JPWO2017164312A1 - Rare earth permanent magnet - Google Patents
Rare earth permanent magnet Download PDFInfo
- Publication number
- JPWO2017164312A1 JPWO2017164312A1 JP2018507410A JP2018507410A JPWO2017164312A1 JP WO2017164312 A1 JPWO2017164312 A1 JP WO2017164312A1 JP 2018507410 A JP2018507410 A JP 2018507410A JP 2018507410 A JP2018507410 A JP 2018507410A JP WO2017164312 A1 JPWO2017164312 A1 JP WO2017164312A1
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- phase
- permanent magnet
- grain boundary
- same manner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 89
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 77
- 239000000203 mixture Substances 0.000 claims abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 29
- 229910052742 iron Inorganic materials 0.000 claims abstract description 19
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 8
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 4
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 4
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 4
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 4
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 description 34
- 239000010409 thin film Substances 0.000 description 32
- 239000010408 film Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 26
- 238000011156 evaluation Methods 0.000 description 23
- 238000004544 sputter deposition Methods 0.000 description 23
- 239000013077 target material Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 13
- 230000004907 flux Effects 0.000 description 11
- 239000000758 substrate Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910052718 tin Inorganic materials 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000007885 magnetic separation Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002003 electron diffraction Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000020985 whole grains Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
Abstract
【課題】 従来のSmFe12やSmFe11Tiと比較して、保磁力が高く、資源的に安価で豊富なLaを使用した希土類永久磁石を提供すること。【解決手段】 本発明の希土類永久磁石は、主相および粒界相を有し、前記主相がThMn12型結晶構造を有するR−T化合物であり、RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素、Tは、Fe、またはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素であり、前記粒界相はLaリッチ相σを有し、前記Laリッチ相σは立方晶系の結晶構造で、La組成比が20at%以上であり、前記粒界相に占める前記Laリッチ相σの断面積比が20%以上である。【選択図】 なしPROBLEM TO BE SOLVED: To provide a rare earth permanent magnet using La which is high in coercive force, inexpensive in resources and abundant compared with conventional SmFe12 and SmFe11Ti. A rare earth permanent magnet according to the present invention has a main phase and a grain boundary phase, and the main phase is an RT compound having a ThMn12 type crystal structure, R is essentially La, Y, Ce, One or more rare earth elements selected from Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, T is Fe, or Fe and Co, or part thereof is M (One or more selected from Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga and Ge), and the grain boundary phase is The La-rich phase σ has a cubic crystal structure, the La composition ratio is 20 at% or more, and the cross-sectional area ratio of the La-rich phase σ in the grain boundary phase is 20%. That's it. [Selection figure] None
Description
本発明は、希土類永久磁石におけるRの一部にLaを含み、高い保磁力を特徴とした希土類永久磁石に関する。 The present invention relates to a rare earth permanent magnet including La in a part of R in a rare earth permanent magnet and having a high coercive force.
従来、高性能希土類永久磁石としては特許文献1に記載のNd−Fe−B系永久磁石が知られており、現在、民生、産業、輸送機器などに広く用いられている。近年、HVやHEV等の普及により、希少元素であるNdの消費量が増加しているため、よりNd含有率の少ない希土類永久磁石が求められている。 Conventionally, an Nd—Fe—B permanent magnet described in Patent Document 1 is known as a high performance rare earth permanent magnet, and is currently widely used in consumer, industrial, transportation equipment and the like. In recent years, the consumption of Nd, which is a rare element, has increased due to the spread of HV, HEV, and the like, so a rare earth permanent magnet with a lower Nd content is required.
非特許文献1、2では、ThMn12型結晶構造を有する希土類永久磁石が提案されている。これらの希土類永久磁石は、Ndを低減した組成、あるいは含有していない組成で、磁化が高く、さらに高い結晶磁気異方性を有している。Non-Patent Documents 1 and 2 propose rare earth permanent magnets having a ThMn 12 type crystal structure. These rare earth permanent magnets have a composition with reduced or no Nd, a high magnetization, and a higher magnetocrystalline anisotropy.
しかしながら、非特許文献1、2にて開示されている希土類永久磁石は、実用上十分な保磁力が得られていない。非特許文献2に記載されているSmFe11Tiにて0.4MA/m程度と、保磁力は低い値となっている。However, the rare earth permanent magnets disclosed in Non-Patent Documents 1 and 2 do not have a practically sufficient coercive force. In SmFe 11 Ti described in Non-Patent Document 2, the coercive force is a low value of about 0.4 MA / m.
本発明は、このような状況に鑑みてなされたものであり、ThMn12型結晶構造を有するR−T化合物を主相とする希土類永久磁石において、資源的に豊富なLaを使用することで、磁化を著しく低下させることなく、従来よりも高い保磁力を有する希土類永久磁石を提供することを目的とする。The present invention has been made in view of such a situation, and in a rare earth permanent magnet whose main phase is an RT compound having a ThMn 12 type crystal structure, by using resource-rich La, An object of the present invention is to provide a rare earth permanent magnet having a higher coercive force than before without significantly reducing the magnetization.
上述した課題を解決し、目的を達成するために、本発明の希土類永久磁石は、主相および粒界相を有し、前記主相がThMn12型結晶構造を有するR−T化合物であり、RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素、Tは、Fe、またはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素であり、前記粒界相はLaリッチ相σを有し、前記Laリッチ相σは立方晶系の結晶構造で、La組成比が20at%以上であり、前記粒界相に占める前記Laリッチ相σの断面積比が20%以上であることを特徴とする。In order to solve the above-described problems and achieve the object, the rare earth permanent magnet of the present invention is an RT compound having a main phase and a grain boundary phase, and the main phase has a ThMn 12 type crystal structure, R is essential La, one or more rare earth elements selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, T is Fe, Or Fe and Co, or a part thereof is M (one or more selected from Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga and Ge). The grain boundary phase has a La-rich phase σ, the La-rich phase σ is a cubic crystal structure, the La composition ratio is 20 at% or more, and occupies the grain boundary phase The cross-sectional area ratio of the La rich phase σ is 20% or more. To do.
従来よりも高い保磁力を発現するメカニズムについて、本発明者らは以下のように推察する。一般的に希土類元素と遷移金属元素は反応して化合物を作りやすい組み合わせとして知られているが、Laと遷移金属元素の組合せの場合、他の希土類元素に比べて非常に反応性が低い。よってLaを主成分とする粒界相は、磁性元素であるFeやCoとの化合物を形成しにくく、非磁性相となりやすいため、主相間にある非磁性粒界相が主相間の磁気的な分離を促進し、高い保磁力が発現することが期待される。しかしながら、これまでにこの効果を示唆する報告はなされていない。その理由として、常温でのLaは六方晶系の結晶構造をとり、正方晶系の主相との界面歪みが大きいため、主相の磁気特性を低下させている可能性が考えられる。一方、約300℃以上の高温では、Laは立方晶系の結晶構造になる。そこで本発明者らは、常温で立方晶系の結晶構造を持つLa粒界相を実現し、粒界相と正方晶系の主相との界面歪みを低減することで、希土類永久磁石が高い保磁力を発現することを見出した。 About the mechanism which expresses a coercive force higher than before, the present inventors guess as follows. Generally, it is known as a combination in which a rare earth element and a transition metal element easily react to form a compound. However, a combination of La and a transition metal element has a very low reactivity compared to other rare earth elements. Therefore, since the grain boundary phase containing La as a main component is difficult to form a compound with Fe or Co, which is a magnetic element, and easily forms a nonmagnetic phase, the nonmagnetic grain boundary phase between the main phases is magnetically magnetic between the main phases. It is expected to promote separation and develop a high coercive force. However, there have been no reports suggesting this effect so far. The reason for this is that La at room temperature has a hexagonal crystal structure and a large interfacial strain with the tetragonal main phase, which may reduce the magnetic properties of the main phase. On the other hand, at a high temperature of about 300 ° C. or higher, La has a cubic crystal structure. Therefore, the present inventors realized a La grain boundary phase having a cubic crystal structure at room temperature, and reduced the interface strain between the grain boundary phase and the tetragonal main phase, thereby increasing the rare earth permanent magnet. It was found that coercive force was developed.
本発明の希土類永久磁石は、ThMn12型結晶構造を有するR−T化合物を主相とし、資源的に豊富なLaを使用することで、磁化を著しく低下させることなく、従来よりも高い保磁力が得られる。The rare earth permanent magnet of the present invention has an RT compound having a ThMn 12 type crystal structure as a main phase and uses abundant La, so that the coercive force is higher than before without significantly lowering the magnetization. Is obtained.
本発明を実施するための形態(実施形態)につき、詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。 A mode (embodiment) for carrying out the present invention will be described in detail. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.
本実施形態に係る希土類永久磁石において、主相はThMn12型結晶構造を有するR−T化合物である。RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素とする。また、Rの量は4.2at%以上25.0at%以下が好ましい。Rの量が4.2at%未満であると、主相の生成が十分でなく、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが25.0at%を超えると主相の体積比率が低下し、飽和磁束密度が低下する。かかる範囲とすることで、飽和磁束密度を向上させることができる。In the rare earth permanent magnet according to the present embodiment, the main phase is an RT compound having a ThMn 12 type crystal structure. R is essentially La, and is one or more rare earth elements selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The amount of R is preferably 4.2 at% or more and 25.0 at% or less. When the amount of R is less than 4.2 at%, the main phase is not sufficiently generated, α-Fe or the like having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when R exceeds 25.0 at%, the volume ratio of the main phase decreases and the saturation magnetic flux density decreases. By setting it as this range, a saturation magnetic flux density can be improved.
本実施形態に係る希土類永久磁石において、TはFe、もしくはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素とする。Co量はT総量に対して0at%より大きく、50.0at%以下が望ましい。適切な量のCoを加えることで飽和磁束密度を向上させることができる。また、Co量の増加によって希土類永久磁石の耐食性を向上させることができる。M量はT総量に対して0.4at%以上25.0at%以下が望ましい。MがT総量に対して0.4at%未満では軟磁性を持つR2Fe17やα−Feが析出して主相の体積比率が低下し、25.0at%を超えると飽和磁束密度が著しく低下する。In the rare earth permanent magnet according to the present embodiment, T is Fe, Fe and Co, or part thereof is M (Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, An element substituted with one or more selected from Zn, Ga, and Ge. The amount of Co is preferably greater than 0 at% and less than or equal to 50.0 at% relative to the total amount of T. The saturation magnetic flux density can be improved by adding an appropriate amount of Co. Further, the corrosion resistance of the rare earth permanent magnet can be improved by increasing the amount of Co. The amount of M is preferably 0.4 at% or more and 25.0 at% or less with respect to the total amount of T. When M is less than 0.4 at% with respect to the total amount of T, soft magnetic R 2 Fe 17 or α-Fe precipitates and the volume ratio of the main phase decreases, and when it exceeds 25.0 at%, the saturation magnetic flux density is remarkably increased. descend.
本実施形態に係る希土類永久磁石には、粒界相にLaリッチ相σが存在する。Laと遷移金属元素の組合せの場合、他の希土類元素に比べて非常に反応性が低い。よってLaを主成分とするLaリッチ相σは、磁性元素であるFeやCoとの化合物を形成しにくく、非磁性相となりやすい。そのため、非磁性粒界相が主相間の磁気的な分離を促進し、高い保磁力が発現することが期待される。Laリッチ相σは、Laの他にFe、Tiなどの元素を含んでも良い。Feなどの磁性元素を含む場合もLa固溶体となることで本来の磁気特性が低減するため、主相間の磁気的な分離を促進できる。そのため、Laリッチ相σはLa組成比が20at%以上であればよい。Laリッチ相σのLa組成比が20at%以上の場合、磁気的な分離効果が高くなり、保磁力は高くなる。 In the rare earth permanent magnet according to the present embodiment, a La rich phase σ exists in the grain boundary phase. In the case of a combination of La and a transition metal element, the reactivity is very low compared to other rare earth elements. Therefore, the La-rich phase σ containing La as a main component is less likely to form a compound with Fe or Co, which are magnetic elements, and tends to be a nonmagnetic phase. Therefore, it is expected that the nonmagnetic grain boundary phase promotes magnetic separation between the main phases and develops a high coercive force. The La rich phase σ may contain elements such as Fe and Ti in addition to La. Even when a magnetic element such as Fe is contained, the original magnetic characteristics are reduced by becoming a La solid solution, so that magnetic separation between main phases can be promoted. For this reason, the La-rich phase σ only needs to have a La composition ratio of 20 at% or more. When the La composition ratio of the La-rich phase σ is 20 at% or more, the magnetic separation effect is increased and the coercive force is increased.
本実施形態に係る希土類永久磁石において、Laリッチ相σは立方晶系の結晶構造を有する。常温でのLaは六方晶系の結晶構造をとり、正方晶系の主相との界面歪みが大きいため、主相の磁気特性を低下させている可能性が考えられる。一方、約300℃以上の高温では、Laは立方晶系の結晶構造になる。そこで本発明者らは、常温で立方晶系の結晶構造を持つLa粒界相を実現し、粒界相と正方晶系の主相との界面歪みを低減することで、希土類永久磁石が高い保磁力を発現することを見出した。 In the rare earth permanent magnet according to the present embodiment, the La rich phase σ has a cubic crystal structure. La at room temperature has a hexagonal crystal structure and a large interfacial strain with the tetragonal main phase, which may reduce the magnetic properties of the main phase. On the other hand, at a high temperature of about 300 ° C. or higher, La has a cubic crystal structure. Therefore, the present inventors realized a La grain boundary phase having a cubic crystal structure at room temperature, and reduced the interface strain between the grain boundary phase and the tetragonal main phase, thereby increasing the rare earth permanent magnet. It was found that coercive force was developed.
本実施形態に係る希土類永久磁石において、Laリッチ相σ以外の粒界相は、既存のRリッチ相やα−Fe相、また六方晶系La相などがある。粒界相(主相以外の部分)に占めるLaリッチ相σの断面積比は20%以上であり、好ましくは21%以上であり、さらには24%以上、25%以上、54%以上、91%以上の順により好ましい。粒界相に占めるLaリッチ相σの断面積比を20%以上とすることで、主相間の磁気的な分離効果と、粒界相と主相との界面歪み低減効果が得られ、保磁力が向上する。また、Laリッチ相σは、粒界相に均一に分布することが好ましい。Laリッチ相σの粒界相全体に占める割合は高いほうが好ましい。 In the rare earth permanent magnet according to the present embodiment, the grain boundary phase other than the La-rich phase σ includes an existing R-rich phase, an α-Fe phase, a hexagonal La phase, and the like. The cross-sectional area ratio of the La-rich phase σ occupying the grain boundary phase (portion other than the main phase) is 20% or more, preferably 21% or more, and further 24% or more, 25% or more, 54% or more, 91 % Or more is more preferable. By setting the cross-sectional area ratio of the La-rich phase σ in the grain boundary phase to 20% or more, a magnetic separation effect between the main phases and an interface strain reduction effect between the grain boundary phase and the main phase can be obtained, and the coercive force Will improve. The La rich phase σ is preferably distributed uniformly in the grain boundary phase. The ratio of the La rich phase σ in the whole grain boundary phase is preferably high.
本実施形態に係る希土類永久磁石において、侵入元素Xを含むことが好ましく、XはN、H、BeおよびCから選択される1種以上の元素とする。Xの量は0.0at%以上、14.0at%以下が望ましい。Xが主相の結晶格子内に侵入することで保磁力を向上させることができる。これは、侵入元素によって結晶磁気異方性が向上するためである。 In the rare earth permanent magnet according to the present embodiment, it is preferable to include an intrusion element X, where X is one or more elements selected from N, H, Be and C. The amount of X is preferably 0.0 at% or more and 14.0 at% or less. The coercive force can be improved by X entering the crystal lattice of the main phase. This is because the magnetocrystalline anisotropy is improved by the intruding elements.
本実施形態に係る希土類永久磁石は、他の元素の含有を許容する。例えば、Bi、Sn、Ag等の元素を適宜含有させることができる。また、原料に由来する不純物を含んでもよい。 The rare earth permanent magnet according to the present embodiment allows the inclusion of other elements. For example, elements such as Bi, Sn, and Ag can be appropriately contained. Moreover, you may contain the impurity originating in a raw material.
以下、本件発明の製造方法の好適な例について説明する。希土類永久磁石の製造方法は、スパッタリングやレーザーデポジション等の物理的成膜方法などがあるが、スパッタリングによる製造方法の一例について説明する。 Hereinafter, preferred examples of the production method of the present invention will be described. Examples of the method for producing a rare earth permanent magnet include physical film formation methods such as sputtering and laser deposition. An example of a production method by sputtering will be described.
材料として、先ず単元素ターゲット材を準備する。所望の組成比になるよう、各単元素ターゲットのスパッタパワーを調整し、希土類薄膜永久磁石を作成する。また、R、T、Xの合金ターゲット材を準備し、スパッタリングすることもできる。ここで、合金ターゲット材の組成比とスパッタリングで作製した薄膜の組成比は、各元素のスパッタ率が異なるためにずれる場合があり、調整が必要である。他の元素、例えば、Bi、Sn、Ag等を適宜含有させたい場合も同様に、単元素ターゲット材、合金ターゲット材の両方の方法で含有させることができる。一方で、酸素等の不純物元素を極力低減することが望ましいため、ターゲット材中の不純物含有量も極力低減する。 First, a single element target material is prepared as a material. The rare earth thin film permanent magnet is prepared by adjusting the sputtering power of each single element target so as to obtain a desired composition ratio. Alternatively, R, T, and X alloy target materials can be prepared and sputtered. Here, the composition ratio of the alloy target material and the composition ratio of the thin film produced by sputtering may be shifted because the sputtering rates of the respective elements are different, and adjustment is necessary. Similarly, when other elements such as Bi, Sn, Ag and the like are appropriately contained, they can be contained by both methods of a single element target material and an alloy target material. On the other hand, since it is desirable to reduce impurity elements such as oxygen as much as possible, the impurity content in the target material is also reduced as much as possible.
ターゲット材は、保管中に表面から酸化する。特に、希土類ターゲット材の場合は酸化の速度が速い。そのため、これらのターゲット材の使用前には、スパッタリングを十分に行い、ターゲット材の清浄表面を出しておく必要がある。 The target material oxidizes from the surface during storage. In particular, the rare earth target material has a high oxidation rate. Therefore, before using these target materials, it is necessary to perform sputtering sufficiently to bring out the clean surface of the target material.
スパッタリングにて成膜を行う基板は、各種の金属、ガラス、シリコン、セラミックスなどを選択して使用することができる。ただし、所望の結晶組織を得るために高温での処理を行う必要上、高融点な基板を選択することが望ましい。なお、高温処理における耐性の他に、希土類薄膜永久磁石との密着性が不足する場合があり、その対策としてCrやTi、Ta,Moなどの下地膜を設けることにより密着性を向上することが通常行われる。希土類薄膜永久磁石の上部には、酸化を防ぐため、Ti、Ta、Moなどの保護膜を設けることができる。 As the substrate on which the film is formed by sputtering, various metals, glass, silicon, ceramics, and the like can be selected and used. However, in order to obtain a desired crystal structure, it is desirable to select a substrate having a high melting point because it is necessary to perform processing at a high temperature. In addition to the resistance to high temperature treatment, the adhesion with rare earth thin film permanent magnets may be insufficient, and as a countermeasure, the adhesion can be improved by providing a base film such as Cr, Ti, Ta, or Mo. Usually done. A protective film such as Ti, Ta, or Mo can be provided on the rare earth thin film permanent magnet to prevent oxidation.
スパッタリングを行う成膜装置は、酸素、窒素、炭素等の不純物元素を極力低減することが望ましいため、10−6Pa以下、より好ましくは10−8Pa以下となるまで真空槽内が排気されていることが望ましい。高い真空状態を保つため、成膜室と繋がった基板導入室を有することが望ましい。また、ターゲット材の使用前には、スパッタリングを十分に行い、ターゲット材の清浄な表面を出しておく必要があるため、成膜装置は、基板とターゲット材の間に真空状態で操作可能な遮蔽機構を有することが望ましい。スパッタリングの方法は、不純物元素を極力低減するという目的で、より低圧のAr雰囲気でスパッタリングが可能となるマグネトロン・スパッタリング法が好ましい。ここで、Fe、Coを含むターゲット材は、マグネトロン・スパッタリングの漏れ磁束を大きく低減させ、スパッタリングを困難にするため、ターゲット材の厚みを適切に選択することが必要である。スパッタリングの電源は、DC、RFどちらでも使用可能であり、ターゲット材に応じて適宜選択できる。Since it is desirable that a film formation apparatus that performs sputtering reduces impurity elements such as oxygen, nitrogen, and carbon as much as possible, the inside of the vacuum chamber is evacuated to 10 −6 Pa or less, more preferably 10 −8 Pa or less. It is desirable. In order to maintain a high vacuum state, it is desirable to have a substrate introduction chamber connected to the film formation chamber. In addition, since it is necessary to perform sputtering sufficiently to bring out a clean surface of the target material before using the target material, the film forming apparatus is a shield that can be operated in a vacuum state between the substrate and the target material. It is desirable to have a mechanism. The sputtering method is preferably a magnetron sputtering method that enables sputtering in a lower-pressure Ar atmosphere for the purpose of reducing impurity elements as much as possible. Here, since the target material containing Fe and Co greatly reduces the leakage magnetic flux of magnetron sputtering and makes sputtering difficult, it is necessary to select the thickness of the target material appropriately. As the power source for sputtering, either DC or RF can be used, and can be appropriately selected depending on the target material.
仕込み組成のR比を調整することによって、粒界相内のLa量を制御することが可能である。所望の組成の薄膜を得るためには、成膜レートおよび成膜時間を調整してスパッタリングを行う。複数のターゲット材を用いてスパッタリングする際、多元同時スパッタリング、もしくは各ターゲットを単独で交互にスパッタリングする積層スパッタリングのどちらを選択しても良い。 It is possible to control the amount of La in the grain boundary phase by adjusting the R ratio of the charged composition. In order to obtain a thin film having a desired composition, sputtering is performed by adjusting the film formation rate and the film formation time. When sputtering using a plurality of target materials, either multi-source simultaneous sputtering or stacked sputtering in which each target is sputtered alternately independently may be selected.
磁性層成膜後に、熱処理をおこなう必要がある。雰囲気は、真空もしくはAr雰囲気とし、300℃/min〜1200℃/minの範囲で昇温し、300℃〜1200℃で、1時間〜24時間保持し、その後300℃/min〜1000℃/minで急冷する。磁性層成膜後に熱処理を長時間行う事で、Laが粒界相に均一に拡散し、さらに急冷を行う事で立方晶系の結晶構造が維持される。すなわち、本熱処理を行うことで、Laリッチ相σの形成が実現し保磁力が向上する。 It is necessary to perform heat treatment after the magnetic layer is formed. The atmosphere is a vacuum or Ar atmosphere, the temperature is raised in the range of 300 ° C./min to 1200 ° C./min, held at 300 ° C. to 1200 ° C. for 1 hour to 24 hours, and then 300 ° C./min to 1000 ° C./min. Cool quickly. When heat treatment is performed for a long time after the magnetic layer is formed, La is uniformly diffused into the grain boundary phase, and further, the cubic crystal structure is maintained by rapid cooling. That is, by performing this heat treatment, formation of the La rich phase σ is realized and the coercive force is improved.
このまま、希土類薄膜磁石として用いてもよいが、さらに希土類ボンド磁石や希土類焼結磁石とすることができる。以下、その製造方法を述べる。 Although it may be used as a rare earth thin film magnet as it is, it can be a rare earth bonded magnet or a rare earth sintered magnet. Hereinafter, the manufacturing method will be described.
希土類ボンド磁石の製造方法の一例について説明する。先ずスパッタリングで作製したThMn12型R−T化合物を主相とする希土類薄膜磁石を基板から剥がし微粉砕して、粉末にする。その後、樹脂を含む樹脂バインダーと本粉末とを例えば加圧ニーダー等の加圧混練機で混練して、樹脂バインダーとThMn12型R−T化合物を主相とする永久磁石粉末とを含む希土類ボンド磁石用コンパウンド(組成物)を調製する。樹脂は、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリアミド系のエラストマー、アイオノマー、エチレンプロピレン共重合体(EPM)、エチレン−エチルアクリレート共重合体等の熱可塑性樹脂がある。なかでも、圧縮成形をする場合に用いる樹脂は、熱硬化性樹脂が好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。また、射出成形をする場合に用いる樹脂は熱可塑性樹脂が好ましい。また、希土類ボンド磁石用コンパウンドには、必要に応じて、カップリング剤やその他の添加材を加えてもよい。An example of a method for producing a rare earth bonded magnet will be described. First, a rare earth thin film magnet having a main phase of a ThMn 12 type RT compound prepared by sputtering is peeled off from a substrate and pulverized to form a powder. Thereafter, the resin binder containing the resin and the present powder are kneaded by a pressure kneader such as a pressure kneader, and the rare earth bond containing the resin binder and the permanent magnet powder having the ThMn 12 type RT compound as the main phase. A magnet compound (composition) is prepared. Resins include thermosetting resins such as epoxy resins and phenol resins, styrene, olefin, urethane, polyester and polyamide elastomers, ionomers, ethylene propylene copolymer (EPM), ethylene-ethyl acrylate copolymer There are thermoplastic resins such as coalescence. Among them, the resin used for compression molding is preferably a thermosetting resin, and more preferably an epoxy resin or a phenol resin. The resin used for injection molding is preferably a thermoplastic resin. Moreover, you may add a coupling agent and another additive to the compound for rare earth bond magnets as needed.
また、希土類ボンド磁石におけるThMn12型R−T化合物を主相とする希土類永久磁石粉末と樹脂との含有比率は、本粉末100質量%に対して、樹脂を例えば0.5質量%以上20質量%以下含むことが好ましい。希土類永久磁石粉末100質量%に対して、樹脂の含有量が0.5質量%未満であると、保形性が損なわれる傾向があり、樹脂が20質量%を超えると、十分に優れた磁気特性が得られ難くなる傾向がある。Further, the content ratio of the rare earth permanent magnet powder having the main phase of the ThMn 12 type RT compound and the resin in the rare earth bonded magnet to the resin is 100% by mass, for example, 0.5% by mass to 20% by mass of the resin. % Or less is preferable. If the resin content is less than 0.5% by mass relative to 100% by mass of the rare earth permanent magnet powder, the shape retention tends to be impaired. If the resin exceeds 20% by mass, sufficiently excellent magnetic properties are obtained. It tends to be difficult to obtain characteristics.
上述の希土類ボンド磁石用コンパウンドを調製した後、この希土類ボンド磁石用コンパウンドを射出成形することにより、ThMn12型R−T化合物を主相とする希土類永久磁石粉末と樹脂とを含む希土類ボンド磁石を得ることができる。射出成形により希土類ボンド磁石を作製する場合、希土類ボンド磁石用コンパウンドを、必要に応じてバインダー(熱可塑性樹脂)の溶融温度まで加熱し、流動状態とした後、この希土類ボンド磁石用コンパウンドを所定の形状を有する金型内に射出して成形を行う。その後、冷却し、金型から所定形状を有する成形品(希土類ボンド磁石)を取り出す。このようにして希土類ボンド磁石が得られる。希土類ボンド磁石の製造方法は、上述の射出成形による方法に限定されるものではなく、例えば希土類ボンド磁石用コンパウンドを圧縮成形することによりThMn12型R−T化合物を主相とする希土類永久磁石粉末と樹脂とを含む希土類ボンド磁石を得てもよい。圧縮成形により希土類ボンド磁石を作製する場合、上述の希土類ボンド磁石用コンパウンドを調製した後、この希土類ボンド磁石用コンパウンドを所定の形状を有する金型内に充填し、圧力を加えて金型から所定形状を有する成形品(希土類ボンド磁石)を取り出す。金型にて希土類ボンド磁石用コンパウンドを成形し、取り出す際には、機械プレスや油圧プレス等の圧縮成形機を用いて行なわれる。その後、加熱炉や真空乾燥炉などの炉に入れて熱をかけることにより硬化させることで、希土類ボンド磁石が得られる。After preparing the rare earth bonded magnet compound described above, the rare earth bonded magnet containing the rare earth permanent magnet powder and the resin having the main phase of ThMn 12 type RT compound is formed by injection molding the rare earth bonded magnet compound. Can be obtained. When producing a rare earth bonded magnet by injection molding, the rare earth bonded magnet compound is heated to the melting temperature of the binder (thermoplastic resin) as necessary to obtain a fluid state, and then the rare earth bonded magnet compound is Molding is performed by injection into a mold having a shape. Then, it cools and takes out the molded article (rare earth bond magnet) which has a predetermined shape from a metal mold | die. In this way, a rare earth bonded magnet is obtained. The manufacturing method of the rare earth bonded magnet is not limited to the above-described method by injection molding. For example, the rare earth permanent magnet powder whose main phase is a ThMn 12 type RT compound by compression molding a compound for rare earth bonded magnet. And a rare earth bonded magnet containing resin. When producing a rare earth bonded magnet by compression molding, after preparing the above-mentioned rare earth bonded magnet compound, the rare earth bonded magnet compound is filled into a mold having a predetermined shape, and pressure is applied to the predetermined bond from the mold. A molded product having a shape (rare earth bonded magnet) is taken out. When a compound for a rare earth bonded magnet is formed and taken out by a mold, it is performed using a compression molding machine such as a mechanical press or a hydraulic press. Then, a rare earth bond magnet is obtained by putting in a furnace such as a heating furnace or a vacuum drying furnace and curing by applying heat.
成形して得られる希土類ボンド磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、希土類ボンド磁石の形状に応じて変更することができる。また、得られた希土類ボンド磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施してもよい。 The shape of the rare earth bonded magnet obtained by molding is not particularly limited, and changes according to the shape of the rare earth bonded magnet, for example, a flat plate shape, a columnar shape, or a cross-sectional shape depending on the shape of the mold to be used. can do. In addition, the obtained rare earth bonded magnet may be plated or painted on the surface in order to prevent deterioration of the oxide layer, the resin layer, and the like.
希土類ボンド磁石用コンパウンドは目的とする所定の形状に成形する際、磁場を印加して成形して得られる成形体を一定方向に配向させてもよい。これにより、希土類ボンド磁石が特定方向に配向するので、より磁性の強い異方性希土類ボンド磁石が得られる。 When the compound for rare earth bonded magnet is molded into a desired predetermined shape, a molded body obtained by molding by applying a magnetic field may be oriented in a certain direction. Thereby, since the rare earth bonded magnet is oriented in a specific direction, an anisotropic rare earth bonded magnet having stronger magnetism can be obtained.
希土類焼結磁石の製造方法の一例について説明する。希土類ボンド磁石と同様に、ThMn12型R−T化合物を主相とする希土類永久磁石粉末を作製し、例えばプレス成形などにより目的とする所定形状に成形する。得られる成形体の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、希土類焼結磁石の形状に応じて変更することができる。An example of a method for producing a rare earth sintered magnet will be described. Similarly to the rare-earth bonded magnet, a rare-earth permanent magnet powder whose main phase is a ThMn 12 type RT compound is produced and formed into a desired predetermined shape by, for example, press molding. The shape of the obtained molded body is not particularly limited, and can be changed according to the shape of the rare earth sintered magnet, such as a flat plate shape, a columnar shape, or a cross-sectional shape such as a ring shape, depending on the shape of the mold to be used. it can.
次いで、成形体は焼結工程に供される。焼結保持温度および焼結保持時間は、組成、粉砕方法、平均粒径と粒度分布の違い、焼結方法等、諸条件により調整する必要がある。これにより、焼結体(希土類焼結磁石)が得られる。 Next, the molded body is subjected to a sintering process. The sintering holding temperature and sintering holding time need to be adjusted according to various conditions such as composition, pulverization method, difference in average particle size and particle size distribution, sintering method, and the like. Thereby, a sintered body (rare earth sintered magnet) is obtained.
得られた希土類焼結磁石は、所望のサイズに切断したり、表面を平滑化することで、所定形状の希土類焼結磁石としてもよい。また、得られた希土類焼結磁石は、その表面上に酸化層や樹脂層等の劣化を防止するため、めっきや塗装を施してもよい。 The obtained rare earth sintered magnet may be a rare earth sintered magnet having a predetermined shape by cutting into a desired size or smoothing the surface. In addition, the obtained rare earth sintered magnet may be plated or painted on the surface in order to prevent deterioration of the oxide layer, the resin layer, and the like.
また、ThMn12型R−T化合物を主相とする希土類永久磁石粉末を目的とする所定の形状に成形する際、磁場を印加して成形することで得られる成形体を一定方向に配向させてもよい。これにより、希土類焼結磁石が特定方向に配向するので、より磁性の強い異方性希土類焼結磁石が得られる。Further, when a rare earth permanent magnet powder having a main phase of ThMn 12 type RT compound is molded into a predetermined shape, a molded body obtained by molding by applying a magnetic field is oriented in a certain direction. Also good. Thereby, since the rare earth sintered magnet is oriented in a specific direction, an anisotropic rare earth sintered magnet having stronger magnetism can be obtained.
以上、本件発明を好適に実施するための製造方法に関する形態を説明したが、次いで、本件発明のThMn12型R−T化合物を主相とする希土類永久磁石において、主相と粒界相の組成および結晶構造、さらに粒界相に占めるLaリッチ相σの断面積比を分析する方法について説明する。As mentioned above, although the form regarding the manufacturing method for implementing this invention suitably was demonstrated, next, in the rare earth permanent magnet which uses the ThMn 12 type RT compound of this invention as a main phase, a composition of a main phase and a grain boundary phase A method for analyzing the crystal structure and the cross-sectional area ratio of the La-rich phase σ in the grain boundary phase will be described.
ThMn12相を主相とする希土類永久磁石の組成は、ICP質量分析法(ICP:Inductively Coupled Plasma Mass Spectrometry)にて決定することが可能であり、ここで、所望の組成であることを確認する。The composition of a rare earth permanent magnet whose main phase is a ThMn 12 phase can be determined by ICP mass spectrometry (ICP: Inductively Coupled Plasma Mass Spectrometry). Here, the desired composition is confirmed. .
試料である希土類永久磁石の主相の結晶構造について、X線回折法(XRD:X−ray Diffractometry)によって主たる生成相がThMn12型結晶構造に帰属されることを確認する。About the crystal structure of the main phase of the rare earth permanent magnet which is a sample, it is confirmed by X-ray diffractometry (XRD) that the main generated phase is attributed to the ThMn 12 type crystal structure.
主相の組成は、エネルギー分散型X線分光法(EDS:Energy Dispersive Spectroscopy)にて測定する。具体的には、希土類永久磁石を集束イオンビーム(FIB:Focused Ion Beam)装置にて厚さ100nmの薄片状に加工し、走査透過電子顕微鏡(STEM:Scanning Transmission Electron Microscope)に備えられたEDS装置を用いて元素マッピング画像を得て、その元素マッピング画像に基づいて主相の組成を定量化する。EDS装置で検出困難な元素がある場合は、赤外線吸収法や質量分析法を用いて補完する。ここで、主相が、所望の組成であることを確認する。 The composition of the main phase is measured by energy dispersive X-ray spectroscopy (EDS: Energy Dispersive Spectroscopy). Specifically, an EDS apparatus provided with a scanning transmission electron microscope (STEM) by processing a rare earth permanent magnet into a thin piece having a thickness of 100 nm using a focused ion beam (FIB) apparatus. Is used to obtain an element mapping image, and the composition of the main phase is quantified based on the element mapping image. If there is an element that is difficult to detect with an EDS apparatus, it is supplemented by using an infrared absorption method or mass spectrometry. Here, it is confirmed that the main phase has a desired composition.
粒界相の組成は、主相と同様、EDS装置によって測定する。EDS装置により得られた元素マッピング像を用いて粒界相のLaを抽出した後、組成を定量化する。 Similar to the main phase, the composition of the grain boundary phase is measured by an EDS apparatus. After extracting La of the grain boundary phase using the element mapping image obtained by the EDS apparatus, the composition is quantified.
粒界相の結晶構造は、電子線回折法にて判断する。元素マッピング像にて確認した粒界相のLa組成比が20at%以上の領域について電子線回折解析を行い、結晶構造を決定する。La組成比が20at%以上であり、結晶構造が立方晶系である領域をLaリッチ相σとする。 The crystal structure of the grain boundary phase is judged by electron diffraction. An electron diffraction analysis is performed on a region where the La composition ratio of the grain boundary phase confirmed by the element mapping image is 20 at% or more, and the crystal structure is determined. A region where the La composition ratio is 20 at% or more and the crystal structure is cubic is defined as a La-rich phase σ.
粒界相に占めるLaリッチ相σの断面積比は、元素マッピング像から算出される、Laリッチ相σの断面積と、粒界相全体の断面積との比率である。 The cross-sectional area ratio of the La-rich phase σ occupying the grain boundary phase is a ratio between the cross-sectional area of the La-rich phase σ calculated from the element mapping image and the cross-sectional area of the entire grain boundary phase.
磁気特性は、振動試料型磁力計(VSM:Vibrating Sample Magnetometer)を用い、基板に対して垂直方向に±3100kA/mの磁界を加えて測定する。 The magnetic characteristics are measured by applying a magnetic field of ± 3100 kA / m in a direction perpendicular to the substrate using a vibrating sample magnetometer (VSM).
以下、本発明の内容を実施例および比較例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, although the content of the present invention is explained in detail using an example and a comparative example, the present invention is not limited to the following examples.
成膜装置は、10−8Pa以下まで排気が可能であり、同一槽内に複数のスパッタリング機構を有する装置を用いた。この成膜装置内にSm、Er、Nd、La、Fe、Ti、Co、Mo、Nbの単元素ターゲット材、さらに下地膜、保護膜に用いるMoターゲット材を、作製する試料の構成に応じて装着した。スパッタリングは、マグネトロン・スパッタリング法を用いることにより、1PaのAr雰囲気とし、RF、DC電源を使用した。尚、RF、DC電源のパワーと成膜時間は、試料の構成に応じて調整した。スパッタ条件は、主相が(R’1−xLax)T11Mとなるように調整した。具体的には、表1〜表3に記載の組成となるよう、R’をSmあるいはErあるいはNdとし、TをFe、またはFeおよびCoとし、MをTiあるいはMoあるいはNbとした。ターゲット材のサイズは3インチ、基板は熱酸化膜付Si基板を10mm×10mmとし、膜の面内均一性が十分に保たれるよう、スパッタ装置の回転機構で基板を回転させながらスパッタリングを行った。As the film forming apparatus, an apparatus capable of exhausting to 10 −8 Pa or less and having a plurality of sputtering mechanisms in the same tank was used. In this film forming apparatus, Sm, Er, Nd, La, Fe, Ti, Co, Mo, Nb single-element target materials, and Mo target materials used for the base film and protective film, depending on the configuration of the sample to be produced Installed. Sputtering was performed using a magnetron sputtering method to form an Ar atmosphere of 1 Pa, and RF and DC power supplies were used. The power of the RF and DC power sources and the film formation time were adjusted according to the sample configuration. The sputtering conditions were adjusted so that the main phase was (R ′ 1-x La x ) T 11 M. Specifically, R ′ is Sm, Er, or Nd, T is Fe, Fe, or Co, and M is Ti, Mo, or Nb so that the compositions shown in Tables 1 to 3 are obtained. The target material size is 3 inches, the substrate is a 10 mm × 10 mm Si substrate with a thermal oxide film, and sputtering is performed while rotating the substrate with a rotating mechanism of the sputtering apparatus so that the in-plane uniformity of the film is sufficiently maintained. It was.
膜構成は、先ず下地膜としてMoを200℃で50nm成膜した。次に、R’としてSm、Er、Ndを選択し、TとしてFe、またはTiとしてFeおよびCoを選択し、MとしてTiあるいはMoあるいはNbを選択し、仕込み組成で、(R’、La)15.3T78.4M6.3とし、各々の表1〜表3に記載の実施例及び比較例に応じてSm、Er、Nd、Laの仕込み組成比を調整した。熱酸化膜付Si基板を500℃に加熱し、磁性層厚みを1000nm狙いで成膜を行い、磁性層成膜後にAr雰囲気で900℃/minで昇温した。そして、900℃で10時間熱処理後、500℃/min〜800℃/minで急冷した。これを熱処理方法Aと定義する。As for the film configuration, first, Mo was deposited to a thickness of 50 nm at 200 ° C. as a base film. Next, Sm, Er, and Nd are selected as R ′, Fe is selected as T, Fe and Co are selected as Ti, Ti, Mo, or Nb is selected as M, and (R ′, La) The charge composition ratio of Sm, Er, Nd, and La was adjusted according to the examples and comparative examples described in Tables 1 to 3 with 15.3 T 78.4 M 6.3 . The Si substrate with a thermal oxide film was heated to 500 ° C., and the film was formed with a magnetic layer thickness of 1000 nm. The film was heated at 900 ° C./min in an Ar atmosphere after the magnetic layer was formed. And it heat-cooled at 500 degreeC / min-800 degreeC / min after heat processing at 900 degreeC for 10 hours. This is defined as heat treatment method A.
一方、上記と同条件にて磁性層成膜を行い、磁性層成膜後に熱処理を行った。熱処理時間を10分間かつ100℃/minで冷却する以外は、熱処理方法Aと同条件で行った。これを熱処理方法Bと定義する。 On the other hand, the magnetic layer was formed under the same conditions as described above, and heat treatment was performed after the magnetic layer was formed. The heat treatment was performed under the same conditions as heat treatment method A, except that the heat treatment time was 10 minutes and cooling at 100 ° C./min. This is defined as heat treatment method B.
上記述の成膜方法にてMo下地膜、磁性層を成膜し、その後、熱処理を行わず、後述記載の方法にてMo保護層を成膜した試料を、熱処理無とする。 A sample in which the Mo underlayer film and the magnetic layer are formed by the above-described film formation method, and then the heat treatment is not performed, and the Mo protective layer is formed by the method described later is not heat-treated.
熱処理後、または磁性層成膜後に酸化防止のため、保護膜として再びMoを200℃で50nm成膜した。その後、真空中で室温まで冷却した後に成膜装置から取り出した。 In order to prevent oxidation after heat treatment or after the magnetic layer was formed, Mo was again formed as a protective film at 200 ° C. to a thickness of 50 nm. Then, after cooling to room temperature in vacuum, it was taken out from the film forming apparatus.
磁性層成膜後に熱処理を長時間行う事で、Laが粒界相に均一に拡散し、さらに急冷を行う事で立方晶系の結晶構造が維持される。すなわち、熱処理方法Aを行うことで、Laリッチ相σの形成が実現し保磁力が向上する。一方、熱処理方法Bでは、熱処理時間、冷却時間が不十分なことで、保磁力が向上しない。同様に、熱処理無でも、保磁力が向上しない。 When heat treatment is performed for a long time after the magnetic layer is formed, La is uniformly diffused into the grain boundary phase, and further, the cubic crystal structure is maintained by rapid cooling. That is, by performing the heat treatment method A, the formation of the La rich phase σ is realized and the coercive force is improved. On the other hand, in the heat treatment method B, the coercive force is not improved because the heat treatment time and the cooling time are insufficient. Similarly, the coercive force is not improved even without heat treatment.
作製した試料は、ICP質量分析法によって所望の組成であることを確認し、XRDによって主たる生成相がThMn12型結晶構造に帰属されることを確認した。The prepared sample was confirmed to have a desired composition by ICP mass spectrometry, and it was confirmed by XRD that the main product phase was attributed to the ThMn 12 crystal structure.
主相および、Laリッチ相σの判別とその断面積比率の算出方法について記載する。STEM−EDSにて、200nm×200nmの視野で、20か所を300μm間隔で測定した。R’、La、T、Mの元素マッピングと電子線回折を行うことで、主相、Laリッチ相σ、その他の粒界相を判別した。主相は、EDS装置を用いて希土類元素とT+M元素の比率が大凡1:12であることから判断した。また、主相間もしくは三重点において、La組成比が20at%以上であり、T元素比率が主相のT元素比率未満である領域を抽出し、電子線回折にてその領域の結晶構造が立方晶系であった場合に、Laリッチ相σであると判断した。さらに視野中のLaリッチ相σの断面積を積算し、粒界相(主相以外の部分)の断面積との比率を計算した。結果を表1に記載する。 A method for determining the main phase and the La-rich phase σ and calculating the cross-sectional area ratio will be described. With STEM-EDS, 20 locations were measured at 300 μm intervals in a 200 nm × 200 nm field of view. Elemental mapping of R ′, La, T, and M and electron beam diffraction were performed to determine the main phase, La-rich phase σ, and other grain boundary phases. The main phase was judged using an EDS apparatus because the ratio of rare earth elements to T + M elements was approximately 1:12. Also, a region where the La composition ratio is 20 at% or more and the T element ratio is less than the T element ratio of the main phase between the main phases or triple points is extracted, and the crystal structure of the region is cubic by electron diffraction. When it was a system, it was judged to be a La rich phase σ. Furthermore, the cross-sectional area of the La rich phase σ in the visual field was integrated, and the ratio with the cross-sectional area of the grain boundary phase (portion other than the main phase) was calculated. The results are listed in Table 1.
その後、VSMを用い、膜面の垂直方向に±3100kA/mの磁界を加えて磁気ヒステリシス測定を行った。なお、磁束密度は+2400kA/m印加時と+3100kA/m印加時で±5%の範囲内にあることを確認したうえで、+3100kA/m印加時の値を飽和磁束密度とした。このようにして測定した飽和磁束密度と保磁力を表1に示す。
(実施例1)
表1に示す通り、主相の組成が、(R’1−xLax)Fe11Mになるように、R’にSm、MにTiを選択し、前記述の成膜方法にて(Sm0.9La0.1)Fe11TiのThMn12型結晶構造薄膜永久磁石を得た。得られた薄膜
永久磁石を、前記述の評価方法にて評価を行った。この結果を表1に示す。Example 1
As shown in Table 1, Sm is selected for R ′ and Ti is selected for M so that the composition of the main phase is (R ′ 1-x La x ) Fe 11 M. A Sm 0.9 La 0.1 ) Fe 11 Ti ThMn 12 crystal structure thin film permanent magnet was obtained. The obtained thin film permanent magnet was evaluated by the evaluation method described above. The results are shown in Table 1.
(実施例2)
(Sm0.7La0.3)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Example 2)
A thin film permanent magnet was produced in the same manner as in Example 1 except that (Sm 0.7 La 0.3 ) Fe 11 Ti was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
(Sm0.5La0.5)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Example 3)
A thin film permanent magnet was produced in the same manner as in Example 1 except that (Sm 0.5 La 0.5 ) Fe 11 Ti was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
R’にErを選択し、(Er0.9La0.1)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Example 4)
A thin film permanent magnet was produced in the same manner as in Example 1 except that Er was selected as R ′ and (Er 0.9 La 0.1 ) Fe 11 Ti was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例5)
MにMoを選択し、(Sm0.9La0.1)Fe11Moとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Example 5)
A thin film permanent magnet was prepared in the same manner as in Example 1 except that Mo was selected as M and (Sm 0.9 La 0.1 ) Fe 11 Mo was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例6)
TにFeとCoを選択し、(Sm0.9La0.1)Fe10CoTiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Example 6)
A thin film permanent magnet was produced in the same manner as in Example 1 except that Fe and Co were selected as T and (Sm 0.9 La 0.1 ) Fe 10 CoTi was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
SmFe11Ti薄膜永久磁石を実施例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Comparative Example 1)
An SmFe 11 Ti thin film permanent magnet was produced in the same manner as in Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
(Sm0.95La0.05)Fe11Tiの薄膜永久磁石を実施例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Comparative Example 2)
A thin film permanent magnet of (Sm 0.95 La 0.05 ) Fe 11 Ti was produced in the same manner as in Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例3)
(Sm0.9La0.1)Fe11Tiの薄膜永久磁石を、熱処理方法Bにて熱処理を行った以外は実施例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Comparative Example 3)
A thin film permanent magnet of (Sm 0.9 La 0.1 ) Fe 11 Ti was produced in the same manner as in Example 1 except that heat treatment was performed by heat treatment method B. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例4)
(Sm0.9La0.1)Fe11Tiとし、熱処理は行わない以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表1に示す。(Comparative Example 4)
A thin film permanent magnet was produced in the same manner as in Example 1 except that (Sm 0.9 La 0.1 ) Fe 11 Ti was used and heat treatment was not performed. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
さらに、侵入元素XがNの場合、熱処理A、B後の段階で窒化処理をすることができる。本薄膜永久磁石を1気圧の窒素ガス中で24時間、500℃で窒化処理を行った。R’をNdとし、侵入元素としてNを侵入させことで、より高い飽和磁束密度を得ることが出来た。結果を表2に示す。
(実施例7)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、(Nd0.9La0.1)Fe11TiN1.5とする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。(Example 7)
A thin film permanent magnet is formed in the same manner as in Example 1 except that R ′ is Nd and N is intruded as an intruding element by the above method to obtain (Nd 0.9 La 0.1 ) Fe 11 TiN 1.5. Produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
(実施例8)
(Nd0.5La0.5)Fe11TiN1.5とする以外は、実施例7と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。(Example 8)
A thin film permanent magnet was prepared in the same manner as in Example 7 except that (Nd 0.5 La 0.5 ) Fe 11 TiN 1.5 was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
(実施例9)
TにFeとCoを選択し、(Nd0.9La0.1)Fe10CoTiN1.5とする以外は、実施例7と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。Example 9
A thin film permanent magnet was produced in the same manner as in Example 7 except that Fe and Co were selected as T and (Nd 0.9 La 0.1 ) Fe 10 CoTiN 1.5 was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
(比較例5)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、NdFe11TiN1.5薄膜永久磁石を比較例1と同様に作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。(Comparative Example 5)
An NdFe 11 TiN 1.5 thin film permanent magnet was produced in the same manner as in Comparative Example 1 by making R ′ Nd and N as an intruding element by the above method. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
(比較例6)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、(Nd0.95La0.05)Fe11TiN1.5とする以外は、比較例2と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。(Comparative Example 6)
A thin film permanent magnet was prepared in the same manner as in Comparative Example 2 except that R ′ was Nd and N was invaded by the above method to form (Nd 0.95 La 0.05 ) Fe 11 TiN 1.5. Produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
(比較例7)
R’をNdとし、侵入元素としてNを上記の方法で侵入させて、(Nd0.9La0.1)Fe11TiN1.5とする以外は、比較例3と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。(Comparative Example 7)
A thin film permanent magnet was prepared in the same manner as in Comparative Example 3 except that R ′ was Nd, and N was invaded as the intruding element by the above method to obtain (Nd 0.9 La 0.1 ) Fe 11 TiN 1.5. Produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
(比較例8)
(Nd0.9La0.1)Fe11TiN1.5とする以外は、比較例4と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表2に示す。(Comparative Example 8)
A thin film permanent magnet was produced in the same manner as in Comparative Example 4 except that (Nd 0.9 La 0.1 ) Fe 11 TiN 1.5 was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
さらに、仕込み組成のR量、M量を変更した場合でも、高い磁気特性が得られた。M=NbでもThMn12結晶構造が得られ、高い磁気特性を得ることが出来た。結果を表3に示す。
(実施例10)
MにTiを選択し、仕込み組成で、(R’、La)9.7T84.2M6.1とし、主相組成を(Sm0.9La0.1)Fe11Tiとする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。(Example 10)
Other than selecting Ti as M, charging composition to (R ′, La) 9.7 T 84.2 M 6.1, and main phase composition to (Sm 0.9 La 0.1 ) Fe 11 Ti Produced a thin film permanent magnet in the same manner as in Example 1. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
(実施例11)
MにTiを選択し、仕込み組成で、(R’、La)15.3T80.4M4.3とし、主相組成を(Sm0.9La0.1)Fe11.5Ti0.5とする以外は、実施例1と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。(Example 11)
Ti is selected for M, and the charged composition is (R ′, La) 15.3 T 80.4 M 4.3 , and the main phase composition is (Sm 0.9 La 0.1 ) Fe 11.5 Ti 0 A thin film permanent magnet was produced in the same manner as in Example 1 except that the thickness was set to .5 . Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
(実施例12)
MにNbを選択し、(Sm0.9La0.1)Fe11Nbとする以外は、実施例10と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。(Example 12)
A thin film permanent magnet was produced in the same manner as in Example 10 except that Nb was selected as M and (Sm 0.9 La 0.1 ) Fe 11 Nb was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
(実施例13)
MにNbを選択し、(Sm0.9La0.1)Fe11.5Nb0.5とする以外は、実施例11と同様に薄膜永久磁石を作製した。そして、実施例1と同様に、評価を行った。この結果を表3に示す。(Example 13)
A thin film permanent magnet was produced in the same manner as in Example 11 except that Nb was selected as M and (Sm 0.9 La 0.1 ) Fe 11.5 Nb 0.5 was used. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
さらに、実施例1を基準とし、熱処理方法Aの熱処理時間を短時間にした場合でも、Laリッチ相σのLa組成比が20at%以上となる事で、磁気特性が向上する結果が得られた。この結果を表4に示す。表4には、飽和磁束密度(mT)、保磁力HcJ(kA/m)、Laリッチ相σのLa組成比、粒界相に占めるLaリッチ相σの断面積比、熱処理時間(時間)を示す。
(実施例14)
実施例1と同様の薄膜永久磁石を作製し、熱処理時間を3時間とする以外は、熱処理時間Aと同様の熱処理を行った。そして、実施例1と同様に、評価を行った。この結果を表4に示す。(Example 14)
A thin film permanent magnet similar to that of Example 1 was prepared and heat treatment similar to heat treatment time A was performed except that the heat treatment time was 3 hours. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
(比較例9)
実施例1と同様の薄膜永久磁石を作製し、熱処理時間を15分とする以外は、熱処理時間Aと同様の熱処理を行った。そして、実施例1と同様に、評価を行った。この結果を表4に示す(Comparative Example 9)
A thin film permanent magnet similar to that of Example 1 was prepared, and a heat treatment similar to the heat treatment time A was performed except that the heat treatment time was 15 minutes. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
(実施例1〜3、比較例1〜4)
粒界相に占めるLaリッチ相σの断面積比が増えるにつれて、保磁力の向上が確認できた。(Examples 1-3, Comparative Examples 1-4)
As the cross-sectional area ratio of the La-rich phase σ occupying the grain boundary phase increased, it was confirmed that the coercive force was improved.
(実施例4〜6)
R’をErに変えた場合にも、Smと同様の結果が得られる事が確認できた。また、MをMoにした場合にも、Tiと同様の結果が得られる事が確認できた。TをFeとCoにした場合にも、Feと同様の結果が得られる事が確認できた。(Examples 4 to 6)
It was confirmed that the same result as Sm was obtained when R ′ was changed to Er. It was also confirmed that the same result as Ti was obtained when M was Mo. It was confirmed that the same results as Fe were obtained when T was changed to Fe and Co.
(実施例10、11、12、13)
仕込み組成でR量低減、M量低減、MをNbとした場合でも、保磁力はあまり変わらず、高い飽和磁束密度が得られた。(Examples 10, 11, 12, 13)
Even when the amount of R was reduced, the amount of M was reduced, and M was Nb, the coercive force did not change much and a high saturation magnetic flux density was obtained.
(実施例7〜9、比較例5〜8)
侵入元素としてNを侵入させた場合においても、実施例1〜6と同様の結果が得られた。(Examples 7-9, Comparative Examples 5-8)
Even when N was intruded as an intruding element, the same results as in Examples 1 to 6 were obtained.
(実施例14)
熱処理方法Aの熱処理時間を変更することで、Laリッチ相σのLa組成比を調整することが出来、保磁力の向上効果が得られた。(Example 14)
By changing the heat treatment time of the heat treatment method A, the La composition ratio of the La-rich phase σ can be adjusted, and the effect of improving the coercive force was obtained.
(比較例9)
熱処理方法Aの熱処理時間を変更することで、粒界相のLa組成比が20at%以下となることから、磁気的な分離効果が低く、保磁力が低い結果となった。(Comparative Example 9)
By changing the heat treatment time of the heat treatment method A, the La composition ratio of the grain boundary phase becomes 20 at% or less, so that the magnetic separation effect is low and the coercive force is low.
Claims (2)
前記主相がThMn12型結晶構造を有するR−T化合物であり、
RはLaを必須とし、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される1種以上の希土類元素であり、
Tは、Fe、またはFeおよびCo、またはその一部をM(Ti、V、Cr、Mo、W、Zr、Hf、Nb、Ta、Al、Si、Cu、Zn、GaおよびGeから選択される1種以上)で置換した元素であり、
前記粒界相はLaリッチ相σを有し、
前記Laリッチ相σは立方晶系の結晶構造で、La組成比が20at%以上であって、
前記粒界相に占める前記Laリッチ相σの断面積比が20%以上である希土類永久磁石。Having a main phase and a grain boundary phase;
The main phase is an RT compound having a ThMn 12 type crystal structure;
R is essential La, and is one or more rare earth elements selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
T is selected from Fe, or Fe and Co, or a part thereof from M (Ti, V, Cr, Mo, W, Zr, Hf, Nb, Ta, Al, Si, Cu, Zn, Ga and Ge One or more elements),
The grain boundary phase has a La rich phase σ,
The La-rich phase σ has a cubic crystal structure with a La composition ratio of 20 at% or more,
A rare earth permanent magnet having a cross-sectional area ratio of the La-rich phase σ in the grain boundary phase of 20% or more.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059709 | 2016-03-24 | ||
JP2016059709 | 2016-03-24 | ||
PCT/JP2017/011740 WO2017164312A1 (en) | 2016-03-24 | 2017-03-23 | Rare-earth permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017164312A1 true JPWO2017164312A1 (en) | 2019-01-31 |
JP6769479B2 JP6769479B2 (en) | 2020-10-14 |
Family
ID=59900251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018507410A Active JP6769479B2 (en) | 2016-03-24 | 2017-03-23 | Rare earth permanent magnet |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6769479B2 (en) |
WO (1) | WO2017164312A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123988A1 (en) * | 2016-12-26 | 2018-07-05 | 日立金属株式会社 | Rare earth-transition metal system ferromagnetic alloy |
JP7238504B2 (en) * | 2019-03-18 | 2023-03-14 | 株式会社プロテリアル | Bulk body for rare earth magnet |
JP7446971B2 (en) * | 2020-10-02 | 2024-03-11 | 株式会社東芝 | Magnet materials, permanent magnets, rotating electric machines and vehicles, and methods for manufacturing magnet materials and permanent magnets |
CN115862989B (en) * | 2023-01-29 | 2023-06-02 | 西南应用磁学研究所(中国电子科技集团公司第九研究所) | Rare earth permanent magnet and sintering method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001313205A (en) * | 1999-11-24 | 2001-11-09 | Hitachi Metals Ltd | Isotropic compound, isotropic bonded magnet, rotating machine, and magnet roll |
JP2005272984A (en) * | 2004-03-26 | 2005-10-06 | Tdk Corp | Permanent magnet powder, method for producing permanent magnet powder and bond magnet |
JP2013055076A (en) * | 2009-12-04 | 2013-03-21 | Hitachi Ltd | Light rare earth magnet and magnetic device |
-
2017
- 2017-03-23 WO PCT/JP2017/011740 patent/WO2017164312A1/en active Application Filing
- 2017-03-23 JP JP2018507410A patent/JP6769479B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001313205A (en) * | 1999-11-24 | 2001-11-09 | Hitachi Metals Ltd | Isotropic compound, isotropic bonded magnet, rotating machine, and magnet roll |
JP2005272984A (en) * | 2004-03-26 | 2005-10-06 | Tdk Corp | Permanent magnet powder, method for producing permanent magnet powder and bond magnet |
JP2013055076A (en) * | 2009-12-04 | 2013-03-21 | Hitachi Ltd | Light rare earth magnet and magnetic device |
Also Published As
Publication number | Publication date |
---|---|
WO2017164312A1 (en) | 2017-09-28 |
JP6769479B2 (en) | 2020-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6269279B2 (en) | Permanent magnet and motor | |
JP6265368B2 (en) | R-T-B rare earth sintered magnet and method for producing the same | |
JP7418598B2 (en) | Heavy rare earth alloys, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods | |
US10529473B2 (en) | R-T-B based permanent magnet | |
JP5370609B1 (en) | R-T-B permanent magnet | |
JPH0663086B2 (en) | Permanent magnet material and manufacturing method thereof | |
JP6037128B2 (en) | R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet | |
JP2017226910A (en) | SINTERED Nd-Fe-B-BASED MAGNETIC SUBSTRATE AND MANUFACTURING METHOD THEREFOR | |
JP6536816B2 (en) | RTB based sintered magnet and motor | |
JP6094612B2 (en) | Method for producing RTB-based sintered magnet | |
JP5565499B1 (en) | R-T-B permanent magnet | |
JPWO2017164312A1 (en) | Rare earth permanent magnet | |
JP6506182B2 (en) | Rare earth-containing alloy flakes, method for producing the same and sintered magnet | |
JP2000096102A (en) | Heat resistant rare earth alloy anisotropy magnet powder | |
JP5565497B1 (en) | R-T-B permanent magnet | |
JP5565498B1 (en) | R-T-B permanent magnet | |
WO2005001855A1 (en) | R-t-b based permanent magnet | |
JP3683260B2 (en) | Rare earth permanent magnet | |
JPH0616445B2 (en) | Permanent magnet material and manufacturing method thereof | |
JP6511844B2 (en) | RTB based sintered magnet | |
JP2016186990A (en) | R-t-b-based thin film permanent magnet | |
JP7401479B2 (en) | Rare earth anisotropic magnet powder and its manufacturing method | |
WO2017191790A1 (en) | Rare-earth permanent magnet, and method for manufacturing same | |
JP2017183324A (en) | R-t-b system permanent magnet | |
JP2016207678A (en) | Sm-Fe-N-BASED MAGNET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6769479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |