Nothing Special   »   [go: up one dir, main page]

JPWO2016139783A1 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2016139783A1
JPWO2016139783A1 JP2017503277A JP2017503277A JPWO2016139783A1 JP WO2016139783 A1 JPWO2016139783 A1 JP WO2016139783A1 JP 2017503277 A JP2017503277 A JP 2017503277A JP 2017503277 A JP2017503277 A JP 2017503277A JP WO2016139783 A1 JPWO2016139783 A1 JP WO2016139783A1
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
expansion valve
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017503277A
Other languages
Japanese (ja)
Other versions
JP6545252B2 (en
Inventor
和之 石田
和之 石田
靖 大越
靖 大越
拓也 伊藤
拓也 伊藤
正紘 伊藤
正紘 伊藤
昂仁 彦根
昂仁 彦根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016139783A1 publication Critical patent/JPWO2016139783A1/en
Application granted granted Critical
Publication of JP6545252B2 publication Critical patent/JP6545252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

ホットガスリバース方式の除霜運転時に圧縮機への液バック運転を抑制する冷凍サイクル装置を提供する。本発明に係る冷凍サイクル装置(1)は、圧縮機(21)、流路切替弁(29)、熱源側熱交換器(22)、メイン膨張弁(24)及び利用側熱交換器(25)が冷媒配管によって接続されて構成された冷媒回路(2)を有し、ホットガスリバース方式により除霜運転を行う。冷凍サイクル装置(1)は、冷媒回路内の高圧側の圧力を測定する圧力センサ(3)と、圧縮機(21)、流路切替弁(29)及びメイン膨張弁(24)をそれぞれ制御する制御装置(4)と、を備える。開度を調節することができるサブ膨張弁(26)、余剰冷媒を溜めるための冷媒タンク(27)、電磁弁(28)が直列に接続された直列回路が、熱源側熱交換器(22)と利用側熱交換器(25)との間に接続されたメイン膨張弁(24)に並列に接続されている。制御装置(4)は、圧力センサ(3)の測定する圧力に基づき、サブ膨張弁(26)の開度及び電磁弁(28)の開閉を制御する。Provided is a refrigeration cycle apparatus that suppresses liquid back operation to a compressor during a hot gas reverse type defrosting operation. The refrigeration cycle apparatus (1) according to the present invention includes a compressor (21), a flow path switching valve (29), a heat source side heat exchanger (22), a main expansion valve (24), and a use side heat exchanger (25). Has a refrigerant circuit (2) configured by being connected by a refrigerant pipe, and performs a defrosting operation by a hot gas reverse method. The refrigeration cycle apparatus (1) controls a pressure sensor (3) for measuring the pressure on the high pressure side in the refrigerant circuit, the compressor (21), the flow path switching valve (29), and the main expansion valve (24). And a control device (4). A series circuit in which a sub expansion valve (26) capable of adjusting the opening, a refrigerant tank (27) for accumulating excess refrigerant, and a solenoid valve (28) are connected in series is a heat source side heat exchanger (22). Is connected in parallel to the main expansion valve (24) which is connected between the heat exchanger (25) and the use side heat exchanger (25). The control device (4) controls the opening degree of the sub expansion valve (26) and the opening / closing of the electromagnetic valve (28) based on the pressure measured by the pressure sensor (3).

Description

本発明は、冷凍サイクル装置に関し、特に除霜運転時の液バック抑制に関するものである。   The present invention relates to a refrigeration cycle apparatus, and particularly to liquid back suppression during a defrosting operation.

冷凍サイクル装置を用いて水を冷却又は加熱し、これにより得られた冷水又は温水を冷暖房に使用する空調装置等が知られている。これらの冷凍サイクル装置には、例えば空冷式ヒートポンプチラー等が該当する。
低温外気中で冷凍サイクル装置を暖房運転させた時、つまり、外気と冷媒との間で熱交換を行う空気熱交換器(室外側熱交換器)を蒸発器として用い、水熱交換器(室内側熱交換器)を凝縮器として用いる時(例えば暖房に使用する温水を製造する時)に、空気熱交換器に着霜する場合がある。この空気熱交換器に着いた霜は、外気と冷媒の熱交換を阻害し、水熱交換器側での水を加熱する能力を低下させる。そのため、空気熱交換器に着いた霜は、速やかに取り除く必要がある(除霜)。除霜の方式としては、例えば、空気熱交換器を凝縮器として運転するホットガスリバース方式、冷凍サイクル装置を停止させるオフサイクルデフロスト方式、熱交換器の近くに設置したヒータにより加熱するヒータデフロスト方式等がある。特に空冷式ヒートポンプチラーでは、ホットガスリバース方式で除霜運転を行っている。
There is known an air conditioner or the like that cools or heats water using a refrigeration cycle device and uses cold water or hot water obtained thereby for air conditioning. For example, an air-cooled heat pump chiller corresponds to these refrigeration cycle apparatuses.
When the refrigeration cycle apparatus is heated in low-temperature outside air, that is, an air heat exchanger (outdoor heat exchanger) that exchanges heat between outside air and refrigerant is used as an evaporator, and a water heat exchanger (room When the inner heat exchanger is used as a condenser (for example, when hot water used for heating is manufactured), the air heat exchanger may be frosted. The frost attached to the air heat exchanger inhibits heat exchange between the outside air and the refrigerant, and reduces the ability to heat water on the water heat exchanger side. Therefore, it is necessary to quickly remove the frost that has arrived at the air heat exchanger (defrosting). Defrosting methods include, for example, a hot gas reverse method that operates an air heat exchanger as a condenser, an off-cycle defrost method that stops the refrigeration cycle apparatus, and a heater defrost method that heats by a heater installed near the heat exchanger Etc. In particular, an air-cooled heat pump chiller performs a defrosting operation by a hot gas reverse method.

空冷式ヒートポンプチラーでは、冷媒回路は、例えば、圧縮機、空気熱交換器、膨張弁、水熱交換器、冷媒タンク、四方弁を冷媒配管により接続して構成される。空気熱交換器と水熱交換器との間にある膨張弁は回路に直列に接続されている。冷媒タンクは膨張弁と水熱交換器との間に設置されており、膨張弁と水交換器とを接続する冷媒配管に並列に接続されている。四方弁は、圧縮機の吸入口側及び吐出口側のそれぞれの接続先を、一方の接続先が空気熱交換器である場合には他方の接続先が水熱交換器であるように接続され、またその逆にも接続先を切り替えられるように接続されている。この冷媒回路において、暖房運転時は、圧縮機、水熱交換器、膨張弁、空気熱交換器の順に冷媒が循環するように四方弁が切り替えられ、水熱交換器では温水が作られる。冷房運転時は、圧縮機、空気熱交換器、膨張弁、水熱交換器の順に冷媒が循環するように四方弁が切り替えられ、水熱交換器では冷水が作られる。   In the air-cooled heat pump chiller, the refrigerant circuit is configured by connecting, for example, a compressor, an air heat exchanger, an expansion valve, a water heat exchanger, a refrigerant tank, and a four-way valve through refrigerant piping. An expansion valve between the air heat exchanger and the water heat exchanger is connected in series with the circuit. The refrigerant tank is installed between the expansion valve and the water heat exchanger, and is connected in parallel to the refrigerant pipe connecting the expansion valve and the water exchanger. The four-way valve is connected to the compressor inlet side and outlet side, so that when one connection destination is an air heat exchanger, the other connection destination is a water heat exchanger. And vice versa, the connection destination can be switched. In this refrigerant circuit, during heating operation, the four-way valve is switched so that the refrigerant circulates in the order of the compressor, the water heat exchanger, the expansion valve, and the air heat exchanger, and hot water is produced in the water heat exchanger. During the cooling operation, the four-way valve is switched so that the refrigerant circulates in the order of the compressor, the air heat exchanger, the expansion valve, and the water heat exchanger, and cold water is produced in the water heat exchanger.

このような冷媒回路において、暖房運転時に蒸発器となる空気熱交換器に霜が着く場合があるため、ホットガスリバース方式の除霜運転が行われる。ホットガスリバース方式の除霜運転は、圧縮機から吐出する高温の冷媒ガス(ホットガス)を、着霜した空気熱交換器に送り、その熱で霜を融解させる除霜方式である。除霜開始時において、膨張弁と水熱交換器との間に設置されている冷媒タンクに溜まっている液冷媒は、水熱交換器を通って圧縮機に流れ、圧縮機の吸入口へ入る。つまり、圧縮機への液バックが生ずる。同様に除霜運転が終了し暖房運転が開始された時において、空気熱交換器に溜まった液冷媒は、圧縮機の吸入口へ入る。つまり、圧縮機への液バックが生ずる。そのため、従来技術では、液バックを抑制するためにアキュムレータを設置し、圧縮機への液バックが無いように保護していた。しかし、アキュムレータは容量が大きく、機械室内に大きなスペースが必要となる。よって、小さいスペースで液バック対策をするため、冷媒タンクを設けて流量調整装置により冷媒回路に流れる冷媒量を調整する方法が検討されている。   In such a refrigerant circuit, frost may be formed on the air heat exchanger serving as an evaporator during the heating operation, and therefore, a hot gas reverse defrosting operation is performed. The hot gas reverse defrosting operation is a defrosting method in which a high-temperature refrigerant gas (hot gas) discharged from a compressor is sent to a frosted air heat exchanger and the frost is melted by the heat. At the start of defrosting, the liquid refrigerant accumulated in the refrigerant tank installed between the expansion valve and the water heat exchanger flows to the compressor through the water heat exchanger and enters the compressor inlet. . That is, a liquid back to the compressor occurs. Similarly, when the defrosting operation is finished and the heating operation is started, the liquid refrigerant accumulated in the air heat exchanger enters the suction port of the compressor. That is, a liquid back to the compressor occurs. Therefore, in the prior art, an accumulator is installed in order to suppress liquid back, and protection is performed so that there is no liquid back to the compressor. However, the accumulator has a large capacity and requires a large space in the machine room. Therefore, in order to take measures against liquid back in a small space, a method of adjusting the amount of refrigerant flowing in the refrigerant circuit by using a flow rate adjusting device by providing a refrigerant tank has been studied.

特許文献1においては、圧縮機、凝縮器、絞り装置及び蒸発器が冷媒配管により接続されている冷媒回路が構成され、流量調整装置と冷媒回路内の過剰な冷媒を溜めるレシーバとを直列に接続した回路が、絞り装置と並列に設けられている冷媒回路が開示されている。   In Patent Document 1, a refrigerant circuit in which a compressor, a condenser, a throttle device, and an evaporator are connected by a refrigerant pipe is configured, and a flow rate adjusting device and a receiver that accumulates excess refrigerant in the refrigerant circuit are connected in series. A refrigerant circuit is disclosed in which the above circuit is provided in parallel with the expansion device.

特許文献2においては、圧縮機吐出部と電磁弁後の低圧をホットガスバイパスにより繋ぎ、冷媒回路を低圧部と高圧部とに分けて除霜運転を行い、圧縮機の吸入側にはアキュムレータが接続されている冷凍サイクル装置が開示されている。   In Patent Document 2, the compressor discharge unit and the low pressure after the solenoid valve are connected by a hot gas bypass, the refrigerant circuit is divided into a low pressure unit and a high pressure unit, and a defrosting operation is performed. An accumulator is provided on the suction side of the compressor. A connected refrigeration cycle apparatus is disclosed.

特許文献3においては、圧縮機吸込み部と電磁弁後を繋ぎ、間に冷媒タンクを挟むことで運転中の冷媒回路の高圧側の圧力が上昇した際に、冷媒タンクへ冷媒を流すことによって冷媒回路内の高圧側の圧力を低下させる技術が開示されている。   In Patent Document 3, when the pressure on the high-pressure side of the operating refrigerant circuit rises by connecting the compressor suction portion and the rear of the solenoid valve and sandwiching the refrigerant tank therebetween, the refrigerant is caused to flow into the refrigerant tank. A technique for reducing the pressure on the high-pressure side in the circuit is disclosed.

特開2014−119153号公報JP 2014-119153 A 特公平7−52052号公報Japanese Examined Patent Publication No. 7-52052 特開平5−288427号公報Japanese Patent Laid-Open No. 5-288427

特許文献1に開示されている技術は、必要冷媒量に応じて冷媒流量を調整する冷媒回路を構成し、停電時には流量調整装置を開けてレシーバー内に溜まった冷媒を冷媒回路へ戻す制御を行うものであるが、除霜運転時の制御を目的とするものではなかった。   The technique disclosed in Patent Document 1 configures a refrigerant circuit that adjusts the refrigerant flow rate according to the required refrigerant amount, and performs control to open the flow rate adjustment device and return the refrigerant accumulated in the receiver to the refrigerant circuit during a power failure. However, it was not intended for control during the defrosting operation.

特許文献2に開示されている技術は、圧縮機吐出側に電磁弁を接続し、電磁弁から蒸発器へ繋ぐホットガスバイパスを設けてあり、除霜運転時は、凝縮器の下流側に設置された弁を閉じ、圧縮機の高圧側と蒸発器を接続した回路により除霜を行うものである。この構成は、蒸発器と圧縮機の吸入口との間に設けたアキュムレータにより圧縮機への液バックを防ぐものであり、アキュムレータを設置するスペースが必要となる。また、除霜のために、ホットガスバイパスを設けている。よって、冷凍サイクル装置の機械室内のスペースを大きくとらなければならないという課題があった。   The technology disclosed in Patent Document 2 is provided with a hot gas bypass connecting the solenoid valve to the compressor discharge side and connecting from the solenoid valve to the evaporator, and is installed downstream of the condenser during the defrosting operation. The valve is closed and defrosting is performed by a circuit connecting the high-pressure side of the compressor and the evaporator. In this configuration, a liquid back to the compressor is prevented by an accumulator provided between the evaporator and the suction port of the compressor, and a space for installing the accumulator is required. A hot gas bypass is provided for defrosting. Therefore, the subject that the space in the machine room of a refrigerating cycle device had to be taken up occurred.

特許文献3では、圧縮機の吸入口と膨張弁とを繋ぎ、間に冷媒タンクを挟む冷媒回路であり、冷媒循環量が過大となって高圧圧力が上昇したときに冷媒タンクに冷媒をためる構成となっている。この構成においては、冷媒回路の高圧側の圧力が規定よりも高い場合に電磁弁を開き冷媒タンクに冷媒をためる制御を行っているが、除霜を目的とするものではなく、除霜運転時の圧縮機への液バックを防ぐための構成にはなっていなかった。   Patent Document 3 is a refrigerant circuit that connects a suction port of an compressor and an expansion valve and sandwiches a refrigerant tank therebetween, and stores the refrigerant in the refrigerant tank when the refrigerant circulation amount becomes excessive and the high pressure rises. It has become. In this configuration, when the pressure on the high pressure side of the refrigerant circuit is higher than the specified value, the solenoid valve is opened and the refrigerant is stored in the refrigerant tank. It was not configured to prevent liquid back into the compressor.

本発明は、上記のような課題を解決するためになされたもので、冷媒タンク(高圧レシーバ)を備えた冷媒回路において、冷媒回路の除霜運転時の液バック抑制を可能とすることを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to enable liquid back suppression during a defrosting operation of a refrigerant circuit in a refrigerant circuit including a refrigerant tank (high-pressure receiver). It is what.

本発明に係る冷凍サイクル装置は、圧縮機、流路切替弁、熱源側熱交換器、メイン膨張弁及び利用側熱交換器が冷媒配管によって接続されて構成された冷媒回路を有し、ホットガスリバース方式により除霜運転を行う冷凍サイクル装置において、前記冷媒回路内の高圧側の圧力を測定する圧力センサと、前記圧縮機、前記流路切替弁及び前記メイン膨張弁をそれぞれ制御する制御装置と、を備え、開度を調節することができるサブ膨張弁、余剰冷媒を溜めるための冷媒タンク及び電磁弁が直列に接続された直列回路が、前記熱源側熱交換器と前記利用側熱交換器との間に接続された前記メイン膨張弁に並列に接続され、前記制御装置は、前記圧力センサの測定する圧力に基づき、前記サブ膨張弁の開度及び前記電磁弁の開閉を制御する。   A refrigeration cycle apparatus according to the present invention includes a refrigerant circuit configured by connecting a compressor, a flow path switching valve, a heat source side heat exchanger, a main expansion valve, and a use side heat exchanger by a refrigerant pipe, and a hot gas In the refrigeration cycle apparatus that performs the defrosting operation by the reverse method, a pressure sensor that measures the pressure on the high-pressure side in the refrigerant circuit, and a control device that controls the compressor, the flow path switching valve, and the main expansion valve, respectively A series circuit in which a sub expansion valve capable of adjusting the opening, a refrigerant tank for storing excess refrigerant, and a solenoid valve are connected in series, the heat source side heat exchanger and the use side heat exchanger The control device controls the opening degree of the sub expansion valve and the opening / closing of the electromagnetic valve based on the pressure measured by the pressure sensor.

本発明によれば、除霜運転開始時に、サブ膨張弁と電磁弁とを制御することで、冷媒タンク内の冷媒量を調整し、除霜運転に必要な冷媒量を冷媒回路に出すことで、除霜運転時に発生していた圧縮機への液バックを抑制することができる。   According to the present invention, by controlling the sub expansion valve and the electromagnetic valve at the start of the defrosting operation, the refrigerant amount in the refrigerant tank is adjusted, and the refrigerant amount necessary for the defrosting operation is output to the refrigerant circuit. The liquid back to the compressor that has occurred during the defrosting operation can be suppressed.

実施の形態1における冷凍サイクル装置の冷媒回路の略図である。1 is a schematic diagram of a refrigerant circuit of a refrigeration cycle apparatus in a first embodiment. 従来技術(比較例)の冷凍サイクル装置の冷媒回路の略図である。It is the schematic of the refrigerant circuit of the refrigerating-cycle apparatus of a prior art (comparative example). 実施の形態1における冷凍サイクル装置の制御フローの図である。FIG. 3 is a control flow diagram of the refrigeration cycle apparatus in the first embodiment. 冷媒回路の除霜運転時の時間経過に対する高圧側圧力と、それに伴う電磁弁の動きの関係を示した説明図である。It is explanatory drawing which showed the relationship between the high pressure side pressure with respect to the time passage at the time of the defrost operation of a refrigerant circuit, and the motion of the solenoid valve accompanying it. 実施の形態2における冷凍サイクル装置の制御フローの図である。6 is a control flow diagram of a refrigeration cycle apparatus in Embodiment 2. FIG.

実施の形態1.
以下に、図を用いて本実施の形態に係る冷凍サイクル装置1について説明をする。
図1は、本実施の形態における冷凍サイクル装置1の冷媒回路2の略図である。本実施の形態に係る冷凍サイクル装置1は、例えば、水を冷却又は加熱することにより得た冷水又は温水を冷暖房に使用する空調装置である。冷凍サイクル装置1には、例えば空冷式ヒートポンプチラー等が該当する。
Embodiment 1 FIG.
Hereinafter, the refrigeration cycle apparatus 1 according to the present embodiment will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a refrigerant circuit 2 of a refrigeration cycle apparatus 1 in the present embodiment. The refrigeration cycle apparatus 1 according to the present embodiment is an air conditioner that uses, for example, cold water or hot water obtained by cooling or heating water for air conditioning. The refrigeration cycle apparatus 1 corresponds to, for example, an air-cooled heat pump chiller.

冷凍サイクル装置1の冷媒回路2は、圧縮機21、空気熱交換器22(本願発明の熱源側熱交換器に相当する)、メイン膨張弁24、水熱交換器25(本願発明の利用側熱交換器に相当する)、サブ膨張弁26、冷媒タンク27、電磁弁28、四方弁29(本願発明の流路切替弁に相当する)を冷媒配管により接続して構成される。サブ膨張弁26及び冷媒タンク27、電磁弁28は、冷媒回路内で直列に接続されている。接続されたサブ膨張弁26及び冷媒タンク27、電磁弁28は、空気熱交換器22と水熱交換器25との間にあるメイン膨張弁24に対し並列に接続されている。   The refrigerant circuit 2 of the refrigeration cycle apparatus 1 includes a compressor 21, an air heat exchanger 22 (corresponding to a heat source side heat exchanger of the present invention), a main expansion valve 24, and a water heat exchanger 25 (utilization side heat of the present invention). The sub expansion valve 26, the refrigerant tank 27, the electromagnetic valve 28, and the four-way valve 29 (corresponding to the flow path switching valve of the present invention) are connected by refrigerant piping. The sub expansion valve 26, the refrigerant tank 27, and the electromagnetic valve 28 are connected in series in the refrigerant circuit. The connected sub expansion valve 26, refrigerant tank 27, and electromagnetic valve 28 are connected in parallel to the main expansion valve 24 between the air heat exchanger 22 and the water heat exchanger 25.

四方弁29は、圧縮機21の吸入口側及び吐出口側のそれぞれの接続先を、一方の接続先が空気熱交換器22である場合には他方の接続先が水熱交換器25であり、その逆にも切り替えられるように接続されている。なお、接続先の切り替えは、四方弁29に限らず、圧縮機21の吸入口側及び吐出口側のそれぞれの接続先を切り替えて、冷媒回路2の冷媒の循環方向を逆転できればその他の流路切替弁を用いても良い。メイン膨張弁24は、冷媒回路2内で減圧装置として働く。サブ膨張弁26は、全開、全閉、絞りの状態に開度を変えることができ、全開時には冷媒を減圧させずに、または少ない減圧で通すことができ、全閉時には冷媒の流れを遮断することができる。サブ膨張弁26が絞り状態の時にはメイン膨張弁24と同じように冷媒回路2内で減圧装置として働く。電磁弁28は、開閉制御ができる。開時は冷媒を減圧させずに、または少ない減圧で通すことができ、閉時には冷媒の流れを遮断することができる。   The four-way valve 29 is connected to the suction port side and the discharge port side of the compressor 21, and when one connection destination is the air heat exchanger 22, the other connection destination is the water heat exchanger 25. And vice versa. The switching of the connection destination is not limited to the four-way valve 29, and other flow paths can be used as long as the refrigerant circulation direction of the refrigerant circuit 2 can be reversed by switching the connection destinations on the suction port side and the discharge port side of the compressor 21. A switching valve may be used. The main expansion valve 24 functions as a pressure reducing device in the refrigerant circuit 2. The sub-expansion valve 26 can change the opening degree to a fully opened, fully closed, or throttled state, and when fully opened, the refrigerant can be passed without reducing pressure or with little reduced pressure, and when fully closed, the refrigerant flow is blocked. be able to. When the sub expansion valve 26 is in the throttle state, it functions as a pressure reducing device in the refrigerant circuit 2 in the same manner as the main expansion valve 24. The solenoid valve 28 can be opened and closed. When opened, the refrigerant can be passed without depressurizing or with a reduced pressure, and when closed, the refrigerant flow can be blocked.

冷凍サイクル装置1には、圧力センサ3が備えられており、冷媒回路2の高圧側の圧力を測定する。また、冷凍サイクル装置1には制御装置4が備えられている。制御装置4は、圧縮機21、四方弁29、及びメイン膨張弁24の動作を制御するとともに、圧力センサ3の測定値に基づき、サブ膨張弁26及び電磁弁28の開閉制御を行う。この制御装置4は、たとえばマイコンなどで構成されるものである。冷媒回路2の高圧側の圧力とサブ膨張弁26の開度制御及び電磁弁28の開閉制御との関係については後述する。   The refrigeration cycle apparatus 1 is provided with a pressure sensor 3 and measures the pressure on the high pressure side of the refrigerant circuit 2. The refrigeration cycle apparatus 1 is provided with a control device 4. The control device 4 controls the operations of the compressor 21, the four-way valve 29, and the main expansion valve 24, and performs opening / closing control of the sub expansion valve 26 and the electromagnetic valve 28 based on the measured value of the pressure sensor 3. The control device 4 is constituted by, for example, a microcomputer. The relationship between the pressure on the high pressure side of the refrigerant circuit 2 and the opening control of the sub expansion valve 26 and the opening / closing control of the electromagnetic valve 28 will be described later.

空気熱交換器22にはファン23が併設されており、ファン23は、冷凍サイクル装置1の外の空気(外気)を空気熱交換器22へ送り込み、冷媒と外気との間で熱交換させるものである。暖房運転時に空気熱交換器22に着霜が生じると、ファン23が空気熱交換器22へ送り込む空気が通過しにくくなり、熱交換の効率が下がる。   The air heat exchanger 22 is provided with a fan 23, and the fan 23 sends air outside the refrigeration cycle apparatus 1 (outside air) to the air heat exchanger 22 to exchange heat between the refrigerant and the outside air. It is. If frost formation occurs in the air heat exchanger 22 during the heating operation, the air sent from the fan 23 to the air heat exchanger 22 becomes difficult to pass, and the efficiency of heat exchange decreases.

(暖房運転時の冷凍サイクル装置1の動き)
暖房運転時(水熱交換器25で温水を製造する場合)における、冷凍サイクル装置1の冷媒回路2内の冷媒の流れ及び冷媒回路内の各要素の働きについて説明する。
冷媒回路2の配管内に流れる冷媒は、圧縮機21にて圧縮され、高温高圧にされ、四方弁29に入る。暖房運転時には、四方弁29は、図1の点線で示されるように切り替えられており、圧縮機21の吐出口から出た高温高圧の冷媒は、水熱交換器25に流れ込む。水熱交換器25は、暖房運転時には凝縮器となり、水と冷媒の間で熱交換が行われる。高温高圧冷媒は、水熱交換器25にて水に放熱し、凝縮し液冷媒となる。
水熱交換器25から流出した液冷媒は、メイン膨張弁24を経て減圧され、低温低圧の気液2相の冷媒にされる。なお、暖房運転時において通常は電磁弁28は、開かれており、水熱交換器25を出た冷媒は、冷媒タンク27へも流れる。冷媒タンクには暖房運転時の余剰冷媒を溜める働きがある。また、冷媒タンク27に接続されているサブ膨張弁26は、絞りの状態になっており、冷媒の減圧装置として働く。
(Movement of the refrigeration cycle apparatus 1 during heating operation)
The flow of the refrigerant in the refrigerant circuit 2 of the refrigeration cycle apparatus 1 and the function of each element in the refrigerant circuit at the time of heating operation (when hot water is produced by the water heat exchanger 25) will be described.
The refrigerant flowing in the piping of the refrigerant circuit 2 is compressed by the compressor 21, is made high temperature and high pressure, and enters the four-way valve 29. During the heating operation, the four-way valve 29 is switched as indicated by the dotted line in FIG. 1, and the high-temperature and high-pressure refrigerant that has come out from the discharge port of the compressor 21 flows into the water heat exchanger 25. The water heat exchanger 25 becomes a condenser during heating operation, and heat exchange is performed between water and the refrigerant. The high-temperature and high-pressure refrigerant dissipates heat to water in the water heat exchanger 25 and condenses to become liquid refrigerant.
The liquid refrigerant flowing out of the water heat exchanger 25 is depressurized through the main expansion valve 24 to be a low-temperature low-pressure gas-liquid two-phase refrigerant. In the heating operation, the solenoid valve 28 is normally opened, and the refrigerant that has exited the water heat exchanger 25 also flows to the refrigerant tank 27. The refrigerant tank has a function of accumulating excess refrigerant during heating operation. Further, the sub expansion valve 26 connected to the refrigerant tank 27 is in a throttle state, and functions as a refrigerant decompression device.

メイン膨張弁24及びサブ膨張弁26にて気液2相とされた冷媒は、空気熱交換器22へ流入する。空気熱交換器22は、暖房運転時には蒸発器となり、外気と冷媒との間で熱交換が行われる。低温低圧の気液2相冷媒は、空気熱交換器22にて、外気からの熱を受け入れ過熱気体となる。過熱気体となった冷媒は、四方弁29を経て、圧縮機21の吸入口に流入する。その後は再度同じ経路を循環する。   The refrigerant that has been made into the gas-liquid two-phase by the main expansion valve 24 and the sub expansion valve 26 flows into the air heat exchanger 22. The air heat exchanger 22 becomes an evaporator during heating operation, and heat exchange is performed between the outside air and the refrigerant. The low-temperature low-pressure gas-liquid two-phase refrigerant receives heat from the outside air in the air heat exchanger 22 and becomes superheated gas. The refrigerant that has become superheated gas flows into the suction port of the compressor 21 through the four-way valve 29. After that, the same route is circulated again.

(除霜運転時の冷凍サイクル装置1の動き)
除霜運転時の冷凍サイクル装置1の冷媒回路2内の冷媒の流れ及び冷媒回路内の各要素の働きについて説明する。
低温外気中で冷凍サイクル装置1を暖房運転させた時、つまり、外気と冷媒との間で熱交換を行う空気熱交換器22を蒸発器として用い、水熱交換器25を凝縮器として用いる時(例えば暖房に使用する温水を製造する時)に、空気熱交換器22に着霜する場合がある。空気熱交換器22に着霜した場合、空気熱交換器22での外気と冷媒の熱交換が阻害され、水熱交換器25側での水を加熱する能力を低下させることになるため、除霜運転により、空気熱交換器22に着いた霜を除去する。
(Motion of refrigeration cycle apparatus 1 during defrosting operation)
The flow of the refrigerant in the refrigerant circuit 2 of the refrigeration cycle apparatus 1 during the defrosting operation and the function of each element in the refrigerant circuit will be described.
When the refrigeration cycle apparatus 1 is operated for heating in low-temperature outside air, that is, when the air heat exchanger 22 that performs heat exchange between the outside air and the refrigerant is used as an evaporator and the water heat exchanger 25 is used as a condenser. The air heat exchanger 22 may be frosted (for example, when producing hot water used for heating). When the air heat exchanger 22 is frosted, heat exchange between the outside air and the refrigerant in the air heat exchanger 22 is hindered, and the ability to heat water on the water heat exchanger 25 side is reduced. The frost that has arrived at the air heat exchanger 22 is removed by the frost operation.

本実施の形態の冷凍サイクル装置1においては、ホットガスリバース方式で除霜を行っている。除霜運転が開始されると、四方弁29は、図1の実線で示されるように切り替えられる。圧縮機21の吐出口から出た高温高圧の気体冷媒は、着霜している空気熱交換器22に流れ込む。これにより、空気熱交換器22に着いた霜は融解し、除霜される。   In the refrigeration cycle apparatus 1 of the present embodiment, defrosting is performed by a hot gas reverse method. When the defrosting operation is started, the four-way valve 29 is switched as shown by the solid line in FIG. The high-temperature and high-pressure gas refrigerant that has exited from the discharge port of the compressor 21 flows into the frosted air heat exchanger 22. Thereby, the frost which arrived at the air heat exchanger 22 is melted and defrosted.

(比較例における冷凍サイクル装置)
図2は、従来技術(比較例)の冷凍サイクル装置101の冷媒回路102の略図である。冷凍サイクル装置101の冷媒回路102は、圧縮機11、空気熱交換器12、メイン膨張弁14、水熱交換器15、冷媒タンク17、四方弁19を冷媒配管により接続して構成される。冷媒タンク17は、空気熱交換器12と水熱交換器15との間にあるメイン膨張弁14に対し並列に接続されている。四方弁19は、圧縮機11の吸入口側及び吐出口側のそれぞれの接続先を、一方の接続先が空気熱交換器12である場合には他方の接続先が水熱交換器15であり、その逆にも切り替えられるように接続されている。空気熱交換器12にはファン13が併設されており、ファン13は、冷凍サイクル装置101の外の空気(外気)を空気熱交換器12へ送り込み、冷媒と外気との間で熱交換させるものである。
(Refrigeration cycle device in comparative example)
FIG. 2 is a schematic diagram of the refrigerant circuit 102 of the refrigeration cycle apparatus 101 of the prior art (comparative example). The refrigerant circuit 102 of the refrigeration cycle apparatus 101 is configured by connecting a compressor 11, an air heat exchanger 12, a main expansion valve 14, a water heat exchanger 15, a refrigerant tank 17, and a four-way valve 19 by refrigerant piping. The refrigerant tank 17 is connected in parallel to the main expansion valve 14 between the air heat exchanger 12 and the water heat exchanger 15. The four-way valve 19 is connected to the suction port side and the discharge port side of the compressor 11. When one connection destination is the air heat exchanger 12, the other connection destination is the water heat exchanger 15. And vice versa. The air heat exchanger 12 is provided with a fan 13, and the fan 13 sends air outside the refrigeration cycle apparatus 101 (outside air) to the air heat exchanger 12 to exchange heat between the refrigerant and the outside air. It is.

一般的に冷凍サイクル装置101のような冷媒回路102においては水熱交換器に比べて空気熱交換器の内容積の方が大きい。暖房運転時は、内容積の比較的小さい空気熱交換器12が凝縮器となるため、冷房運転時にくらべ必要冷媒量が少なく、余剰冷媒が生じる。よって、暖房運転時には、冷媒タンク17に冷媒が溜まる状態となる。これは、本実施の形態の冷凍サイクル装置1でも同様である。
除霜運転時には、圧縮機11の吐出側を空気熱交換器12、吸入側を水熱交換器15に接続させ、冷媒の循環を暖房運転時に対し逆転させるため、冷媒タンク17に溜まっていた冷媒はメイン冷媒回路上に全て流出する。しかし、余剰冷媒を全て冷媒タンク17から流出させると、除霜運転時に必要な冷媒量に対して冷媒が多く、冷媒タンク17に溜まっていた液冷媒が水熱交換器15を経て圧縮機11の吸入側へ流入し、液バックが生じてしまう。よって、比較例の冷凍サイクル装置101では何らかの液バック対策が必要となる。
Generally, in the refrigerant circuit 102 such as the refrigeration cycle apparatus 101, the internal volume of the air heat exchanger is larger than that of the water heat exchanger. During the heating operation, since the air heat exchanger 12 having a relatively small internal volume serves as a condenser, the amount of necessary refrigerant is less than that during the cooling operation, and surplus refrigerant is generated. Therefore, the refrigerant is stored in the refrigerant tank 17 during the heating operation. The same applies to the refrigeration cycle apparatus 1 of the present embodiment.
At the time of the defrosting operation, the refrigerant accumulated in the refrigerant tank 17 is connected to the air heat exchanger 12 on the discharge side of the compressor 11 and the water heat exchanger 15 on the suction side to reverse the circulation of the refrigerant with respect to the heating operation. All flow out onto the main refrigerant circuit. However, if all excess refrigerant flows out of the refrigerant tank 17, the amount of refrigerant is larger than the amount of refrigerant required during the defrosting operation, and the liquid refrigerant that has accumulated in the refrigerant tank 17 passes through the water heat exchanger 15 and flows into the compressor 11. It flows into the suction side and a liquid back occurs. Therefore, some countermeasures against liquid back are necessary in the refrigeration cycle apparatus 101 of the comparative example.

(実施の形態1における冷凍サイクル装置1の制御)
図3は、本実施の形態における冷凍サイクル装置1の制御フローの図である。
比較例の冷凍サイクル装置101では、液バック対策が必要となるため、本実施の形態においては、冷凍サイクル装置1のような冷媒回路2を構成し、下記に説明する制御で液バックを防止している。
(Control of refrigeration cycle apparatus 1 in Embodiment 1)
FIG. 3 is a control flow diagram of the refrigeration cycle apparatus 1 in the present embodiment.
In the refrigeration cycle apparatus 101 of the comparative example, since countermeasures against liquid back are necessary, in the present embodiment, a refrigerant circuit 2 like the refrigeration cycle apparatus 1 is configured to prevent liquid back by the control described below. ing.

除霜運転が開始されると、冷凍サイクル装置1に設置された制御装置4は、冷媒回路2内の高圧側の圧力(例えば、圧縮機21の吐出口から四方弁29までの間の冷媒配管の圧力)を測定している圧力センサ3からの値を受けて、冷媒回路2の高圧側の圧力の時間に対する変化を検知し、判定高圧(本願発明の規定値に相当)以上か、判定高圧より低いかを判定する(制御ステップS1)。高圧側圧力が判定高圧より低い場合、制御装置4は、電磁弁28を閉め(制御ステップS2)、サブ膨張弁26を全開にし(制御ステップS3)、冷媒タンク27内にある冷媒をメイン回路5内に出す。なお、メイン回路5とは、圧縮機21、四方弁29、空気熱交換器22、メイン膨張弁24、水熱交換器25を冷媒配管で接続し、冷媒が循環する回路の部分をいう。冷媒タンク27内の冷媒をメイン回路5に出すことにより、メイン回路5の冷媒量の不足が解消され、圧縮機21の過熱運転といった不具合を回避できるという効果が得られる。   When the defrosting operation is started, the control device 4 installed in the refrigeration cycle apparatus 1 causes the pressure on the high-pressure side in the refrigerant circuit 2 (for example, the refrigerant pipe between the discharge port of the compressor 21 and the four-way valve 29). The pressure of the pressure sensor 3 measuring the pressure of the refrigerant circuit 2 is detected and a change with respect to time of the pressure on the high pressure side of the refrigerant circuit 2 is detected to determine whether it is equal to or higher than the determination high pressure (corresponding to the specified value of the present invention). It is determined whether it is lower (control step S1). When the high-pressure side pressure is lower than the determination high pressure, the control device 4 closes the electromagnetic valve 28 (control step S2), fully opens the sub expansion valve 26 (control step S3), and removes the refrigerant in the refrigerant tank 27 from the main circuit 5. Put it in. The main circuit 5 is a part of a circuit in which the refrigerant is circulated by connecting the compressor 21, the four-way valve 29, the air heat exchanger 22, the main expansion valve 24, and the water heat exchanger 25 with refrigerant piping. By discharging the refrigerant in the refrigerant tank 27 to the main circuit 5, the shortage of the refrigerant amount in the main circuit 5 is solved, and an effect of avoiding problems such as overheating operation of the compressor 21 can be obtained.

高圧側圧力が判定高圧以上の場合、制御装置4は、電磁弁28を開け(制御ステップS4)、サブ膨張弁26を全閉にし(制御ステップS5)、メイン回路5内にある冷媒を電磁弁28側から冷媒タンク27に入れる。これにより除霜に必要な冷媒量をメイン回路5に出すことができ、メイン回路5内に過剰な冷媒があることにより生ずる圧縮機21への液バックといった不具合を回避できるという効果が得られる。   When the high-pressure side pressure is equal to or higher than the determination high pressure, the control device 4 opens the solenoid valve 28 (control step S4), fully closes the sub expansion valve 26 (control step S5), and removes the refrigerant in the main circuit 5 from the solenoid valve. It puts into the refrigerant tank 27 from 28 side. As a result, an amount of refrigerant necessary for defrosting can be output to the main circuit 5, and an effect of avoiding problems such as liquid back to the compressor 21 caused by excessive refrigerant in the main circuit 5 can be obtained.

制御ステップS2−S3、又は制御ステップS4−S5が行われた後、制御装置4は、除霜運転終了条件が満たされているかを判定する(制御ステップS6)。除霜運転終了条件が満たされない場合は、再び制御ステップS1へ戻る。除霜運転終了条件が満たされている場合は、除霜運転時の制御は終了する。除霜運転終了条件は、例えば、空気熱交換器22の温度が規定値以上になった場合、若しくは除霜運転開始からの経過時間が規定値以上になった場合、又はその両方を満たした場合等の条件により判定される。   After the control step S2-S3 or the control step S4-S5 is performed, the control device 4 determines whether the defrosting operation end condition is satisfied (control step S6). When the defrosting operation end condition is not satisfied, the process returns to the control step S1 again. When the defrosting operation end condition is satisfied, the control during the defrosting operation is ended. The defrosting operation end condition is, for example, when the temperature of the air heat exchanger 22 is equal to or higher than a specified value, or when the elapsed time from the start of the defrosting operation is equal to or higher than a specified value, or when both are satisfied. It is determined by the conditions such as.

図4は、冷媒回路2の除霜運転時の時間経過に対する高圧側圧力と、それに伴う電磁弁28の動きの関係を示した説明図である。
図4の圧力は、冷媒回路2内の高圧側の圧力である。具体的には、圧縮機21の吐出側であり、圧縮機21から四方弁29までの間の冷媒の圧力を測定する。冷凍サイクル装置1が除霜運転に切り替わると、時間とともに冷媒回路2内の圧力が増加する。時間の経過に対する冷媒回路2内の圧力の増加の割合が規定よりも大きい(つまり、図4の直線の傾きが規定より大きい)場合は、制御装置4は、高圧であると判定する。時間の経過に対する冷媒回路2内の圧力の増加の割合が規定よりも小さい(つまり、図4の直線の傾きが規定より小さい)場合は、制御装置4は、低圧であると判定する。制御装置4は、この判定に従い、上記のようサブ膨張弁26及び電磁弁28の開閉の制御を行う。
FIG. 4 is an explanatory diagram showing the relationship between the high-pressure side pressure with respect to the passage of time during the defrosting operation of the refrigerant circuit 2 and the movement of the electromagnetic valve 28 associated therewith.
The pressure in FIG. 4 is the pressure on the high pressure side in the refrigerant circuit 2. Specifically, the pressure of the refrigerant on the discharge side of the compressor 21 and between the compressor 21 and the four-way valve 29 is measured. When the refrigeration cycle apparatus 1 is switched to the defrosting operation, the pressure in the refrigerant circuit 2 increases with time. When the rate of increase in the pressure in the refrigerant circuit 2 with respect to the passage of time is larger than the standard (that is, the slope of the straight line in FIG. 4 is larger than the standard), the control device 4 determines that the pressure is high. When the rate of increase in the pressure in the refrigerant circuit 2 with respect to the passage of time is smaller than the standard (that is, the slope of the straight line in FIG. 4 is smaller than the standard), the control device 4 determines that the pressure is low. In accordance with this determination, the control device 4 controls the opening and closing of the sub expansion valve 26 and the electromagnetic valve 28 as described above.

高圧側圧力が判定高圧より低い場合、制御装置4は、電磁弁28を閉め、サブ膨張弁26を絞り状態に制御することもできる。サブ膨張弁26が全開にする制御の場合、メイン回路5内の圧力がすぐに高くなる場合があり、高圧側圧力が判定高圧以上になると、再度サブ膨張弁26を全閉にし、電磁弁28を開けるという制御をすることになる。すると、サブ膨張弁26及び電磁弁28の開閉制御を頻繁に行う必要があり、運転が安定しない。しかし、サブ膨張弁26の開度を絞ることにより、冷媒タンク27からメイン回路5への流出量を制御することができ、メイン回路5の圧力の変動を緩やかにすることができる。これにより、サブ膨張弁26及び電磁弁28の開閉の頻度を少なくすることができ、冷凍サイクル装置1の除霜運転を安定的に行うことができるという効果がある。   When the high-pressure side pressure is lower than the determination high pressure, the control device 4 can also close the electromagnetic valve 28 and control the sub expansion valve 26 to the throttle state. In the control for fully opening the sub-expansion valve 26, the pressure in the main circuit 5 may increase immediately. When the high-pressure side pressure exceeds the determination high pressure, the sub-expansion valve 26 is fully closed again and the solenoid valve 28 is closed. Will be controlled to open. Then, it is necessary to frequently perform opening / closing control of the sub expansion valve 26 and the electromagnetic valve 28, and the operation is not stable. However, by restricting the opening of the sub expansion valve 26, the amount of outflow from the refrigerant tank 27 to the main circuit 5 can be controlled, and the fluctuation in the pressure of the main circuit 5 can be moderated. Thereby, the frequency of opening and closing of the sub expansion valve 26 and the electromagnetic valve 28 can be reduced, and the defrosting operation of the refrigeration cycle apparatus 1 can be performed stably.

実施の形態2.
本実施の形態では、実施の形態1における冷媒回路2とその制御に対し、さらに除霜運転開始後及び除霜運転終了前にサブ膨張弁26及び電磁弁28の制御ステップを追加したものである。ここでは実施の形態1に対し変更となる点を中心に説明する。
図5は、本実施の形態における冷凍サイクル装置1の制御フローの図である。
本実施の形態に係る冷凍サイクル装置1は、サブ膨張弁26を絞り、電磁弁28を開けた状態で暖房運転をしている。除霜運転を開始時に、冷凍サイクル装置1は、四方弁29を切り替え、冷媒の循環方向を変える。その後、制御装置4は、サブ膨張弁26を全開にし、電磁弁28を閉じる(制御ステップS0)。その後、制御ステップS1に移行し、制御装置4は、冷媒回路2の高圧側の圧力の時間に対する変化を検知し、判定高圧(本願発明の規定値に相当)以上か、判定高圧より低いかを判定する。すなわち、実施の形態1と同じ制御ステップS1−S6が行われる。
Embodiment 2.
In the present embodiment, control steps for the sub expansion valve 26 and the electromagnetic valve 28 are added to the refrigerant circuit 2 and its control in the first embodiment after the start of the defrosting operation and before the end of the defrosting operation. . Here, the description will focus on points that are different from the first embodiment.
FIG. 5 is a control flow diagram of the refrigeration cycle apparatus 1 in the present embodiment.
The refrigeration cycle apparatus 1 according to the present embodiment performs heating operation with the sub expansion valve 26 throttled and the electromagnetic valve 28 opened. At the start of the defrosting operation, the refrigeration cycle apparatus 1 switches the four-way valve 29 to change the circulation direction of the refrigerant. Thereafter, the control device 4 fully opens the sub expansion valve 26 and closes the electromagnetic valve 28 (control step S0). Thereafter, the process proceeds to the control step S1, and the control device 4 detects a change in the pressure on the high pressure side of the refrigerant circuit 2 with respect to time, and determines whether it is equal to or higher than a determination high pressure (corresponding to a specified value of the present invention) judge. That is, the same control steps S1-S6 as in the first embodiment are performed.

除霜運転開始直後、つまり制御ステップS0において、冷媒回路2の高圧側の圧力が低いため、冷媒タンク27に貯まっていた冷媒は、サブ膨張弁26を経てメイン回路5へ流出する。メイン回路5に十分な冷媒量が流出すると、冷媒回路2の高圧側の圧力は上昇する。圧力の上昇により時間の経過に対する冷媒回路2内の圧力の増加の割合が規定よりも大きくなった(つまり、図4の直線の傾きが規定より大きくなった)場合は、制御装置4は、電磁弁28を開け、サブ膨張弁26は閉じる制御を行う。つまり、制御ステップS1を経て制御ステップS4−S5の制御が行われる。この場合、冷媒回路2内の冷媒は電磁弁28を経て冷媒タンク27へと流入する。これにより、高圧となった冷媒回路2内の冷媒の量が減り、冷媒回路2内の圧力が低下する。
メイン回路5に冷媒が流出しても冷媒回路2の高圧側の圧力が規定よりも低い場合は、制御装置4は、サブ膨張弁26を開け、電磁弁28を閉じる。
Immediately after the start of the defrosting operation, that is, in the control step S0, since the pressure on the high pressure side of the refrigerant circuit 2 is low, the refrigerant stored in the refrigerant tank 27 flows out to the main circuit 5 through the sub expansion valve 26. When a sufficient amount of refrigerant flows into the main circuit 5, the pressure on the high pressure side of the refrigerant circuit 2 increases. When the rate of increase in the pressure in the refrigerant circuit 2 with respect to the passage of time becomes larger than the specified value due to the increase in pressure (that is, the slope of the straight line in FIG. 4 becomes larger than the specified value), the control device 4 The valve 28 is opened, and the sub expansion valve 26 is closed. That is, the control steps S4-S5 are controlled through the control step S1. In this case, the refrigerant in the refrigerant circuit 2 flows into the refrigerant tank 27 through the electromagnetic valve 28. Thereby, the quantity of the refrigerant | coolant in the refrigerant circuit 2 used as the high pressure reduces, and the pressure in the refrigerant circuit 2 falls.
If the pressure on the high pressure side of the refrigerant circuit 2 is lower than the specified value even when the refrigerant flows out to the main circuit 5, the control device 4 opens the sub expansion valve 26 and closes the electromagnetic valve 28.

実施の形態1と同様な制御により制御ステップS6に至ると、制御装置4は、除霜運転終了条件が満たされたか否かを判断する。除霜運転終了条件を満たしていない場合は、再度制御ステップS1へ戻る。除霜運転終了条件を満たしている場合、制御装置4は、サブ膨張弁26を全開にし、電磁弁28を閉じる制御をする(制御ステップS7)。その後、四方弁29が切り替えられ、暖房運転が再開される。暖房運転時には冷媒回路2の空気熱交換器22側は低圧側となるが、暖房運転開始直後においては、除霜運転により空気熱交換器22には液冷媒が存在する。しかし、サブ膨張弁26を全開にし、電磁弁28を閉じることにより、メイン回路5内の冷媒が冷媒タンク27に流入するため、空気熱交換器22に存在した液冷媒が圧縮機21へ行くことが無くなる。
なお、制御ステップS7に移行するタイミングは、例えば、冷凍サイクル装置1の仕様に応じて、除霜運転終了前(暖房運転再開前)所定の時間を設定すればよい。この場合は、制御ステップS7は、所定の時間が経過したら終了し、除霜制御が終了する。その後、暖房運転が再開される。また、例えば、冷媒回路2内の圧力変化を検知し、圧力が所定の条件を満たした時に制御ステップS7に移行するようにし、圧力が規定値まで下がった時に制御ステップS7を終了させ、除霜制御が終了する。
When control step S6 is reached by the same control as in the first embodiment, control device 4 determines whether or not the defrosting operation end condition is satisfied. When the defrosting operation end condition is not satisfied, the process returns to the control step S1 again. When the defrosting operation end condition is satisfied, the control device 4 performs control to fully open the sub expansion valve 26 and close the electromagnetic valve 28 (control step S7). Thereafter, the four-way valve 29 is switched and the heating operation is resumed. During the heating operation, the air heat exchanger 22 side of the refrigerant circuit 2 is on the low pressure side, but immediately after the heating operation is started, liquid refrigerant is present in the air heat exchanger 22 due to the defrosting operation. However, when the sub expansion valve 26 is fully opened and the electromagnetic valve 28 is closed, the refrigerant in the main circuit 5 flows into the refrigerant tank 27, so that the liquid refrigerant present in the air heat exchanger 22 goes to the compressor 21. Disappears.
In addition, the timing which transfers to control step S7 should just set the predetermined time before completion | finish of a defrost operation (before restarting heating operation) according to the specification of the refrigerating cycle apparatus 1, for example. In this case, the control step S7 ends when a predetermined time has elapsed, and the defrosting control ends. Thereafter, the heating operation is resumed. Further, for example, a pressure change in the refrigerant circuit 2 is detected, and when the pressure satisfies a predetermined condition, the process proceeds to the control step S7. When the pressure falls to a specified value, the control step S7 is terminated, and the defrosting is performed. Control ends.

上記の制御を行うことにより、メイン回路5の冷媒量が適正に保たれ、圧力も適正値に保たれる。これにより、暖房運転から除霜運転に切り替わる時及び除霜運転から暖房運転に切り替わる時に、圧縮機21への液バックが生じるのを抑えることができる。   By performing the above control, the amount of refrigerant in the main circuit 5 is maintained appropriately, and the pressure is also maintained at an appropriate value. Thereby, when switching from heating operation to defrosting operation and when switching from defrosting operation to heating operation, it can suppress that the liquid back to compressor 21 arises.

1 冷凍サイクル装置、2 冷媒回路、3 圧力センサ、4 制御装置、5 メイン回路、11 圧縮機、12 空気熱交換器、13 ファン、14 メイン膨張弁、15 水熱交換器、17 冷媒タンク、18 電磁弁、19 四方弁、21 圧縮機、22 空気熱交換器、23 ファン、24 メイン膨張弁、25 水熱交換器、26 サブ膨張弁、27 冷媒タンク、28 電磁弁、29 四方弁、101 冷凍サイクル装置、102 冷媒回路。   DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus, 2 Refrigerant circuit, 3 Pressure sensor, 4 Control apparatus, 5 Main circuit, 11 Compressor, 12 Air heat exchanger, 13 Fan, 14 Main expansion valve, 15 Water heat exchanger, 17 Refrigerant tank, 18 Solenoid valve, 19 Four-way valve, 21 Compressor, 22 Air heat exchanger, 23 Fan, 24 Main expansion valve, 25 Water heat exchanger, 26 Sub expansion valve, 27 Refrigerant tank, 28 Solenoid valve, 29 Four-way valve, 101 Refrigeration Cycle device, 102 Refrigerant circuit.

本発明に係る冷凍サイクル装置は、圧縮機、流路切替弁、熱源側熱交換器、メイン膨張弁及び利用側熱交換器が冷媒配管によって接続されて構成された冷媒回路を有し、ホットガスリバース方式により除霜運転を行う冷凍サイクル装置において、前記冷媒回路内の高圧側の圧力を測定する圧力センサと、前記圧縮機、前記流路切替弁及び前記メイン膨張弁をそれぞれ制御する制御装置と、を備え、剰冷媒を溜めるための冷媒タンク、前記冷媒タンクに対し前記熱源側熱交換器側に配置され開度を調整することができるサブ膨張弁、及び前記冷媒タンクに対し前記利用側熱交換器側に配置された電磁弁直列に接続した直列回路が、前記熱源側熱交換器と前記利用側熱交換器との間に接続された前記メイン膨張弁に並列に接続され、前記制御装置は、前記圧力センサの測定する圧力に基づき、前記サブ膨張弁の開度及び前記電磁弁の開閉を制御する。 A refrigeration cycle apparatus according to the present invention includes a refrigerant circuit configured by connecting a compressor, a flow path switching valve, a heat source side heat exchanger, a main expansion valve, and a use side heat exchanger by a refrigerant pipe, and a hot gas In the refrigeration cycle apparatus that performs the defrosting operation by the reverse method, a pressure sensor that measures the pressure on the high-pressure side in the refrigerant circuit, and a control device that controls the compressor, the flow path switching valve, and the main expansion valve, respectively the provided, sub-expansion valve capable of adjusting the refrigerant tank, the opening is arranged on the heat source side heat exchanger side with respect to the refrigerant tank for storing the surplus refrigerant, and the use-side with respect to the refrigerant tank a series circuit connecting a solenoid valve arranged in the heat exchanger-side in series, are connected in parallel with the main expansion valve connected between said utilization side heat exchanger and the heat source-side heat exchanger, the control Location, based on the pressure measurement of the pressure sensor, controls the opening and closing of the opening and the solenoid valve of the sub-expansion valve.

Claims (5)

圧縮機、流路切替弁、熱源側熱交換器、メイン膨張弁及び利用側熱交換器が冷媒配管によって接続されて構成された冷媒回路を有し、ホットガスリバース方式により除霜運転を行う冷凍サイクル装置において、
前記冷媒回路内の高圧側の圧力を測定する圧力センサと、
前記圧縮機、前記流路切替弁及び前記メイン膨張弁をそれぞれ制御する制御装置と、を備え、
開度を調節することができるサブ膨張弁、余剰冷媒を溜めるための冷媒タンク及び電磁弁が直列に接続された直列回路が、前記熱源側熱交換器と前記利用側熱交換器との間に接続された前記メイン膨張弁に並列に接続され、
前記制御装置は、
前記圧力センサの測定する圧力に基づき、前記サブ膨張弁の開度及び前記電磁弁の開閉を制御する、冷凍サイクル装置。
Refrigeration having a refrigerant circuit configured by connecting a compressor, a flow path switching valve, a heat source side heat exchanger, a main expansion valve, and a use side heat exchanger by refrigerant piping and performing a defrosting operation by a hot gas reverse method In cycle equipment,
A pressure sensor for measuring the pressure on the high pressure side in the refrigerant circuit;
A control device for controlling the compressor, the flow path switching valve and the main expansion valve, respectively,
A series circuit in which a sub expansion valve capable of adjusting the opening, a refrigerant tank for storing excess refrigerant, and an electromagnetic valve are connected in series is provided between the heat source side heat exchanger and the use side heat exchanger. Connected in parallel to the connected main expansion valve,
The controller is
A refrigeration cycle apparatus that controls the opening of the sub expansion valve and the opening and closing of the electromagnetic valve based on the pressure measured by the pressure sensor.
前記圧力が規定値以上に高い時には、前記サブ膨張弁を開け、かつ前記電磁弁を閉じ、前記圧力が規定値よりも低い時には、前記サブ膨張弁を全閉の状態にし、かつ前記電磁弁を開ける、請求項1に記載の冷凍サイクル装置。   When the pressure is higher than a specified value, the sub expansion valve is opened and the solenoid valve is closed. When the pressure is lower than a specified value, the sub expansion valve is fully closed, and the solenoid valve is The refrigeration cycle apparatus according to claim 1, which is opened. 前記圧力が規定値以上に高い時には、前記サブ膨張弁の開度を絞り、かつ前記電磁弁を閉じ、前記圧力が規定値よりも低い時には、前記サブ膨張弁を全閉の状態にし、かつ前記電磁弁を開ける、請求項1に記載の冷凍サイクル装置。   When the pressure is higher than a specified value, the opening of the sub expansion valve is throttled and the electromagnetic valve is closed, and when the pressure is lower than a specified value, the sub expansion valve is fully closed, and The refrigeration cycle apparatus according to claim 1, wherein the solenoid valve is opened. 除霜運転開始後から前記圧力が規定値に達するまでの間は、前記サブ膨張弁を全開状態にし、かつ前記電磁弁を閉じる、請求項1〜3の何れか1項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the sub expansion valve is fully opened and the electromagnetic valve is closed until the pressure reaches a specified value after the start of the defrosting operation. . 除霜運転終了前の所定時間は、前記サブ膨張弁を全開状態にし、かつ前記電磁弁を閉じる、請求項1〜4の何れか1項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the sub-expansion valve is fully opened and the electromagnetic valve is closed for a predetermined time before the defrosting operation is completed.
JP2017503277A 2015-03-04 2015-03-04 Refrigeration cycle device Active JP6545252B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056397 WO2016139783A1 (en) 2015-03-04 2015-03-04 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2016139783A1 true JPWO2016139783A1 (en) 2017-09-14
JP6545252B2 JP6545252B2 (en) 2019-07-17

Family

ID=56849232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017503277A Active JP6545252B2 (en) 2015-03-04 2015-03-04 Refrigeration cycle device

Country Status (3)

Country Link
EP (1) EP3267130B1 (en)
JP (1) JP6545252B2 (en)
WO (1) WO2016139783A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343133A4 (en) * 2015-08-28 2018-09-12 Mitsubishi Electric Corporation Refrigeration cycle device
JP6580149B2 (en) * 2015-10-08 2019-09-25 三菱電機株式会社 Refrigeration cycle equipment
JP7303413B2 (en) * 2018-09-28 2023-07-05 ダイキン工業株式会社 heat pump equipment
CN110762755B (en) * 2019-10-30 2021-09-28 Tcl空调器(中山)有限公司 Defrosting control device and control method of air conditioner
CN112665119B (en) * 2021-02-02 2022-03-25 南通华信中央空调有限公司 Defrosting control method for direct expansion type air conditioner
US12007149B2 (en) 2021-08-20 2024-06-11 Carrier Corporation Expansion control system on a centrifugal chiller with an integral subcooler
CN114680360B (en) * 2022-03-04 2023-06-16 青岛海尔空调电子有限公司 Drying system for tobacco and control method for tobacco
CN115993011A (en) * 2022-12-13 2023-04-21 珠海格力电器股份有限公司 Refrigerating system for refrigerator and refrigerator
CN116045583A (en) * 2022-12-13 2023-05-02 珠海格力电器股份有限公司 Refrigerating system for refrigerator and refrigerator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798161A (en) * 1993-09-29 1995-04-11 Toshiba Corp Freezer using mixed refrigerant
JPH1047799A (en) * 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
JP2000146328A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating and air-conditioning device
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2002156166A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Multi-chamber type air conditioner
JP2004061023A (en) * 2002-07-30 2004-02-26 Kumushu Chin Heat pump device
JP2008185295A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat source unit and refrigerating device
JP2009156496A (en) * 2007-12-26 2009-07-16 Sanyo Electric Co Ltd Air conditioner
JP2014119145A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010473A1 (en) * 2009-07-22 2011-01-27 三菱電機株式会社 Heat pump device
JP5595140B2 (en) * 2010-06-24 2014-09-24 三菱重工業株式会社 Heat pump type hot water supply / air conditioner
CN105612394B (en) * 2013-08-09 2019-04-30 特灵空调系统(中国)有限公司 Transitional refrigerant migration control in refrigeration system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798161A (en) * 1993-09-29 1995-04-11 Toshiba Corp Freezer using mixed refrigerant
JPH1047799A (en) * 1996-07-26 1998-02-20 Toshiba Corp Freezing cycle device
JP2000146328A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating and air-conditioning device
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2002156166A (en) * 2000-11-20 2002-05-31 Fujitsu General Ltd Multi-chamber type air conditioner
JP2004061023A (en) * 2002-07-30 2004-02-26 Kumushu Chin Heat pump device
JP2008185295A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat source unit and refrigerating device
JP2009156496A (en) * 2007-12-26 2009-07-16 Sanyo Electric Co Ltd Air conditioner
JP2014119145A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner

Also Published As

Publication number Publication date
EP3267130A4 (en) 2018-11-07
JP6545252B2 (en) 2019-07-17
WO2016139783A1 (en) 2016-09-09
EP3267130B1 (en) 2019-10-09
EP3267130A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6545252B2 (en) Refrigeration cycle device
JP5809872B2 (en) Heating device
WO2013088590A1 (en) Outdoor unit and air-conditioning device
JP6138711B2 (en) Air conditioner
WO2010038518A1 (en) Air conditioner
KR101588205B1 (en) Air conditioner and Defrosting driving method of the same
WO2017221287A1 (en) Cooling device
JP2008096033A (en) Refrigerating device
JP5274174B2 (en) Air conditioner
JP5375904B2 (en) Air conditioner
JP2009168343A (en) Air conditioner
JP2008116156A (en) Air conditioner
JP2013119954A (en) Heat pump hot water heater
JP2009014215A (en) Air conditioning device
JPWO2020161803A1 (en) Outdoor unit of refrigeration equipment and refrigeration equipment equipped with it
JP7303413B2 (en) heat pump equipment
JP2017009269A (en) Air conditioning system
AU2014338081A1 (en) Refrigeration apparatus
JP6524670B2 (en) Air conditioner
JP5517891B2 (en) Air conditioner
JP7331021B2 (en) refrigeration cycle equipment
JP2012149834A (en) Heat pump
JP2017101857A (en) Freezing device
JP6105270B2 (en) Air conditioner
KR101873419B1 (en) Refrigeration cycle apparatus for air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6545252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250