した各アミド化合物(2t)〜(2y)は下記に示す通りである。なお、下記式中において、原料として用いたオキシム化合物の基R2及びアミノ化合物の基R1は、それぞれ、生成した各アミド化合物(2t)〜(2y)の基R2及び基R1に対応している。収率は生成した各アミド化合物と共に示す。
<Example 8: Amidation reaction between oxime compound and amino acid t-butyl ester hydrochloride (examination of substrate 2)>
As shown in the following reaction formula, in a nitrogen gas atmosphere, in the presence of Nb (OEt) 5 (2 mol%) as a catalyst and 1 equivalent of triethylamine (Et 3 N) as a base, various oxime compounds of the following formulas (each 1.05 equivalents) and 1.0 mmol of various amino acid t-butyl ester hydrochlorides of the following formula were reacted at 50 ° C. for 24 hours to synthesize various amide compounds 2 (dipeptide precursors). The synthesized amide compounds (2t) to (2y) are as shown below. Note that in the following formulas, the radicals R 1 of R 2 and the amino compound of the oxime compound used as the starting material, respectively, correspond to the radicals R 2 and groups R 1 of the amide compound produced (2t) ~ (2y) are doing. The yield is shown together with each amide compound produced.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

注釈aに関しては、触媒を5mol%、反応時間を48時間、反応温度を80℃とした。   For annotation a, the catalyst was 5 mol%, the reaction time was 48 hours, and the reaction temperature was 80 ° C.

<実施例9:オキシム化合物とアミノ酸t−ブチルエステル塩酸塩とのアミド化反応(基質の検討3)>
下記反応式に示すように、窒素ガス雰囲気下、触媒としてのNb(OEt)5(5mol%)と、塩基としてのトリエチルアミン(Et3N)1当量の存在下、下記式の各種オキシム化合物(それぞれ1.05当量)と、下記式の各種アミノ酸t−ブチルエステル塩酸塩1.0mmolとを、50℃下に24時間反応させて、各種アミド化合物21(ジペプチド前駆体)を合成した。なお、下記式中において、原料として用いたオキシム化合物の基R4は、生成したアミド化合物の基R4に対応している。収率は生成した各アミド化合物と共に示す。
<Example 9: Amidation reaction between oxime compound and amino acid t-butyl ester hydrochloride (examination of substrate 3)>
As shown in the following reaction formula, in a nitrogen gas atmosphere, in the presence of Nb (OEt) 5 (5 mol%) as a catalyst and 1 equivalent of triethylamine (Et 3 N) as a base, various oxime compounds of the following formulas (each 1.05 equivalents) and 1.0 mmol of various amino acid t-butyl ester hydrochlorides of the following formula were reacted at 50 ° C. for 24 hours to synthesize various amide compounds 21 (dipeptide precursors). Note that in the following formulas, radical R 4 of the oxime compound used as the starting material corresponds to the group R 4 of the resulting amide compound. The yield is shown together with each amide compound produced.

Figure 2018199146
Figure 2018199146

<実施例10:オキシム化合物とアミノ酸t−ブチルエステル塩酸塩とのアミド化反応(基質の検討4)>
下記反応式に示すように、窒素ガス雰囲気下、触媒としてのNb(OEt)5(5mol%)と、塩基としてのトリエチルアミン(Et3N)1当量の存在下、下記式の各種オキシム化合物(1.05当量)と、下記式のアミノ酸t−ブチルエステル塩酸塩1.0mmolとを、50℃下に24時間反応させて、アミド化合物23(ジペプチド前駆体)を合成した。なお、下記式中において、原料として用いたオキシム化合物の基R4は、生成したアミド化合物の基R4に対応している。収率は生成した各アミド化合物と共に示す。
<Example 10: Amidation reaction between oxime compound and amino acid t-butyl ester hydrochloride (examination of substrate 4)>
As shown in the following reaction formula, in a nitrogen gas atmosphere, in the presence of Nb (OEt) 5 (5 mol%) as a catalyst and 1 equivalent of triethylamine (Et 3 N) as a base, various oxime compounds (1 (0.05 equivalents) and 1.0 mmol of the amino acid t-butyl ester hydrochloride of the following formula were reacted at 50 ° C. for 24 hours to synthesize an amide compound 23 (dipeptide precursor). Note that in the following formulas, radical R 4 of the oxime compound used as the starting material corresponds to the group R 4 of the resulting amide compound. The yield is shown together with each amide compound produced.

Figure 2018199146
Figure 2018199146

<実施例11:オキシム化合物(ジペプチド誘導体)からアミノ化合物(ジペプチド)の合成(立体選択的水素化反応の検討)>
下記反応式に示す条件にて、触媒としてのPd(OH)2/C、水素ガス(1atm)雰囲気下、酢酸溶液中で下記式のオキシム化合物2のオキシム基について、立体選択的水素化反応を行ない、アミノ化合物5を合成した。合成した各アミノ化合物(5a)〜(5r)は下記に示す通りである。なお、下記式中において、原料として用いたオキシム化合物の基R1は、生成した各アミノ化合物(5a)〜(5r)の基R1に対応している。収率は生成した各アミノ化合物と共に示す。
<Example 11: Synthesis of amino compound (dipeptide) from oxime compound (dipeptide derivative) (investigation of stereoselective hydrogenation reaction)>
Under the conditions shown in the following reaction formula, a stereoselective hydrogenation reaction is carried out on an oxime group of the oxime compound 2 of the following formula in an acetic acid solution under an atmosphere of Pd (OH) 2 / C as a catalyst and hydrogen gas (1 atm). Then, amino compound 5 was synthesized. The synthesized amino compounds (5a) to (5r) are as shown below. In the following formula, the group R 1 of the oxime compound used as a raw material corresponds to the group R 1 of each of the generated amino compounds (5a) to (5r). The yield is shown with each amino compound produced.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146
Figure 2018199146
Figure 2018199146

注釈aに関して、上記の各アミノ化合物(5a)〜(5r)のジアステレオ比は、1H NMR分析により測定した。注釈bに関しては、得られたジペプチドを酢酸塩として単離した。注釈cに関しては、シリカゲルクロマトグラフィにより精製後分析した。注釈dに関しては、ジエチルエーテルで再結晶後分析した。注釈eに関しては、溶媒を4N−HCl/CPME:酢酸=1:9とした。Regarding annotation a, the diastereomeric ratio of each of the above amino compounds (5a) to (5r) was measured by 1 H NMR analysis. For annotation b, the resulting dipeptide was isolated as acetate. The annotation c was analyzed after purification by silica gel chromatography. The annotation d was analyzed after recrystallization from diethyl ether. For annotation e, the solvent was 4N HCl / CPME: acetic acid = 1: 9.

<実施例12:ヒドロキシアミン化合物とL−アラニンメチルエステルとのアミド化反応(触媒の検討)>
下記式に示すように、表6に記載の触媒(10mol%)の存在下、下記式のヒドロキシアミン化合物7(0.25mmol, er=98.5:1.5)と、アミノ化合物としてのL−アラニンメチルエステル8(0.375mmol,1.5当量)とを、トルエン溶媒(1mL)中、100℃で16時間反応させて、下記式9で表されるアミド化合物(ジペプチド前駆体)を合成した。収率を表6に示す。
<Example 12: Amidation reaction between hydroxyamine compound and L-alanine methyl ester (examination of catalyst)>
As shown in the following formula, a hydroxyamine compound 7 (0.25 mmol, er = 98.5: 1.5) of the following formula and L as an amino compound in the presence of the catalyst (10 mol%) shown in Table 6 -Alanine methyl ester 8 (0.375 mmol, 1.5 equivalents) was reacted in toluene solvent (1 mL) at 100 ° C. for 16 hours to synthesize an amide compound (dipeptide precursor) represented by the following formula 9. did. The yield is shown in Table 6.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

表6において、収率は、Entry6以外は、単離収率である。Entry6は、1H NMR分析で測定した。ジアステレオ比は、キラルHPLC分析により測定された値である。また、Entry1については、ヒドロキシアミン化合物のerは95:5である。In Table 6, the yields are isolation yields except for Entry 6. Entry 6 was measured by 1 H NMR analysis. The diastereomer ratio is a value measured by chiral HPLC analysis. For Entry 1, the er of the hydroxyamine compound is 95: 5.

<比較例2:ヒドロキシアミン化合物とL−アラニンメチルエステルとのアミド化反応(触媒なし)>
実施例9において、触媒を用いなかったこと以外は、実施例9と同様にして、ヒドロキシアミン化合物とL−アラニンメチルエステルとのアミド化反応行ったところ、アミド化合物の収率は1%未満であった。
<Comparative Example 2: Amidation reaction between hydroxyamine compound and L-alanine methyl ester (without catalyst)>
In Example 9, an amidation reaction between the hydroxyamine compound and L-alanine methyl ester was performed in the same manner as in Example 9 except that no catalyst was used. As a result, the yield of the amide compound was less than 1%. there were.

<実施例13:ヒドロキシアミン化合物とL−アラニンt−ブチルエステルとのアミド化反応(触媒の検討)>
下記式に示すように、触媒としてのジクロロフェニルボラン(PhBCl2)(10mol%)の存在下、下記式のヒドロキシアミン化合物(0.25mmol,er=95:5)と、アミノ化合物としてL−アラニンt−ブチルエステル(3.0当量)とを、トルエン溶媒(1mL)中、100℃で18時間反応させて、下記式で表されるアミド化合物11a(ジペプチド前駆体)を合成した。なお、下記式のヒドロキシアミン化合物11aにおいて、Bnはベンジル基を意味する。
<Example 13: Amidation reaction between hydroxyamine compound and L-alanine t-butyl ester (examination of catalyst)>
As shown in the following formula, in the presence of dichlorophenylborane (PhBCl 2 ) (10 mol%) as a catalyst, a hydroxyamine compound (0.25 mmol, er = 95: 5) of the following formula and L-alanine t as an amino compound -Butyl ester (3.0 equivalents) was reacted in a toluene solvent (1 mL) at 100 ° C. for 18 hours to synthesize an amide compound 11a (dipeptide precursor) represented by the following formula. In the hydroxyamine compound 11a of the following formula, Bn means a benzyl group.

Figure 2018199146
Figure 2018199146

<実施例14:ヒドロキシアミン化合物と各種アミノ酸t−ブチルエステルとのアミド化反応(アミノ化合物の検討)>
下記式に示すように、触媒としての3,4,5−トリフルオロフェニルボロン酸(12mol%)の存在下、下記式のヒドロキシアミン化合物7(0.25mmol,er=95:5)と、アミノ化合物としての各種アルミ酸のt−ブチルエステル10a,10b,10c((0.75mmol,3当量)とを、トルエン溶媒(1mL)中、100℃で16時間反応させて、下記式で表される各アミド化合物11a,11b,11c(ジペプチド前駆体)をそれぞれ合成した。なお、下記式のヒドロキシアミン化合物において、Bnはベンジル基を意味する。
<Example 14: Amidation reaction between hydroxyamine compound and various amino acid t-butyl esters (investigation of amino compound)>
As shown in the following formula, in the presence of 3,4,5-trifluorophenylboronic acid (12 mol%) as a catalyst, a hydroxyamine compound 7 (0.25 mmol, er = 95: 5) The t-butyl esters 10a, 10b, and 10c ((0.75 mmol, 3 equivalents)) of various kinds of aluminum acids as compounds are reacted in a toluene solvent (1 mL) at 100 ° C. for 16 hours, and represented by the following formula. Each of the amide compounds 11a, 11b, 11c (dipeptide precursor) was synthesized, and in the hydroxyamine compound of the following formula, Bn represents a benzyl group.

Figure 2018199146
Figure 2018199146

<実施例15:ヒドロキシアミン化合物(ジペプチド誘導体)からアミノ化合物(ジペプチド)の合成(立体選択的水素化反応の検討)>
下記反応式に示す条件にて、触媒としてのPd(OH)2/C、水素ガス(1atm)雰囲気下、酢酸溶液中で下記式のヒドロキシアミン化合物11aのヒドロキシアミノ基を、アミノ基に変換して、アミノ化合物12a(ジペプチド)を合成した。なお、下記式のヒドロキシアミン化合物において、Bnはベンジル基を意味する。
<Example 15: Synthesis of amino compound (dipeptide) from hydroxyamine compound (dipeptide derivative) (investigation of stereoselective hydrogenation reaction)>
Under the conditions shown in the following reaction formula, the hydroxyamino group of the hydroxyamine compound 11a of the following formula was converted into an amino group in an acetic acid solution under an atmosphere of Pd (OH) 2 / C as a catalyst and hydrogen gas (1 atm). Thus, the amino compound 12a (dipeptide) was synthesized. In the hydroxyamine compound of the following formula, Bn means a benzyl group.

Figure 2018199146
Figure 2018199146

<実施例16:オキシム化合物とアミノ酸メチルエステルのアミド化反応(触媒の検討)>
下記反応式に示すように、窒素ガス雰囲気下、触媒としてのNb(OEt)5(4mol%)と、塩基としてのトリエチルアミン(Et3N)1当量の存在下、下記式のオキシム化合物1(1.05当量)と、下記式の各種アミノ酸t−ブチルエステル塩酸塩1.0mmolとを、50℃下に24時間反応させて、各種アミド化合物24(ジペプチド前駆体)を合成した。合成した各アミド化合物(24a)〜(24b)は下記に示す通りである。なお、下記式中において、原料として用いたオキシム化合物の基R5は、それぞれ、生成した各アミド化合物(24a)〜(24b)の基R5に対応している。収率は生成した各アミド化合物と共に示す。
<Example 16: Amidation reaction between oxime compound and amino acid methyl ester (examination of catalyst)>
As shown in the following reaction formula, in an atmosphere of nitrogen gas, in the presence of Nb (OEt) 5 (4 mol%) as a catalyst and one equivalent of triethylamine (Et 3 N) as a base, an oxime compound 1 (1 0.05 equivalent) and 1.0 mmol of various amino acid t-butyl ester hydrochlorides of the following formula were reacted at 50 ° C. for 24 hours to synthesize various amide compounds 24 (dipeptide precursors). The synthesized amide compounds (24a) to (24b) are as shown below. Note that in the following formulas, the radicals R 5 of the oxime compound used as the starting material corresponds to the group R 5 each, each amide compound produced (24a) ~ (24b). The yield is shown together with each amide compound produced.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

<実施例17:オキシム化合物とアミノ酸メチルエステルのパラジウム触媒を用いたアミド化反応>
下記反応式に示すように、窒素ガス雰囲気下、触媒としてのPd(OAc)2(10mol%)存在下、下記式のオキシム化合物1.0molと、下記式のアラニンメチルエステル2.0mmolとを、80℃下に24時間反応させて、アミド化合物を収率86%で合成した。
<Example 17: Amidation reaction of oxime compound and amino acid methyl ester using palladium catalyst>
As shown in the following reaction formula, in a nitrogen gas atmosphere, in the presence of Pd (OAc) 2 (10 mol%) as a catalyst, 1.0 mol of an oxime compound represented by the following formula and 2.0 mmol of alanine methyl ester represented by the following formula: By reacting at 80 ° C. for 24 hours, an amide compound was synthesized in a yield of 86%.

Figure 2018199146
Figure 2018199146

<実施例18:オキシム化合物(ジペプチド誘導体)からアミノ化合物(ジペプチド)の合成(不斉水素化反応の検討)>
下記反応式に示す条件にて、触媒としてのPd(OH)2/C、水素ガス(1atm)雰囲気下、添加剤(1当量)を加え、酢酸溶液中で下記式のオキシム化合物2aのオキシム基について、不斉水素化反応を行ない、アミノ化合物5aを合成した。
<Example 18: Synthesis of amino compound (dipeptide) from oxime compound (dipeptide derivative) (examination of asymmetric hydrogenation reaction)>
Under the conditions shown in the following reaction formula, an additive (1 equivalent) was added under an atmosphere of Pd (OH) 2 / C as a catalyst and hydrogen gas (1 atm), and an oxime group of an oxime compound 2a of the following formula was added in an acetic acid solution. Was subjected to an asymmetric hydrogenation reaction to synthesize amino compound 5a.

Figure 2018199146
Figure 2018199146

Figure 2018199146
Figure 2018199146

<実施例19:化粧品ペプチド(トリペプチド−3)の合成>
下記式に示すように、触媒としてTa(OMe)5(10mol%)、Cbzセリンメチルエステル(4.67mmol、1.18g)、バリンt−ブチルエステル(7mol、1.20g)を60℃で24時間反応させ、ジペプチド25を定量的に得た(1.84g)。その後、Pd(OH)2/C(0.8mmol、562mg)存在下、25をメタノール溶媒中、1.5時間水素添加(1atm)することで、Cbz基を脱保護し、26を得た(76%、786mg)。次に、窒素ガス雰囲気下、触媒として、Ta(OMe)5(10mol%)、26(0.50mmol、130mg)、オキシム化合物(0.525mmol、54.1mg)を60℃で24時間反応させ、トリペプチド前駆体27を得た(60%、100mg)。その後、Pd(OH)2/C(0.06mmol、42.3mg)存在下、27(0.3mmol、100mg)を酢酸溶媒中で1時間水素添加(1atm)し、その後、4N塩化水素/酢酸エチル溶液(3.0mmol)を加えて、2時間撹拌することで、t−ブチルエステルを脱保護し、目的のトリペプチド−3を得た(89%、79.2mg)。
<Example 19: Synthesis of cosmetic peptide (tripeptide-3)>
As shown in the following formula, Ta (OMe) 5 (10 mol%), Cbz serine methyl ester (4.67 mmol, 1.18 g), and valine t-butyl ester (7 mol, 1.20 g) were used as catalysts at 60 ° C. for 24 hours. The reaction was allowed to proceed for a period of time to quantitatively obtain dipeptide 25 (1.84 g). Then, in the presence of Pd (OH) 2 / C (0.8 mmol, 562 mg), 25 was hydrogenated (1 atm) in a methanol solvent for 1.5 hours to deprotect the Cbz group to obtain 26 ( 76%, 786 mg). Next, Ta (OMe) 5 (10 mol%), 26 (0.50 mmol, 130 mg), and an oxime compound (0.525 mmol, 54.1 mg) were reacted at 60 ° C. for 24 hours as a catalyst under a nitrogen gas atmosphere. The tripeptide precursor 27 was obtained (60%, 100 mg). Thereafter, 27 (0.3 mmol, 100 mg) was hydrogenated (1 atm) in acetic acid solvent for 1 hour in the presence of Pd (OH) 2 / C (0.06 mmol, 42.3 mg), and then 4N hydrogen chloride / acetic acid The t-butyl ester was deprotected by adding an ethyl solution (3.0 mmol) and stirring for 2 hours to obtain the desired tripeptide-3 (89%, 79.2 mg).

Figure 2018199146
Figure 2018199146

Claims (11)

金属化合物からなる触媒の存在下に、下記一般式(1)で表されるアミノエステル化合物と、アミノ化合物とを反応させて、前記アミノエステル化合物のエステル基をアミド化するアミド化工程を備える、アミド化合物の製造方法。
Figure 2018199146
[式(1)中、
基R1は、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。基R2及び基R3は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位の窒素原子との結合が二重結合である場合には、基R3は存在しない。
基Aは、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基を示す。pは、0または1である。
基R4は、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。ただし、α位の炭素原子とβ位窒素原子との結合が二重結合である場合には、基R4は電子対である。]
An amidation step of reacting an amino ester compound represented by the following general formula (1) with an amino compound in the presence of a catalyst comprising a metal compound to amidate the ester group of the amino ester compound; A method for producing an amide compound.
Figure 2018199146
[In equation (1),
The group R 1 is an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or a group which has a substituent. And a heterocyclic group which may be substituted. The groups R 2 and R 3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, and a substituent. It represents an alicyclic group which may be possessed or a heterocyclic group which may be possessed by a substituent. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 3 does not exist.
The group A represents a linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent. p is 0 or 1.
The group R 4 is a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or an alicyclic ring which may have a substituent. It represents a formula group or a heterocyclic group which may have a substituent. However, when the bond between the carbon atom at the α-position and the nitrogen atom at the β-position is a double bond, the group R 4 is an electron pair. ]
前記アミド化工程の後、得られたアミド化合物において、前記一般式(1)で表されるアミノエステル化合物に由来するβ位の基N−O−Hをアミノ基に変換する還元工程をさらに備えている、請求項1に記載のアミド化合物の製造方法。   After the amidation step, the obtained amide compound further includes a reduction step of converting a β-position group NOH derived from the amino ester compound represented by the general formula (1) into an amino group. The method for producing an amide compound according to claim 1, wherein 金属化合物からなる触媒の存在下に、前記一般式(1)で表されるアミノエステル化合物と、請求項2で得られたアミノ基を有するアミド化合物とを反応させて、前記アミノエステル化合物のエステル基をアミド化するアミド化工程をさらに備える、請求項2に記載のアミド化合物の製造方法。   An ester of the amino ester compound is reacted by reacting the amino ester compound represented by the general formula (1) with the amide compound having an amino group obtained in claim 2 in the presence of a catalyst comprising a metal compound. The method for producing an amide compound according to claim 2, further comprising an amidation step of amidating the group. 前記一般式(1)で表される化合物が、下記一般式(11)で表されるオキシム化合物である、請求項1〜3のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[式(11)中、基R1、基R2、及び基Aは、それぞれ、前記一般式(1)と同じである。]
The method for producing an amide compound according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) is an oxime compound represented by the following general formula (11).
Figure 2018199146
[In the formula (11), the group R 1 , the group R 2 , and the group A are the same as those in the general formula (1). ]
前記一般式(1)で表される化合物が、下記一般式(12)で表されるヒドロキシアミノ化合物である、請求項1〜3のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[式(12)中、基R1、基R2、基R3、及び基R4、及び基Aは、それぞれ、前記一般式(1)と同じである。]
The method for producing an amide compound according to any one of claims 1 to 3, wherein the compound represented by the general formula (1) is a hydroxyamino compound represented by the following general formula (12).
Figure 2018199146
[In the formula (12), the group R 1 , the group R 2 , the group R 3 , the group R 4 , and the group A are the same as those in the general formula (1). ]
前記アミノ化合物が、下記一般式(3)で表されるアミノ化合物である、請求項1〜5のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[基Ra及び基Rbは、それぞれ独立に、水素原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。また、RaとRbは、結合する窒素原子と共に飽和または不飽和の複素環を形成してもよい。該複素環基には置換基を有していてもよい。]
The method for producing an amide compound according to any one of claims 1 to 5, wherein the amino compound is an amino compound represented by the following general formula (3).
Figure 2018199146
[The groups Ra and Rb each independently have a hydrogen atom, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, An alicyclic group or a heterocyclic group which may have a substituent. R a and R b may form a saturated or unsaturated heterocyclic ring together with the nitrogen atom to which they are bonded. The heterocyclic group may have a substituent. ]
前記アミノ化合物が、アミノ酸もしくはその塩、又はアミノ酸エステルもしくはその塩である、請求項6に記載のアミド化合物の製造方法。   The method for producing an amide compound according to claim 6, wherein the amino compound is an amino acid or a salt thereof, or an amino acid ester or a salt thereof. 前記アミノエステル化合物を100mol%とした場合に、前記触媒の使用量が、12mol%以下である、請求項1〜7のいずれかに記載のアミド化合物の製造方法。   The method for producing an amide compound according to any one of claims 1 to 7, wherein the amount of the catalyst used is 12 mol% or less when the aminoester compound is 100 mol%. アミド化反応は、塩基の存在下で行われる、請求項1〜8のいずれかに記載のアミド化合物の製造方法。   The method for producing an amide compound according to any one of claims 1 to 8, wherein the amidation reaction is performed in the presence of a base. アミド化反応で得られるアミド化合物が、下記一般式(4)である、請求項1〜9のいずれかに記載のアミド化合物の製造方法。
Figure 2018199146
[式(4)中、基R2、基R3、及び基R4、及び基Aは、それぞれ、前記一般式(1)と同じであり、基Ra及び基Rbは、それぞれ独立に、水素原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。また、RaとRbは、結合する窒素原子と共に飽和または不飽和の複素環を形成してもよい。該複素環基には置換基を有していてもよい。]
The method for producing an amide compound according to any one of claims 1 to 9, wherein the amide compound obtained by the amidation reaction has the following general formula (4).
Figure 2018199146
[In the formula (4), the group R 2 , the group R 3 , the group R 4 , and the group A are respectively the same as those in the general formula (1), and the group Ra and the group Rb are each independently Having a hydrogen atom, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or a substituent Represents an optionally substituted heterocyclic group. R a and R b may form a saturated or unsaturated heterocyclic ring together with the nitrogen atom to which they are bonded. The heterocyclic group may have a substituent. ]
下記反応式に従い、酸性溶媒中において、下記一般式(21)に示される基R5及び基R6の結合する不斉炭素原子を有するオキシム化合物のオキシム基を、立体選択的にアミノ基に変換して、下記一般式(22)に示されるアミノ化合物を製造する方法。
Figure 2018199146
[式(21)及び(22)中、
基R2は、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。
基Aは、置換基を有していてもよい炭素数1〜3の直鎖または分岐鎖状のアルキレン基を示す。pは、0または1である。
基R5及び基R6は、それぞれ独立に、水素原子、ハロゲン原子、水酸基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。
基R7は、水酸基、基OR7a、アミノ基、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示し、
基R7aは、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、置換基を有していてもよい脂環式基、または置換基を有していてもよい複素環式基を示す。]
According to the following reaction formula, the oxime group of the oxime compound having an asymmetric carbon atom to which the groups R 5 and R 6 shown in the following general formula (21) bind in an acidic solvent is stereoselectively converted to an amino group. To produce an amino compound represented by the following general formula (22).
Figure 2018199146
[In the formulas (21) and (22),
The group R 2 is a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, Or a heterocyclic group which may have a substituent.
The group A represents a linear or branched alkylene group having 1 to 3 carbon atoms which may have a substituent. p is 0 or 1.
The groups R 5 and R 6 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or a substituent. It represents an alicyclic group which may be possessed or a heterocyclic group which may be possessed by a substituent.
The group R 7 is a hydroxyl group, a group OR 7a , an amino group, an aliphatic group which may have a substituent, an aromatic group which may have a substituent, or an aliphatic group which may have a substituent. A cyclic group, or a heterocyclic group which may have a substituent,
The group R 7a is an aliphatic group which may have a substituent, an aromatic group which may have a substituent, an alicyclic group which may have a substituent, or a group which has a substituent. And a heterocyclic group which may be substituted. ]
JP2019514567A 2017-04-25 2018-04-25 Catalyst for conversion of ester to amide using oxime / hydroxyamine as substrate Pending JPWO2018199146A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017086269 2017-04-25
JP2017086269 2017-04-25
JP2017173113 2017-09-08
JP2017173113 2017-09-08
PCT/JP2018/016766 WO2018199146A1 (en) 2017-04-25 2018-04-25 Ester to amide conversion catalyst using oxime-hydroxyamine as substrate

Publications (1)

Publication Number Publication Date
JPWO2018199146A1 true JPWO2018199146A1 (en) 2020-02-27

Family

ID=63919679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514567A Pending JPWO2018199146A1 (en) 2017-04-25 2018-04-25 Catalyst for conversion of ester to amide using oxime / hydroxyamine as substrate

Country Status (2)

Country Link
JP (1) JPWO2018199146A1 (en)
WO (1) WO2018199146A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662736A (en) 2017-04-25 2020-01-07 学校法人中部大学 Process for producing amide compound
WO2019208731A1 (en) * 2018-04-25 2019-10-31 学校法人中部大学 Method for producing amide compound
EP4053101A4 (en) * 2019-10-30 2024-02-21 Chubu University Educational Foundation Reaction agent for amide reaction and method for producing amide compound using same
WO2021149814A1 (en) 2020-01-22 2021-07-29 学校法人中部大学 Catalyst for manufacturing amide compound, and method for manufacturing amide compound
WO2022190486A1 (en) 2021-03-09 2022-09-15 学校法人中部大学 Silane-containing condensed cyclic dipeptide compound, production method therefor, and method for producing polypeptide compound using same
JP7327858B2 (en) 2021-05-31 2023-08-16 学校法人中部大学 Peptide compound production method and amidation reagent
WO2022265115A1 (en) 2021-06-17 2022-12-22 学校法人中部大学 Peptide compound production method
WO2023136301A1 (en) 2022-01-17 2023-07-20 学校法人中部大学 Peptide compound production method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098082B2 (en) * 1991-12-12 2000-10-10 三井化学株式会社 Method for producing amino-containing compound
JP4461891B2 (en) * 2003-06-02 2010-05-12 住友化学株式会社 Method for producing racemic amine
KR20090121388A (en) * 2007-03-15 2009-11-25 썬 파마 어드밴스트 리서치 컴패니 리미티드 Novel prodrugs
JPWO2009060843A1 (en) * 2007-11-09 2011-03-24 国立大学法人岐阜大学 Amidation catalyst, method for producing carboxylic acid amide, and method for producing peptide
CN103265616B (en) * 2013-04-24 2015-07-01 保定市龙瑞药物技术有限责任公司 N(2)-L-alanyl-L-glutamine synthesis method

Also Published As

Publication number Publication date
WO2018199146A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JPWO2018199146A1 (en) Catalyst for conversion of ester to amide using oxime / hydroxyamine as substrate
US11370747B2 (en) Method for producing amide compound
JP6744669B2 (en) Ester-to-amide conversion catalyst with hydroxyl group as the orientation group
Ohshima et al. Catalytic asymmetric phase-transfer reactions using tartrate-derived asymmetric two-center organocatalysts
Sorochinsky et al. Asymmetric synthesis of α-amino acids via homologation of Ni (II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations
US6602817B1 (en) Combination approach to chiral reagents or catalysts having amine or amino alcohol ligands
WO2019208731A1 (en) Method for producing amide compound
JP4913077B2 (en) Process for producing optically active homoallyl hydrazino esters
WO2010073974A1 (en) Practical method for reducing amides and lactams
EP4349848A1 (en) Peptide compound production method and amidation agent
US12129268B2 (en) Chiral N-substituted allylic amine compounds
US9637503B2 (en) Composition of matter
Yazaki Development of catalytic reactions for precise control of chemoselectivity
Moumne et al. One-pot synthesis of β-amino acid derivatives via addition of bis (O-silyl) ketene acetals on iminium salts
JP4268424B2 (en) Method for producing 2-oxazolidinones
WO2023210692A1 (en) Method for producing polypeptide compound
JP2008525506A (en) A transition metal catalyzed asymmetric hydrogenation method of acrylic acid derivatives and a novel catalyst system for asymmetric transition metal catalyzed reactions
JP2004262830A (en) Method for producing 5-alkylidene-2-oxazolidinones
Xu et al. Cp* Rh (III)-Catalyzed Enantioselective C (sp3)–H Amidation of Azine-Linked Cyclobutanes
JPH10287632A (en) Gamma-oxo-homophenylalanine derivative and production of homophenylalanine derivative by reducing the same
EP4357353A1 (en) Peptide compound production method
JP2005232103A (en) Optically active vicinaldiamine and method for producing the same
JP2011184408A (en) Method for producing nitrogen-containing compound in aqueous solvent
JP2004203766A (en) Method for producing optically active 1, 2-diamine derivative and method for producing optically active imidazolidinone derivative