Nothing Special   »   [go: up one dir, main page]

JPWO2015198538A1 - 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト - Google Patents

再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト Download PDF

Info

Publication number
JPWO2015198538A1
JPWO2015198538A1 JP2016529010A JP2016529010A JPWO2015198538A1 JP WO2015198538 A1 JPWO2015198538 A1 JP WO2015198538A1 JP 2016529010 A JP2016529010 A JP 2016529010A JP 2016529010 A JP2016529010 A JP 2016529010A JP WO2015198538 A1 JPWO2015198538 A1 JP WO2015198538A1
Authority
JP
Japan
Prior art keywords
rubber
recycled
mass
transmission belt
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016529010A
Other languages
English (en)
Inventor
公睦 大野
公睦 大野
博之 橘
博之 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Publication of JPWO2015198538A1 publication Critical patent/JPWO2015198538A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/32Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

再生ゴムは、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれている。

Description

本発明は、再生ゴム及びその製造方法、並びにそれを用いた伝動ベルトに関する。
再生ゴムは、使用済みのゴム製品の架橋ゴムに化学的処理或いは物理的処理を施すことにより、再び成形加工可能な状態にしたものである。再生ゴムの使用は、ゴム製品の材料コスト及び製造コストの削減に極めて有効である。
特許文献1には、架橋ゴムに、温度180〜350℃及び剪断応力10〜150kg/cmの条件の脱硫処理を施す再生ゴムの製造方法が開示されている。
特許文献2には、架橋ゴムに、そのゴム分子間の架橋等の切断が起こる再生温度以上の加熱温度で剪断応力を加える再生ゴムの製造方法が開示されている。
特許文献3には、架橋ゴムの原料粉とジエン系ゴムとを混合し、それに、最大剪断速度300/秒以上の剪断応力を加える再生ゴムの製造方法が開示されている。
特許文献4には、架橋ゴムに、温度220〜350℃及び剪断応力10〜150kg/cmの条件の脱硫処理を施す再生ゴムの製造方法が開示されている。
特開平9−227724号公報 特開2001−30237号公報 特開2003−128843号公報 特開2004−35690号公報
本発明の再生ゴムは、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれる。
本発明の再生ゴムの製造方法は、熱可塑性樹脂の配合材料の存在下で架橋ゴムに剪断応力を加えて脱硫処理するものであって、前記脱硫処理における処理温度を、前記熱可塑性樹脂の配合材料の融点よりも20℃以上低い温度に設定し、そして、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれた再生ゴムを得るものである。
本発明の伝動ベルトは、本発明の再生ゴムが用いられたゴム組成物によりベルト本体の少なくとも一部が構成されている。
実施形態1に係るラップドVベルトの一片の斜視図である。 実施形態に係るラップドVベルトの製造方法を示す第1の説明図である。 実施形態に係るラップドVベルトの製造方法を示す第2の説明図である。 実施形態に係るラップドVベルトの製造方法を示す第3の説明図である。 実施形態に係るラップドVベルトの製造方法を示す第4の説明図である。 実施形態に係るラップドVベルトの製造方法を示す第5の説明図である。 実施形態に係るラップドVベルトの製造方法を示す第6の説明図である。 実施形態に係るラップドVベルトの製造方法を示す第7の説明図である。 実施例で用いたベルト走行試験機のプーリレイアウト図である。 実施例2-1の再生ゴムの切断面の観察写真である。
以下、実施形態について図面を参照しながら説明する。
(実施形態1)
<再生ゴム>
実施形態1に係る再生ゴムは、硫黄架橋されたエチレンプロピレンジエンモノマー(以下「EPDM」という。)を含むゴム組成物を由来とし、且つゲル分率が50〜85質量%と高いものである。実施形態1に係る再生ゴムは、硫黄架橋されたEPDMを由来とし、その硫黄架橋に起因したゲル分率が50〜85質量%と高いので、これを用いたゴム組成物では、ゴム弾性が高いと共にtanδが低い。従って、実施形態1に係る再生ゴムを用いたゴム組成物により、特に繰り返し屈曲される伝動ベルトのベルト本体の少なくとも一部を構成することが好適である。
ここで、実施形態1に係る再生ゴムのゲル分率は、再架橋し易く、且つ物性の劣化を抑えると共に優れた加工性を得ることができるという観点から、好ましくは50質量%以上、より好ましくは65質量%以上であり、また、好ましくは85質量%以下、より好ましくは80質量%以下である。
ゲル分率はいわゆるトルエン膨潤法により求められる。具体的には、再生ゴムの試験片(例えば20mm×10mm×2mmの短冊状)を切り出し、これを30℃のトルエンに72時間浸漬して膨潤させた後に乾燥させ、トルエン浸漬前の質量(W)及びトルエン浸漬後の質量(W)から、ゲル分率g=(W/W)×100と算出される。なお、この方法は、例えば「ゴム試験法(社団法人 日本ゴム協会 編集発行)」等にも記載されている。
実施形態1に係る再生ゴムは、ゴム成分とそれ以外のゴム配合剤とを含む。
実施形態1に係る再生ゴムにおけるゴム成分の含有量は、好ましくは30質量%以上、より好ましくは40質量%以上であり、また、好ましくは70質量%以下、より好ましくは60質量%以下である。
実施形態1に係る再生ゴムのゴム成分におけるEPDMの含有量は、好ましくは50質量%以上、より好ましくは70質量%以上である。再生ゴムのゴム成分におけるEPDMの含有量は100質量%であることが最も好ましい、つまり、再生ゴムのゴム成分がEPDMのみであることが最も好ましい。
なお、実施形態1に係る再生ゴムに含まれ得るEPDM以外のゴム成分としては、例えば、エチレンプロピレンゴム(EPM)などのEPDM以外のエチレン−α−オレフィンエラストマーや天然ゴム(NR)等が挙げられる。
実施形態1に係る再生ゴムに含まれるゴム配合剤としては、後述の脱硫処理前から含まれていた、例えば、カーボンブラックなどの補強材、軟化剤、加工助剤、加硫促進助剤、架橋剤、加硫促進剤、老化防止剤等が挙げられる。
実施形態1に係る再生ゴムは、バージンゴムがブレンドされてベースゴム材料とされ、或いは、そのままベースゴム材料とされ、そして、それに架橋剤を含む各種のゴム配合剤が配合され、例えば、伝動ベルト、コンベヤベルト、タイヤ、ホース等のゴム製品を構成するゴム組成物として用いられる。上記の通り、これらのうち特に伝動ベルトに好適である。
実施形態1に係る再生ゴムは、使用済みのゴム製品から架橋ゴム(架橋済みゴム組成物)を取り出し、その架橋ゴムを所定の方法により脱硫処理することにより得ることができる。具体的には、実施形態1に係る再生ゴムは、硫黄架橋されたEPDMを含む架橋ゴムを予め粉砕して粉状乃至粒状とし、その後、粉状乃至粒状にした架橋ゴムに所定の処理温度下で剪断応力を加えて脱硫処理することにより得られる。このとき、再生ゴムのゲル分率は、脱硫処理の際の処理温度、剪断応力、及び処理時間等の条件の組み合わせによって制御することができる。このように脱硫処理して得られる再生ゴムは、硫黄の架橋点の一部及びEPDMの主鎖が切断されることにより、架橋可能なEPDMと、残留した硫黄架橋によるゲル分の弾性ゴムのEPDMとを含み、その結果、これを用いたゴム組成物では、バージンゴムのみを用いた場合と比較して、ゴム弾性が高いと共にtanδが低くなる。
ここで、使用済みのゴム製品としては、例えば、伝動ベルト、コンベヤベルト、タイヤ、ホース等が挙げられる。
粉状乃至粒状の架橋ゴムの平均粒径は、好ましくは10μm以上、より好ましくは100μm以上であり、また、好ましくは5mm以下、より好ましくは3mm以下である。
脱硫処理の処理温度は、150〜250℃であり、脱硫と残留するゲル分とのバランスの観点から、好ましくは180℃以上であり、また、好ましくは230℃以下である。脱硫処理の際の剪断応力は、脱硫と残留するゲル分とのバランスの観点から、好ましくは0.981MPa以上、より好ましくは4MPa以上であり、また、好ましくは20MPa以下、より好ましくは15MPa以下である。
以上のような脱硫処理は、単軸又は二軸の押出成形機等の公知の加工設備を用いて行うことができる。
なお、実施形態1に係る再生ゴムは、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれていてもよい。最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれた再生ゴムから得られるゴム組成物は、低tanδとなることから、繰り返し屈曲された際でも発熱が抑えられ、従って、伝動ベルト等の繰り返し屈曲を受けるゴム製品への適用に好適である。
熱可塑性樹脂の配合材料としては、例えば、ポリアミド樹脂(PA)、ポリエチレンテレフタレート樹脂(PET)、ポリプロピレン樹脂(PP)等の配合材料が挙げられる。ポリアミド樹脂(PA)としては、例えば、ナイロン6、ナイロン66等が挙げられる。熱可塑性樹脂の配合材料は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。熱可塑性樹脂の配合材料の形態としては、例えば、粉状、粒状、繊維状等が挙げられる。これらのうち繊維状のもの、特に、繊維径が10〜30μm及び繊維長が1〜5mmの短繊維が好ましい。
熱可塑性樹脂の配合材料の最大粒径は、得られる再生ゴムにおける熱可塑性樹脂の配合材料の界面でのクラックの発生を抑制する観点から、好ましくは230μm以下、より好ましくは205μm以下、更に好ましくは155μm以下、より更に好ましくは150μm以下であり、また、好ましくは5μm以上、より好ましくは20μm以上、更に好ましくは50μm以上、より更に好ましくは100μm以上である。この再生ゴム中の熱可塑性樹脂の配合材料の最大粒径は、脱硫処理における剪断応力等によって制御することができる。また、熱可塑性樹脂の配合材料の最大粒径は、得られた再生ゴムの表面観察により測定することができる。
再生ゴムにおける熱可塑性樹脂の配合材料の含有量は、好ましくは2質量%以上、より好ましくは8質量%以上であり、また、好ましくは30質量%以下、より好ましくは20質量%以下である。また、かかる最大粒径が250μm以下の熱可塑性樹脂を含む再生ゴムを製造する際には、脱硫処理における処理温度を、熱可塑性樹脂の配合材料の融点よりも20℃以上低い温度に設定することが好ましい。
<ラップドVベルトB>
図1は、実施形態1に係るラップドVベルトB(伝動ベルト)を示す。この実施形態1に係るラップドVベルトBは、例えば、農業機械や産業機械に使用されるものである。実施形態1に係るラップドVベルトBの寸法は、特に限定されるものではないが、例えば、ベルト周長700〜5000mm、ベルト幅16〜17mm、及びベルト厚さ8〜10mmである。
実施形態1に係るラップドVベルトBは、ベルト内周側(プーリ接触側)の圧縮ゴム層11と、中間の接着ゴム層12と、ベルト外周側の伸張ゴム層13との三重の層に構成された横断面形状が台形のベルト本体10を備える。接着ゴム層12には、ベルト幅方向にピッチを有する螺旋を形成するように配された心線14が埋設されている。ベルト本体10は、全体が補強布15によって覆われている。
圧縮ゴム層11、接着ゴム層12、及び伸張ゴム層13は、いずれも架橋したゴム組成物で構成されている。そして、圧縮ゴム層11、接着ゴム層12、及び伸張ゴム層13のうち少なくとも1つは、実施形態1に係る再生ゴムが用いられて架橋したゴム組成物で構成されている。圧縮ゴム層11、接着ゴム層12、及び伸張ゴム層13を構成するゴム組成物は、いずれも実施形態1に係る再生ゴムが用いられていることが好ましいが、その場合、それらが同一のゴム組成物であってもよい。
ここで、この実施形態1に係る再生ゴムが用いられたゴム組成物は、実施形態1に係る再生ゴムをベースゴム材料としていてもよく、また、それにゴム成分としてバージンゴムがブレンドされてベースゴム材料としていてもよい。この場合のバージンゴムは、エチレン−α−オレフィンエラストマーが好ましく、そのうちでもEPDMがより好ましい。ゴム組成物のゴム成分におけるバージンゴムの含有量は、好ましくは20質量%以上であり、また、好ましくは80質量%以下、より好ましくは60質量%以下である。
この実施形態1に係る再生ゴムが用いられたゴム組成物には、実施形態1に係る再生ゴムに含まれるゴム配合剤に加えて、各種のゴム配合剤が配合されている。かかるゴム配合剤としては、例えば、カーボンブラックなどの補強材、軟化剤、加工助剤、加硫促進助剤、架橋剤、加硫促進剤、老化防止剤等が挙げられる。
補強材は、実施形態1に係る再生ゴムが補強材を含む場合には、配合されなくてもよい。一方、補強材は、実施形態1に係る再生ゴムを含むゴム組成物にバージンゴムが含まれている場合には、配合されることが好ましい。
補強材としては、カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N−339、HAF、N−351、MAF、FEF、SRF、GPF、ECF、N−234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。補強剤としてはシリカも挙げられる。補強剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。補強材の含有量は、耐摩耗性と耐屈曲性とのバランスの観点から、ゴム組成物のゴム成分100質量部に対して30〜80質量部であることが好ましい。
軟化剤としては、例えば、石油系軟化剤、パラフィンワックスなどの鉱物油系軟化剤、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどの植物油系軟化剤等が挙げられる。軟化剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。軟化剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば2〜30質量部である。
加工助剤としては、例えば、ステアリン酸、ポリエチレンワックス、脂肪酸の金属塩等が挙げられる。加工助剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。加工助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0.1〜3質量部である。
加硫促進助剤としては、例えば、酸化マグネシウムや酸化亜鉛(亜鉛華)などの金属酸化物、金属炭酸塩、脂肪酸及びその誘導体等が挙げられる。加硫促進助剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。加硫促進助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0.5〜8質量部である。
架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤として、硫黄が配合されていてもよく、また、有機過酸化物が配合されていてもよく、更には、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、ゴム組成物のゴム成分100質量部に対して例えば0.5〜4.0質量部であり、有機過酸化物の場合、ゴム組成物のゴム成分100質量部に対して例えば0.5〜8.0質量部である。
有機過酸化物としては、例えば、ジクミルパーオキサイドなどのジアルキルパーオキサイド類、t−ブチルパーオキシアセテートなどのパーオキシエステル類、ジシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類等が挙げられる。有機過酸化物は、単一種が配合されていても、また、複数種が配合されていても、どちらでもよい。
ゴム組成物は、架橋剤が硫黄の場合、残留した硫黄架橋によるゲル分と、追加の硫黄架橋に由来する硫黄結合とを含むこととなり、架橋剤が有機過酸化物の場合、残留した硫黄架橋によるゲル分と、有機過酸化物架橋に由来するC−C結合とを含むこととなる。従って、実施形態1に係る再生ゴムを用いることにより、EPDMのバージンゴムのみを用いたゴム組成物に比べると、架橋点が多いゴム組成物を得ることができる。
加硫促進剤としては、例えば、チアゾール系(例えばMBT、MBTSなど)、チウラム系(例えばTT、TRAなど)、スルフェンアミド系(例えばCZなど)、ジチオカルバミン酸塩系(例えばBZ−Pなど)のもの等が挙げられる。加硫促進剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。特に架橋剤として硫黄が用いられる場合には、加硫促進剤が配合されることが好ましく、その場合、チアゾール系加硫促進剤及びチウラム系加硫促進剤を併用することが好ましい。加硫促進剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば2〜10質量部である。
老化防止剤としては、アミン系、キノリン系、ヒドロキノン誘導体、フェノール系、亜リン酸エステル系のものが挙げられる。老化防止剤は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。老化防止剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0〜8質量部である。
なお、ゴム配合剤として、その他に、スメクタイト族、バーミュライト族、カオリン族等の層状珪酸塩が配合されていてもよい。
実施形態1に係る再生ゴムが用いられたゴム組成物の列理方向における100℃での損失係数tanδは、好ましくは0.04以上、より好ましくは0.06以上であり、また、好ましくは0.15以下、より好ましくは0.12以下である。損失係数tanδは、JIS K6394に基づいて求められる。
心線14は、ポリエステル繊維(PET)、ポリエチレンナフタレート繊維(PEN)、アラミド繊維、ビニロン繊維等の撚り糸で構成されている。心線14は、ベルト本体10に対する接着性を付与するために、成形加工前にRFL水溶液に浸漬した後に加熱する接着処理及び/又はゴム糊に浸漬した後に乾燥させる接着処理が施されている。
補強布15は、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等によって構成されている。補強布15は、ベルト本体10に対する接着性を付与するために、成形加工前にRFL水溶液に浸漬して加熱する接着処理、及び/又は、ベルト本体10側となる表面にゴム糊をコーティングして乾燥させる接着処理が施されている。
次に、実施形態1に係るラップドVベルトBの製造方法を説明する。
まず、圧縮ゴム層用のゴムシート11’、接着ゴム層用のゴムシート12’、及び伸張ゴム層用のゴムシート13’、並びに心線用の撚り糸14’及び補強布用の布15’を準備する。このとき、圧縮ゴム層用のゴムシート11’、接着ゴム層用のゴムシート12’、及び伸張ゴム層用のゴムシート13’のうち実施形態1に係る再生ゴムを含めるものは、実施形態1に係る再生ゴムとゴム配合剤とを混練した未架橋ゴム組成物を、カレンダロール等を用いてシート状に加工することにより得る。また心線用の撚り糸14’及び補強布用の布15’には接着処理を施す。
次いで、図2Aに示すように、マントル21に、圧縮ゴム層用のゴムシート11’を複数回巻き付け、その上に、接着ゴム層用のゴムシート12’を巻き付ける。その上に、図2Bに示すように、撚り糸14’を螺旋状に巻き付ける。更にその上に、図2Cに示すように、接着ゴム層用のゴムシート12’及び伸張ゴム層用のゴムシート13’を順に巻き付けて円筒状の積層構造体10’を作製する。
次いで、図2Dに示すように、円筒状の積層構造体10’をマントル21上で所定幅に輪切りにした後、それらをマントル21から取り外す。
次いで、環状の積層構造体10’を、圧縮ゴム層用のゴムシート11’側を外側にして一対のプーリ間に巻き掛けて回転させながら、図2Eに示すように、圧縮ゴム層用のゴムシート11’の積層部分の両側をV型に斜めに切除して体積を調整する。
続いて、図2Fに示すように、環状の積層構造体10’の外周を布15’で被覆する。
そして、図2Gに示すように、ラッピングした環状の積層構造体10’を円筒金型22の溝23に嵌め入れ、それを加硫缶に入れて加熱及び加圧する。このとき、環状の積層構造体10’のゴム成分が架橋してベルト本体10を形成し、且つ撚り糸14’がベルト本体10に接着一体化して心線14となると共に、布15’がベルト本体10に接着一体化して補強布15となって実施形態1に係るラップドVベルトBが製造される。
(実施形態2)
実施形態2に係る再生ゴムの製造方法では、使用済みのゴム製品から架橋ゴムを取り出し、熱可塑性樹脂の配合材料の存在下で、その架橋ゴムに剪断応力を加えて脱硫処理する。
ここで、使用済みのゴム製品としては、例えば、伝動ベルト、コンベヤベルト、タイヤ、ホース等が挙げられる。
架橋ゴムに含まれるゴム成分としては、例えば、天然ゴム(NR)、EPDMやEPMのエチレン−α−オレフィンエラストマー、クロロプレンゴム(CR)、水素化ニトリルゴム(H−NBR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)等が挙げられる。架橋ゴムに含まれるゴム成分は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。架橋ゴムにおけるゴム成分の含有量は、好ましくは30質量%以上、より好ましくは40質量%以上であり、また、好ましくは70質量%以下、より好ましくは60質量%以下である。
架橋ゴムには、その他に、カーボンブラック、充填剤、老化防止剤、可塑剤等が配合されていてもよい。
架橋ゴムは、ゴム成分が架橋されているが、硫黄により架橋されていても、また、有機過酸化物により架橋されていても、どちらでもよい。
脱硫処理前の架橋ゴムは、効率的に脱硫処理を行う観点から、粉砕されて粉状乃至粒状であることが好ましい。粉状乃至粒状の架橋ゴムの平均粒径は、好ましくは10μm以上、より好ましくは100μm以上、更に好ましくは200μm以上であり、また、好ましくは5mm以下、より好ましくは3mm以下である。
熱可塑性樹脂の配合材料としては、例えば、ポリアミド樹脂(PA)、ポリエチレンテレフタレート樹脂(PET)、ポリプロピレン樹脂(PP)等の配合材料が挙げられる。ポリアミド樹脂(PA)としては、例えば、ナイロン6、ナイロン66等が挙げられる。熱可塑性樹脂の配合材料は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。熱可塑性樹脂の配合材料の形態としては、例えば、粉状、粒状、繊維状等が挙げられる。これらのうち繊維状のもの、特に、繊維径が10〜30μm及び繊維長が1〜5mmの短繊維が好ましい。
熱可塑性樹脂の配合材料は、架橋ゴムに含まれている、つまり、使用済みのゴム製品から取り出した架橋ゴムに予め分散して配合され、それによって架橋ゴムに剪断が加えられる場に存在していることが好ましい。この場合、架橋ゴムにおける熱可塑性樹脂の配合材料の含有量は、好ましくは2質量%以上、より好ましくは8質量%以上であり、また、好ましくは20質量%以下、より好ましくは15質量%以下である。なお、熱可塑性樹脂の配合材料は、架橋ゴムには含まれておらず、脱硫処理の際に架橋ゴムと混合され、それによって架橋ゴムに剪断が加えられる場に存在していてもよい。
実施形態2に係る再生ゴムの製造方法における脱硫処理は、架橋ゴムに剪断応力を加えて架橋部分の切断や解重合をさせる物理的処理である。具体的には、脱硫処理方法としては、例えば、一軸或いは二軸のスクリューを有する剪断流動場反応槽を用いて架橋ゴムを連続的に脱硫処理する方法が挙げられる。
そして、実施形態2に係る再生ゴムの製造方法では、脱硫処理における処理温度を、熱可塑性樹脂の配合材料の融点よりも20℃以上低い温度に設定する。ここで、脱硫処理における処理温度とは、脱硫処理時の被処理物の温度であり、例えば、一軸或いは二軸のスクリューを有する剪断流動場反応槽を用いた場合では、剪断流動場反応槽の槽内設定温度である。
ここで、熱可塑性樹脂の配合材料の融点は、ポリアミド樹脂(PA)では、例えば、ナイロン6の場合で225〜235℃、ナイロン66の場合で260〜270℃であり、ポリエチレンテレフタレート樹脂(PET)の場合で245〜265℃、ポリプロピレン樹脂(PP)の場合で135〜180℃である。熱可塑性樹脂の配合材料の融点は、示差走査熱量計(DSC:Differential Scanning Calorimeter)により測定される。
具体的には、脱硫処理における処理温度は、例えば、融点が225℃のナイロン6の配合材料の場合には205℃以下に設定し、融点が260℃のナイロン66の場合には240℃以下に設定する。脱硫処理における処理温度は、得られる再生ゴムにおける物性低下を抑制する観点から、架橋ゴムに配合された熱可塑性樹脂の配合材料の融点よりも30℃以上低い温度に設定することが好ましく、50℃以上低い温度に設定することがより好ましく、60℃以上低い温度に設定することが更に好ましく、また、適性に脱硫処理を行う観点から、180℃以上に設定することが好ましく、200℃以上に設定することがより好ましい。なお、熱可塑性樹脂の配合材料が複数種ある場合には、それらの融点のうち最も低い融点よりも20℃以上低い温度に設定する。
また、脱硫処理における剪断応力は、適性に脱硫処理を行う観点から、1MPa以上に設定することが好ましく、4MPa以上に設定することがより好ましく、また、熱可塑性樹脂の配合材料による効果が希薄化するのを規制する観点から、20MPa以下に設定することが好ましく、15MPa以下に設定することがより好ましい。
熱可塑性樹脂の配合材料が架橋ゴムに含まれている場合、製造する再生ゴムの物性調整の観点からは、脱硫処理において、熱可塑性樹脂の配合材料を含む架橋ゴムの外部に別の熱可塑性樹脂の配合材料を存在させる、つまり、熱可塑性樹脂の配合材料を含む架橋ゴムと別の熱可塑性樹脂の配合材料とを混合することが好ましい。別の熱可塑性樹脂の配合材料としては、上記で列挙したポリアミド樹脂(PA)等が挙げられ、その形態としては、例えば、粉状、粒状、繊維状等が挙げられる。別の熱可塑性樹脂の配合材料は、架橋ゴムに含まれた熱可塑性樹脂の配合材料と同一であっても、また、異なっていても、どちらでもよい。
実施形態2に係る再生ゴムの製造方法では、脱硫処理における剪断により熱可塑性樹脂の配合材料が切断されて小粒径化して分散し、脱硫処理後に得られる再生ゴムにおいて、架橋ゴムと同一のゴム成分中に、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれる。最大粒径が250μmを越える熱可塑性樹脂の配合材料はもはや異物となり、クラック発生の起点になる虞がある。熱可塑性樹脂の配合材料の最大粒径は、得られる再生ゴムにおける熱可塑性樹脂の配合材料の界面でのクラックの発生を抑制する観点から、好ましくは230μm以下、より好ましくは205μm以下、更に好ましくは155μm以下、より更に好ましくは150μm以下であり、また、好ましくは5μm以上、より好ましくは20μm以上、更に好ましくは50μm以上、より更に好ましくは100μm以上である。この再生ゴム中の熱可塑性樹脂の配合材料の最大粒径は、脱硫処理における剪断応力等によって制御することができる。また、熱可塑性樹脂の配合材料の最大粒径は、得られた再生ゴムの表面観察により測定することができる。
再生ゴムにおけるゴム成分の含有量は、好ましくは30質量%以上、より好ましくは40質量%以上であり、また、好ましくは70質量%以下、より好ましくは60質量%以下である。再生ゴムにおける熱可塑性樹脂の配合材料の含有量は、好ましくは2質量%以上、より好ましくは8質量%以上であり、また、好ましくは30質量%以下、より好ましくは20質量%以下である。
以上の実施形態2に係る再生ゴムの製造方法によれば、熱可塑性樹脂の配合材料の存在下で架橋ゴムに剪断応力を加えて脱硫処理する際の処理温度を、熱可塑性樹脂の配合材料の融点よりも20℃以上低い温度に設定し、そして、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれた再生ゴムを得るので、脱硫処理において熱可塑性樹脂の配合材料は溶融せず、そのため、得られる再生ゴムから得られるゴム組成物は、以下の実施例の試験評価2で示す通り、低tanδとなることから、繰り返し屈曲された際でも発熱が抑えられ、従って、伝動ベルト等の繰り返し屈曲を受けるゴム製品への適用に好適な再生ゴムを製造することができる。一般に、再生ゴムの製造において、原料の架橋ゴムに含まれる短繊維等の熱可塑性樹脂の配合材料は、通常は異物としてふるい分けやエアーフローティングテーブルにより分離されるが、実施形態2に係る再生ゴムの製造方法では、かかる熱可塑性樹脂の配合材料が、得られる再生ゴムを用いたゴム組成物における低tanδ化に寄与する。
実施形態2に係る再生ゴムの製造方法では、脱硫処理後、必要に応じて、リファイニング、ストレーニング、シーティングを行う。
実施形態2の製造方法により得られた再生ゴムは、実施形態1に係る再生ゴムと同一の構成を有していてもよく、つまり、硫黄架橋されたエチレンプロピレンジエンモノマーを含むゴム組成物を由来とし、且つゲル分率が50〜85質量%であってもよい。
実施形態2の製造方法により得られた再生ゴムは、実施形態1と同様に、再生ゴムに含まれるのと同一又は異なるバージンゴムがブレンドされてベースゴム材料とされ、或いは、そのままベースゴム材料とされ、そして、架橋剤を含むゴム配合剤が配合され、例えば、実施形態1において図1に示したラップドVベルトBのような伝動ベルト、コンベヤベルト、タイヤ、ホース等のゴム製品を構成するゴム組成物として用いられる。実施形態2の製造方法により得られた再生ゴムは、これを用いたゴム組成物が低tanδとなることから、繰り返し屈曲された際でも発熱が抑えられる。従って、実施形態2の製造方法により得られた再生ゴムを用いたゴム組成物により、繰り返し屈曲される伝動ベルトのベルト本体の少なくとも一部を構成することが好適である。
実施形態2の製造方法により得られた再生ゴムが用いられたゴム組成物の列理方向における25℃での貯蔵弾性係数E’は、好ましくは12MPa以上、より好ましくは15MPa以上であり、また、好ましくは70MPa以下、より好ましくは40MPa以下である。100℃での貯蔵弾性係数E’は、好ましくは8MPa以上、より好ましくは10MPa以上であり、また、好ましくは50MPa以下、より好ましくは30MPa以下である。120℃での貯蔵弾性係数E’は、好ましくは7MPa以上、より好ましくは9MPa以上であり、また、好ましくは50MPa以下、より好ましくは25MPa以下である。
実施形態2の製造方法により得られた再生ゴムの列理方向における25℃での損失係数tanδは、好ましくは0.06以上、より好ましくは0.08以上であり、また、好ましくは0.20以下、より好ましくは0.18以下である。100℃での損失係数tanδは、好ましくは0.04以上、より好ましくは0.06以上であり、また、好ましくは0.15以下、より好ましくは0.12以下である。120℃での損失係数tanδは、好ましくは0.04以上、より好ましくは0.06以上であり、また、好ましくは0.14以下、より好ましくは0.11以下である。
貯蔵弾性係数E’及び損失係数tanδは、JIS K6394に基づいて求められる。
[試験評価1]
(ゴム組成物)
架橋ゴムとして、硫黄架橋したEPDM組成物(ゴム成分であるEPDMの含有量:50質量%)を準備した。そして、その架橋ゴムを平均粒径150μmに粉砕して粉状乃至粒状にした後、二軸押出機(日本製鋼所社製 型番:TEX30α,スクリュー径:30mm,スクリュー長さ:1785mm)に投入し、粉状乃至粒状の架橋ゴムに剪断応力を加えて脱硫処理を施し、冷却して再生ゴムを調整した。このとき、処理温度、スクリュー回転数(剪断応力)、及び処理時間の変量によりゲル分率を制御した。具体的には、処理温度200℃及びスクリュー回転数400rpm(剪断応力7MPa)としてゲル分率が70質量%の再生ゴム1を得た。処理温度220℃及びスクリュー回転数400rpm(剪断応力8MPa)としてゲル分率が52質量%の再生ゴム2を得た。処理温度260℃及びスクリュー回転数600rpm(剪断応力11MPa)としてゲル分率が45質量%の再生ゴム3を得た。なお、ゲル分率は、上記のトルエン膨潤法により求めた。
再生ゴム1〜3を用い、以下の実施例1-1〜1-4及び比較例1-1〜1-2の未架橋ゴム組成物を作製した。それぞれの構成については表1にも示す。
<実施例1-1>
再生ゴム1の200質量部(ゴム成分のEPDM100質量部)に対し、ゴム配合剤として、ステアリン酸(日油社製 商品名:ビーズ ステアリン酸 つばき)1質量部、酸化亜鉛(堺化学工業社製 商品名:酸化亜鉛3種)5質量部、軟化剤(出光興産社製 商品名:ダイアナプロセスPW−90)20質量部、硫黄(軽井沢精錬所社製 油処理硫黄)3質量部、チウラム系加硫促進剤(大内新興化学社製 商品名:ノクセラーTET−G)2質量部、及びチアゾール系加硫促進剤(大内新興化学社製 商品名:ノクセラーDM−P)1質量部を配合して混練することにより得た未架橋ゴム組成物を実施例1-1とした。
<実施例1-2>
再生ゴム1の200質量部(ゴム成分のEPDM100質量部)に対し、ゴム配合剤として、ステアリン酸1質量部、酸化亜鉛5質量部、軟化剤20質量部、有機過酸化物(日油社製 商品名:パーブチルP−40 純度40質量%)8質量部(有効成分3.2質量部)を配合して混練することにより得た未架橋ゴム組成物を実施例1-2とした。
<実施例1-3>
再生ゴム2を用いたことを除いて実施例1と同一構成の未架橋ゴム組成物を実施例1-3とした。
<実施例1-4>
再生ゴム1の100質量部(ゴム成分のEPDM50質量部)に対し、EPDMのバージンゴム(JSR社製 商品名:EP33)50質量部をブレンドし、それらに含まれるゴム成分100質量部に対し、ゴム配合剤として、HAFカーボンブラック(東海カーボン社製 商品名:シースト3)50質量部、ステアリン酸1質量部、酸化亜鉛5質量部、軟化剤20質量部、硫黄3質量部、チウラム系加硫促進剤2質量部、及びチアゾール系加硫促進剤1質量部を配合して混練することにより得た未架橋ゴム組成物を実施例1-4とした。
<比較例1-1>
再生ゴム3を用いたことを除いて実施例1と同一構成の未架橋ゴム組成物を比較例1-1とした。
<比較例1-2>
再生ゴム3を用いたことを除いて実施例2と同一構成の未架橋ゴム組成物を比較例1-2とした。
なお、実施例1-1、1-3、及び1-4、並びに比較例1-1のゴム組成物は、硫黄架橋系であることから、これらを架橋させて得られるゴム組成物は、残留した硫黄架橋によるゲル分と、追加の硫黄架橋に由来する硫黄結合とを有することとなる。一方、実施例1-2及び比較例1-2のゴム組成物は、有機過酸化物架橋系であることから、これらを架橋させて得られるゴム組成物は、残留した硫黄架橋によるゲル分と、有機過酸化物架橋に由来するC−C結合とを有することとなる。
(試験評価方法)
<損失係数tanδ>
実施例1-1〜1-4及び比較例1-1〜1-2のそれぞれの未架橋ゴム組成物について、シート状のゴムシートを成形加硫し、JIS K6394に基づいて、振動周波数10Hz及び動歪1.0%とし、その列理方向の100℃における損失係数tanδを求めた。
<ベルト耐久試験>
実施例1-1〜1-4及び比較例1-1〜1-2のそれぞれの未架橋ゴム組成物により圧縮ゴム層、接着ゴム層、及び伸張ゴム層を構成したラップドVベルトを作製した。なお、心線にはポリエステル繊維の撚り糸、及び補強布には綿の織布をそれぞれ用いた。
図3はベルト走行試験機30のプーリレイアウトを示す。
ベルト走行試験機30は、プーリ径80mmの駆動プーリ31と、その下方に設けられたプーリ径80mmの従動プーリ32とを有する。従動プーリ32は上下可動に構成されており、従動プーリ32に錘(デッドウェイト)を吊すことにより、駆動プーリ31及び従動プーリ32に巻き掛けられたラップドVベルトBに張力を負荷できるように構成されている。
実施例1-1〜1-4及び比較例1-1〜1-2のそれぞれの未架橋ゴム組成物を用いて作製したラップドVベルトBについて、駆動プーリ31及び従動プーリ32に巻き掛けると共に、従動プーリ32に80kgの錘を下げてラップドVベルトBに張力を負荷し、従動プーリ32に回転負荷を与えずに、常温下、駆動プーリ31を3500rpmの回転数で回転させてラップドVベルトBをベルト走行させ、定期的にベルト走行を停止してクラックの発生の有無を目視で確認し、クラックの発生が確認された時点でベルト走行を終了した。そして、ベルト寿命を、比較例1-1のクラック発生までのベルト走行時間を100とした相対値として評価した。また、非接触型の表面温度計を用い、ベルト走行時におけるベルト温度を測定し、雰囲気温度との温度差の最大値を求めた。
(試験評価結果)
試験結果を表1に示す。
ゲル分率が45質量%と低い再生ゴム3を用いた硫黄架橋系の比較例1-1の場合、tanδが大きく(0.175)、また、ベルト走行時の発熱も大きく(+44℃)、更に、ベルト走行時に早期にクラックが発生してベルト寿命が短かった(100)。
ゲル分率が再生ゴム3よりも高い52質量%である再生ゴム2を用いた硫黄架橋系の実施例1-3の場合、比較例1-1の場合に比べると、tanδが低く(0.125)、また、ベルト走行時の発熱も小さく(+29℃)、更に、ベルト寿命も長かった(142)。
ゲル分率が再生ゴム2よりも更に高い70質量%である再生ゴム1を用いた硫黄架橋系の実施例1-1の場合、実施例1-2の場合に比べても、tanδが一層低く(0.107)、また、ベルト走行時の発熱も一層小さく(+25℃)、更に、ベルト寿命も一層長かった(149)。
ゲル分率が45質量%と低い再生ゴム3を用いた有機過酸化物架橋系の比較例1-2の場合、tanδが0.159、また、ベルト走行時の発熱が+38℃、更に、ベルト寿命が120であり、比較例1-1の場合よりも優れるものの、大きな改善がなされているとは言えない。
ゲル分率が70質量%である再生ゴム1を用いた有機過酸化物架橋系の実施例1-2の場合、実施例1-1の場合と比べても、tanδがより一層低く(0.089)、また、ベルト走行時の発熱もより一層小さく(+21℃)、更に、ベルト寿命もより一層長かった(168)。
また、再生ゴム2とEPDMのバージンゴムとをブレンドした硫黄架橋系の実施例1-4の場合、比較例1-1及び1-2の場合と比べても、tanδが低く(0.119)、また、ベルト走行時の発熱も小さく(+28℃)、更に、ベルト寿命も長かった(152)。
実施例1-1〜1-4のゴム組成物を用いて作製したラップドVベルトでは、再生ゴム1及び2における残留した硫黄架橋による適量のゲル分が存在することによりゴム弾性が維持され、その結果、ベルト耐久試験において優れたベルト寿命が得られているものと推測される。また、再生ゴム2とEPDMのバージンゴムとをブレンドした場合でも、残留した硫黄架橋のゲル分が適度に分散することによりゴム弾性が得られ、その結果、ベルト耐久試験において優れたベルト寿命が得られているものと推測される。
実施例1-1〜1-4のゴム組成物において用いた再生ゴム1及び2は、硫黄架橋したEPDMを脱硫処理することにより得られるが、EPDMのバージンゴムを用いるよりも優れた性能を実現することができる。
[試験評価2]
(再生ゴム)
<実施例2-1>
表2に示すように、EPDM(JSR社製 商品名:EP51)を原料ゴムとし、この原料ゴム100質量部に対し、HAFカーボンブラック(東海カーボン社製 商品名:シースト3)50質量部、ステアリン酸(日本油脂社製 商品名:ビーズ ステアリン酸 つばき)1質量部、酸化亜鉛(堺化学社製 商品名:酸化亜鉛3種)5質量部、軟化剤(出光興産社製 商品名:ダイアナプロセスオイルPW−90)15質量部、硫黄(軽井沢製錬所社製 商品名:油処理硫黄)3質量部、チウラム系加硫促進剤(大内新興化学社製 商品名:ノクセラーTET−G)2質量部、チアゾール系加硫促進剤(大内新興化学社製 商品名:ノクセラーDM−P)1質量部、及びナイロン66短繊維(旭化成社製 商品名:レオナ66,融点260℃)を配合して硫黄架橋した架橋ゴムを準備した。
架橋ゴムを平均粒径400μmに粉砕した後、二軸押出機(日本製鋼所社製 型番:TEX30α,スクリュー径:30mm,スクリュー長さ:1785mm)に投入し、処理温度をナイロン66短繊維の融点の260℃よりも60℃低い200℃及びスクリューの回転数を600rpm(剪断応力:14MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施し、冷却して得られた再生ゴムを実施例2-1とした。
実施例2-1の再生ゴムについて、カッターを用いて切断し、マイクロスコープ(キーエンス社製 型番:VHX2000)を用い、その断面の3カ所を200倍に拡大して観察したところ、図1に示すような形態が見られ、そして、最も大きいナイロン短繊維の外径(最大外径)を計測モードにより測定したところ148μmであった。また、上記のトルエン膨潤法によりゲル分率を求めたところ62質量%であった。
<実施例2-2>
スクリューの回転数を400rpm(剪断応力:8MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを実施例2-2とした。
実施例2-2の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ202μmであった。また、ゲル分率は68質量%であった。
<実施例2-3>
処理温度をナイロン66短繊維の融点の260℃よりも30℃低い230℃及びスクリューの回転数を600rpm(剪断応力:12MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを実施例2-3とした。
実施例2-3の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ151μmであった。また、ゲル分率は55質量%であった。
<実施例2-4>
処理温度をナイロン66短繊維の融点の260℃よりも60℃低い200℃及びスクリューの回転数を200rpm(剪断応力:6MPa)として架橋ゴムに脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを実施例2-4とした。
実施例2-4の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ227μmであった。また、ゲル分率は75質量%であった。
<実施例2-5>
処理温度をナイロン66短繊維の融点の260℃よりも20℃低い240℃及びスクリューの回転数を600rpm(剪断応力:13MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを実施例2-5とした。
実施例2-5の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ155μmであった。また、ゲル分率は51質量%であった。
<比較例2-1>
架橋ゴムとしてナイロン66短繊維が配合されていないものを用い、処理温度を200℃及びスクリューの回転数を400rpm(剪断応力:5MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを比較例2-1とした。
比較例2-1の再生ゴムについて、ゲル分率は78質量%であった。
<比較例2-2>
処理温度をナイロン66短繊維の融点の260℃よりも10℃低い250℃及びスクリューの回転数を600rpm(剪断応力:10MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを比較例2-2とした。
比較例2-2の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ147μmであった。また、ゲル分率は46質量%であった。
<比較例2-3>
スクリューの回転数を100rpm(剪断応力:5MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを比較例2-3とした。
比較例2-3の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ311μmであった。また、ゲル分率は83質量%であった。
<比較例2-4>
処理温度をナイロン66短繊維の融点の260℃よりも10℃低い250℃及びスクリューの回転数を100rpm(剪断応力:4MPa)として架橋ゴムに剪断応力を加えて脱硫処理を施したことを除いて実施例2-1と同様にして得られた再生ゴムを比較例2-4とした。
比較例2-4の再生ゴムについて、実施例2-1と同様にしてナイロン短繊維の最大外径を測定したところ302μmであった。また、ゲル分率は70質量%であった。
(試験評価方法)
実施例2-1〜2-5及び比較例2-1〜2-4のそれぞれの再生ゴムについて、表3に示すように、再生ゴム200質量部(ゴム成分のEPDM100質量部)に対し、ステアリン酸(日本油脂社製 商品名:ビーズ ステアリン酸 つばき)1質量部、酸化亜鉛(堺化学社製 商品名:酸化亜鉛3種)5質量部、軟化剤(出光興産社製 商品名:ダイアナプロセスオイルPW−90)15質量部、硫黄(軽井沢製錬所社製 商品名:油処理硫黄)3質量部、チウラム系加硫促進剤(大内新興化学社製 商品名:ノクセラーTET−G)2質量部、及びチアゾール系加硫促進剤(大内新興化学社製 商品名:ノクセラーDM−P)1質量部を配合した未架橋ゴム組成物を準備した。
<動的粘弾性試験>
実施例2-1〜2-5及び比較例2-1〜2-4のそれぞれの再生ゴムを用いた未架橋ゴム組成物について、シート状のゴムシートを成形加硫し、JIS K6394に基づいて、振動周波数10Hz及び動歪1.0%とし、その列理方向の25℃、100℃、及び120℃における貯蔵弾性係数E’及び損失係数tanδを測定した。
<ベルト耐久試験>
実施例2-1〜2-5及び比較例2-1〜2-4のそれぞれの再生ゴムを用いた未架橋ゴム組成物により圧縮ゴム層、接着ゴム層、及び伸張ゴム層を構成したラップドVベルトを作製し、試験評価1と同様のベルト耐久試験を実施した。そして、ベルト寿命を、比較例2-1のクラック発生までのベルト走行時間を100とした相対値として評価した。
(試験評価結果)
試験結果を表4及び5に示す。
表4及び5によれば、ナイロン66短繊維を含む実施例2-1〜2-5並びに比較例2-3〜2-4は、ナイロン66短繊維を含まない比較例2-1に比べて、25℃、100℃、及び120℃のいずれにおいても貯蔵弾性係数E’が高く、且つ損失係数tanδが低く、また、ベルト耐久性が優れることが分かる。また、比較例2-2は、25℃における貯蔵弾性係数E’だけが比較例2-1よりも低いものの、それ以外では、比較例2-1よりも貯蔵弾性係数E’が高く、且つ損失係数tanδが低く、また、ベルト耐久性が優れることが分かる。
比較例2-1では、ナイロン66短繊維を含まないため、相対的に貯蔵弾性率が低く且つtanδが高く、その結果、屈曲時の発熱が大きく、劣化の進行が大きいものと推測される。
実施例2-1〜2-5は、比較例2-1〜2-4に比べて、ベルト耐久性が優れることが分かる。
比較例2-2及び2-4では、脱硫処理の処理温度がナイロン66短繊維の融点に近いことから、ナイロン66短繊維の物性低下を招いたものと推測される。
比較例2-3及び2-4では、再生ゴム中のナイロン66短繊維の最大粒径が大きいため、界面でのクラックの発生が起こり易いものと推測される。
本発明は、再生ゴム及びその製造方法、並びにそれを用いた伝動ベルトの技術分野において有用である。
B ラップドVベルト
10 ベルト本体
11 圧縮ゴム層
12 接着ゴム層
13 伸張ゴム層
14 心線
15 補強布
10’ 積層構造体
11’〜13’ ゴムシート
14’ 撚り糸
15’ 布
21 マントル
22 円筒金型
23 溝
30 ベルト走行試験機
31 駆動プーリ
32 従動プーリ

Claims (15)

  1. 最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれた再生ゴム。
  2. 請求項1に記載された再生ゴムにおいて、
    ゴム成分がエチレン−α−オレフィンエラストマーである再生ゴム。
  3. 請求項1又は2に記載された再生ゴムにおいて、
    前記熱可塑性樹脂がポリアミド樹脂である再生ゴム。
  4. 請求項1乃至3のいずれかに記載された再生ゴムにおいて、
    硫黄架橋されたエチレンプロピレンジエンモノマーを含むゴム組成物を由来とし、且つゲル分率が50〜85質量%である再生ゴム。
  5. 請求項1乃至4のいずれかに記載された再生ゴムが用いられたゴム組成物によりベルト本体の少なくとも一部が構成された伝動ベルト。
  6. 請求項5に記載された伝動ベルトにおいて、
    前記ゴム組成物には、バージンゴムがブレンドされている伝動ベルト。
  7. 請求項6に記載された伝動ベルトにおいて、
    前記ゴム組成物のゴム成分における前記バージンゴムの含有量が20〜80質量%である伝動ベルト。
  8. 請求項5乃至7のいずれかに記載された伝動ベルトにおいて、
    前記ゴム組成物には、架橋剤として硫黄が配合されている伝動ベルト。
  9. 請求項5乃至8のいずれかに記載された伝動ベルトにおいて、
    前記ゴム組成物には、架橋剤として有機過酸化物が配合されている伝動ベルト。
  10. 請求項5乃至9のいずれかに記載された伝動ベルトにおいて、
    前記ゴム組成物は、列理方向における25℃での貯蔵弾性係数E’が12〜70MPa、100℃での貯蔵弾性係数E’が8〜50MPa、及び120℃での貯蔵弾性係数E’が7〜50MPaである伝動ベルト。
  11. 請求項5乃至10のいずれかに記載された伝動ベルトにおいて、
    前記ゴム組成物は、列理方向における25℃での損失係数tanδが0.06〜0.20、100℃での損失係数tanδが0.04〜0.15、及び120℃での損失係数tanδが0.04〜0.14である伝動ベルト。
  12. 熱可塑性樹脂の配合材料の存在下で架橋ゴムに剪断応力を加えて脱硫処理する再生ゴムの製造方法であって、
    前記脱硫処理における処理温度を、前記熱可塑性樹脂の配合材料の融点よりも20℃以上低い温度に設定し、そして、最大粒径が250μm以下の熱可塑性樹脂の配合材料が分散して含まれた再生ゴムを得る再生ゴムの製造方法。
  13. 請求項12に記載された再生ゴムの製造方法において、
    前記熱可塑性樹脂の配合材料が繊維状である再生ゴムの製造方法。
  14. 請求項12又は13に記載された再生ゴムの製造方法において、
    前記熱可塑性樹脂の配合材料が前記架橋ゴムに含まれている再生ゴムの製造方法。
  15. 請求項14に記載された再生ゴムの製造方法において、
    前記脱硫処理において、前記熱可塑性樹脂の配合材料を含む架橋ゴムの外部に別の熱可塑性樹脂の配合材料を存在させる再生ゴムの製造方法。
JP2016529010A 2014-06-25 2015-06-04 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト Pending JPWO2015198538A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014130075 2014-06-25
JP2014130075 2014-06-25
JP2014141232 2014-07-09
JP2014141232 2014-07-09
PCT/JP2015/002834 WO2015198538A1 (ja) 2014-06-25 2015-06-04 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト

Publications (1)

Publication Number Publication Date
JPWO2015198538A1 true JPWO2015198538A1 (ja) 2017-04-20

Family

ID=54937649

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016529010A Pending JPWO2015198538A1 (ja) 2014-06-25 2015-06-04 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト
JP2016529009A Pending JPWO2015198537A1 (ja) 2014-06-25 2015-06-04 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016529009A Pending JPWO2015198537A1 (ja) 2014-06-25 2015-06-04 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト

Country Status (3)

Country Link
JP (2) JPWO2015198538A1 (ja)
CN (2) CN106536617A (ja)
WO (2) WO2015198537A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897662B2 (ja) * 2016-02-24 2021-07-07 横浜ゴム株式会社 接着剤用ゴム組成物、ゴムの接着方法及びコンベヤベルト
JP6837920B2 (ja) * 2016-06-14 2021-03-03 三ツ星ベルト株式会社 ラップドvベルト、及びラップドvベルトの製造方法
CN107602965A (zh) * 2017-09-21 2018-01-19 如皋市嘉好热熔胶有限公司 一种轮胎再生胶及其制备方法
CN109721863A (zh) * 2019-01-23 2019-05-07 保定华月胶带有限公司 阻燃再生胶在阻燃输送带中的应用
CN113994123B (zh) * 2019-06-07 2022-07-15 阪东化学株式会社 大型v型带

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179215A (ja) * 1992-12-14 1994-06-28 Furukawa Electric Co Ltd:The 加硫ゴム系材料の微粉化方法
JPH10176001A (ja) * 1996-12-18 1998-06-30 Toyota Central Res & Dev Lab Inc 加硫ゴムの再生方法
DE69928974T2 (de) * 1998-01-26 2006-11-30 Toyoda Gosei Co., Ltd. Kautschukzusammensetzung und Verfahren zu deren Herstellung
JP3308484B2 (ja) * 1998-02-19 2002-07-29 株式会社豊田中央研究所 ゴム組成物
JP4104031B2 (ja) * 1998-10-28 2008-06-18 株式会社ブリヂストン 再生ゴム
JP2008254300A (ja) * 2007-04-04 2008-10-23 Mitsuboshi Belting Ltd 動力伝動用ベルト
JP5704782B2 (ja) * 2007-04-17 2015-04-22 住友ゴム工業株式会社 液状再生ゴムを含むタイヤトレッド用ゴム組成物およびそれを用いたトレッドを有する空気入りタイヤ
CA2805229C (en) * 2010-07-14 2018-03-27 U.B.Q. Materials Ltd. Composite material from waste and at least one element of vulcanized rubber and tire cords
CN103601984B (zh) * 2013-11-08 2015-10-14 四川大学 一种脱硫三元乙丙胶粉/聚丙烯共混制备热塑性硫化胶的方法

Also Published As

Publication number Publication date
WO2015198538A1 (ja) 2015-12-30
WO2015198537A1 (ja) 2015-12-30
JPWO2015198537A1 (ja) 2017-04-20
CN106536617A (zh) 2017-03-22
CN106459540A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
KR102165523B1 (ko) V 벨트 및 그 제조방법
JP5586282B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにそれを用いたベルト伝動装置
KR101516934B1 (ko) 마찰 전동 벨트 및 그 제조방법
JP6088985B2 (ja) 摩擦伝動ベルト及びその製造方法、並びにベルト伝動装置
JP4745789B2 (ja) Vリブドベルト及びvリブドベルトの製造方法
WO2015198537A1 (ja) 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト
KR20160064176A (ko) 평 벨트 및 그 제조방법
WO2017094213A1 (ja) Vリブドベルト
WO2015104778A1 (ja) 耐油性伝動ベルト
CN107532681B (zh) 传动带
US20170102049A1 (en) Transmission belt
WO2016194371A1 (ja) 伝動ベルト
JP7391821B2 (ja) 成形用部材およびその用途
JP2008275004A (ja) 動力伝動用ベルト
JP2002257199A (ja) 動力伝動ベルト
JP2008254300A (ja) 動力伝動用ベルト
JP6918047B2 (ja) 伝動ベルト
JP7408527B2 (ja) 成形用部材およびその用途
JP2006124484A (ja) エチレン・α−オレフィンゴム組成物と繊維との接着体の製造方法及び動力伝動ベルト
JP6581892B2 (ja) 摩擦伝動ベルト
JP2006077785A (ja) 動力伝動ベルト
JP2002088195A (ja) ゴム架橋組成物及びこれを用いた動力伝動ベルト
JP6635753B2 (ja) ベルト
JP2007177195A (ja) ゴム組成物およびこれを用いた動力伝動用ベルト
JP2018141556A (ja) ラップドvベルト及びその製造方法