Nothing Special   »   [go: up one dir, main page]

JPWO2018066633A1 - Titanium and / or germanium substituted lithium manganese based composite oxide and method for producing the same - Google Patents

Titanium and / or germanium substituted lithium manganese based composite oxide and method for producing the same Download PDF

Info

Publication number
JPWO2018066633A1
JPWO2018066633A1 JP2018543956A JP2018543956A JPWO2018066633A1 JP WO2018066633 A1 JPWO2018066633 A1 JP WO2018066633A1 JP 2018543956 A JP2018543956 A JP 2018543956A JP 2018543956 A JP2018543956 A JP 2018543956A JP WO2018066633 A1 JPWO2018066633 A1 JP WO2018066633A1
Authority
JP
Japan
Prior art keywords
lithium
compound
charge
discharge
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018543956A
Other languages
Japanese (ja)
Other versions
JP7048944B2 (en
Inventor
田渕 光春
光春 田渕
京介 堂前
京介 堂前
英香 渋谷
英香 渋谷
田村 宜之
宜之 田村
亮太 弓削
亮太 弓削
直樹 河野
直樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tanaka Chemical Corp
NEC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, NEC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tanaka Chemical Corp
Publication of JPWO2018066633A1 publication Critical patent/JPWO2018066633A1/en
Application granted granted Critical
Publication of JP7048944B2 publication Critical patent/JP7048944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一般式(1):Li1+x(M1yM2zMn1-y-z)1-xO2(1)[式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]で表され、且つ、単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含むリチウムマンガン系複合酸化物は、資源的な制約が少なく安価な元素を使用するとともに、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる新規な材料である。General formula (1): Li1 + x (M1yM2zMn1-y-z) 1-xO2 (1) [wherein M1 represents Fe and / or Ni. M2 represents Ti and / or Ge. x, y, and z represent 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. The lithium manganese-based composite oxide including a crystal phase of a monoclinic layered rock salt type structure or a hexagonal layered rock salt type structure uses an inexpensive element with less resource restrictions and lithium ions. When used as a positive electrode material for a secondary battery, it has a high capacity, a high discharge voltage, and maintains the similarity of the charge / discharge curve shape during the charge / discharge cycle. It is an excellent new material.

Description

本発明は、チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法に関する。   The present invention relates to a titanium and / or germanium-substituted lithium manganese-based composite oxide and a method for producing the same.

現在、我が国において、携帯電話、スマートフォン、ノートパソコン、タブレット型パソコン等のポータブル機器に搭載されている二次電池のほとんどは、リチウムイオン二次電池である。リチウムイオン二次電池は、今後、電気自動車、電力負荷平準化システム等の大型電池としても実用化されつつあり、その重要性はますます高まっている。   At present, most of secondary batteries installed in portable devices such as mobile phones, smartphones, notebook computers, tablet computers, etc. in Japan are lithium ion secondary batteries. Lithium ion secondary batteries are being put to practical use as large batteries such as electric vehicles and power load leveling systems in the future, and their importance is increasing more and more.

現在、リチウムイオン二次電池においては、正極材料としてはリチウム含有遷移金属酸化物、負極材料としては黒鉛等の炭素材料が使用されている。特に、正極材料において可逆的に脱離(充電に相当)、挿入(放電に相当)するリチウムイオン量が電池の容量を決定づけ、脱離及び挿入時の電圧が電池の作動電圧を決定づけるために、電池の容量及び動作電圧は正極によって決定づけられる。さらに、電池の構成部材コストは正極活物質が最も高く、正極材料の選択はリチウムイオン二次電池の開発において最も重要である。   At present, in lithium ion secondary batteries, a lithium-containing transition metal oxide is used as a positive electrode material, and a carbon material such as graphite is used as a negative electrode material. In particular, in the positive electrode material, the amount of lithium ions reversibly desorbed (corresponding to charge) and inserted (corresponded to discharge) determines the capacity of the battery, and the voltage at the time of desorption and insertion determines the operating voltage of the battery. Battery capacity and operating voltage are determined by the positive electrode. Furthermore, the cost of component parts of the battery is the highest in the positive electrode active material, and the selection of the positive electrode material is the most important in the development of a lithium ion secondary battery.

このため、リチウムイオン二次電池の用途拡大及び大型化に伴い、正極材料の一層の需要増加が予想される。しかしながら、正極材料として通常使用されるコバルト酸リチウムは、希少金属であるコバルトを多量に含むために、リチウムイオン二次電池の素材コストを上昇させる要因の一つとなっている。さらに、現在コバルト資源の約20%が電池産業に用いられていることを考慮すれば、LiCoO2からなる正極材料のみでは今後の需要拡大に対応することは困難と考えられる。このため、特に、自動車用途等の大型リチウムイオン二次電池に用いるためには、資源的に豊富な元素を用いた酸化物正極材料が求められている。For this reason, with the application expansion and enlargement of a lithium ion secondary battery, the further increase in demand of positive electrode material is anticipated. However, since lithium cobaltate usually used as a positive electrode material contains a large amount of cobalt which is a rare metal, it is one of the factors that increase the material cost of the lithium ion secondary battery. Furthermore, considering that about 20% of cobalt resources are currently used in the battery industry, it is considered difficult to meet future demand expansion with only the positive electrode material composed of LiCoO 2 . For this reason, in particular, in order to be used for a large-sized lithium ion secondary battery for automotive applications and the like, an oxide positive electrode material using an element abundant in resources is required.

現在、より安価で資源的に制約の少ない正極材料として、本発明者らは、リチウムマンガン酸化物(Li2MnO3)とリチウムフェライトとからなる層状岩塩型構造の固溶体(Li1+x(FeyMn1-y)1-xO2(0<x<1/3, 0<y<1)、以下「鉄含有Li2MnO3」と言うこともある)が、室温での充放電試験においてはリチウムコバルト酸化物並の4V近い平均放電電圧を有することを見出している(例えば、特許文献1参照)。At present, as a cheaper and less resource-constrained positive electrode material, the present inventors have found that a solid solution (Li 1 + x (Fe 1 + x 2 Fe) of a layered rock salt type structure comprising lithium manganese oxide (Li 2 MnO 3 ) and lithium ferrite. y Mn 1-y ) 1-x O 2 (0 <x <1/3, 0 <y <1) (hereinafter sometimes referred to as "iron-containing Li 2 MnO 3 "), the charge-discharge test at room temperature Have found that they have an average discharge voltage close to 4 V, similar to lithium cobalt oxide (see, for example, Patent Document 1).

また、本発明者らは、鉄とともに資源的に豊富なニッケルを含有するリチウムマンガン酸化物(鉄及びニッケル含有Li2MnO3等)が、4V領域のサイクル劣化を著しく改善できることを見出している(例えば、特許文献2参照)。In addition, the present inventors have found that lithium manganese oxides (iron and nickel-containing Li 2 MnO 3, etc.) containing iron as well as resources rich in resources can significantly improve cycle deterioration in the 4 V region ( See, for example, Patent Document 2).

さらに、本発明者らは、鉄とともに資源的に豊富で安価なチタンを含有するリチウムマンガン酸化物(チタン含有Li2MnO3、鉄及びチタン含有Li2MnO3等)が、高容量を示し、特に、特定の化学組成、遷移金属イオン分布において、室温における高電流密度下での放電特性や低温での放電特性に優れることを見出している(例えば、特許文献3参照)。Furthermore, the present inventors show high capacity of lithium manganese oxide (titanium-containing Li 2 MnO 3 , iron and titanium-containing Li 2 MnO 3, etc.) containing iron as well as resource-rich and inexpensive titanium. In particular, it has been found that discharge characteristics at high current density at room temperature and discharge characteristics at low temperature are excellent in specific chemical composition and transition metal ion distribution (see, for example, Patent Document 3).

以上の通り、リチウムコバルト系正極材料に代わり得るリチウムマンガン系正極材料について種々の報告がなされているが、より一層の充放電特性改善が望まれている。   As mentioned above, although various reports are made about lithium manganese system positive electrode material which can be substituted to lithium cobalt system positive electrode material, further improvement in charge and discharge characteristics is desired.

特開2002−068748号公報Japanese Patent Application Laid-Open No. 2002-068748 特開2003−048718号公報Japanese Patent Application Laid-Open No. 2003-048718 特開2008−063211号公報JP, 2008-063211, A

しかしながら、特許文献1〜2のリチウムマンガン系複合酸化物を使用した場合には、充放電を繰り返すことにより、層状岩塩型構造の結晶相から徐々にスピネル型構造の結晶相又はリチウム過剰結晶相に変化するために、それぞれ放電時3.5V付近で急激な電位低下が見られ、放電時2.2V付近で付加的な容量の出現が見られる。工業的には、100サイクルや1000サイクル経過後であっても充放電曲線形状を維持できることが好ましいが、この手法ではそれ以前に充放電特性の低下が見られる。このため、特許文献1〜2のリチウムマンガン系複合酸化物は、これら2種類の結晶構造転移によって充放電曲線形状が著しく変化し、充放電サイクル時の充放電曲線の相似性が維持できないために実用上好ましくない。   However, when the lithium manganese-based composite oxides of Patent Documents 1 and 2 are used, the crystal phase of the layered rock salt structure is gradually changed to the crystal phase of the spinel structure or the lithium excess crystal phase by repeating charging and discharging. Due to the change, a rapid potential drop is observed around 3.5 V during discharge, and an additional capacity is observed around 2.2 V during discharge. Industrially, it is preferable that the charge / discharge curve shape can be maintained even after 100 cycles or 1000 cycles have elapsed, but in this method, the charge / discharge characteristics are degraded before that. For this reason, in the lithium manganese-based composite oxides of Patent Documents 1 and 2, the charge / discharge curve shape is significantly changed by these two types of crystal structure transition, and the similarity between the charge / discharge curves during charge / discharge cycles can not be maintained. Unpreferable for practical use.

また、特許文献3のリチウムマンガン系複合酸化物は、放電電圧が低く、充放電曲線ヒステリシスも大きくなってしまう。   Moreover, the lithium manganese-based composite oxide of Patent Document 3 has a low discharge voltage, and the charge-discharge curve hysteresis also becomes large.

本発明は、上記した従来技術の現状に鑑みてなされたものであり、資源的な制約が少なく安価な元素を使用するとともに、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる新規な材料を提供することを主な目的とする。   The present invention has been made in view of the above-mentioned current state of the prior art, and uses an inexpensive element with few resource restrictions, and has a high capacity when used as a positive electrode material for lithium ion secondary batteries. A main object of the present invention is to provide a novel material which has a high discharge voltage and can maintain the similarity between charge and discharge curve shapes during charge and discharge cycles and is excellent in long-term cycle characteristics.

本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定量の鉄及び/又はニッケルを含むLi2MnO3型複合酸化物に、さらに、特定量のチタン及び/又はゲルマニウムを固溶させた複合酸化物は、資源的な制約が少なく安価な元素を使用しているとともに、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れることを見出した。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。即ち、本発明は、以下の構成を包含する。
項1.一般式(1):
Li1+x(M1 yM2 zMn1-y-z)1-xO2 (1)
[式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]
で表され、且つ、
単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含むリチウムマンガン系複合酸化物。
項2.前記一般式(1)において、M1がNiを含有する、項1に記載のリチウムマンガン系複合酸化物。
項3.単斜晶層状岩塩型構造の結晶相のみからなる、項1又は2に記載のリチウムマンガン系複合酸化物。
項4.項1〜3のいずれかに記載のリチウムマンガン系複合酸化物の製造方法であって、
(1)マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程、
(2)工程1で得られた沈殿物に湿式酸化処理を施して熟成させる工程、
(3)工程2で得られた熟成物を、リチウム化合物を含む原料化合物の共存下に、加熱する工程
をこの順に備える、製造方法。
項5.前記工程1における混合物が、さらに、チタン化合物を含む、項4に記載の製造方法。
項6.前記工程3における原料化合物が、さらに、ゲルマニウム化合物を含む、項4又は5に記載の製造方法。
項7.前記工程3が、前記工程2で得られた熟成物と、前記原料化合物と混合した後に加熱する工程である、項4〜6のいずれかに記載の製造方法。
項8.前記工程3における加熱が、大気中で加熱した後に、大気中又は不活性雰囲気下で再度加熱する工程である、項4〜7のいずれかに記載の製造方法。
項9.項1〜3のいずれかに記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料。
項10.項9に記載のリチウムイオン二次電池用正極材料を構成要素とするリチウムイオン二次電池。
The present inventors have intensively researched to achieve the above-mentioned purpose. As a result, complex oxides in which a specific amount of titanium and / or germanium is solid-solved in a Li 2 MnO 3 type complex oxide containing a specific amount of iron and / or nickel are less resource-constrained and inexpensive Elements, and when used as a positive electrode material for lithium ion secondary batteries, have high capacity, high discharge voltage, and similarity of charge and discharge curve shape during charge and discharge cycle It has been found that the long-term cycle characteristics are excellent for maintaining the Based on such findings, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
Item 1. General formula (1):
Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1)
[Wherein, M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y and z indicate 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. ]
Represented by, and
Lithium manganese-based composite oxide containing a crystal phase of monoclinic layered rock salt type structure or hexagonal layered rock salt type structure.
Item 2. The lithium manganese-based composite oxide according to Item 1, wherein M 1 in the general formula (1) contains Ni.
Item 3. Item 3. The lithium manganese-based composite oxide according to Item 1 or 2, which comprises only a crystal phase of a monoclinic layered rock salt type structure.
Item 4. It is a manufacturing method of lithium manganese system complex oxide in any one of claim 1 to 3,
(1) forming a precipitate by making a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound alkaline;
(2) a step of subjecting the precipitate obtained in step 1 to wet oxidation treatment and aging it;
(3) A manufacturing method comprising the steps of heating the matured product obtained in step 2 in the coexistence of a raw material compound containing a lithium compound in this order.
Item 5. Item 5. The method according to Item 4, wherein the mixture in Step 1 further contains a titanium compound.
Item 6. Item 6. The method according to Item 4 or 5, wherein the raw material compound in Step 3 further contains a germanium compound.
Item 7. Item 7. The production method according to any one of Items 4 to 6, wherein the step 3 is a step of heating after mixing the matured product obtained in the step 2 and the raw material compound.
Item 8. Item 8. The method according to any one of Items 4 to 7, wherein the heating in the step 3 is a step of heating again in the atmosphere and then in the atmosphere or in an inert atmosphere.
Item 9. The positive electrode material for lithium ion secondary batteries which consists of lithium manganese type complex oxide in any one of claim | item 1-3.
Item 10. 10. A lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to item 9 as a component.

本発明によれば、資源的な制約が少なく安価な元素を使用しつつ、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる新規な材料を提供することができる。   According to the present invention, when used as a positive electrode material for a lithium ion secondary battery while using inexpensive elements with few resource restrictions, it has a high capacity and a high discharge voltage. It is possible to provide a novel material having excellent long-term cycle characteristics because it is possible to maintain the similarity between the charge and discharge curve shapes during the discharge cycle.

特に、本発明のリチウムマンガン系複合酸化物は、高電位までの充電時においても化学的に安定であるため、長期サイクル時においても優れた充放電特性を発揮することができる。   In particular, the lithium manganese-based composite oxide of the present invention is chemically stable even at the time of charging up to a high potential, so that excellent charge / discharge characteristics can be exhibited even in long-term cycles.

実施例1で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained in Example 1 are shown. 実施例1で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained in Example 1 as positive electrode material, and used metal lithium as negative electrode material is shown. 比較例1で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained by the comparative example 1 are shown. 比較例1で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained by the comparative example 1 as positive electrode material, and used metal lithium as negative electrode material is shown. 実施例2で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained in Example 2 are shown. 実施例2で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained in Example 2 as positive electrode material, and used metal lithium as negative electrode material is shown. 比較例2で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained by the comparative example 2 are shown. 比較例2で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained by the comparative example 2 as positive electrode material, and used metal lithium as negative electrode material is shown. 実施例3で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained in Example 3 are shown. 実施例3で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge-and-discharge curve of the lithium secondary battery which used the sample obtained in Example 3 as positive electrode material, and used metal lithium as negative electrode material is shown. 比較例3で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained by the comparative example 3 are shown. 比較例3で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained by the comparative example 3 as positive electrode material, and used metal lithium as negative electrode material is shown. 実施例4で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained in Example 4 are shown. 実施例4で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which made the sample obtained in Example 4 the positive electrode material, and made metal lithium the negative electrode material is shown. 比較例4で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained by the comparative example 4 are shown. 比較例4で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained by the comparative example 4 as positive electrode material, and used metal lithium as negative electrode material is shown. 実施例5で得られた試料の実測(+)及び計算(実線)X線回折パターンを示す。The measurement (+) and calculation (solid line) X-ray-diffraction pattern of the sample obtained in Example 5 are shown. 実施例5で得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池の充放電曲線を示す。The charge / discharge curve of the lithium secondary battery which used the sample obtained in Example 5 as positive electrode material, and used metal lithium as negative electrode material is shown.

1.リチウムマンガン系複合酸化物
本発明のリチウムマンガン系複合酸化物は、一般式(1):
Li1+x(M1 yM2 zMn1-y-z)1-xO2 (1)
[式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]
で表される化合物であって、岩塩型構造を基本として、単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含んでいる。
1. Lithium-manganese-based composite oxide The lithium-manganese-based composite oxide of the present invention has a general formula (1):
Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1)
[Wherein, M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y and z indicate 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. ]
And a crystal phase of a monoclinic layered rock salt type structure or a hexagonal layered rock salt type structure based on the rock salt type structure.

単斜晶層状岩塩型構造は、空間群:   Monoclinic layered rock salt type structure is a space group:

Figure 2018066633
Figure 2018066633

で帰属させることができる結晶相であり、具体的には、容量及びサイクル特性の観点から、Li2MnO3に類似する単位胞を有する結晶相のみからなるLi2MnO3型単斜晶層状岩塩型構造の結晶相であることが好ましい。Li 2 MnO 3 type monoclinic layered rock salt consisting only of a crystal phase having a unit cell similar to Li 2 MnO 3 from the viewpoint of capacity and cycle characteristics. It is preferable that it is a crystalline phase of type structure.

一方、六方晶層状岩塩型構造は、空間群:   On the other hand, hexagonal layered rock salt type structure is a space group:

Figure 2018066633
Figure 2018066633

で帰属させることができる結晶相であり、具体的には、容量及びサイクル特性の観点から、LiNiO2に類似する単位胞を有する結晶相のみからなるLiNiO2型六方晶層状岩塩型構造の結晶相であることが好ましい。The crystal phase of the LiNiO 2 type hexagonal layered rock salt type structure consisting only of the crystal phase having unit cells similar to LiNiO 2 from the viewpoint of capacity and cycle characteristics. Is preferred.

本発明のリチウムマンガン系複合酸化物は、上記の単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相のうち、一方のみを有していてもよいし、双方を有していてもよい。いずれの場合においても、本発明のリチウムマンガン系複合酸化物は、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる材料である。   The lithium manganese-based composite oxide of the present invention may have only one or both of the crystal phases of the monoclinic layered rock salt type structure and the hexagonal layered rock salt type structure described above. It is also good. In any case, the lithium manganese-based composite oxide of the present invention has a high capacity and a high discharge voltage when used as a positive electrode material for lithium ion secondary batteries, and at the time of charge and discharge cycles. The material is excellent in long-term cycle characteristics because it can maintain the similarity between the charge and discharge curve shapes.

本発明のリチウムマンガン系複合酸化物が、上記の単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相の双方を有する場合、各結晶相の割合は特に制限されず、通常、層状岩塩型構造の結晶相の総量を100重量%として、単斜晶層状岩塩型構造の結晶相は1〜99重量%(特に5〜95重量%、さらに10〜90重量%)、六方晶層状岩塩型構造の結晶相は1〜99重量%(特に5〜95重量%、さらに10〜90重量%)が好ましい。   When the lithium manganese-based composite oxide of the present invention has both of the crystal phases of the monoclinic layered rock salt type structure and the hexagonal layered rock salt type structure described above, the ratio of each crystal phase is not particularly limited, and usually, The crystal phase of the monoclinic layered rock salt structure is 1 to 99% by weight (especially 5 to 95% by weight, further 10 to 90% by weight), assuming that the total amount of the crystal phase of the rock salt type structure is 100% by weight. The crystalline phase of the mold structure is preferably 1 to 99% by weight (especially 5 to 95% by weight, more preferably 10 to 90% by weight).

一方、本発明のリチウムマンガン系複合酸化物は、上記の単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含んでいればよく、陽イオン分布の異なる他の岩塩型構造(例えば、立方晶岩塩型構造等)の結晶相を含む混合相であってもよい。また、本発明のリチウムマンガン系複合酸化物が、上記の単斜晶層状岩塩型構造及び/又は六方晶層状岩塩型構造の結晶相のみからなる材料であってもよい。   On the other hand, the lithium manganese-based composite oxide of the present invention only needs to contain the crystal phase of the monoclinic layered rock salt type structure or hexagonal layered rock salt type structure described above, and other rock salt type structures different in cation distribution ( For example, it may be a mixed phase containing a crystal phase of cubic rock salt type structure etc.). In addition, the lithium manganese-based composite oxide of the present invention may be a material comprising only the crystal phase of the monoclinic layered rock salt type structure and / or the hexagonal layered rock salt type structure described above.

後述する本発明の製造方法によれば、得られるリチウムマンガン系複合酸化物は、上記の単斜晶層状岩塩型構造及び/又は六方晶層状岩塩型構造の結晶相のみからなる材料が形成されやすいが、例えば、600℃以下の低温で合成する場合には、立方晶岩塩型構造の結晶相が含まれることがある。この立方晶岩塩型構造の結晶相も、優れた充放電特性を発揮する結晶構造であるため、この結晶構造を有していても何ら差し支えない。   According to the manufacturing method of the present invention to be described later, a lithium manganese-based composite oxide to be obtained is likely to form a material consisting only of the crystal phase of the monoclinic layered rock salt type structure and / or hexagonal layered rock salt type structure described above. However, when synthesized at a low temperature of, for example, 600 ° C. or less, a crystal phase of cubic rock salt type structure may be included. Since the crystal phase of this cubic rock salt type structure is also a crystal structure that exhibits excellent charge and discharge characteristics, even if it has this crystal structure, there is no problem at all.

ただし、本発明においては、単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相を有することにより、リチウムイオン二次電池用正極材料に用いた場合に、高い容量を有し、高い放電電圧を有し、且つ、充放電サイクル時の充放電曲線形状の相似性を維持できるために長期間のサイクル特性に優れる材料であることから、単斜晶層状岩塩型構造及び六方晶層状岩塩型構造の結晶相の存在割合は高いことが好ましい。このような観点から、本発明のリチウムマンガン系複合酸化物が、陽イオン分布の異なる他の岩塩型構造(立方晶岩塩型構造等)を有する場合、層状岩塩型構造の結晶相との割合は、通常、本発明のリチウムマンガン系複合酸化物の総量を100重量%として、層状岩塩型構造の結晶相は1〜99重量%(特に10〜95重量%、さらに50〜90重量%)、他の岩塩型構造(立方晶岩塩型構造等)の結晶相は1〜99重量%(特に5〜90重量%、さらに10〜50重量%)が好ましい。   However, in the present invention, having a crystal phase of a monoclinic layered rock salt type structure and a hexagonal layered rock salt type structure, when used as a positive electrode material for a lithium ion secondary battery, has a high capacity and is high A monoclinic layered rock salt type structure and a hexagonal layered rock salt because it is a material that has a discharge voltage and is excellent in long-term cycle characteristics because it can maintain the similarity between charge and discharge curve shapes during charge and discharge cycles. It is preferable that the proportion of the crystal phase of the type structure is high. From this point of view, when the lithium manganese-based composite oxide of the present invention has another rock salt type structure (cubic rock salt type structure, etc.) having a different cation distribution, the ratio of the layered rock salt type structure to the crystal phase is Usually, assuming that the total amount of the lithium manganese composite oxide of the present invention is 100% by weight, the crystal phase of the layered rock salt type structure is 1 to 99% by weight (especially 10 to 95% by weight, further 50 to 90% by weight) The crystal phase of the rock salt type structure (cubic rock salt type structure etc.) is preferably 1 to 99% by weight (especially 5 to 90% by weight, further 10 to 50% by weight).

本発明のリチウムマンガン系複合酸化物は、上記した一般式(1)で表されるとおり、Li、Mn及びM2を必須の元素として含んでおり、さらに、必要に応じてM1を固溶させている。The lithium manganese-based composite oxide of the present invention contains Li, Mn and M 2 as essential elements as represented by the above-mentioned general formula (1), and further, M 1 is dissolved if necessary. I am doing it.

本発明のリチウムマンガン系複合酸化物がM1を含んでいる場合(M1を固溶させている場合)、固溶させるM1イオン量(y値;M1/(M1+M2+Mn))は、Liイオン以外の金属イオンの総量の40%以下(0<y≦0.4)、好ましくは5〜35%(0.05≦y≦0.35)、より好ましくは10〜30%(0.1≦y≦0.3)である。M1イオンの固溶量(y値)が過剰となる場合には、相対的にMn量が少なくなることから、組成式当たりのリチウム含有量が低下するために充放電容量が著しく低下する。一方、M1イオンの固溶量(y値)の下限値を上記範囲とすることで、放電電位をより上昇させ、ヒステリシスをより低減することができる。When the lithium manganese-based composite oxide contains an M 1 (if a solid solution of M 1), M 1 ion amount to solid solution of the present invention (y value; M 1 / (M 1 + M 2 + Mn) is 40% or less (0 <y ≦ 0.4), preferably 5 to 35% (0.05 ≦ y ≦ 0.35), more preferably 10 to 30% (0.1 ≦ y) of the total amount of metal ions other than Li ions ≦ 0.3). When the amount of solid solution (y value) of M 1 ions becomes excessive, the amount of Mn relatively decreases, and the lithium content per composition formula decreases, so the charge / discharge capacity significantly decreases. On the other hand, by setting the lower limit value of the solid solution amount (y value) of M 1 ion to the above range, the discharge potential can be further raised and the hysteresis can be further reduced.

本発明のリチウムマンガン系複合酸化物がM1を含んでいる場合(M1を固溶させている場合)、Li、Mn等を置換する形で、層状岩塩型構造中に存在していると思われるが、Fe及びNiの片方のみを含んでいてもよいし、Fe及びNiの双方を含んでいてもよい。より詳細には、NiよりもFeのほうが安価ではあるが、Niのほうが酸化還元電位が高いために放電電圧を高くしやすいため、高電位が求められる用途(自動車用途等の大型リチウムイオン二次電池等)には適している。このため、Fe及びNiの使用量については、用途に応じて適宜設定することが好ましい。例えば、Fe及びNi の双方を含む場合、M1元素の総量を100重量%として、Feは10〜90重量%(特に30〜70重量%、さらに40〜60重量%)が好ましい。なお、Niの使用量は、Feの使用量との合計が100重量%となるように設定される。(If a solid solution of M 1) the lithium-manganese-based composite oxide of the present invention may contain M 1, Li, in the form of replacing Mn or the like, when present in the layered rock-salt structure As it seems, only one of Fe and Ni may be contained, or both of Fe and Ni may be contained. More specifically, although Fe is cheaper than Ni, Ni has a higher oxidation-reduction potential and the discharge voltage can be easily increased. Therefore, applications requiring high potential (large lithium ion secondary such as automotive applications etc.) Batteries etc.). Therefore, it is preferable to appropriately set the amounts of Fe and Ni used according to the application. For example, when containing both Fe and Ni, as 100% by weight of the total amount of M 1 element, Fe is 10 to 90 wt% (in particular 30 to 70 wt%, further 40 to 60% by weight) is preferred. The amount of Ni used is set such that the total amount with the amount of Fe used is 100% by weight.

本発明のリチウムマンガン系複合酸化物中に固溶させるM2イオン量(z値;M2/(M1+M2+Mn))は、Liイオン以外の金属イオンの総量の30%以下(0<z≦0.3)、好ましくは1〜25%(0.01≦z≦0.25)である。なお、M2としてTiを使用する場合は、M2イオン量は10〜25%(0.10≦z≦0.25)が好ましく、Geを使用する場合は、M2イオン量は1〜10%(0.01≦z≦0.10)が好ましい。また、M2としてTi及びGeの双方を使用する場合は、その割合に応じて適宜設定することが好ましい。M2イオンの固溶量(z値)が過剰となる場合には、M2イオンの電気化学的活性度の低さから充放電容量が著しく低下する。一方、M2イオンの固溶量(z値)が少なすぎると充放電サイクル時の充放電曲線形状の相似性を維持しにくいために長期間充放電サイクルを行った場合のサイクル特性に劣る。The amount of M 2 ions (z value; M 2 / (M 1 + M 2 + Mn)) to be dissolved in the lithium manganese-based composite oxide of the present invention is 30% or less of the total amount of metal ions other than Li ions 0 <z ≦ 0.3), preferably 1 to 25% (0.01 ≦ z ≦ 0.25). When using Ti as M 2 is, M 2 ion amount is preferably 10~25% (0.10 ≦ z ≦ 0.25 ), when using the Ge is, M 2 ion amount is 1 to 10% (0.01 ≦ z ≦ 0.10) is preferred. When using both the Ti and Ge as M 2 is preferably set as appropriate depending on the ratio. When the solid solution amount of M 2 ions (z value) becomes excessive, the charge-discharge capacity from low electrochemical activity of the M 2 ion is significantly lowered. On the other hand, if the amount (z value) of the solid solution of M 2 ions is too small, it is difficult to maintain the similarity of the charge-discharge curve shape during charge-discharge cycles, so the cycle characteristics in the case of long charge / discharge cycles are inferior.

本発明のリチウムマンガン系複合酸化物におけるM2もM1と同様に、Li、Mn等を置換する形で、層状岩塩型構造中に存在していると思われるが、Ti及びGeの片方のみを含んでいてもよいし、Ti及びGeの双方を含んでいてもよい。より詳細には、GeよりもTiのほうが安価ではあるが、Geは少ない元素量で優れた効果を発揮することができるためGeを使用した場合には原料の使用量を低減することもできる。このため、Ti及びGeの使用量については、用途に応じて適宜設定することが好ましい。例えば、Ti及びGe の双方を含む場合、M2元素の総量を100重量%として、Tiは10〜90重量%(特に30〜70重量%、さらに40〜60重量%)が好ましい。なお、Geの使用量は、Tiの使用量との合計が100重量%となるように設定される。Like M 1 in the lithium manganese-based composite oxide of the present invention, M 2 is considered to be present in the layered rock salt type structure in the form of substituting Li, Mn, etc., but only one of Ti and Ge May be contained, or both Ti and Ge may be contained. More specifically, although Ti is cheaper than Ge, Ge can exert excellent effects with a small amount of elements, and therefore, when Ge is used, the amount of raw materials used can also be reduced. Therefore, it is preferable to appropriately set the amounts of Ti and Ge used according to the application. For example, when containing both Ti and Ge, as 100% by weight of the total amount of M 2 element, Ti is 10 to 90 wt% (in particular 30 to 70 wt%, further 40 to 60% by weight) is preferred. The amount of Ge used is set such that the total amount with the amount of Ti used is 100% by weight.

本発明リチウムマンガン系複合酸化物に固溶させるM1とM2の合計量(y+z)は、前記一般式(1)において、70%以下(0<y+z≦0.7)が好ましく、10〜60%(0.1≦y+z≦0.6)がより好ましく、20〜50%(0.2≦y+z≦0.5)がさらに好ましく、25〜45%(0.25≦y+z≦0.45)が特に好ましい。これにより、リチウムイオン二次電池用正極材料に用いた場合に、容量をより高くし、放電電圧をより高くし、充放電サイクル時の充放電曲線形状の相似性を維持しやすくできるために長期間のサイクル特性をより優れたものとすることができる。In the general formula (1), the total amount (y + z) of M 1 and M 2 dissolved in the lithium manganese composite oxide of the present invention is preferably 70% or less (0 <y + z ≦ 0.7), 10 to 60% (0.1 ≦ y + z ≦ 0.6) is more preferable, 20 to 50% (0.2 ≦ y + z ≦ 0.5) is more preferable, and 25 to 45% (0.25 ≦ y + z ≦ 0.45) is particularly preferable . As a result, when used as a positive electrode material for lithium ion secondary batteries, the capacity can be further increased, the discharge voltage can be further increased, and the similarity between the charge and discharge curve shapes during charge and discharge cycles can be easily maintained. The cycle characteristics of the period can be made better.

また、本発明のリチウムマンガン系複合酸化物において、単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を保つことができる限り、Liイオン量(x)は、遷移金属の平均価数によって0と1/3の間の値をとることができる。通常、0.100〜0.300が好ましく、0.200〜0.280がより好ましく、0.230〜0.270がさらに好ましい。   Further, in the lithium manganese-based composite oxide of the present invention, the Li ion content (x) is an average valence of the transition metal as long as the crystal phase of the monoclinic layered rock salt structure or the hexagonal layered rock salt structure can be maintained. Depending on the number, it can take values between 0 and 1/3. Usually, 0.100 to 0.300 is preferable, 0.200 to 0.280 is more preferable, and 0.230 to 0.270 is more preferable.

さらに、本発明のリチウムマンガン系複合酸化物は、充放電特性に重大な影響を及ぼさない範囲の水酸化リチウム、炭酸リチウム、鉄化合物、ニッケル化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、これらの化合物の水和物;リチウム、鉄、ニッケル、チタン及びゲルマニウムの2種以上を含む複合金属化合物等の不純物相を含んでいてもよい。単斜晶層状岩塩型構造、六方晶層状岩塩型構造及び陽イオン分布の異なる他の岩塩型構造(立方晶岩塩型構造等)の結晶相以外の不純物相の量については、本発明の効果を損なわない範囲とすることができ、例えば、本発明のリチウムマンガン系複合酸化物中に0〜10重量%が好ましく、0〜5重量%がより好ましい。   Furthermore, the lithium manganese-based composite oxide of the present invention is a lithium hydroxide, lithium carbonate, iron compound, nickel compound, titanium compound, germanium compound, manganese compound, and these compounds in a range that does not significantly affect charge and discharge characteristics. The hydrate of the present invention may contain an impurity phase such as a composite metal compound containing two or more of lithium, iron, nickel, titanium and germanium. Regarding the amount of impurity phase other than crystal phase of monoclinic layered rock salt type structure, hexagonal layered rock salt type structure and other rock salt type structures (cubic rock salt type structure etc.) different in cation distribution, the effect of the present invention It can be in a range that does not damage, for example, 0 to 10% by weight is preferable, and 0 to 5% by weight is more preferable in the lithium manganese-based composite oxide of the present invention.

以上のような条件を満たす本発明のリチウムマンガン系複合酸化物は、長期の充放電サイクル時においても、充放電曲線形状の相似性を維持することができ、層状岩塩型構造の結晶相からスピネル型構造の結晶相への相転移に基づく放電時3.5 V付近での急激な電位低下と、層状岩塩型構造の結晶相からリチウム過剰結晶相への相転移に基づく放電時2.2 V付近での付加的な容量の出現とをいずれも抑制できるため、本発明のリチウムマンガン系複合酸化物は、高容量及び高い放電電圧を有するのみならず、長期間の充放電サイクル時においても優れたサイクル特性を有する。このため、本発明のリチウムマンガン系複合酸化物は、小型民生用リチウムイオン二次電池のみならず車載用等の大型リチウムイオン二次電池用正極材料として極めて有用である。   The lithium manganese-based composite oxide of the present invention satisfying the above conditions can maintain the similarity of the charge / discharge curve shape even during a long charge / discharge cycle, and the spinel from the crystalline phase of the layered rock salt type structure Potential drop around 3.5 V during discharge based on the phase transition to the crystal phase of type structure and addition around 2.2 V during discharge based on the phase transition from the crystal phase of layered rock salt structure to the lithium excess crystal phase Since the lithium manganese composite oxide of the present invention not only has a high capacity and a high discharge voltage, it also has excellent cycle characteristics even during long-term charge and discharge cycles. Have. For this reason, the lithium manganese-based composite oxide of the present invention is extremely useful as a positive electrode material not only for small consumer lithium ion secondary batteries but also for large lithium ion secondary batteries for vehicles and the like.

2.リチウムマンガン系複合酸化物の製造方法
本発明のリチウムマンガン系複合酸化物は、通常の複合酸化物の合成法を用いて合成することができる。具体的には、共沈−焼成法、共沈−水熱−焼成法、固相反応法等により合成することが可能である。特に優れた充放電特性を有する複合酸化物を容易に製造できる観点から、共沈−焼成法を採用することが好ましい。
2. Method of producing lithium manganese-based composite oxide The lithium manganese-based composite oxide of the present invention can be synthesized using a conventional composite oxide synthesis method. Specifically, it is possible to synthesize by the coprecipitation-calcination method, the coprecipitation-hydrothermal-calcination method, the solid phase reaction method and the like. From the viewpoint of easily producing a composite oxide having particularly excellent charge and discharge characteristics, it is preferable to adopt a coprecipitation-calcination method.

例えば、共沈−焼成法を採用する場合は、例えば、
(1)マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物と必要に応じてチタン化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程(以下、工程1と言うこともある)、
(2)工程1で得られた沈殿物に湿式酸化処理を施して熟成させる工程(以下、工程2と言うこともある)、
(3)工程2で得られた熟成物を、リチウム化合物及び必要に応じてゲルマニウム化合物を含む原料化合物の共存下に、加熱する工程(以下、工程3と言うこともある)をこの順に備える製造方法により、本発明のリチウムマンガン系複合酸化物を得ることができる。
For example, in the case of employing the coprecipitation-baking method, for example,
(1) A step of forming a precipitate by making a mixture containing a manganese compound, at least one compound selected from the group consisting of an iron compound and a nickel compound, and optionally a titanium compound alkaline I may say),
(2) A step of subjecting the precipitate obtained in step 1 to wet oxidation treatment and aging (hereinafter also referred to as step 2),
(3) A process comprising heating steps (hereinafter also referred to as step 3) of heating the matured product obtained in step 2 in the coexistence of a lithium compound and, if necessary, a raw material compound containing a germanium compound The lithium manganese-based composite oxide of the present invention can be obtained by the method.

(2−1)工程1
工程1では、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物を、アルカリ性として沈殿物を形成する。具体的には、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物の溶液からアルカリ性として沈殿物を形成することが簡便である。
(2-1) Process 1
In step 1, a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound is made alkaline to form a precipitate. Specifically, it is convenient to form a precipitate as alkaline from a solution of a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound.

なお、最終的に得ようとする本発明のリチウムマンガン系複合酸化物において、Ti元素を含んでいる場合は、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物と、チタン化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程とすることが好ましい。具体的には、マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物と、チタン化合物とを含む混合物の溶液をアルカリに加えて沈殿物を形成することが簡便である。   When the lithium manganese-based composite oxide of the present invention to be finally obtained contains a Ti element, the manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound Preferably, the mixture containing the titanium compound and the titanium compound is made alkaline to form a precipitate. Specifically, it is convenient to add a solution of a mixture containing a manganese compound, at least one compound selected from the group consisting of an iron compound and a nickel compound, and a titanium compound to an alkali to form a precipitate. .

マンガン化合物、鉄化合物、ニッケル化合物及びチタン化合物としては、これらの化合物を含む混合水溶液を形成できる成分が好ましい。水溶性の化合物を用いることが好ましい。このような水溶性化合物の具体例としては、例えば、マンガン、鉄、ニッケル又はチタンの塩化物、硝酸塩、硫酸塩、シュウ酸塩、酢酸塩等の水溶性塩;水酸化物等を挙げることができる。また、チタン酸マンガン、チタン酸ニッケル、亜マンガン酸ニッケル、マンガン酸鉄等の複数の金属種を含む化合物を使用することもできる。マンガン化合物としては、過マンガン酸カリウム等の過マンガン酸塩もリチウムイオン以外の金属分布の均一化を図ることができ、充放電特性をより改善することができる。これらの水溶性化合物は、無水物及び水和物のいずれも採用し得る。また、マンガン、鉄、ニッケル又はチタンの酸化物、金属等の非水溶性化合物であっても、例えば、硫酸、塩酸等の酸を用いて溶解させて水溶液として用いることが可能である。これらの各原料化合物は、各金属源について、それぞれ単独で使用することもでき、2種以上を組合せて使用することもできる。   As a manganese compound, an iron compound, a nickel compound, and a titanium compound, the component which can form the mixed aqueous solution containing these compounds is preferable. It is preferred to use a water soluble compound. Specific examples of such water-soluble compounds include, for example, water-soluble salts such as chlorides, nitrates, sulfates, oxalates and acetates of manganese, iron, nickel or titanium; hydroxides, etc. it can. In addition, compounds containing a plurality of metal species such as manganese titanate, nickel titanate, nickel manganate, iron manganate and the like can also be used. As a manganese compound, permanganate salts such as potassium permanganate can also make the metal distribution other than lithium ion uniform, and charge / discharge characteristics can be further improved. As these water soluble compounds, any of anhydrides and hydrates can be adopted. Further, even non-water-soluble compounds such as oxides of manganese, iron, nickel or titanium, metals and the like can be used as an aqueous solution by dissolving them using an acid such as sulfuric acid or hydrochloric acid. Each of these raw material compounds can be used alone for each metal source, or two or more of them can be used in combination.

マンガン化合物、鉄化合物、ニッケル化合物及びチタン化合物の混合割合は、目的とする本発明のリチウムマンガン系複合酸化物における各元素比と同様の元素比とし得る。   The mixing ratio of the manganese compound, the iron compound, the nickel compound and the titanium compound may be the same as the element ratio in the target lithium manganese-based composite oxide of the present invention.

混合水溶液とする場合の各化合物の濃度については、特に限定的ではなく、均一な混合水溶液を形成でき、且つ円滑に共沈物を形成できるように適宜決めることができる。通常、マンガン化合物、鉄化合物、ニッケル化合物及びチタン化合物の合計濃度は、0.01〜5mol/L、特に0.1〜2mol/Lが好ましい。   The concentration of each compound in the case of the mixed aqueous solution is not particularly limited, and can be appropriately determined so as to be able to form a uniform mixed aqueous solution and to form a coprecipitate smoothly. Usually, the total concentration of the manganese compound, the iron compound, the nickel compound and the titanium compound is preferably 0.01 to 5 mol / L, particularly preferably 0.1 to 2 mol / L.

混合水溶液とする場合の溶媒としては、水を単独で用いる他、メタノール、エタノール等の水溶性アルコールを含む水−アルコール混合溶媒を用いることもできる。水−アルコール混合溶媒を用いることにより、アルコールが不凍液として働き、0℃を下回る温度での沈殿生成が可能となる。低温での沈殿物形成を行うことにより、M1元素としてFeを含む場合の沈殿形成時に発生しやすいリチウムフェライト、マンガンフェライト等の不純物の生成をより抑制する、すなわちより遷移金属分布の均一な共沈物を得ることができる。また、水のみでは沈殿物が形成しにくい過マンガン酸カリウム等のマンガン源も採用できるために原料の選択の幅がより広がる。アルコールの使用量は、目的とする沈殿生成温度等に応じて適宜決めることができ、通常、水100重量部に対して、50重量部以下(例えば10〜50重量部)の使用量とすることが適当である。As a solvent in the case of using a mixed aqueous solution, water can be used alone, or a water-alcohol mixed solvent containing a water-soluble alcohol such as methanol and ethanol can be used. By using a water-alcohol mixed solvent, the alcohol acts as an antifreeze liquid, and precipitation can be performed at a temperature below 0 ° C. The formation of precipitates at a low temperature further suppresses the formation of impurities such as lithium ferrite and manganese ferrite which are easily generated during the formation of precipitates when Fe is contained as an M 1 element, that is, a more uniform codistribution of transition metal distribution. You can get a deposit. In addition, since a manganese source such as potassium permanganate which is difficult to form precipitates by water alone can also be adopted, the range of selection of raw materials is further expanded. The amount of alcohol used can be appropriately determined according to the target precipitation temperature and the like, and is usually 50 parts by weight or less (e.g. 10 to 50 parts by weight) with respect to 100 parts by weight of water. Is appropriate.

前記混合物(特に前記混合水溶液)をアルカリ性とすることで、沈殿物(共沈物)を生成させることができる。良好な沈殿物を形成する条件は、前記混合物(特に前記混合水溶液)に含まれる各化合物の種類、濃度等によって異なるので一概に規定出来ないが、通常、pH8以上(例えばpH8〜14)が好ましく、pH11以上(例えばpH11〜14)がより好ましい。   By making the mixture (particularly, the mixed aqueous solution) alkaline, a precipitate (coprecipitate) can be generated. The conditions for forming a good precipitate are different depending on the type and concentration of each compound contained in the mixture (particularly the mixed aqueous solution), and thus can not be generally defined, but usually pH 8 or more (eg pH 8 to 14) is preferable , PH 11 or more (for example, pH 11 to 14) is more preferable.

前記混合物(特に前記混合水溶液)をアルカリ性にする方法については、特に限定はなく、通常は、均一な沈殿物の形成のために、アルカリを含む水溶液に前記混合物(特に前記混合水溶液)を添加する方法によっても沈殿物(共沈物)を形成することができる。また前記混合水溶液にアルカリ又はアルカリを含む水溶液を添加することによっても沈殿を得ることができる。   There is no particular limitation on the method of making the mixture (particularly the mixed aqueous solution) alkaline, and usually, the mixture (particularly the mixed aqueous solution) is added to an aqueous solution containing alkali for the formation of a uniform precipitate. A precipitate (co-precipitate) can also be formed by the method. A precipitate can also be obtained by adding an alkali or an aqueous solution containing an alkali to the mixed aqueous solution.

前記混合物(特に前記混合水溶液)をアルカリ性にするために用いるアルカリとしては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウム等のアルカリ金属水酸化物、アンモニア等を用いることができる。これらのアルカリを水溶液として用いる場合には、例えば、濃度が0.1〜20mol/L、特に0.3〜10mol/Lの水溶液として用いることができる。また、アルカリは、上記した金属化合物の混合水溶液と同様に、水溶性アルコールを含む水−アルコール混合溶媒に溶解することもできる。   Examples of the alkali used to make the mixture (particularly the mixed aqueous solution) alkaline include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide, and ammonia. When these alkalis are used as an aqueous solution, for example, they can be used as an aqueous solution having a concentration of 0.1 to 20 mol / L, particularly 0.3 to 10 mol / L. The alkali can also be dissolved in a water-alcohol mixed solvent containing a water-soluble alcohol, as in the case of the mixed aqueous solution of the metal compound described above.

沈殿生成の際には、前記混合物(特に前記混合水溶液)の温度を、通常、-50〜50℃、特に-20〜30℃とすることにより、M1としてFeを含む場合に反応時の中和熱発生に伴うスピネルフェライトの生成がより抑制され、また、微細且つ均質な沈殿物(共沈物)が形成されやすくなるために後述のリチウム化合物との反応性をより高め、本発明のリチウムマンガン系複合酸化物を合成しやすくなる。また、本工程で良好に沈殿物(共沈物)を形成させるためには、中和熱の発生をより抑制するため、アルカリに対して、前記混合物(特に前記混合水溶液)を少なくとも数時間かけて徐々に滴下していく方法が好ましい。この際の反応時間は長ければ長いほどよいが、実際には、1時間〜1日、特に2〜12時間が好ましい。In the case of containing Fe as M 1 by setting the temperature of the mixture (particularly the mixed aqueous solution) to usually −50 to 50 ° C., particularly −20 to 30 ° C. during precipitation. Since the formation of spinel ferrite accompanying the heat generation is further suppressed and fine and homogeneous precipitates (coprecipitates) are easily formed, the reactivity with the lithium compound described later is further enhanced, and the lithium of the present invention It becomes easy to synthesize a manganese-based composite oxide. Also, in order to form precipitates (coprecipitates) well in this step, it is necessary to apply the mixture (particularly the mixed aqueous solution) to the alkali for at least several hours in order to further suppress the generation of heat of neutralization. The method of dropping gradually is preferable. The longer the reaction time, the better, but in practice it is preferably 1 hour to 1 day, especially 2 to 12 hours.

(2−2)工程2
上記工程1で沈殿物(共沈物)を形成した後には、沈殿物(共沈物)を湿式酸化により熟成する。具体的には、工程2では、工程1で得られた沈殿物(共沈物)に湿式酸化処理を施して熟成させる。より詳細には、上記工程1で得られた沈殿物(共沈物)を含むアルカリ水溶液に、コンプレッサー、酸素ガス発生器等で、酸素を含む気体を吹き込んでバブリング処理することにより熟成させることができる。
(2-2) Process 2
After the precipitate (coprecipitate) is formed in step 1 above, the precipitate (coprecipitate) is aged by wet oxidation. Specifically, in step 2, the precipitate (co-precipitate) obtained in step 1 is subjected to wet oxidation treatment and aged. More specifically, aging is performed by bubbling a gas containing oxygen with a compressor, an oxygen gas generator, or the like into an aqueous alkali solution containing the precipitate (coprecipitate) obtained in the above step 1 and bubbling treatment. it can.

吹き込む気体には、一定量の酸素を含むことが好ましい。具体的には、吹き込むガスの10〜100体積%の酸素を含むことが好ましい。このような吹き込む気体としては、例えば、空気、酸素等が挙げられ、酸素が好ましい。   Preferably, the gas to be blown contains a certain amount of oxygen. Specifically, it is preferable to contain 10 to 100% by volume of oxygen to the gas blown. Examples of such a gas to be blown include air, oxygen and the like, with oxygen being preferred.

熟成温度は特に制限されず、沈殿物(共沈物)の湿式酸化処理を行い得る温度が好ましい。通常、0〜150℃が好ましく、10〜100℃がより好ましい。また、熟成時間も特に制限されず、沈殿物(共沈物)の湿式酸化処理を行い得る時間が好ましい。この熟成時間は長ければ長いほどよいが、実際には、0.5〜7日が好ましく、2〜4日がより好ましい。   The ripening temperature is not particularly limited, and a temperature at which wet oxidation treatment of the precipitate (coprecipitate) can be performed is preferable. Usually, 0 to 150 ° C. is preferable, and 10 to 100 ° C. is more preferable. Further, the aging time is not particularly limited, and a time in which the wet oxidation treatment of the precipitate (coprecipitate) can be performed is preferable. The longer the ripening time, the better, but in practice, 0.5 to 7 days are preferable, and 2 to 4 days are more preferable.

得られた沈殿を必要に応じて蒸留水等で洗浄して、過剰のアルカリ成分、残留原料等を除去し、濾別することによって、沈殿を精製することも可能である。   It is also possible to refine the precipitate by washing the obtained precipitate with distilled water or the like as necessary to remove excess alkali components, residual raw materials and the like, and filtering it off.

(2−3)工程3
次いで、工程3では、工程2で得られた熟成物を、リチウム化合物を含む原料化合物の共存下に、加熱する。具体的には、工程2で得られた熟成物と、リチウム化合物を含む原料化合物とを含有する水溶液を、必要に応じてスラリーを形成して乾燥及び粉砕後、加熱(特に焼成)することが好ましい。
(2-3) Process 3
Next, in step 3, the matured product obtained in step 2 is heated in the coexistence of a raw material compound containing a lithium compound. Specifically, an aqueous solution containing the matured product obtained in step 2 and a raw material compound containing a lithium compound may be heated as needed, after forming a slurry, drying and crushing, and then heating (particularly baking). preferable.

使用する水溶液における、上記工程2で得られた熟成物の含有量は、通常、水1 Lあたり100〜3000gが好ましく、500〜2000gがより好ましい。   Usually, 100-3000 g is preferable per 1 L of water, and, as for content of the ripening thing obtained at the said process 2 in the aqueous solution to be used, 500-2000 g is more preferable.

リチウム化合物としては、例えば、塩化リチウム、ヨウ化リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム等の水溶性リチウム塩;炭酸リチウム等を用いることができる。これらのリチウム化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。また、リチウム化合物としては、無水物及び水和物のいずれも採用し得る。特に、本発明のリチウムマンガン系複合酸化物がGeを含む場合には、リチウム化合物として水酸化リチウムを用いれば、非水溶性ゲルマニウム化合物を溶解しやすくすることができるため好ましい。   Examples of lithium compounds that can be used include water-soluble lithium salts such as lithium chloride, lithium iodide, lithium nitrate, lithium acetate and lithium hydroxide; lithium carbonate and the like. These lithium compounds can be used alone or in combination of two or more. Moreover, as a lithium compound, both an anhydride and a hydrate can be employ | adopted. In particular, in the case where the lithium manganese-based composite oxide of the present invention contains Ge, it is preferable to use lithium hydroxide as the lithium compound, because the water-insoluble germanium compound can be easily dissolved.

リチウム化合物の使用量は、上記工程2で得られた熟成物と、後述のゲルマニウム化合物との合計量を基準とし、Li/(M1+M2)=1〜5が好ましく、1.5〜3がより好ましい。The amount of the lithium compound used is preferably Li / (M 1 + M 2 ) = 1 to 5 based on the total amount of the matured product obtained in the above step 2 and the germanium compound described later, and 1.5 to 3 is preferable. More preferable.

また、水溶液中のリチウム化合物の濃度は、通常、0.1〜10mol/Lが好ましく、1〜8mol/Lがより好ましい。   Moreover, normally 0.1-10 mol / L is preferable, and, as for the density | concentration of the lithium compound in aqueous solution, 1-8 mol / L is more preferable.

また、本発明のリチウムマンガン系複合酸化物がGeを含む場合には、原料化合物としてゲルマニウム化合物を使用することが好ましい。   When the lithium manganese composite oxide of the present invention contains Ge, it is preferable to use a germanium compound as a raw material compound.

ゲルマニウム化合物としては、塩化ゲルマニウム、ヨウ化ゲルマニウム等の水溶性ゲルマニウム化合物;酸化ゲルマニウム、金属ゲルマニウム等の非水溶性ゲルマニウム化合物等が挙げられる。非水溶性ゲルマニウム化合物を使用する場合は、ゲルマニウムが両性元素であることを活かし、酸又は前記したアルカリ等でゲルマニウム化合物を溶解させることにより、工程2で得た熟成物との反応性を向上させることが好ましい。なお、リチウム化合物として水酸化リチウムを使用する場合には、別途酸又はアルカリを使用せずとも、非水溶性ゲルマニウム化合物を溶解させることが可能である。   Examples of the germanium compound include water-soluble germanium compounds such as germanium chloride and germanium iodide; and water-insoluble germanium compounds such as germanium oxide and metallic germanium. In the case of using a water-insoluble germanium compound, the reactivity with the aged product obtained in step 2 is improved by dissolving the germanium compound with an acid or the above-mentioned alkali or the like, taking advantage of the fact that germanium is an amphoteric element. Is preferred. When lithium hydroxide is used as the lithium compound, it is possible to dissolve the water-insoluble germanium compound without separately using an acid or an alkali.

加熱後に洗浄処理を行う場合は、ゲルマニウムは洗い流される量が多いので、ゲルマニウム化合物の添加量(仕込み量)は得ようとする複合酸化物中の含有量より多くすることが好ましい。このような観点から、ゲルマニウム化合物の使用量は、上記工程2で得られた熟成物と、ゲルマニウム化合物との合計量を基準とし、Ge/(M1+M2)=0.01〜0.5が好ましく、0.1〜0.4がより好ましい。When the cleaning treatment is performed after heating, the amount of germanium to be washed away is large, so the addition amount (feed amount) of the germanium compound is preferably larger than the content in the composite oxide to be obtained. From such a viewpoint, the amount of the germanium compound used is preferably Ge / (M 1 + M 2 ) = 0.01 to 0.5, based on the total amount of the aged product obtained in the above step 2 and the germanium compound, 0.1 to 0.4 is more preferable.

また、水溶液中のゲルマニウム化合物の濃度は、通常、0.05〜1.0mol/Lが好ましく、0.1〜0.7mol/Lがより好ましい。   Moreover, 0.05-1.0 mol / L is preferable normally, and, as for the density | concentration of the germanium compound in aqueous solution, 0.1-0.7 mol / L is more preferable.

工程2で得た熟成物と、リチウム化合物及び必要に応じてジルコニウム化合物との混合方法は特に制限されない。例えば、水溶性リチウム化合物の水溶液に、工程2で得た熟成物を添加し、撹拌して分散させた後に、別途作製した水溶性ゲルマニウム化合物の水溶液又は非水溶性ゲルマニウム化合物のアルカリ溶液を添加し、よく撹拌した後に、必要に応じて乾燥及び粉砕することが好ましい。   The method of mixing the matured product obtained in step 2 with the lithium compound and, if necessary, the zirconium compound is not particularly limited. For example, the matured product obtained in step 2 is added to an aqueous solution of a water-soluble lithium compound, stirred and dispersed, and then an aqueous solution of a water-soluble germanium compound or an alkaline solution of a non-water-soluble germanium compound prepared separately is added. After well stirring, it is preferable to dry and grind as necessary.

撹拌は、通常の方法を採用することができ、例えば、ミキサー、V型混合機、W型混合機、リボン混合機等の公知の混合機で撹拌することが好ましい。   Stirring can be carried out using a conventional method, and for example, it is preferable to stir using a known mixer such as a mixer, a V-type mixer, a W-type mixer, or a ribbon mixer.

乾燥する場合、乾燥条件は特に制限されない。乾燥温度は、例えば、20〜100℃が好ましく、30〜80℃がより好ましい。また、乾燥時間は、例えば、1時間〜5日が好ましく、12時間〜3日がより好ましい。   When drying, drying conditions are not particularly limited. The drying temperature is, for example, preferably 20 to 100 ° C, and more preferably 30 to 80 ° C. Moreover, 1 hour-5 days are preferable, and, as for drying time, 12 hours-3 days are more preferable, for example.

後の加熱処理の際に反応性を向上させるために、粉砕することが好ましい。粉砕の程度については、粗大粒子が含まれず、混合物が均一な色調となっていることが好ましい。粉砕する場合、通常の方法を採用することができ、例えば、振動ミル、ボールミル、ジェットミル等で粉砕することができる。また、粉砕を2回以上繰り返すこともできる。また、加熱処理は、加熱温度を段階的に上げて実施することもできる。   It is preferable to grind | pulverize in order to improve the reactivity in the case of the later heat processing. With regard to the degree of grinding, it is preferable that the mixture has a uniform color tone without containing coarse particles. In the case of pulverizing, a usual method can be adopted, and for example, it can be pulverized by a vibration mill, a ball mill, a jet mill or the like. The grinding can also be repeated two or more times. The heat treatment can also be carried out by gradually raising the heating temperature.

加熱処理は、通常、密閉容器(電気炉等)中で行うことが好ましい。   The heat treatment is usually preferably performed in a closed vessel (such as an electric furnace).

加熱条件は特に限定されるものではないが、充放電サイクル特性をより安定化させるために、最終加熱温度を750℃以上とすることが好ましい。また、加熱温度は、リチウムが揮発しにくいように、1000℃以下が好ましい。最終加熱温度は、特に、800〜950℃が好ましい。この範囲で加熱(特に焼成)することにより、より短時間の焼成で、高い容量及びより高い放電電圧を有するのみならず、長期間の充放電サイクル時においてもより優れたサイクル特性を有するリチウムマンガン系複合酸化物を得やすい。   The heating conditions are not particularly limited, but in order to further stabilize the charge and discharge cycle characteristics, the final heating temperature is preferably 750 ° C. or higher. The heating temperature is preferably 1000 ° C. or less so that lithium is less likely to volatilize. The final heating temperature is particularly preferably 800 to 950 ° C. By heating (especially firing) within this range, lithium manganese not only has a high capacity and a high discharge voltage in firing for a short time, but also has superior cycle characteristics even in long-term charge / discharge cycles It is easy to obtain a base complex oxide.

加熱雰囲気(特に焼成雰囲気)も特に制限されない。最終加熱雰囲気を窒素、アルゴン等の不活性雰囲気又は還元性雰囲気とする場合は、試料の分解を抑制するため、あらかじめ、大気中、500〜750℃(特に550〜700℃)の低温で加熱(特に焼成)してから、不活性雰囲気又は還元性雰囲気での最終加熱(特に最終焼成)を行うことが好ましい。また、最終加熱雰囲気を大気中とする場合であっても、Li含有量、粉体特性等の制御をより精密に行うために、2段階の加熱(特に焼成)を行うこともできる。なお、最終加熱雰囲気を還元性雰囲気とする場合は、例えば、不活性雰囲気下において、有機物、炭素粉末等の存在下に焼成することによって、還元性雰囲気下における加熱処理(特に焼成)が可能である。   The heating atmosphere (in particular, the firing atmosphere) is also not particularly limited. When the final heating atmosphere is an inert atmosphere such as nitrogen or argon or a reducing atmosphere, the sample is previously heated at a low temperature of 500 to 750 ° C. (particularly 550 to 700 ° C.) in the air to suppress decomposition of the sample In particular, it is preferable to carry out final heating (in particular, final baking) in an inert atmosphere or reducing atmosphere after baking. In addition, even when the final heating atmosphere is in the atmosphere, two-stage heating (in particular, baking) can be performed in order to control Li content, powder characteristics, and the like more precisely. When the final heating atmosphere is a reducing atmosphere, for example, heat treatment (in particular, baking) in a reducing atmosphere is possible by firing in an inert atmosphere in the presence of an organic substance, carbon powder, etc. is there.

有機物としては、特に限定はなく、上記加熱温度(特に焼成温度)において分解して還元性雰囲気とすることができる炭素含有化合物が好ましい。特に、水溶性の有機物を用いる場合には、水溶液状態でリチウムマンガン系複合酸化物粉末と分散混合できるので有利である。このような有機物の具体例としては、例えば、ショ糖、ブドウ糖、デンプン、酢酸、クエン酸、シュウ酸、安息香酸、アミノ酢酸等を挙げることができる。   There is no particular limitation on the organic substance, and a carbon-containing compound that can be decomposed at the above heating temperature (in particular, the baking temperature) to make a reducing atmosphere is preferable. In particular, when using a water-soluble organic substance, it is advantageous because it can be dispersed and mixed with the lithium manganese-based composite oxide powder in an aqueous solution state. Specific examples of such organic substances include sucrose, glucose, starch, acetic acid, citric acid, oxalic acid, benzoic acid, aminoacetic acid and the like.

炭素粉末としては、例えば、有機物の熱分解によって得られた炭素粉末、例えば、黒鉛、アセチレンブラック等を用いることができる。   As carbon powder, for example, carbon powder obtained by thermal decomposition of an organic substance, for example, graphite, acetylene black and the like can be used.

上記した有機物及び炭素粉末は、単独で用いることもでき、2種以上を組合せて用いることもできる。   The above-mentioned organic substance and carbon powder can be used alone or in combination of two or more.

有機物及び炭素粉末よりなる群から選ばれた少なくとも一種の成分の使用量は、リチウムマンガン系複合酸化物に対して、炭素のモル量換算で0.001〜5倍モルが好ましく、0.01〜1倍モルがより好ましい。水溶液として用いる場合には有機物等の濃度は、上記した使用量の範囲となるように適宜決めることができる。   The amount of use of at least one component selected from the group consisting of an organic substance and a carbon powder is preferably 0.001 to 5 times by mole, 0.01 to 1 times by mole in terms of a molar amount of carbon relative to the lithium manganese-based composite oxide. More preferable. When used as an aqueous solution, the concentration of the organic substance or the like can be appropriately determined so as to fall within the above-mentioned range of usage.

加熱時間も特に制限されない。より詳細には、最終加熱温度における保持時間は10分〜24時間が好ましく、30分〜12時間がより好ましい。また、2段階の加熱処理を行う場合、1段階目の加熱温度における保持時間は10分〜24時間(特に30分〜12時間)が好ましく、2段階目の最終加熱温度における保持時間は10分〜24時間(特に30分〜12時間)が好ましい。   The heating time is also not particularly limited. More specifically, the holding time at the final heating temperature is preferably 10 minutes to 24 hours, and more preferably 30 minutes to 12 hours. When two-step heat treatment is performed, the holding time at the first heating temperature is preferably 10 minutes to 24 hours (particularly 30 minutes to 12 hours), and the holding time at the second heating temperature is 10 minutes. -24 hours (especially 30 minutes-12 hours) are preferable.

上記した方法で本発明のリチウムマンガン系複合酸化物を得た後、必要に応じて、過剰のリチウム化合物を除去するために、得られた焼成物を水洗処理、溶媒洗浄処理等に供することができる。その後、濾過を行い、例えば、80℃以上、好ましくは100℃以上で加熱乾燥することもできる。   After obtaining the lithium manganese-based composite oxide of the present invention by the method described above, if necessary, the obtained baked product may be subjected to water washing treatment, solvent washing treatment, etc. in order to remove an excess of lithium compound. it can. After that, it is possible to carry out filtration and heat drying, for example, at 80 ° C or higher, preferably 100 ° C or higher.

さらに、必要に応じて、この加熱乾燥物を粉砕し、リチウム化合物及び有機物を加えて加熱(特に焼成)し、洗浄し、乾燥するという一連の操作を繰り返し行うことにより、リチウムマンガン系複合酸化物の優れた特性をより一層改善することもできる。   Furthermore, if necessary, this heat-dried product is pulverized, a lithium compound and an organic substance are added, heating (in particular firing) is performed, and a series of operations of washing and drying are repeated to repeat the lithium manganese-based composite oxide It is also possible to further improve the excellent properties of

3.リチウムイオン二次電池
本発明のリチウムマンガン系複合酸化物を用いるリチウムイオン二次電池は、公知の手法により製造することができる。例えば、正極材料として、本発明のリチウムマンガン系複合酸化物を使用し、負極材料として、公知の金属リチウム、炭素系材料(活性炭、黒鉛等)、ケイ素、酸化ケイ素、Si−SiO系材料、リチウムチタン酸化物等を使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等の1種以上からなる溶媒に過塩素酸リチウム、LiPF6等のリチウム塩を溶解させた溶液(有機電解液)、無機固体電解質(Li2S−P2S5系、Li2S−GeS2−P2S5系等)を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てることができる。なお、本発明において、「リチウムイオン二次電池」とは、負極材料として金属リチウムを用いた「リチウム二次電池」も包含する概念である。また、本発明において、「リチウムイオン二次電池」とは、非水電解液を使用した「非水リチウムイオン二次電池」と固体電解質を使用した「全固体リチウムイオン二次電池」のいずれも包含する概念である。
3. Lithium Ion Secondary Battery A lithium ion secondary battery using the lithium manganese composite oxide of the present invention can be manufactured by a known method. For example, the lithium manganese-based composite oxide of the present invention is used as the positive electrode material, and known metal lithium, carbon-based material (activated carbon, graphite etc.), silicon, silicon oxide, Si-SiO-based material, lithium as the negative electrode material A solution in which a lithium oxide such as lithium perchlorate or LiPF 6 is dissolved in a solvent comprising one or more of known ethylene carbonate, dimethyl carbonate, diethyl carbonate and the like as an electrolytic solution using a titanium oxide etc. (organic electrolysis Solution), inorganic solid electrolytes (Li 2 S-P 2 S 5 system, Li 2 S-GeS 2- P 2 S 5 system, etc.), and further using other known battery components According to the above, the lithium ion secondary battery can be assembled. In the present invention, “lithium ion secondary battery” is a concept including “lithium secondary battery” using metallic lithium as an anode material. In the present invention, the term "lithium ion secondary battery" refers to both "nonaqueous lithium ion secondary battery" using a non-aqueous electrolyte and "all solid lithium ion secondary battery" using a solid electrolyte. It is an included concept.

以下、実施例および比較例を示し、本発明の特徴とするところを一層明確にするが、本発明は以下の実施例に限定されるものではない。   Examples and Comparative Examples will be shown below to make the features of the present invention clearer, but the present invention is not limited to the following examples.

[実施例1]
試料合成、並びに構造及び組成評価
硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、30%硫酸チタン(IV)水溶液40.00g、塩化マンガン(II)4水和物29.69g(全量0.25mol、Fe: Ni: Ti: Mnモル比1: 1: 2: 6)を500mLの蒸留水に加え完全に溶解させた。別のビーカーに水酸化ナトリウム50gを秤量し、蒸留水500mLを添加して撹拌しつつ溶解させて水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液をチタン製ビーカーに入れ、20℃に保たれた恒温槽内に静置した。次いでこの水酸化ナトリウム溶液に、上記金属塩水溶液を約3時間かけて徐々に滴下し、Fe−Ni−Ti−Mn沈殿物(共沈物)を形成させた。反応液が完全にアルカリ性になっていることを確認し、撹拌下に共沈物を含む反応液に、室温で2日間酸素を吹き込んで湿式酸化処理して、沈殿を熟成させた。
Example 1
Sample synthesis, and structure and composition evaluation 10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 40.00 g of 30% aqueous solution of titanium (IV) sulfate, manganese (II) chloride 4 water 29.69 g of the hydrate (total 0.25 mol, Fe: Ni: Ti: Mn molar ratio 1: 1: 2: 6) was added to 500 mL of distilled water and completely dissolved. In a separate beaker, 50 g of sodium hydroxide was weighed, and 500 mL of distilled water was added and dissolved with stirring to prepare an aqueous sodium hydroxide solution. The aqueous sodium hydroxide solution was placed in a titanium beaker and allowed to stand in a thermostat kept at 20 ° C. Next, the above metal salt aqueous solution was gradually added dropwise to the sodium hydroxide solution over about 3 hours to form Fe-Ni-Ti-Mn precipitate (coprecipitate). It was confirmed that the reaction solution was completely alkaline, and oxygen was blown into the reaction solution containing the coprecipitate under stirring for 2 days at room temperature to carry out a wet oxidation treatment to age the precipitate.

得られた沈殿物を蒸留水で洗浄して濾別し、蒸留水で分散させた0.25mol炭酸リチウム18.47gとミキサー混合し、均一なスラリーを形成させた。スラリーをテトラフルオロエチレン製シャーレに移し、50℃で2日間乾燥後、粉砕して焼成用原料を作製した。   The resulting precipitate was washed with distilled water, filtered off, and mixed with 18.47 g of 0.25 mol lithium carbonate dispersed with distilled water to form a uniform slurry. The slurry was transferred to a petri dish made of tetrafluoroethylene, dried at 50 ° C. for 2 days, and pulverized to prepare a raw material for firing.

次いで得られた粉末を、1時間かけて650℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。粉砕後、再度電気炉を用いて、窒素気流下、1時間かけて850℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。つまり、1段階目は大気中、2段階目は窒素雰囲気で焼成することにより、試料作製を行った。電気炉から焼成物を取り出し、過剰のリチウム塩を除去するために、焼成物を蒸留水で水洗し、濾過し、乾燥して目的物である、鉄、ニッケル及びチタン置換Li2MnO3を粉末状生成物として得た。The powder obtained was then heated to 650 ° C. over 1 hour, held at that temperature for 5 hours, and cooled to around room temperature in a furnace. After crushing, the temperature was raised again to 850 ° C. in a nitrogen stream for 1 hour using an electric furnace, and after holding for 5 hours at that temperature, it was cooled to around room temperature in the furnace. That is, the sample preparation was performed by baking in the air in the first stage and in a nitrogen atmosphere in the second stage. The fired product is taken out of the electric furnace, and the fired product is washed with distilled water, filtered and dried to remove the excess lithium salt, and the desired product, iron, nickel and titanium-substituted Li 2 MnO 3 powder are obtained. It was obtained as a round product.

X線回折による評価
この最終生成物の実測(+)及び計算(実線)X線回折パターンを図1に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは以下の表1に記載の格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。また、表2の構造内遷移金属イオン分布を確認すると、実施例1の試料は後述するTiを含まない比較例1の試料と比較してLi−Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また実施例1の試料は後述するTiを含まない比較例1の試料と比較して六角網目規則配列度が高いことがわかる。
Evaluation by X-Ray Diffraction The actual (+) and calculated (solid line) X-ray diffraction pattern of this final product is shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constants described in Table 1 below, and only the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it consists of. In addition, when the distribution of transition metal ions in the structure in Table 2 is confirmed, the sample of Example 1 has a smaller amount of transition metal in the Li-Mn layer compared to the sample of Comparative Example 1 not including Ti described later, and a single Li layer. It can be seen that the amount of internal transition metal is large, and it is understood that transition metal ions tend to be irregularly arranged due to the introduction of Ti. Further, it is understood that the sample of Example 1 has a higher degree of hexagonal mesh arrangement, as compared to the sample of Comparative Example 1 which does not contain Ti described later.

化学分析等による評価
化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.68(x値換算0.254)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。
Evaluation based on chemical analysis etc. Based on the chemical analysis, the contents of Fe, Ni and Ti with respect to the total amount of metals other than lithium are 10 mol% and 10 mol% (equivalent to y value 0.20) and 20 mol% (equivalent to z value 0.20) Since the Li / (M 1 + M 2 + Mn) ratio is also 1.68 (0.254 in terms of x value), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1 is maintained. It is apparent that a lithium manganese-based composite oxide having -xO 2 was obtained.

充放電特性評価
詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。
The charge / discharge characteristic evaluation details are the procedure described in charge / discharge characteristic evaluation which will be described later. A lithium secondary battery is prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and the activation treatment and cycle test are performed. The

図2及び表4の結果から、実施例1の試料は活性化後には240mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例1の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。From the results of FIG. 2 and Table 4, the sample of Example 1 not only exhibits a charge / discharge capacity close to 240 mAh / g after activation but also contains the M 2 element described later, and is a comparative example obtained under the same preparation conditions Compared to the sample 1, not only the charge-discharge characteristics at 1 cycle after activation treatment are almost equal, but the charge-discharge curve similar to that at 20 cycles after activation treatment up to 50 cycles after activation treatment It shows. In other words, during 50 cycles after activation treatment, a rapid potential drop from around 3.7 V accompanied by a structural transition from a layered rock salt structure to a spinel phase during 50 cycles of discharge, or a layered rock salt structure causes a Li 2 (Ni, Mn) O 2 phase It is clear that it is a positive electrode material excellent in high capacity and long-term cycle characteristics, since no appearance of additional capacity at 2.2 V or less accompanying structural transition is observed.

[比較例1]
出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例1と同様に正極材料作製を行った。
Comparative Example 1
Starting materials: 10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 39.58 g of manganese (II) chloride tetrahydrate (total amount of 0.25 mol, Fe: Ni: Mn mol The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. After that, the positive electrode material was manufactured in the same manner as in Example 1.

この最終生成物の実測(+)及び計算(実線)X線回折パターンを図3に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.71(x値換算0.262)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。Also, according to chemical analysis, Fe and Ni contents with respect to the total metal amount other than lithium maintain 10 mol% and 10 mol% (equivalent to y value 0.20) which are preparation amounts, respectively, and Li / (M 1 + Mn) ratio Since it is also 1.71 (x value conversion 0.262), the lithium manganese-based composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図4及び表3に示す。図4及び表3より比較例1の試料は活性化後には250mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例1のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 4 and Table 3. From FIG. 4 and Table 3, the sample of Comparative Example 1 shows charge / discharge capacity close to 250 mAh / g after activation, but at 50 cycles after activation treatment, 3.7 accompanied by structural transition from layered rock salt type structure to spinel phase It is possible to observe an abrupt potential drop from around V and the appearance of additional capacity below 2.2 V due to the structural transition from a layered rock salt type structure to a Li 2 (Ni, Mn) O 2 phase. It is apparent that the cathode material is inferior in long-term cycle characteristics as compared to the lithium manganese composite oxide of Example 1.

[実施例2]
最終焼成雰囲気を大気中とした以外は、実施例1と同様に試料作製を行った。つまり、大気中で2回焼成することにより、試料作製を行った。この最終生成物の実測(+)及び計算(実線)X線回折パターンを図5に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。
Example 2
A sample was prepared in the same manner as in Example 1 except that the final firing atmosphere was in the air. That is, the sample preparation was performed by baking twice in the air. The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、後述の表2の構造内遷移金属イオン分布を確認すると、実施例2の試料は後述するTiを含まない比較例2の試料と比較してLi−Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また、実施例2の試料は後述するTiを含まない比較例2の試料と比較して六角網目規則配列度が高いことがわかる。   In addition, when the distribution of transition metal ions in the structure in Table 2 described later is confirmed, the amount of transition metal in the Li-Mn layer in the sample of Example 2 is smaller than that in the sample of Comparative Example 2 not including Ti described later. It can be seen that the amount of transition metal in a single layer is large, and it is understood that transition metal ions tend to be irregularly arranged due to the introduction of Ti. In addition, it can be seen that the sample of Example 2 has a higher degree of hexagonal mesh arrangement, as compared to the sample of Comparative Example 2 which does not contain Ti described later.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.72(x値換算0.265)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。From chemical analysis, the contents of Fe, Ni, and Ti with respect to the total metal amount other than lithium are maintained at 10 mol% and 10 mol% (equivalent to y value 0.20) and 20 mol% (equivalent to z value 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is also 1.72 (0.265 in terms of x value), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is apparent that a lithium manganese-based composite oxide having 2 was obtained.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図6及び表3に示す。図6及び表3より実施例2の試料は活性化後には240 mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例2の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7 V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2 V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 6 and Table 3. From FIG. 6 and Table 3, the sample of Example 2 not only exhibits a charge-discharge capacity close to 240 mAh / g after activation but also contains the M 2 element described later, and is obtained under the same preparation conditions as Comparative Example 2 Not only the charge and discharge characteristics at 1 cycle after activation treatment are almost equal to those of the sample, but the charge and discharge curve similar to that at 20 cycles after activation treatment is shown up to 50 cycles after activation treatment. There is. That is, during 50 cycles of activation treatment, a rapid potential drop from around 3.7 V accompanying the structural transition from the layered rock salt structure to the spinel phase during the 50 cycle discharge, and from the layered rock salt structure, the Li 2 (Ni, Mn) O 2 phase It is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics, since no appearance of additional capacity at 2.2 V or less is observed with the structural transition to.

[比較例2]
出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例2と同様に正極材料作製を行った。
Comparative Example 2
Starting materials: 10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 39.58 g of manganese (II) chloride tetrahydrate (total amount of 0.25 mol, Fe: Ni: Mn mol The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. After that, the positive electrode material was manufactured in the same manner as in Example 2.

この最終生成物の実測(+)及び計算(実線)X線回折パターンを図7に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.73(x値換算0.267)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。Also, according to chemical analysis, Fe and Ni contents with respect to the total metal amount other than lithium maintain 10 mol% and 10 mol% (equivalent to y value 0.20) which are preparation amounts, respectively, and Li / (M 1 + Mn) ratio Also, lithium manganese-based composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained since it is also 1.73 (0.267 in terms of x value) Is clear.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図8及び表3に示す。図8及び表3より比較例2の試料は活性化後には250mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例2のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 8 and Table 3. According to FIG. 8 and Table 3, the sample of Comparative Example 2 exhibits a charge-discharge capacity close to 250 mAh / g after activation, but at 50 cycles of discharge after activation treatment, 3.7 associated with structural transition from layered rock salt type structure to spinel phase It is possible to observe an abrupt potential drop from around V and the appearance of additional capacity below 2.2 V due to the structural transition from a layered rock salt type structure to a Li 2 (Ni, Mn) O 2 phase. It is apparent that the cathode material is inferior in long-term cycle characteristics as compared to the lithium manganese-based composite oxide of Example 2.

[実施例3]
最終焼成条件を900℃、5時間、大気中とした以外は、実施例1と同様に試料作製を行った。つまり、大気中で2回焼成することにより、試料作製を行った。この最終生成物の実測(+)及び計算(実線)X線回折パターンを図9に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。
[Example 3]
A sample was prepared in the same manner as in Example 1 except that the final firing conditions were set to 900 ° C., 5 hours, and in the air. That is, the sample preparation was performed by baking twice in the air. The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、後述の表2の構造内遷移金属イオン分布を確認すると、実施例3の試料は後述するTiを含まない比較例3の試料と比較してLi−Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また、実施例3の試料は後述するTiを含まない比較例3の試料と比較して六角網目規則配列度が高いことがわかる。   In addition, when the distribution of transition metal ions in the structure in Table 2 to be described later is confirmed, the amount of transition metal in the Li-Mn layer in the sample of Example 3 is smaller than that in the sample of Comparative Example 3 which does not contain Ti described later It can be seen that the amount of transition metal in a single layer is large, and it is understood that transition metal ions tend to be irregularly arranged due to the introduction of Ti. In addition, it is understood that the sample of Example 3 has a higher degree of hexagonal mesh arrangement, as compared to the sample of Comparative Example 3 which does not contain Ti described later.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.74(x値換算0.270)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。From chemical analysis, the contents of Fe, Ni, and Ti with respect to the total metal amount other than lithium are maintained at 10 mol% and 10 mol% (equivalent to y value 0.20) and 20 mol% (equivalent to z value 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is also 1.74 (0.270 in terms of x value), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is apparent that a lithium manganese-based composite oxide having 2 was obtained.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図10及び表3に示す。図10及び表3より実施例3の試料は活性化後には200mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例3の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 10 and Table 3. From FIG. 10 and Table 3, the sample of Example 3 shows not only charge / discharge capacity close to 200 mAh / g after activation but also the sample of Comparative Example 3 obtained under the same preparation conditions without containing the element M 2 described later. Not only the charge and discharge characteristics at 1 cycle after activation processing are almost equal to that of, but the charge and discharge curves similar to those at 20 cycles after activation treatment are shown up to 50 cycles after activation treatment. . In other words, during 50 cycles after activation treatment, a rapid potential drop from around 3.7 V accompanied by a structural transition from a layered rock salt structure to a spinel phase during 50 cycles of discharge, or a layered rock salt structure causes a Li 2 (Ni, Mn) O 2 phase It is clear that it is a positive electrode material excellent in high capacity and long-term cycle characteristics, since no appearance of additional capacity at 2.2 V or less accompanying structural transition is observed.

[比較例3]
出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例3と同様に正極材料作製を行った。
Comparative Example 3
Starting materials: 10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 39.58 g of manganese (II) chloride tetrahydrate (total amount of 0.25 mol, Fe: Ni: Mn mol The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. After that, the positive electrode material was manufactured in the same manner as in Example 3.

この最終生成物の実測(+)及び計算(実線)X線回折パターンを図11に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.71(x値換算0.262)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。Also, according to chemical analysis, Fe and Ni contents with respect to the total metal amount other than lithium maintain 10 mol% and 10 mol% (equivalent to y value 0.20) which are preparation amounts, respectively, and Li / (M 1 + Mn) ratio Since it is also 1.71 (x value conversion 0.262), the lithium manganese-based composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 was obtained. Is clear.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図12及び表3に示す。図12及び表3より比較例3の試料は活性化後には230mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例3のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 12 and Table 3. According to FIG. 12 and Table 3, the sample of Comparative Example 3 exhibits a charge-discharge capacity close to 230 mAh / g after activation, but during 50 cycles of discharge after activation treatment, 3.7 associated with structural transition from layered rock salt type structure to spinel phase It is possible to observe an abrupt potential drop from around V and the appearance of additional capacity below 2.2 V due to the structural transition from a layered rock salt type structure to a Li 2 (Ni, Mn) O 2 phase. It is apparent that the cathode material is inferior in long-term cycle characteristics as compared to the lithium manganese composite oxide of Example 3.

[実施例4]
最終焼成条件を900℃、5時間、窒素気流中とした以外は、実施例1と同様に試料作製を行った。この最終生成物の実測(+)及び計算(実線)X線回折パターンを図13に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。
Example 4
A sample was prepared in the same manner as in Example 1 except that the final firing conditions were 900 ° C., 5 hours, and a nitrogen stream. The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、後述の表2の構造内遷移金属イオン分布を確認すると、実施例4の試料は後述するTiを含まない比較例4の試料と比較してLi−Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ti導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また、実施例4の試料は後述するTiを含まない比較例4の試料と比較して六角網目規則配列度が高いことがわかる。   In addition, when the distribution of transition metal ions in the structure in Table 2 described later is confirmed, the amount of transition metal in the Li—Mn layer is smaller in the sample of Example 4 as compared with the sample of Comparative Example 4 not including Ti described later. It can be seen that the amount of transition metal in a single layer is large, and it is understood that transition metal ions tend to be irregularly arranged due to the introduction of Ti. In addition, it is understood that the sample of Example 4 has a higher degree of hexagonal mesh arrangement, as compared to the sample of Comparative Example 4 which does not contain Ti described later.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni、Ti含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)、20mol%(z値0.20相当)を維持しており、Li/(M1+M2+Mn)比も1.64(x値換算0.242)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。From chemical analysis, the contents of Fe, Ni, and Ti with respect to the total metal amount other than lithium are maintained at 10 mol% and 10 mol% (equivalent to y value 0.20) and 20 mol% (equivalent to z value 0.20), respectively. Since the Li / (M 1 + M 2 + Mn) ratio is also 1.64 (0.242 in terms of x value), the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O It is apparent that a lithium manganese-based composite oxide having 2 was obtained.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図14及び表3に示す。図14及び表3より実施例4の試料は活性化後には200mAh/g近い充放電容量を示すのみならず、後述するM2元素を含まず、同一作製条件で得られた比較例4の試料と比較して、活性化処理後1サイクル時の充放電特性がほぼ同等であるばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 14 and Table 3. From FIG. 14 and Table 3, the sample of Example 4 not only shows charge / discharge capacity close to 200 mAh / g after activation but also the sample of Comparative Example 4 obtained under the same preparation conditions without containing the element M 2 described later. Not only the charge and discharge characteristics at 1 cycle after activation processing are almost equal to that of, but the charge and discharge curves similar to those at 20 cycles after activation treatment are shown up to 50 cycles after activation treatment. . In other words, during 50 cycles after activation treatment, a rapid potential drop from around 3.7 V accompanied by a structural transition from a layered rock salt structure to a spinel phase during 50 cycles of discharge, or a layered rock salt structure causes a Li 2 (Ni, Mn) O 2 phase It is clear that it is a positive electrode material excellent in high capacity and long-term cycle characteristics, since no appearance of additional capacity at 2.2 V or less accompanying structural transition is observed.

[比較例4]
出発原料として、硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物39.58g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 8)を500mLの蒸留水に加え完全に溶解させた。それ以降は実施例4と同様に正極材料作製を行った。
Comparative Example 4
Starting materials: 10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 39.58 g of manganese (II) chloride tetrahydrate (total amount of 0.25 mol, Fe: Ni: Mn mol The ratio 1: 1: 8) was added to 500 mL of distilled water and completely dissolved. After that, the positive electrode material was manufactured in the same manner as in Example 4.

この最終生成物の実測(+)及び計算(実線)X線回折パターンを図15に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは後述の表1にある格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。The measured (+) and calculated (solid line) X-ray diffraction patterns of this final product are shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constant in Table 1 described later, and only from the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it became.

また、化学分析より、リチウム以外の全金属量に対するFe、Ni含有量がそれぞれ仕込み量である10mol%と10mol%(y値0.20相当)を維持しており、Li/(M1+Mn)比も1.72(x値換算0.265)であることからM2を含まない組成式Li1+x(M1 yMn1-y)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。Also, according to chemical analysis, Fe and Ni contents with respect to the total metal amount other than lithium maintain 10 mol% and 10 mol% (equivalent to y value 0.20) which are preparation amounts, respectively, and Li / (M 1 + Mn) ratio Lithium manganese-based composite oxide having a composition formula Li 1 + x (M 1 y Mn 1-y ) 1-x O 2 not containing M 2 because it is also 1.72 (0.265 in terms of x value) Is clear.

さらに、詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。充放電特性の評価結果を図16及び表3に示す。図16及び表3より比較例4の試料は活性化後には200mAh/g近い充放電容量を示すが、活性化処理後50サイクル放電時には、層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2V以下での付加的な容量の出現が見られることから、実施例4のリチウムマンガン系複合酸化物と比較し、長期サイクル特性に劣る正極材料であることが明らかである。Furthermore, according to the procedure described in charge and discharge characteristic evaluation to be described later, a lithium secondary battery was prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and subjected to activation treatment and cycle test. The evaluation results of the charge and discharge characteristics are shown in FIG. 16 and Table 3. From FIG. 16 and Table 3, the sample of Comparative Example 4 shows charge / discharge capacity close to 200 mAh / g after activation, but at 50 cycles after activation treatment, 3.7 accompanied with structural transition from layered rock salt type structure to spinel phase It is possible to observe an abrupt potential drop from around V and the appearance of additional capacity below 2.2 V due to the structural transition from a layered rock salt type structure to a Li 2 (Ni, Mn) O 2 phase. It is apparent that the positive electrode material is inferior in long-term cycle characteristics as compared to the lithium manganese composite oxide of Example 4.

[実施例5]
試料合成、並びに構造及び組成評価
硝酸鉄(III)9水和物10.10g、硝酸ニッケル(II)6水和物7.27g、塩化マンガン(II)4水和物29.69g(全量0.25mol、Fe: Ni: Mnモル比1: 1: 6)を500mLの蒸留水に加え完全に溶解させた。別のビーカーに水酸化ナトリウム50gを秤量し、蒸留水500mLを添加して撹拌しつつ溶解させて水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液をチタン製ビーカーに入れ、20℃に保たれた恒温槽内に静置した。次いでこの水酸化ナトリウム溶液に、上記金属塩水溶液を約3時間かけて徐々に滴下し、Fe−Ni−Mn沈殿物(共沈物)を形成させた。反応液が完全にアルカリ性になっていることを確認し、撹拌下に共沈物を含む反応液に、室温で2日間酸素を吹き込んで湿式酸化処理して、沈殿を熟成させた。
[Example 5]
Sample synthesis, and structure and composition evaluation 10.10 g of iron (III) nitrate 9 hydrate, 7.27 g of nickel (II) nitrate hexahydrate, 29.69 g of manganese (II) chloride tetrahydrate (total 0.25 mol, Fe: Ni: Mn molar ratio 1: 1: 6) was added to 500 mL of distilled water and completely dissolved. In a separate beaker, 50 g of sodium hydroxide was weighed, and 500 mL of distilled water was added and dissolved with stirring to prepare an aqueous sodium hydroxide solution. The aqueous sodium hydroxide solution was placed in a titanium beaker and allowed to stand in a thermostat kept at 20 ° C. Then, to the sodium hydroxide solution, the above metal salt aqueous solution was gradually dropped over about 3 hours to form Fe-Ni-Mn precipitate (coprecipitate). It was confirmed that the reaction solution was completely alkaline, and oxygen was blown into the reaction solution containing the coprecipitate under stirring for 2 days at room temperature to carry out a wet oxidation treatment to age the precipitate.

得られた沈殿物を蒸留水で洗浄して濾別し、蒸留水で分散及び完全に溶解させた水酸化リチウム1水和物20.98g(0.5mol)及びGeO2 5.23g(0.05mol)とミキサー混合し、均一なスラリーを形成させた。スラリーをテトラフルオロエチレン製シャーレに移し、50℃で2日間乾燥後、粉砕して焼成用原料を作製した。The precipitate obtained is washed with distilled water, filtered off, mixed with 20.98 g (0.5 mol) of lithium hydroxide monohydrate and 5.23 g (0.05 mol) of GeO 2 dispersed and completely dissolved in distilled water. Mix and form a uniform slurry. The slurry was transferred to a petri dish made of tetrafluoroethylene, dried at 50 ° C. for 2 days, and pulverized to prepare a raw material for firing.

次いで得られた粉末を、1時間かけて650℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。粉砕後、再度電気炉を用いて、窒素気流下、1時間かけて900℃まで昇温し、その温度で5時間保持後、炉中で室温付近まで冷却した。電気炉から焼成物を取り出し、過剰のリチウム塩を除去するために、焼成物を蒸留水で水洗し、濾過し、乾燥して目的物である、鉄、ニッケル及びゲルマニウム置換Li2MnO3を粉末状生成物として得た。The powder obtained was then heated to 650 ° C. over 1 hour, held at that temperature for 5 hours, and cooled to around room temperature in a furnace. After crushing, the temperature was raised again to 900 ° C. in a nitrogen stream for 1 hour using an electric furnace, and after holding for 5 hours at that temperature, it was cooled to around room temperature in the furnace. The baked product is taken out of the electric furnace, and the baked product is washed with distilled water, filtered and dried to remove the excess lithium salt, and the desired product, iron, nickel and germanium substituted Li 2 MnO 3 powder is obtained. It was obtained as a round product.

X線回折による評価
この最終生成物の実測(+)及び計算(実線)X線回折パターンを図17に示す。リートベルト解析プログラムRIETAN-FPによる解析結果より、すべてのピークは以下の表1に記載の格子定数で指数付けでき、単斜晶Li2MnO3の単位胞(C2/m)を有する結晶相のみからなることがわかった。また、表2の構造内遷移金属イオン分布を確認すると、実施例5の試料は前述のGeを含まない比較例4の試料と比較してLi−Mn層内遷移金属量が少なく、Li単独層内遷移金属量が多いことがわかり、Ge導入により遷移金属イオンが不規則配列しやすい傾向にあることがわかる。また実施例5の試料は前述するGeを含まない比較例4の試料と比較して六角網目規則配列度が高いことがわかる。
Evaluation by X-ray Diffraction The measured (+) and calculated (solid line) X-ray diffraction pattern of this final product is shown in FIG. According to the analysis result by Rietveld analysis program RIETAN-FP, all peaks can be indexed by the lattice constants described in Table 1 below, and only the crystal phase having unit cells (C2 / m) of monoclinic Li 2 MnO 3 It turned out that it consists of. In addition, when the distribution of transition metal ions in the structure in Table 2 is confirmed, the amount of transition metal in the Li-Mn layer in the sample of Example 5 is smaller than that of the sample of Comparative Example 4 not containing Ge described above. It can be seen that the amount of internal transition metal is large, and it is understood that transition metal ions tend to be irregularly arranged due to the introduction of Ge. Further, it is understood that the sample of Example 5 has a higher hexagonal network regularity as compared with the sample of Comparative Example 4 which does not contain Ge described above.

化学分析等による評価
化学分析より、リチウム以外の全金属量に対するFe、Ni、Ge含有量が仕込み量とは異なるものの、それぞれ、12mol%と12mol%(y値0.24相当)、4mol%(z値0.04相当)であり、Li/(M1+M2+Mn)比も1.65(x値換算0.245)であることから目的の組成式Li1+x(M1 yM2 zMn1-y-z)1-xO2を有するリチウムマンガン系複合酸化物が得られたことが明らかである。なお、含有量が仕込み量からずれたのは、Geが両性金属のために焼成後の水洗時に一部溶出したためと考えられる。しかしながら完全になくなるわけではないので、Ge含有量を増やすためには仕込み量を多めにする等して対応し得る。
Evaluation based on chemical analysis etc. Based on the chemical analysis, although the contents of Fe, Ni and Ge relative to the total amount of metals other than lithium are different from the preparation amounts, 12 mol% and 12 mol% (y value 0.24 equivalent) and 4 mol% (z value respectively) (Equivalent to 0.04), and the Li / (M 1 + M 2 + Mn) ratio is also 1.65 (0.245 in terms of x value), so that the target composition formula Li 1 + x (M 1 y M 2 z Mn 1-yz ) It is apparent that a lithium manganese-based composite oxide having 1-x O 2 was obtained. The reason why the content deviates from the preparation amount is considered to be that Ge was partly eluted at the time of washing with water after firing due to the amphoteric metal. However, since it is not completely eliminated, it can be dealt with by increasing the preparation amount etc. in order to increase the Ge content.

充放電特性評価
詳細は後述する充放電特性評価に記載の手順で、得られた試料を正極材料とし、金属リチウムを負極材料としたリチウム二次電池を作製し、活性化処理、サイクル試験を行った。図18及び表4の結果から、実施例5の試料は活性化後には250mAh/g近い充放電容量を示すのみならず、前述のM2元素を含まず、同一作製条件で得られた比較例4の試料と比較して、活性化処理後1サイクル時の充放電特性が向上しているばかりでなく、活性化処理後50サイクルまで、活性化処理後20サイクル時と類似した充放電曲線を示している。つまり、活性化処理後50サイクル放電時に層状岩塩型構造からスピネル相への構造転移に伴う3.7 V付近からの急激な電位の落ち込みや、層状岩塩型構造からLi2(Ni,Mn)O2相への構造転移に伴う2.2 V以下での付加的な容量の出現が全く見られないことから、高容量と長期サイクル特性に優れた正極材料であることが明らかである。
The charge / discharge characteristic evaluation details are the procedure described in charge / discharge characteristic evaluation which will be described later. A lithium secondary battery is prepared using the obtained sample as a positive electrode material and metal lithium as a negative electrode material, and the activation treatment and cycle test are performed. The From the results of FIG. 18 and Table 4, the sample of Example 5 not only exhibits a charge / discharge capacity close to 250 mAh / g after activation, but also contains the above-mentioned M 2 element, and is a comparative example obtained under the same preparation conditions Not only the charge and discharge characteristics in one cycle after activation processing are improved as compared with the sample 4 but also the charge and discharge curves similar to those in 20 cycles after activation processing up to 50 cycles after activation processing It shows. That is, during 50 cycles of activation treatment, a rapid potential drop from around 3.7 V accompanying the structural transition from the layered rock salt structure to the spinel phase during the 50 cycle discharge, and from the layered rock salt structure, the Li 2 (Ni, Mn) O 2 phase It is clear that the positive electrode material is excellent in high capacity and long-term cycle characteristics, since no appearance of additional capacity at 2.2 V or less is observed with the structural transition to.

[試験結果]
X線回折による評価
実施例1〜5及び比較例1〜4で得た試料のX線回折パターンから、リートベルト解析プログラムRIETAN-FP(F. Izumi, K. Momma, "Three-Dimensional Visualization in Powder Diffraction", Solid State Phenomena, Vol. 130, pp. 15-20, 2007)による解析結果より、各試料の格子定数及び格子体積を評価した。結果を表1に示す。なお、表1において、a、b及びcは、それぞれ各軸の長さを示し、βは稜cとaとの間の角を示す。また、Vは格子体積を示す。
[Test results]
Evaluation by X-ray Diffraction Based on the X-ray diffraction patterns of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4, the Rietveld analysis program RIETAN-FP (F. Izumi, K. Momma, "Three-Dimensional Visualization in Powder" The lattice constant and lattice volume of each sample were evaluated from the analysis results by Diffraction ", Solid State Phenomena, Vol. 130, pp. 15-20, 2007). The results are shown in Table 1. In Table 1, a, b and c indicate the lengths of the respective axes, and β indicates the angle between 稜 c and a. Also, V represents a lattice volume.

Figure 2018066633
Figure 2018066633

次に、実施例1〜5及び比較例1〜4で得た試料のX線回折パターンから、各格子位置の遷移金属量を可変とした構造モデルから得られる計算パターンを実測パターンに合わせこむことにより、構造内遷移金属イオン分布を評価した。結果を表2に示す。   Next, from the X-ray diffraction patterns of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4, calculation patterns obtained from structural models in which the amount of transition metal at each lattice position is variable are combined with the actual measurement patterns. The transition metal ion distribution in the structure was evaluated by The results are shown in Table 2.

なお、公知物質であるLi2MnO3において、Mnイオンが規則配列状態である場合は、六角網目格子構成位置(4g)位置にMnが100%占有し、Li位置である六角網目中心位置(2b)等の他の位置にはMnイオンが存在しないが、実際には、4g位置にMnイオンが100%存在することはなく、一部のMnイオンは3つのLi位置に配置する。表2において、g4gは六角網目格子構成位置(4g)位置のMn占有率を示し、g2bは2b位置のMn占有率を示し、g2cは2c位置のMn占有率を示し、g4hは4h位置のMn占有率を示す。4g位置と2b位置のMn占有率の差(g4g−g2b)が六角網目規則配列度として定義され、大きいほど理想的なLi2MnO3型単斜晶層状岩塩型構造であることを意味する。また、平均値1は、Li−Mn層内の格子位置(4g及び2b位置)における遷移金属元素の平均占有率(元素比(%))を示し、平均値2は、Li単独層内の格子位置(4h及び2c位置)における遷移金属元素の平均占有率(元素比(%))を示す。また、全遷移金属量は、単斜晶層状岩塩型構造モデルを用いた際のLi−Mn層内の格子位置(4g及び2b)における遷移金属元素の占有率(元素比(%))とLi単独層内の格子位置(4h及び2c)における遷移金属元素の占有率(元素比(%))の和を示す。平均値1が少なく平均値2が大きいほど、遷移金属イオンが不規則配列していることを意味する。In addition, in Li 2 MnO 3 which is a known substance, when the Mn ions are in a regular arrangement state, 100% of Mn is occupied at the hexagonal network lattice constitution position (4 g) position, and the hexagonal mesh center position (2 b) which is Li position. Etc., but in practice, there is no 100% Mn ion at the 4 g position, and some of the Mn ions are arranged at three Li positions. In Table 2, g 4 g indicates the Mn occupancy at the hexagonal mesh position (4 g), g 2 b indicates the Mn occupancy at 2 b, g 2 c indicates the Mn occupancy at 2 c, and g 4 h The Mn occupancy rate at the 4 h position is shown. The difference in Mn occupancy (g 4g- g 2b ) between the 4g position and the 2b position is defined as the degree of hexagonal network order, and the larger the value, the more ideal is the Li 2 MnO 3 type monoclinic layered rock salt type structure. Do. The average value 1 indicates the average occupancy (element ratio (%)) of transition metal elements at lattice positions (4 g and 2 b positions) in the Li-Mn layer, and the average value 2 indicates lattices in the Li single layer The average occupancy (element ratio (%)) of transition metal elements at positions (4h and 2c positions) is shown. In addition, the total transition metal content is determined by the ratio (element ratio (%)) of the transition metal element at the lattice position (4 g and 2 b) in the Li-Mn layer when using the monoclinic layered rock salt type structural model and Li The sum of the occupancy (element ratio (%)) of the transition metal element at lattice positions (4 h and 2 c) in a single layer is shown. The smaller the average value 1 and the larger the average value 2, the more irregular the transition metal ions.

Figure 2018066633
Figure 2018066633

化学分析等による評価
実施例1〜5及び比較例1〜4で得た試料について、ICP発光分析により、化学分析を行った。結果を表3に示す。結果を表3に示す。
Evaluation by Chemical Analysis Etc. The samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were subjected to chemical analysis by ICP emission analysis. The results are shown in Table 3. The results are shown in Table 3.

Figure 2018066633
Figure 2018066633

充放電特性評価
実施例1〜5及び比較例1〜4で得られた試料を正極材料として用いて、充放電試験を行った。具体的には、実施例1〜5及び比較例1〜4で得られた試料5mgをアセチレンブラック5mgとよく混合後、ポリテトラフルオロエチレン粉末0.5mgを加えて結着させ、Alメッシュ上に圧着して正極を作製した。得られた正極を120℃で一晩真空乾燥後、グローブボックス内にて、リチウム二次電池を作製した。電解液はLiPF6をエチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶媒(体積比3: 7)に溶解させた溶液を使用し、負極は金属リチウムを用いた。
Charge / Discharge Characteristics Evaluation Using the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 as a positive electrode material, a charge / discharge test was performed. Specifically, after 5 mg of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 are well mixed with 5 mg of acetylene black, 0.5 mg of polytetrafluoroethylene powder is added thereto for binding, and pressure bonding is performed on Al mesh. The positive electrode was prepared. The obtained positive electrode was vacuum dried overnight at 120 ° C., and then a lithium secondary battery was produced in a glove box. Electrolyte LiPF 6 mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio of 3: 7) solution dissolved in using, the negative electrode using metallic lithium.

充放電試験は活性化試料を得るための段階充電処理後、サイクル劣化試験に移行させた。試験は充電開始で行い、2.0−4.8Vの電位範囲、試験温度30℃、電流密度40mA/gで充電容量を80、120、160、200mAh/gの順に増加させてサイクルさせ、5サイクル目は4.8Vまで定電流−定電圧充電(4.8Vにおける電流終止は10mA/g)による活性化処理を行った。なお、段階充電活性化処理は本発明のリチウムマンガン系複合酸化物の充放電特性評価には必須である。特に、M1元素としてFeを含む場合は必須プロセスである。活性化処理後、2.0−4.8Vで定電流充放電にて50サイクルまで評価を行うことにより、サイクル経過に伴う、充放電曲線変化(特に20サイクル経過以降に見られる、相似形形状からの逸脱)を評価した。特に前述したように、活性化処理後50サイクル放電時(54サイクル放電時: 54d)の放電曲線にて、(1) 層状岩塩型構造からスピネル相への構造転移に伴う3.7V付近での急激な電位の落ち込み、(2) Li2(Mn,Ni)O2相への構造転移に伴う2.2V以下における付加的な容量の出現の有無を評価した。結果を図2、4、6、8、10、12、14、16及び18、並びに表4に示す。なお、図2、4、6、8、10、12、14、16及び18においては、活性化処理後1サイクル充電時の充電曲線(5c)、活性化処理後20サイクル充電時の充電曲線(24c)、活性化処理後50サイクル充電時の充電曲線(54c)、活性化処理後1サイクル放電時の放電曲線(5d)、活性化処理後20サイクル放電時の放電曲線(24d)、及び活性化処理後50サイクル放電時の放電曲線(54d)を示しており、右上がりの曲線が充電、右下がりの曲線が放電に対応する。また、表4において、Q5cは活性化処理後1サイクル充電時の容量、Q5dは活性化処理後1サイクル放電時の容量、Q54dは活性化処理後50サイクル放電時の容量、(Q1d〜Q5dの和)/(Q1c〜Q5cの和)は、段階充電活性化処理中における各サイクルの放電容量の合計を、各サイクルの充電容量の和で除したものである。V5d・aveは活性化処理後1サイクル放電時の初期平均放電電圧を示す。The charge and discharge test was transferred to a cycle deterioration test after a step charge process for obtaining an activated sample. The test is performed at the start of charging, and cycling is performed by increasing the charge capacity in the order of 80, 120, 160 and 200 mAh / g at a potential range of 2.0-4.8 V, a test temperature of 30 ° C., and a current density of 40 mA / g. The activation treatment was performed by constant current-constant voltage charging (current termination at 4.8 V is 10 mA / g) to 4.8 V. The step charge activation treatment is essential for the evaluation of the charge and discharge characteristics of the lithium manganese composite oxide of the present invention. In particular, when Fe is contained as the M 1 element, this is an essential process. After activation treatment, evaluation is made up to 50 cycles with constant current charge and discharge at 2.0-4.8 V, and charge / discharge curve changes with cycle progress (especially deviation from conformal shape seen after 20 cycles) Was evaluated. In particular, as described above, in the discharge curve at 50 cycles after activation (during 54 cycles: 54 d), (1) the abrupt change around 3.7 V due to the structural transition from the layered rock salt structure to the spinel phase The potential drop and (2) the presence or absence of the appearance of additional capacity at 2.2 V or less accompanying the structural transition to the Li 2 (Mn, Ni) O 2 phase was evaluated. The results are shown in FIGS. 2, 4, 6, 8, 10, 12, 14, 16 and 18 and in Table 4. In FIGS. 2, 4, 6, 8, 10, 12, 14, 16 and 18, the charge curve (5c) at 1 cycle charge after activation, the charge curve at 20 cycles charge after activation ((c) 24c), charge curve (54c) at 50 cycles charge after activation treatment, discharge curve (5d) at 1 cycle discharge after activation treatment, discharge curve (24d) at 20 cycles discharge after activation treatment, and activation The discharge curve (54d) at 50 cycles of discharge after the chemical treatment is shown, and the curve rising to the right corresponds to charging, and the curve falling to the right corresponds to discharging. Also, in Table 4, Q 5c is the capacity during one cycle charge after activation, Q 5 d is the capacity during one cycle discharge after activation, Q 54 d is the capacity during 50 cycles discharge after activation, (Q 1d sum to Q 5d) / (sum of Q 1c to Q 5c) is one in which the sum of the discharge capacity of each cycle in step charge activated during processing, divided by the sum of the charge capacity of each cycle. V 5 d · ave indicates the initial average discharge voltage during one cycle discharge after activation treatment.

Figure 2018066633
Figure 2018066633

以上の実施例及び比較例から明らかなように、本発明のリチウムマンガン系複合酸化物は、初回に200mAh/g以上の大きな充放電容量を示すのみならず、サイクル経過後に起こる、2つの副反応による結晶構造変化を抑制する、長期サイクル特性に優れる物質であることが確認できた。   As apparent from the above Examples and Comparative Examples, the lithium manganese-based composite oxide of the present invention not only exhibits a large charge / discharge capacity of 200 mAh / g or more at the first time, but also two side reactions which occur after the cycle has elapsed. It has been confirmed that the substance is excellent in the long-term cycle characteristics, which suppresses the crystal structure change due to

Claims (10)

一般式(1):
Li1+x(M1 yM2 zMn1-y-z)1-xO2 (1)
[式中、M1はFe及び/又はNiを示す。M2はTi及び/又はGeを示す。x、y及びzは、0<x<1/3、0≦y≦0.4、0<z≦0.3を示す。]
で表され、且つ、
単斜晶層状岩塩型構造又は六方晶層状岩塩型構造の結晶相を含むリチウムマンガン系複合酸化物。
General formula (1):
Li 1 + x (M 1 y M 2 z Mn 1-yz ) 1-x O 2 (1)
[Wherein, M 1 represents Fe and / or Ni. M 2 represents Ti and / or Ge. x, y and z indicate 0 <x <1/3, 0 ≦ y ≦ 0.4, and 0 <z ≦ 0.3. ]
Represented by, and
Lithium manganese-based composite oxide containing a crystal phase of monoclinic layered rock salt type structure or hexagonal layered rock salt type structure.
前記一般式(1)において、M1がNiを含有する、請求項1に記載のリチウムマンガン系複合酸化物。The lithium manganese-based composite oxide according to claim 1 , wherein M 1 in the general formula (1) contains Ni. 単斜晶層状岩塩型構造の結晶相のみからなる、請求項1又は2に記載のリチウムマンガン系複合酸化物。 The lithium manganese-based composite oxide according to claim 1 or 2, which comprises only a crystal phase of a monoclinic layered rock salt type structure. 請求項1〜3のいずれかに記載のリチウムマンガン系複合酸化物の製造方法であって、
(1)マンガン化合物と、鉄化合物及びニッケル化合物よりなる群から選ばれる少なくとも1種の化合物とを含む混合物を、アルカリ性として沈殿物を形成する工程、
(2)工程1で得られた沈殿物に湿式酸化処理を施して熟成させる工程、
(3)工程2で得られた熟成物を、リチウム化合物を含む原料化合物の共存下に、加熱する工程
をこの順に備える、製造方法。
It is a manufacturing method of lithium manganese system complex oxide in any one of Claims 1-3,
(1) forming a precipitate by making a mixture containing a manganese compound and at least one compound selected from the group consisting of an iron compound and a nickel compound alkaline;
(2) a step of subjecting the precipitate obtained in step 1 to wet oxidation treatment and aging it;
(3) A manufacturing method comprising the steps of heating the matured product obtained in step 2 in the coexistence of a raw material compound containing a lithium compound in this order.
前記工程1における混合物が、さらに、チタン化合物を含む、請求項4に記載の製造方法。 The method according to claim 4, wherein the mixture in step 1 further contains a titanium compound. 前記工程3における原料化合物が、さらに、ゲルマニウム化合物を含む、請求項4又は5に記載の製造方法。 The manufacturing method according to claim 4 or 5, wherein the raw material compound in the step 3 further contains a germanium compound. 前記工程3が、前記工程2で得られた熟成物と、前記原料化合物と混合した後に加熱する工程である、請求項4〜6のいずれかに記載の製造方法。 The method according to any one of claims 4 to 6, wherein the step 3 is a step of heating after mixing the matured product obtained in the step 2 and the raw material compound. 前記工程3における加熱が、大気中で加熱した後に、大気中又は不活性雰囲気下で再度加熱する工程である、請求項4〜7のいずれかに記載の製造方法。 The method according to any one of claims 4 to 7, wherein the heating in the step 3 is a step of heating again in the atmosphere and then again in the atmosphere or in an inert atmosphere. 請求項1〜3のいずれかに記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料。 The positive electrode material for lithium ion secondary batteries which consists of a lithium manganese type complex oxide in any one of Claims 1-3. 請求項9に記載のリチウムイオン二次電池用正極材料を構成要素とするリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode material for a lithium ion secondary battery according to claim 9 as a component.
JP2018543956A 2016-10-07 2017-10-05 Titanium and / or germanium-substituted lithium-manganese-based composite oxide and its production method Active JP7048944B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016199187 2016-10-07
JP2016199187 2016-10-07
PCT/JP2017/036223 WO2018066633A1 (en) 2016-10-07 2017-10-05 Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2018066633A1 true JPWO2018066633A1 (en) 2019-07-25
JP7048944B2 JP7048944B2 (en) 2022-04-06

Family

ID=61831375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018543956A Active JP7048944B2 (en) 2016-10-07 2017-10-05 Titanium and / or germanium-substituted lithium-manganese-based composite oxide and its production method

Country Status (2)

Country Link
JP (1) JP7048944B2 (en)
WO (1) WO2018066633A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6803041B2 (en) * 2016-11-25 2020-12-23 日立造船株式会社 Manufacturing method of positive electrode for all-solid-state battery, positive electrode for all-solid-state battery and all-solid-state battery including the positive electrode
WO2019235573A1 (en) * 2018-06-06 2019-12-12 国立研究開発法人産業技術総合研究所 Lithium-manganese-based composite oxide and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
WO2015025844A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Lithium-iron-manganese-based composite oxide and lithium-ion secondary cell using same
WO2015025721A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
WO2015025844A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Lithium-iron-manganese-based composite oxide and lithium-ion secondary cell using same
WO2015025721A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TABUCHI, M. ET AL.: "Stepwise charging and calcination atmosphere effects for iron and nickel substituted lithium mangane", JOURNAL OF POWER SOURCES, vol. 313, JPN6017047661, 4 March 2016 (2016-03-04), pages 120 - 127, XP029474017, ISSN: 0004561932, DOI: 10.1016/j.jpowsour.2015.12.008 *

Also Published As

Publication number Publication date
JP7048944B2 (en) 2022-04-06
WO2018066633A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
JP5263761B2 (en) Monoclinic lithium manganese composite oxide having cation ordered structure and method for producing the same
US8021783B2 (en) Lithium manganese-based composite oxide and method for preparing the same
WO2012132155A1 (en) Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP5958926B2 (en) Lithium manganese composite oxide and method for producing the same
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP2012041257A (en) Lithium manganese-based compound oxide and method for manufacturing the same
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP4997609B2 (en) Method for producing lithium manganese composite oxide
WO2018169004A1 (en) Nickel-manganese-based composite oxide and method for producing same
JP5673932B2 (en) Lithium manganese composite oxide having cubic rock salt structure and method for producing the same
JP6967215B2 (en) Lithium-manganese-based composite oxide and its manufacturing method
JP7128475B2 (en) Lithium-manganese composite oxide and method for producing the same
JP4457213B2 (en) Method for producing lithium ferrite composite oxide
JP7048944B2 (en) Titanium and / or germanium-substituted lithium-manganese-based composite oxide and its production method
JPWO2018043436A1 (en) Heterogeneous metal-containing lithium nickel composite oxide and method for producing the same
JP4734672B2 (en) Method for producing lithium-iron-manganese composite oxide
JP4543156B2 (en) Lithium ferrite composite oxide and method for producing the same
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same
JP7133215B2 (en) Nickel-manganese composite oxide and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7048944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150