Nothing Special   »   [go: up one dir, main page]

JPWO2015015542A1 - On-vehicle stereo camera system and calibration method thereof - Google Patents

On-vehicle stereo camera system and calibration method thereof Download PDF

Info

Publication number
JPWO2015015542A1
JPWO2015015542A1 JP2015529231A JP2015529231A JPWO2015015542A1 JP WO2015015542 A1 JPWO2015015542 A1 JP WO2015015542A1 JP 2015529231 A JP2015529231 A JP 2015529231A JP 2015529231 A JP2015529231 A JP 2015529231A JP WO2015015542 A1 JPWO2015015542 A1 JP WO2015015542A1
Authority
JP
Japan
Prior art keywords
image
stereo camera
frame
feature
camera system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015529231A
Other languages
Japanese (ja)
Other versions
JP6035620B2 (en
Inventor
▲ゆう▼ 趙
▲ゆう▼ 趙
渡邊 高志
高志 渡邊
宣隆 木村
宣隆 木村
タオ グオ
タオ グオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP6035620B2 publication Critical patent/JP6035620B2/en
Publication of JPWO2015015542A1 publication Critical patent/JPWO2015015542A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

ステレオカメラシステムにおいて、対応点位置の認識誤差に対し高精度なセルフキャリブレーションを実現する。複数のカメラ中の各二つのカメラそれぞれが撮影した毎フレーム両画像の組から、第Nフレームの画像の対応点位置を算出し、左右の画像それぞれについて第Nフレームと第N+1フレームの位置関係から、第N+1フレームの両画面の特徴対応点を検出し、対応点を用いて各カメラ間の相対位置を同定することによりセルフキャリブレーションを行う。In a stereo camera system, high-accuracy self-calibration is realized for recognition errors of corresponding point positions. The corresponding point position of the Nth frame image is calculated from the set of both images taken by each of the two cameras in the plurality of cameras, and the position relationship between the Nth frame and the (N + 1) th frame for each of the left and right images. The self-calibration is performed by detecting the feature corresponding points on both screens of the (N + 1) th frame and identifying the relative positions between the cameras using the corresponding points.

Description

本発明は、2台以上のカメラで被写体を撮影することによりその被写体の3次元位置を算出し、環境認識をするステレオカメラシステム、及びそれを搭載する移動体に関する。   The present invention relates to a stereo camera system for recognizing an environment by photographing a subject with two or more cameras to calculate a three-dimensional position of the subject, and a mobile object equipped with the stereo camera system.

2台以上のカメラで同一の被写体を撮影することによりその被写体の3次元位置を認識するシステムはステレオカメラシステムとして知られている。   A system that recognizes the three-dimensional position of a subject by photographing the same subject with two or more cameras is known as a stereo camera system.

今後、自動車や建設機械などの車両にステレオカメラシステムを搭載することにより、車両の自動操縦機能や操作支援機能が実現可能になると期待されている。   In the future, it is expected that by installing a stereo camera system in vehicles such as automobiles and construction machines, auto-steering functions and operation support functions of vehicles can be realized.

3次元位置を正しく認識するためには、ステレオカメラシステムの内部パラメータと外部パラメータを正確に同定する必要がある。これを校正あるいはキャリブレーションと呼ばれている。内部パラメータとは各カメラの焦点距離、画像中心位置、レンズ歪みを指し、外部パラメータとは各カメラ間の相対位置姿勢を指す。事前に精度良くキャリブレーションする方法として、チェッカーパターンを持つ平面など幾何形状が既知の物体を撮影する方法が広く採用されている。   In order to correctly recognize the three-dimensional position, it is necessary to accurately identify internal parameters and external parameters of the stereo camera system. This is called calibration or calibration. Internal parameters refer to the focal length, image center position, and lens distortion of each camera, and external parameters refer to the relative position and orientation between the cameras. As a method for accurately calibrating in advance, a method of photographing an object having a known geometric shape such as a plane having a checker pattern is widely adopted.

ただし、ステレオカメラシステムを搭載する移動体の走行中において、ステレオカメラシステムへの物理的な衝撃と振動が影響し外部パラメータが変化することがある。そのため、運用中のステレオカメラシステムにおける外部パラメータの再校正が必要となるが、運用中に形状既知の物体をマーカーとして準備し特別に撮影することはコストが掛かる。そのため、運用中に撮影した画像を利用して外部パラメータを自動的に校正することが要求されており、これをセルフキャリブレーションと呼ぶ。   However, when a mobile object equipped with a stereo camera system is traveling, external parameters may change due to physical impact and vibration on the stereo camera system. For this reason, it is necessary to recalibrate the external parameters in the stereo camera system in operation, but it is expensive to prepare an object with a known shape as a marker and perform special imaging during operation. For this reason, it is required to automatically calibrate external parameters using images taken during operation, which is called self-calibration.

セルフキャリブレーションの従来技術として、非特許文献1には、各カメラによって同時に撮影された画像から同一の点を表す組を対応点として複数組抽出し、それらの対応点の画像上の位置を用いて推定した基礎行列を特異値分解することで外部パラメータを求める手法が記載されている。   As a conventional technique for self-calibration, Non-Patent Document 1 discloses that a plurality of sets representing the same point are extracted as corresponding points from images simultaneously captured by the cameras, and the positions of the corresponding points on the image are used. Describes a method for obtaining external parameters by performing singular value decomposition on the estimated fundamental matrix.

基礎行列の分解:焦点距離の直接的表現(著:金谷健一他、情報処理学会研究報告、2000−CVIM−120−7、2000年1月20日、pp.49−56)Decomposition of fundamental matrix: Direct expression of focal length (Author: Kenichi Kanaya et al., Information Processing Society of Japan Research Report, 2000-CVIM-120-7, January 20, 2000, pp. 49-56)

ここで、被写体となる物体とステレオカメラシステムとの距離の大小によって、ステレオカメラシステムによる撮影結果と外部パラメータとの関係は異なってくる。例えば、水平画角50度で水平方向画素数1000のカメラでは5km先の物体の分解能は2.3m程度である。そのため、完全に同一方向を向いている2つのカメラ間の距離が1m程度の場合、5km以内の、特に2km以内の近距離物体を撮影した撮影結果の両画面に大きいズレが発生する。このように、カメラ相対位置を同定する場合、両画面の大きいズレから特徴対応点の探索処理が難しくなる。このことから、相対姿勢を同定するにあたり、近距離の物体を用いた場合に、対応点位置の認識誤差が生じやすくなり、相対姿勢推定のロバスト性が低くなる。そこで、本発明者らは、近距離の物体の撮影画面を用いたセルフキャリブレーションに着目した。   Here, the relationship between the imaging result of the stereo camera system and the external parameters differs depending on the distance between the subject object and the stereo camera system. For example, in a camera having a horizontal angle of view of 50 degrees and a horizontal pixel count of 1000, the resolution of an object 5 km away is about 2.3 m. For this reason, when the distance between two cameras that are completely facing in the same direction is about 1 m, a large shift occurs between the two screens of the photographing result obtained by photographing a short-distance object within 5 km, particularly within 2 km. Thus, when identifying the camera relative position, it becomes difficult to search for feature corresponding points due to a large shift between the two screens. From this, when identifying a relative posture, when using an object at a short distance, a recognition error of the corresponding point position is likely to occur, and the robustness of the relative posture estimation is lowered. Therefore, the present inventors paid attention to self-calibration using a photographing screen of an object at a short distance.

非特許文献1に記載の手法は、被写体の距離の問題を取り扱っておらず、一般的な手法で相対位置と相対姿勢を求めている。そのため、対応点の画像上の位置の認識誤差に対し、精度とロバスト性の低い手法となっている。   The method described in Non-Patent Document 1 does not deal with the subject distance problem, and obtains the relative position and the relative posture by a general method. Therefore, it is a technique with low accuracy and robustness against the recognition error of the position of the corresponding point on the image.

以上に記述したように、外部パラメータの変化に対応するための従来手法は、自動あるいは半自動システムを構築するためにはロバスト性が不十分である。そこで、本発明は、対応点マッチングの認識誤差に対し高精度なセルフキャリブレーションが可能なステレオカメラシステムを提供することを目的とする。   As described above, the conventional method for dealing with changes in external parameters is insufficient in robustness to construct an automatic or semi-automatic system. Accordingly, an object of the present invention is to provide a stereo camera system capable of highly accurate self-calibration with respect to recognition errors of corresponding point matching.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。複数の撮像部と、複数の撮像部それぞれが撮影した画像を用いて相対姿勢が変化したか否かを判断する姿勢変更判断部と、複数の撮像部それぞれが撮影した画像を用いて時系列に基づいて複数の撮影部間特徴対応点を検出する対応点検出部と、姿勢変化程度を判断してシステム作業停止しハードウェア修正を求めるアラームを出す姿勢調整要否判断部と、を有する車載ステレオカメラシステムである。   Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows. A plurality of imaging units, a posture change determination unit that determines whether or not the relative posture has changed using images captured by each of the plurality of imaging units, and a time series using images captured by each of the plurality of imaging units. In-vehicle stereo having a corresponding point detecting unit that detects feature corresponding points between a plurality of photographing units based on, and a posture adjustment necessity determining unit that determines the degree of posture change and stops system work and issues an alarm for hardware correction It is a camera system.

対応点検出部は、複数の撮像部それぞれが撮影した複数のフレーム画像の組から、第Nフレームの画像の対応点位置を算出し、左右の画像それぞれについて第Nフレームと第N+1フレームの位置関係から、第N+1フレームの両画面の特徴対応点を検出し、これら特徴対応点を用いて複数の撮像部間の第N+1フレームの相対位置を推定する。   The corresponding point detection unit calculates a corresponding point position of the Nth frame image from a set of a plurality of frame images captured by each of the plurality of imaging units, and a positional relationship between the Nth frame and the (N + 1) th frame for each of the left and right images. Then, feature corresponding points on both screens of the (N + 1) th frame are detected, and using these feature corresponding points, the relative position of the (N + 1) th frame between a plurality of imaging units is estimated.

本発明のステレオカメラシステムによれば、近距離被写体の対応点位置の認識誤差に対し高精度とロバストなセルフキャリブレーションが行われる。   According to the stereo camera system of the present invention, high-accuracy and robust self-calibration is performed for the recognition error of the corresponding point position of the short-distance subject.

本発明の実施例1における自律走行ダンプトラック向け車載ステレオカメラシステムの構成例を表す模式図である。It is a schematic diagram showing the structural example of the vehicle-mounted stereo camera system for autonomous running dump trucks in Example 1 of this invention. 実施例1における自律走行ダンプトラック向け車載ステレオカメラシステムのハードウェア構成を表す構成図である。It is a block diagram showing the hardware constitutions of the vehicle-mounted stereo camera system for autonomous running dump trucks in Example 1. 実施例1におけるシステム100全体の処理を説明するフローチャートである。3 is a flowchart illustrating processing of the entire system 100 according to the first embodiment. 実施例1における姿勢変更判断部の処理を説明するフローチャートである。6 is a flowchart illustrating processing of a posture change determination unit according to the first embodiment. 実施例1における対応点検出部の処理を説明するフローチャートである。6 is a flowchart illustrating processing of a corresponding point detection unit according to the first embodiment. 従来技術における各撮像部が同時に撮影した画像の組の対応点検出を表す模式図である。It is a schematic diagram showing the corresponding point detection of the group of the image which each imaging part in the prior art image | photographed simultaneously. 近距離被写体として実施例1における各撮像部が同時に撮影した画像の組の対応点検出ミスマッチングの例を表す模式図である。FIG. 6 is a schematic diagram illustrating an example of matching point detection mismatch of a set of images simultaneously captured by each imaging unit according to the first embodiment as a short-distance subject. 実施例1における各撮像部が同時に撮影した第Nフレームの両画像で特徴点抽出と、既知相対姿勢から特徴点の対応点を算出した結果の例を表す模式図である。FIG. 10 is a schematic diagram illustrating an example of a result of extracting feature points from both images of an Nth frame simultaneously captured by each imaging unit according to the first embodiment and calculating corresponding points of feature points from a known relative posture. 実施例1における左撮像部が撮影した第Nフレームから第N+1フレームの対応点を検出した結果の例を表す模式図である。FIG. 10 is a schematic diagram illustrating an example of a result of detecting corresponding points from the Nth frame to the (N + 1) th frame captured by the left imaging unit in the first embodiment. 実施例1における右撮像部が撮影した第Nフレームから第N+1フレームの対応点を検出した結果の例を表す模式図である。FIG. 10 is a schematic diagram illustrating an example of a result of detecting corresponding points from the Nth frame to the (N + 1) th frame captured by the right imaging unit according to the first embodiment. 実施例1における各撮像部が同時に撮影した第N+1フレームの対応点検出した結果の例を表す模式図である。FIG. 6 is a schematic diagram illustrating an example of a result of detecting corresponding points of an (N + 1) th frame that are simultaneously captured by each imaging unit in the first embodiment. 実施例1における各撮像部が同時に撮影した両画像の相対姿勢変化が大きいのでアラームを出す例を表す模式図である。FIG. 6 is a schematic diagram illustrating an example in which an alarm is issued because the relative posture change between both images simultaneously captured by each imaging unit in the first embodiment is large. 実施例1における各撮像部が同時に撮影した両画像からカメラ相対姿勢変更か否かを判断する例を表す模式図である。6 is a schematic diagram illustrating an example of determining whether or not the camera relative posture is changed from both images simultaneously captured by each imaging unit in Embodiment 1. FIG.

以下、自律走行ダンプトラックに本発明の車載ステレオカメラシステムを適用した実施例1を説明する。   A first embodiment in which the in-vehicle stereo camera system of the present invention is applied to an autonomous traveling dump truck will be described below.

本実施例の車載ステレオカメラシステムは、被写体の3次元位置を出力する。   The in-vehicle stereo camera system of the present embodiment outputs the three-dimensional position of the subject.

図1は、実施例1における車載ステレオカメラシステム100の構成を表すブロック図である。自律走行ダンプトラック向け車載ステレオカメラシステム100は、複数の撮像部101(101a、101b)、画像取得部102、画像保存部103、対応点検出部104、姿勢変更判断105、姿勢調整要否判断部106、画像補正部107、パラメータ推定部108、を備え、作業期間の被写体の3次元位置を取得し、環境認識システム制御部109に提供する。図2には上記の車載ステレオカメラシステムがダンプトラック111に実装されている様子を示す。図1の車載ステレオカメラシステム100及び環境認識システム制御部109の主要部は、図2に示す車載コントローラ110に内蔵されている。この車載コントローラは、CPU、RAM、記憶部などの一般的なハードウエア構成を有する。   FIG. 1 is a block diagram illustrating a configuration of an in-vehicle stereo camera system 100 according to the first embodiment. An in-vehicle stereo camera system 100 for an autonomous traveling dump truck includes a plurality of imaging units 101 (101a, 101b), an image acquisition unit 102, an image storage unit 103, a corresponding point detection unit 104, a posture change determination 105, and a posture adjustment necessity determination unit. 106, an image correction unit 107, and a parameter estimation unit 108, acquire the three-dimensional position of the subject during the work period, and provide it to the environment recognition system control unit 109. FIG. 2 shows a state where the above-described in-vehicle stereo camera system is mounted on the dump truck 111. The main parts of the in-vehicle stereo camera system 100 and the environment recognition system control unit 109 in FIG. 1 are built in the in-vehicle controller 110 shown in FIG. This in-vehicle controller has a general hardware configuration such as a CPU, a RAM, and a storage unit.

図1に戻り説明を続ける。撮像部101a、101bは自身の視野内に存在する被写体を撮影する機器であり、モノクロームカメラ、カラーカメラ、赤外線カメラ、ハイパースペクトルカメラなどとして実装される。各カメラ101a、101bは同一の被写体を撮影できるような相対位置姿勢関係にある。2台のカメラ101a、101bの位置関係は固定であり既知としてよい。ただし、各カメラの姿勢については推定する必要がある。なお、本実施例では撮像部(カメラ)が2台の例を示したが、3台以上でもよい。3台以上の場合、それぞれ各2つのカメラ間でカメラキャリブレーションを行い、2台の例の応用で実現できる。また、今後の実施例の説明中で、2台のカメラで同時に撮るそれぞれの画像をR画像、L画像と呼ぶ。   Returning to FIG. The imaging units 101a and 101b are devices that capture a subject existing in their field of view, and are implemented as a monochrome camera, a color camera, an infrared camera, a hyperspectral camera, or the like. The cameras 101a and 101b are in a relative position and orientation relationship so that the same subject can be photographed. The positional relationship between the two cameras 101a and 101b may be fixed and known. However, it is necessary to estimate the posture of each camera. In this embodiment, an example in which there are two imaging units (cameras) is shown, but three or more imaging units may be used. In the case of three or more units, camera calibration is performed between each two cameras, and this can be realized by applying two examples. Further, in the description of the embodiments in the future, respective images taken simultaneously by two cameras will be referred to as an R image and an L image.

画像所得部102、画像保存部103、対応点検出部104、姿勢変更判断部105、姿勢調整要否判断部106、画像補正部107、パラメータ推定部108は、各演算処理を行うため、役割毎に分けられた複数のCPU及びRAMの組み合わせとして実装される。前記の各部は外部記憶装置としてのハードディスク、USBメモリなどを採用する。姿勢調整要否判断部106にはアラームを出す装置としてスピーカまたはランプ111が接続されている。   Since the image income unit 102, the image storage unit 103, the corresponding point detection unit 104, the posture change determination unit 105, the posture adjustment necessity determination unit 106, the image correction unit 107, and the parameter estimation unit 108 perform each calculation process, It is mounted as a combination of a plurality of CPUs and RAMs divided into two. Each unit employs a hard disk, a USB memory, or the like as an external storage device. A speaker or lamp 111 is connected to the posture adjustment necessity determination unit 106 as a device for issuing an alarm.

図3は、実施例1における車載ステレオカメラシステム100全体の処理例を説明するフローチャートである。まず、S302では、撮像部101で同時撮影したR画像、L画像を画像取得部102に入力する。S303で毎フレームの画像を画像保存部103に提供する。S304では、画像保存部103に格納された毎フレームの画像を姿勢変更判断部105に提供し、カメラ相対姿勢が変化したか否かの判断を行う。姿勢変化なしと判定した場合、処理を終了する。姿勢変化ありと判定した場合、S105に進む。S304での姿勢が変化したか否かの判定の詳細については、後に図4を参照して説明する。S305では、その両画像と前フレーム両画像を対応点検出部104に提供する。対応点検出部104は、姿勢推定要のフレームの両画像の特徴対応点を検出する。特徴対応点を検出する方法は、後に図5を参照して説明する。S306では、画像補正部107で、レンズ歪みなどによって歪められている対応点検出部104で検出した両画像の対応点の各画像での位置を補正する。S307では、パラメータ推定部108で、画像補正部107提供した補正後の特徴対応点の組を運用し、姿勢推定プログラムに基づき、撮像部のカメラ間の相対姿勢を推定する。そして、S308では、姿勢調整要否判断部106でカメラ相対姿勢のマニュアル修正が必要か否かを判断し、前記S302から繰り返し実行させる。   FIG. 3 is a flowchart for explaining a processing example of the entire in-vehicle stereo camera system 100 according to the first embodiment. First, in S <b> 302, an R image and an L image captured simultaneously by the imaging unit 101 are input to the image acquisition unit 102. In step S <b> 303, an image of each frame is provided to the image storage unit 103. In S304, the image of each frame stored in the image storage unit 103 is provided to the posture change determination unit 105 to determine whether or not the camera relative posture has changed. If it is determined that there is no posture change, the process is terminated. If it is determined that there is a posture change, the process proceeds to S105. Details of the determination of whether or not the posture has changed in S304 will be described later with reference to FIG. In step S <b> 305, both the image and the previous frame image are provided to the corresponding point detection unit 104. The corresponding point detection unit 104 detects feature corresponding points of both images of the frame for which posture estimation is required. A method of detecting feature corresponding points will be described later with reference to FIG. In S306, the image correction unit 107 corrects the positions of the corresponding points of both images detected by the corresponding point detection unit 104 distorted by lens distortion or the like in each image. In S307, the parameter estimation unit 108 uses the set of corrected feature corresponding points provided by the image correction unit 107, and estimates the relative posture between the cameras of the imaging unit based on the posture estimation program. In step S308, the posture adjustment necessity determination unit 106 determines whether manual correction of the camera relative posture is necessary, and is repeatedly executed from step S302.

画像取得部102は、撮像部101を同時撮影した画像の入力を行い、毎フレームの画像を画像保存部103に提供する。   The image acquisition unit 102 inputs an image captured by the imaging unit 101 at the same time, and provides an image of each frame to the image storage unit 103.

画像保存部103は、撮像部101を同時撮影した毎フレームの画像を画像取得部102から入力し、格納している。   The image storage unit 103 receives an image of each frame captured simultaneously by the imaging unit 101 from the image acquisition unit 102 and stores it.

続いて、姿勢変更判断部105は、画像保存部103に格納した毎フレームの両画像を用いて、カメラ相対姿勢が変化したか否かの判断を行う。この判断結果により、カメラ相対姿勢推定要という信号が与えられた場合に、現在のフレームの両画像と、画像保存部103に格納した前フレームの両画像を、対応点検出部104に提供する。図13は、実施例1における各撮像部が同時に撮影した両画像からカメラ相対姿勢変更か否かを判断する例を表す模式図である。左右の両画像の平行移動のみで画素的にマッチングできる面積には、ある最大値が得られる。両カメラの相対姿勢に変化が起きていない場合には、この最大値はある値(標準値)よりも大きくなる。そこで、毎フレームの両画像が入力した後、以前のパラメータ推定部によるS307の姿勢推定の結果に基づきカメラ姿勢を校正し、S304の姿勢変化判断のプログラムを実行する。左右の両画像のうちの、横移動のみで画素的にマッチングできる領域の面積を前記標準値と比較し、カメラ相対姿勢が変化したか否かを判断する。   Subsequently, the posture change determination unit 105 determines whether or not the camera relative posture has changed using both images of each frame stored in the image storage unit 103. As a result of this determination, when a signal indicating that the camera relative posture is necessary is given, both the current frame image and the previous frame image stored in the image storage unit 103 are provided to the corresponding point detection unit 104. FIG. 13 is a schematic diagram illustrating an example in which it is determined whether or not the camera relative posture is changed from both images simultaneously captured by the image capturing units in the first embodiment. A certain maximum value is obtained for the area that can be matched pixel-wise only by the parallel movement of both the left and right images. This maximum value is larger than a certain value (standard value) when there is no change in the relative posture of both cameras. Therefore, after both images of each frame are input, the camera posture is calibrated based on the result of the posture estimation in S307 by the previous parameter estimation unit, and the posture change determination program in S304 is executed. Of both the left and right images, the area of a region that can be matched pixel-wise only by lateral movement is compared with the standard value to determine whether or not the camera relative posture has changed.

図4は、姿勢変更判断部105の姿勢変化判断の処理を説明するフローチャートである。S1041では、撮影した両画像の姿勢を、以前起こった姿勢推定結果に基づき、校正する。続いて、S1042はマッチング率を算出する。マッチング率を計算する手法の例として、左右の両画像のうちの横移動のみで画素的にマッチングできる領域の面積を算出し、その全体画像面積に対する割合を算出する。他の計算方式でもよい。S1043で標準値と比較し、カメラ姿勢に変化があったか否かを判断する。以上が図3のS304の姿勢変化判断の詳細である。   FIG. 4 is a flowchart illustrating the posture change determination process of the posture change determination unit 105. In step S1041, the postures of both the captured images are calibrated based on the posture estimation result that occurred before. Subsequently, S1042 calculates a matching rate. As an example of a method for calculating the matching rate, an area of a region that can be matched pixel-wise by only lateral movement of both the left and right images is calculated, and a ratio to the total image area is calculated. Other calculation methods may be used. In S1043, it is compared with the standard value to determine whether or not the camera posture has changed. The above is the details of the posture change determination in S304 of FIG.

対応点検出部104は、姿勢変更判断部105の信号に基づき、画像保存部103に格納した第Nフレームの両画像と、第N+1フレームの両画像を用いて、カメラ相対姿勢推定要の第N+1フレームの両画像の特徴対応点を検出し、画像補正部107に提供する。図6は、従来技術における各撮像部が同時に撮影した画像の組の特徴対応点検出例を表す模式図である。非特許文献1に記載の手法は相対位置と相対姿勢を求めている。遠距離の場合に問題なく使える手法である。   Based on the signal from the posture change determination unit 105, the corresponding point detection unit 104 uses the Nth frame image and the N + 1th frame image stored in the image storage unit 103 to determine the camera relative posture estimation N + 1th. The feature corresponding points of both images of the frame are detected and provided to the image correction unit 107. FIG. 6 is a schematic diagram illustrating an example of feature-corresponding point detection of a set of images simultaneously captured by each imaging unit in the prior art. The method described in Non-Patent Document 1 obtains a relative position and a relative attitude. It is a technique that can be used without problems in the case of long distance.

図7は、近距離の被写体である場合に、各撮像部が同時に撮影した画像の組からの対応点検出にミスマッチングが生じる例を表す模式図である。被写体の距離の問題を取り扱わずに、つまり一般的な手法で相対位置と相対姿勢を求めた場合に、カメラの離間間隔に対して被写体までの距離が近距離になる程、各カメラの画像の間で対応点の位置ずれは大きくなる。したがって、例えば図7中で、実線で結ぶ点同士を特徴対応点と認識してしまう認識誤差あるいはミスマッチングが近距離ではたくさん起きる。つまり、過去のフレームの情報を用いず、2画像の現フレーム同士を比較して対応点を検出する手法は精度とロバスト性の低い手法である。   FIG. 7 is a schematic diagram illustrating an example in which mismatching occurs in detection of corresponding points from a set of images simultaneously captured by each imaging unit when the subject is a short distance object. Without dealing with the problem of the subject distance, that is, when the relative position and relative posture are obtained by a general method, the closer the distance to the subject is relative to the camera separation interval, the more the image of each camera The positional deviation of the corresponding points increases between the two. Therefore, for example, in FIG. 7, many recognition errors or mismatches that recognize points connected by solid lines as feature corresponding points occur at short distances. That is, a method of detecting corresponding points by comparing current frames of two images without using past frame information is a method with low accuracy and robustness.

図5は、実施例1における対応点検出部104の処理を説明するフローチャートである。図8、図9、図10、図11を用いて説明される。   FIG. 5 is a flowchart for explaining processing of the corresponding point detection unit 104 according to the first embodiment. This will be described with reference to FIGS. 8, 9, 10, and 11.

図8は、実施例1における各撮像部が同時に撮影した第Nフレームの両画像上で特徴点を抽出するステップ(図5のステップS1051)、既知相対姿勢から特徴点の対応点を算出するステップ(図5のステップS1052)の結果の例を表す模式図である。   FIG. 8 illustrates a step of extracting feature points on both images of the Nth frame simultaneously captured by the image capturing units in the first embodiment (step S1051 in FIG. 5), and a step of calculating corresponding points of the feature points from the known relative posture. It is a schematic diagram showing the example of the result of (step S1052 of FIG. 5).

まず、特徴点の抽出は以下のように実現される。撮像部101a、101bで撮影した第Nフレームの両画像のうちの左画像から複数個の特徴点をコーナ法で抽出する。これは、画像上の各点に対し、その点を囲むような小ウィンドウにおける2次微分画像の自己相関行列を計算し、その行列の二つの固有値がどちらも閾値より大きくなる点をコーナ(特徴点)とするものである。まず、カラー画像をグレー画像に変換する。その変換式は   First, feature point extraction is implemented as follows. A plurality of feature points are extracted from the left image of both images of the Nth frame captured by the imaging units 101a and 101b by the corner method. For each point on the image, the autocorrelation matrix of the second-order differential image in a small window surrounding the point is calculated, and the point at which the two eigenvalues of the matrix are both greater than the threshold Point). First, a color image is converted into a gray image. The conversion formula is

Figure 2015015542
Figure 2015015542

である。ここで、iは画像内画素の横方法番号、jは縦方向番号、vはグレー画像での輝度値、r,g,bはそれぞれカラー画像における赤、緑、青成分の輝度値を表す。続いて、2次微分画像の自己相関行列Mを以下の式より求める。 It is. Here, i is the horizontal method number of the pixel in the image, j is the vertical direction number, v is the luminance value in the gray image, and r, g, and b are the luminance values of the red, green, and blue components in the color image, respectively. Subsequently, an autocorrelation matrix M of the secondary differential image is obtained from the following equation.

Figure 2015015542
Figure 2015015542

ここで、v,vはそれぞれi,j方向の偏微分関数を表し、mは小ウィンドウの大きさ、i,kはi,j番目の画素を中心とした小ウィンドウ内の画素の番号を表す。行列M(i,j)の固有値をλ(i,j)とすると,次の2次方程式を解くことで二つの固有値が得られる。Here, v i and v j represent partial differential functions in the i and j directions, respectively, m is the size of the small window, and i and k are the numbers of the pixels in the small window with the i and jth pixels as the center. Represents. If the eigenvalue of the matrix M (i, j) is λ (i, j), two eigenvalues can be obtained by solving the following quadratic equation.

Figure 2015015542
Figure 2015015542

これら二つの固有値が両方とも大きい場合、i,j番目の画素は交差する2つのエッジを持っていることになり、コーナ特徴点として抽出される。他の特徴点抽出方法で実現してもよい。 If these two eigenvalues are both large, the i, j-th pixel has two intersecting edges and is extracted as a corner feature point. You may implement | achieve with the other feature point extraction method.

続いて、第Nフレームの左画像から、既知のカメラ間相対姿勢に基づき、第Nフレームの右画像で対応点を算出する。このことにより、カメラ変化前の第Nフレームの両画像の対応点を組み合わせる。   Subsequently, from the left image of the Nth frame, a corresponding point is calculated in the right image of the Nth frame based on the known relative posture between cameras. Thus, corresponding points of both images of the Nth frame before the camera change are combined.

図9は、実施例1における左カメラが撮影した第Nフレームから第N+1フレームの対応点を検出するステップ(図5の左画像オプティカルフロー算出ステップS1053)の結果の例を表す模式図である。対応点を検出する手法を述べると、撮像部の左カメラ101aで連続撮影された2画像に対し、前フレーム(第Nフレーム)画像からLucas-Kanadeオプティカルフロー抽出法を基づき、抽出された特徴点を後フレーム(第N+1フレーム)画像で対応点を検出する。第Nフレーム画像から抽出した特徴点についてそれを中心とした小ウィンドウを切り出し、その小ウィンドウが第N+1の画像どこに存在するか探索し、次のような2つの仮定の下、画像の偏微分を利用する。
1. カメラ間相対位置姿勢が小さい
2.局所的には画像はほぼ一様な動きをする。
第Nフレームの画像をv(i,j)とし、抽出した特徴点画素の位置をi,jとする。さらに、第N+1の画像をv(i,j)とし、探索結果となる特徴点画像の位置をi,jとする。対応点探索は次式で表現される連立方程式を解き、左画像101aが撮影した第Nフレーム画像と第N+1フレーム画像の対応点を検出することにより実施する。
FIG. 9 is a schematic diagram illustrating an example of a result of a step (left image optical flow calculation step S1053 in FIG. 5) of detecting corresponding points from the Nth frame to the (N + 1) th frame captured by the left camera in the first embodiment. To describe the method of detecting corresponding points, feature points extracted from the previous frame (Nth frame) image based on the Lucas-Kanade optical flow extraction method for two images continuously captured by the left camera 101a of the imaging unit The corresponding points are detected in the rear frame (N + 1th frame) image. A small window centered on the feature point extracted from the Nth frame image is cut out, a search is made where the small window exists in the (N + 1) th image, and the partial differentiation of the image is performed under the following two assumptions. Use.
1. 1. The relative position and orientation between cameras is small. Locally, the image moves almost uniformly.
Assume that the image of the Nth frame is v L (i, j), and the position of the extracted feature point pixel is i L , j L. Furthermore, the (N + 1) th image is denoted by v R (i, j), and the position of the feature point image that is the search result is denoted by i R , j R. The corresponding point search is performed by solving simultaneous equations expressed by the following equation and detecting corresponding points between the Nth frame image and the N + 1th frame image captured by the left image 101a.

Figure 2015015542
Figure 2015015542

他の対応点探索手法でもよい。 Other corresponding point search methods may be used.

図10は、 実施例1における右カメラが撮影した第Nフレームから第N+1フレームの対応点を検出するステップ(図5の右画像オプティカルフロー算出ステップS1054)の結果の例を表す模式図である。このステップ1054でも、前記S1053と同様な手順を踏む。すなわち、撮像部の右カメラ101bで連続撮影された2画像に対し、前フレーム(第Nフレーム)画像からLucas-Kanadeオプティカルフロー抽出法を基づき、抽出された特徴点を後フレーム(第N+1フレーム)画像で対応点を検出する。第Nフレーム画像から抽出した特徴点についてそれを中心とした小ウィンドウを切り出し、その小ウィンドウが第N+1の画像どこに存在するか探索し、次のような2つの仮定の下、画像の偏微分を利用する。
1.カメラ間相対位置姿勢が小さい。
2.局所的には画像はほぼ一様な動きをする。
FIG. 10 is a schematic diagram illustrating an example of a result of a step (right image optical flow calculation step S1054 in FIG. 5) of detecting corresponding points from the Nth frame to the (N + 1) th frame captured by the right camera in the first embodiment. In this step 1054, the same procedure as in S1053 is performed. That is, for the two images continuously captured by the right camera 101b of the imaging unit, the extracted feature points are extracted from the previous frame (Nth frame) image based on the Lucas-Kanade optical flow extraction method as the subsequent frame (N + 1th frame). Corresponding points are detected in the image. A small window centered on the feature point extracted from the Nth frame image is cut out, a search is made where the small window exists in the (N + 1) th image, and the partial differentiation of the image is performed under the following two assumptions. Use.
1. The relative position and orientation between cameras is small.
2. Locally, the image moves almost uniformly.

第Nフレームの画像をv(i,j)とし、抽出した特徴点画素の位置をi,jとする。さらに、第N+1の画像をv(i,j)とし、探索結果となる特徴点画像の位置をi,jとする。特徴点探索は次式で表現される連立方程式を解き、右画像101bが撮影した第Nフレーム画像と第N+1フレーム画像の対応点を検出する。他の対応点探索手法でもよい。Assume that the image of the Nth frame is v L (i, j), and the position of the extracted feature point pixel is i L , j L. Furthermore, the (N + 1) th image is denoted by v R (i, j), and the position of the feature point image that is the search result is denoted by i R , j R. In the feature point search, simultaneous equations expressed by the following equations are solved, and corresponding points between the Nth frame image and the (N + 1) th frame image captured by the right image 101b are detected. Other corresponding point search methods may be used.

図11は実施例1における各撮像部が同時に撮影した第N+1フレームの左右画像間の対応点を決定するステップ(図5の対応点決定ステップS1055)の結果の例を表す模式図である。先のステップS1052では先行する第Nフレームの左右画像の特徴対応点を算出した。そして、各画像の左画像の第Nフレームと第N+1フレームの対応点をステップS1053で、また右画像の第Nフレームと第N+1フレームの対応点をステップS1054で算出した。これらの結果をから、第N+1フレームの左右画像間の特徴対応点を認知できる。以上が対応点検出部104の処理の詳細である。   FIG. 11 is a schematic diagram illustrating an example of a result of a step (corresponding point determination step S1055 in FIG. 5) of determining corresponding points between the left and right images of the (N + 1) th frame simultaneously captured by the imaging units in the first embodiment. In the previous step S1052, feature corresponding points of the left and right images of the preceding Nth frame are calculated. Then, the corresponding points of the Nth frame and the (N + 1) th frame of the left image of each image are calculated in step S1053, and the corresponding points of the Nth frame and the (N + 1) th frame of the right image are calculated in step S1054. From these results, the feature corresponding points between the left and right images of the (N + 1) th frame can be recognized. The details of the processing of the corresponding point detection unit 104 have been described above.

画像補正部107は、画像中心からの位置やレンズ歪みにとって歪められている対応点検出部104検出した両画像の対応点の各画像での位置を補正する。例えば、内部パラメータは、焦点距離{f,f}、画像中心位置{c,c}、歪みパラメータ{k,k,k,p,p}で表現することができる。画像の幅をw、画像の高さをhとするとき、歪んだ画像上の点の座標{u,v}と補正後の画像上の点の座標{u,v}との関係は〔数5〕で表現することができる。The image correction unit 107 corrects the position of the corresponding points of the two images detected by the corresponding point detection unit 104 detected by the corresponding point detection unit 104 distorted due to the lens distortion and the position from the image center. For example, the internal parameters can be represented by the focal length {f x, f y}, the image center position {c x, c y}, distortion parameters {k 1, k 2, k 3, p 1, p 2} it can. The width of the image w, when the height of the image to be is h, distorted coordinate {u d, v d} of a point on the image and the coordinates {u d, v d} of a point on the corrected image and the The relationship can be expressed by [Equation 5].

Figure 2015015542
Figure 2015015542

補正された対応点を、パラメータ推定部108と姿勢調整要否判断部106に提供し、カメラ相対姿勢推定とシステム復元アラーム要否判断を行う。他の補正方法で対応点を補正してもよい。 The corrected corresponding points are provided to the parameter estimation unit 108 and the posture adjustment necessity determination unit 106, and the camera relative posture estimation and the system restoration alarm necessity determination are performed. The corresponding points may be corrected by other correction methods.

パラメータ推定部108は、画像補正部107提供した補正後の対応点の組を運用し、姿勢推定プログラムに基づき、各撮像部101間の相対姿勢を同定する。画像補正部103から得られた複数の対応点が、幾何学の関係式を満たすようにカメラ間相対姿勢を求める。相対姿勢の自由度に基づき、対応点の組みで相対姿勢を一意に決めることができる。特徴点探索に入り込む誤差の影響を軽減するため、より多くの対応点を抽出するべきである。   The parameter estimation unit 108 operates the set of corresponding points after correction provided by the image correction unit 107, and identifies the relative posture between the imaging units 101 based on the posture estimation program. The inter-camera relative posture is obtained so that the plurality of corresponding points obtained from the image correction unit 103 satisfy the geometric relational expression. Based on the degree of freedom of the relative posture, the relative posture can be uniquely determined by a set of corresponding points. In order to reduce the influence of errors entering the feature point search, more corresponding points should be extracted.

例えば、以下のように実現される。   For example, it is realized as follows.

複数の方程式から解を求める最も一般的な方法に最小2乗法がある。入力データに対してロバストな結果を出力できる手法として、RANSACという誤対応も同時に推定し排除するアルゴリズムを採用することができる。   There is a least square method as the most general method for obtaining a solution from a plurality of equations. As a technique that can output a robust result to input data, an algorithm that simultaneously estimates and eliminates erroneous correspondence called RANSAC can be employed.

抽出した対応点のうち、少量の対応点をランダムにサンプリングし、それによって相対姿勢を推定する。続いて、その推定結果を用いたときに幾何学的関係式が成り立つか否かを全ての対応点に対して判定し、成立した対応点数をその推定結果の評価とする。このランダムサンプリングを複数回行い、最も評価の高かった場合の相対姿勢から誤対応を決定して排除し、最終的に正しい対応点のみで最小2乗法を適用し推定結果とする。他の姿勢推定手法でもよい。   Among the extracted corresponding points, a small amount of corresponding points are sampled at random, thereby estimating the relative posture. Subsequently, it is determined for all corresponding points whether or not the geometric relational expression holds when the estimation result is used, and the number of corresponding points established is used as an evaluation of the estimation result. This random sampling is performed a plurality of times, and erroneous correspondence is determined and eliminated from the relative posture in the case of the highest evaluation, and the least square method is finally applied to only the correct corresponding points to obtain an estimation result. Other posture estimation methods may be used.

その推定結果を、環境認識システム制御部109と車載ステレオカメラシステム100との双方の全体制御を行う姿勢変更判断部105に提供する。この推定結果は、次回のカメラ相対姿勢変化があったか否かの判断のときに運用される。   The estimation result is provided to the posture change determination unit 105 that performs overall control of both the environment recognition system control unit 109 and the in-vehicle stereo camera system 100. This estimation result is used when determining whether or not there is a next camera relative posture change.

姿勢調整要否判断部106は、ある条件を満たさない場合に、許容範囲を超える相対姿勢変化が起きたと判断し、マニュアルのシステム修正を請求するアラームを出す。判定方法として、対応点検出部104が算出した特徴対応点の個数がキャリブレーションに必要な対応点数の下限より少ない場合、及び前記の特徴点の抽出段階で抽出され左画面もしくは右画面のた特徴点の数に対する対応点検出部104が算出した特徴対応点の比率が20%以下になる場合、及び前記対応点検出部で検出した特徴対応点の重心の画像の中心からの偏移が80%を超える場合に、両画面のズレが許容範囲を超える可能性が高いと判断することができる。特徴対応点の数と左画像もしくは右画像の特徴点の数の比率について説明する。特徴点の数に対する対応点検出部104が算出した特徴対応点の数の比率が小さいと、左右両画面の比較時に大部分の特徴点が共通の画像領域外にはずれたことを意味し、つまり両画像のズレが大きいと判断することができるである。これらの場合に、ハードウェア的にアラームを出し、マニュアルの修正を請求する。前記比率及び偏移判定のしきい値は調整可能であり、20%、80%に限定するものではない。   The posture adjustment necessity determination unit 106 determines that a relative posture change exceeding an allowable range has occurred when a certain condition is not satisfied, and issues an alarm requesting manual system correction. As a determination method, when the number of feature corresponding points calculated by the corresponding point detection unit 104 is smaller than the lower limit of the number of corresponding points necessary for calibration, and the feature of the left screen or the right screen extracted in the feature point extraction stage. When the ratio of the feature corresponding points calculated by the corresponding point detection unit 104 to the number of points is 20% or less, and the deviation from the center of the image of the centroid of the feature corresponding points detected by the corresponding point detection unit is 80%. In the case of exceeding, it can be determined that there is a high possibility that the deviation between the two screens exceeds the allowable range. A ratio between the number of feature corresponding points and the number of feature points of the left image or the right image will be described. If the ratio of the number of feature corresponding points calculated by the corresponding point detection unit 104 to the number of feature points is small, it means that most feature points have shifted out of the common image area when comparing the left and right screens. It can be determined that the difference between the two images is large. In these cases, a hardware alarm is issued and a manual correction is requested. The threshold values for the ratio and shift determination can be adjusted, and are not limited to 20% and 80%.

図12は、実施例1における各撮像部が同時に撮影した両画像の相対姿勢変化が大きいためアラームを出す例を表す模式図である。S104のプログラムを運行するため、S120からの対応点組みが必要し、この対応点個数がある下限よりも少ないとき及びカメラ相対姿勢が図12のように許容範囲を超える相対姿勢変化が起きたときマニュアルのシステム修正を請求するアラームを出す。   FIG. 12 is a schematic diagram illustrating an example in which an alarm is issued because the relative posture change between both images simultaneously captured by the imaging units in the first embodiment is large. In order to run the program of S104, a set of corresponding points from S120 is required, and when the number of corresponding points is less than a certain lower limit and when a relative posture change exceeding the allowable range occurs as shown in FIG. Raise alarm requesting manual system correction.

環境認識システム制御部109は、ステレオカメラ姿勢推定の結果を出力し、車載ステレオカメラシステム100全体的に制御を行う。車載ステレオカメラシステムが撮影した画像から、環境認識を行い、被写体の3次元位置情報を算出し、この情報を基づき、カメラシステムを搭載した移動体の走行制御を行う。   The environment recognition system control unit 109 outputs the result of stereo camera posture estimation, and controls the in-vehicle stereo camera system 100 as a whole. Environment recognition is performed from an image captured by the in-vehicle stereo camera system, three-dimensional position information of the subject is calculated, and travel control of the moving body equipped with the camera system is performed based on this information.

100:車載ステレオカメラシステム
101a、101b:撮像部
102:画像取得部
103:画像保存部
104:対応点検出部
105:姿勢変更判断部
106:姿勢調整要否判断部
107:対応点補正部
108:パラメータ推定部
109:環境認識システム制御部
111:アラーム出力部
100: In-vehicle stereo camera system 101a, 101b: Imaging unit 102: Image acquisition unit 103: Image storage unit 104: Corresponding point detection unit 105: Posture change determination unit 106: Posture adjustment necessity determination unit 107: Corresponding point correction unit 108: Parameter estimation unit 109: environment recognition system control unit 111: alarm output unit

Claims (11)

移動体にそれぞれ配置された第1、第2のカメラを少なくとも備える車載ステレオカメラシステムのセルフキャリブレーション方法であって、
前記第1、第2のカメラで撮影した左画像、右画像のそれぞれの第1から第N+1フレームのデータを入力して保存し、
現フレームである左画像の第N+1フレームと右画像の第N+1フレームの組から、前記第1カメラ、第2カメラ間の相対姿勢に変化が生じたか否かを判断し、
前記第1カメラ、第2カメラ間の相対姿勢に変化が生じたと判断されたときに限り、左画像の第Nフレーム及び右画像の第Nフレームを用いて、左右画像それぞれの第N+1フレーム同士の組から対応する点の組を特徴対応点の対として検出し、検出された前記特徴対応点の対を使用してカメラ相対姿勢の推定を行うことを特徴とする車載ステレオカメラシステムのセルフキャリブレーション方法。
A self-calibration method for an in-vehicle stereo camera system including at least first and second cameras respectively arranged on a moving body,
Input and store data of the first to N + 1th frames of the left and right images taken by the first and second cameras,
From the set of the N + 1th frame of the left image that is the current frame and the N + 1th frame of the right image, it is determined whether or not a relative orientation between the first camera and the second camera has changed,
Only when it is determined that a change has occurred in the relative posture between the first camera and the second camera, the N + 1th frame of each of the left and right images is used using the Nth frame of the left image and the Nth frame of the right image. Self-calibration of an in-vehicle stereo camera system, wherein a pair of corresponding points is detected as a pair of feature corresponding points from the set, and a camera relative posture is estimated using the detected pair of feature corresponding points Method.
請求項1に記載の車載ステレオカメラシステムのセルフキャリブレーション方法であって、
前記特徴対応点の対を検出するステップは、
前記左画像の第Nフレームおよび右画像の第Nフレームからそれぞれ特徴点を抽出し、
抽出された特徴点から、前記左画像の第Nフレームとの右画像の第Nフレームの間の対応点を算出し、
前記左画像の第Nフレーム上の前記対応点に対応する前記左画像の第N+1フレーム上の点を算出し、前記右画像の第Nフレーム上の前記対応点に対応する前記右画像の第N+1フレーム上の点を算出し、もって左右画像それぞれの第N+1フレーム同士の前記特徴対応点を検出することを特徴とする車載ステレオカメラシステムのセルフキャリブレーション方法。
A self-calibration method for an in-vehicle stereo camera system according to claim 1,
Detecting the pair of feature corresponding points,
Extracting feature points from the Nth frame of the left image and the Nth frame of the right image,
From the extracted feature points, a corresponding point between the Nth frame of the left image and the Nth frame of the right image is calculated,
A point on the (N + 1) th frame of the left image corresponding to the corresponding point on the Nth frame of the left image is calculated, and an N + 1th of the right image corresponding to the corresponding point on the Nth frame of the right image is calculated. A self-calibration method for an in-vehicle stereo camera system, characterized in that a point on a frame is calculated, and the feature corresponding point between N + 1th frames of each of left and right images is detected.
請求項1に記載の車載ステレオカメラシステムのキャリブレーション方法であって、
前記第1カメラ、第2カメラ間の相対姿勢に変化が生じたか否かの判断は、
左右画像それぞれの第N+1フレームの一方に横移動のみを行って他方に画素的にマッチングできる面積の最大値を算出し、マッチング比率を算出し、標準と比較して判断することを特徴とする車載ステレオカメラセルフキャリブレーション方法。
A calibration method for an in-vehicle stereo camera system according to claim 1,
Determining whether a change has occurred in the relative posture between the first camera and the second camera,
In-vehicle, characterized in that only the lateral movement is performed on one of the N + 1th frames of each of the left and right images, the maximum value of the area that can be pixelally matched to the other is calculated, the matching ratio is calculated, and compared with the standard Stereo camera self-calibration method.
請求項1に記載の車載ステレオカメラシステムのキャリブレーション方法であって、
前記左右画像それぞれの第N+1フレーム同士の特徴対応点の対を使用してカメラ相対姿勢の推定が行なわれると、カメラ相対姿勢のズレが所定の許容範囲を超えるか否かを判定し、前記カメラ相対姿勢のズレが許容範囲を超える場合にシステム復元を要請するアラームを発することを特徴とする車載ステレオカメラシステムのキャリブレーション方法。
A calibration method for an in-vehicle stereo camera system according to claim 1,
When the camera relative posture is estimated using the pair of feature corresponding points between the (N + 1) th frames of each of the left and right images, it is determined whether the deviation of the camera relative posture exceeds a predetermined allowable range, and the camera A calibration method for an in-vehicle stereo camera system, wherein an alarm for requesting system restoration is issued when a relative posture deviation exceeds an allowable range.
請求項4に記載の車載ステレオカメラシステムのキャリブレーション方法であって、
上記特徴対応点の数がキャリブレーションに必要な対応点数の下限より少ない場合に、前記カメラ相対姿勢のズレが許容範囲を超えると判断する特徴とする車載ステレオカメラシステムのキャリブレーション方方法。
A calibration method for an in-vehicle stereo camera system according to claim 4,
A method for calibrating an in-vehicle stereo camera system, wherein when the number of feature corresponding points is smaller than a lower limit of the number of corresponding points necessary for calibration, the deviation of the camera relative posture is determined to exceed an allowable range.
請求項4に記載の車載ステレオカメラシステムのキャリブレーション方法であって、
前記左画像の特徴点の数もしくは前記右画像の特徴点の数に対する、前記左右画像それぞれの第N+1フレーム同士の特徴対応点の数の比率を算出し、当該比率が閾値以下である場合に、前記カメラ相対姿勢のズレが許容範囲を超えると判断する特徴とする車載ステレオカメラシステムのキャリブレーション方方法。
A calibration method for an in-vehicle stereo camera system according to claim 4,
When the ratio of the number of feature-corresponding points between the (N + 1) th frames of each of the left and right images to the number of feature points of the left image or the number of feature points of the right image is calculated, and the ratio is equal to or less than a threshold value, A method for calibrating an in-vehicle stereo camera system, characterized in that it is determined that a deviation of the camera relative posture exceeds an allowable range.
請求項4に記載の車載ステレオカメラシステムのキャリブレーション方法であって、
前記左右画像それぞれの第N+1フレーム同士の特徴対応点の重心位置の画像の中心からの偏移がしきい値を超える場合に、前記カメラ相対姿勢のズレが許容範囲を超えると判断することを特徴とする車載ステレオカメラシステムのキャリブレーション方法。
A calibration method for an in-vehicle stereo camera system according to claim 4,
When the deviation from the center of the center of gravity of the feature corresponding point between the N + 1th frame of each of the left and right images exceeds a threshold value, it is determined that the deviation of the camera relative posture exceeds an allowable range. A calibration method for an in-vehicle stereo camera system.
移動体にそれぞれ配置された第1、第2のカメラを少なくとも備える撮像部と、
前記第1、第2のカメラがそれぞれ撮影した画像を入力する画像取得部と、
前記第1、第2のカメラがそれぞれ撮影した画像を保存する画像保存部と、
前記第1、第2のカメラの姿勢同定を行うため、それぞれの撮影した画像を用いて前記第1、第2カメラ間の相対姿勢に変化が生じたか否かを判断する姿勢変更判断部と、
前記複数の撮像部中の2つの撮像部が左右両画像部として、前記第1、第2カメラそれぞれが撮影した左右画像の時系列フレームに基づき前記左右画像間の特徴対応点を検出する対応点検出部と、
前記検出した特徴対応点を使用し、前記複数の撮像部中の2つの撮像部カメラ姿勢推定を行うパラメータ推定部と、
許容範囲を超える相対姿勢変化が起きたときに、マニュアルのシステム修正を請求するアラームを出す姿勢調整要否判断部と、
環境認識システム制御部と、
を有するステレオカメラシステム。
An imaging unit including at least a first camera and a second camera respectively disposed on the moving body;
An image acquisition unit for inputting images taken by the first and second cameras,
An image storage unit for storing images taken by the first and second cameras,
A posture change determination unit for determining whether or not a change has occurred in the relative posture between the first and second cameras using the captured images in order to identify the posture of the first and second cameras;
Corresponding inspection for detecting feature corresponding points between the left and right images based on time-series frames of the left and right images taken by the first and second cameras, with the two imaging units of the plurality of imaging units as left and right image portions And outing,
A parameter estimation unit that uses the detected feature-corresponding points to perform camera orientation estimation of two imaging units in the plurality of imaging units;
An attitude adjustment necessity determination unit that issues an alarm requesting manual system correction when a relative attitude change exceeding the allowable range occurs,
An environment recognition system control unit;
Stereo camera system having
請求項8に記載のステレオカメラシステムであって、
前記姿勢変更判断部は前記第1、第2カメラが撮影した左右画像の一方を横移動したのみで他方の画素にマッチングできる面積の最大値を算出して、マッチング比率を算出し、標準と比較して判断することを特徴とするステレオカメラシステム。
The stereo camera system according to claim 8,
The posture change determination unit calculates the maximum value of the area that can be matched with the other pixel by laterally moving one of the left and right images taken by the first and second cameras, calculates the matching ratio, and compares it with the standard A stereo camera system characterized by making judgments based on
請求項8に記載のステレオカメラシステムであって、
前記対応点検出部は、前記第1カメラが撮影した左画像の第Nフレームの特徴点をと、第2カメラが撮像した右画像の第Nフレームの特徴点を抽出し、抽出された特徴点から前記左画像の第Nフレームと前記右画像の第Nフレームとの対応点を算出し、
前記左画像の第Nフレーム上の対応点に対応する左画像の第N+1フレームの点を算出し、前記右フレームの第Nフレームの対応点に対応する右画像の第N+1フレームの点を算出し、もって左右画像それぞれの第N+1フレーム同士の特徴対応点を検出することを特徴とするステレオカメラ装置。
The stereo camera system according to claim 8,
The corresponding point detection unit extracts feature points of the Nth frame of the left image captured by the first camera and feature points of the Nth frame of the right image captured by the second camera, and the extracted feature points To calculate corresponding points between the Nth frame of the left image and the Nth frame of the right image,
The point of the (N + 1) th frame of the left image corresponding to the corresponding point on the Nth frame of the left image is calculated, and the point of the (N + 1) th frame of the right image corresponding to the corresponding point of the Nth frame of the right frame is calculated. A stereo camera device characterized by detecting feature corresponding points between the (N + 1) th frames of each of the left and right images.
請求項8に記載のステレオカメラシステムであって、
前記姿勢調整要否判断部は、前記対応点検出部のが検出した特徴対応点の個数を記録し、
前記特徴対応点の個数がキャリブレーションに必要な対応点数の下限より少ない場合、
もしくは前記左画像もしくは右画像の特徴点の数と前記検出した特徴対応点の比率がしきい値以下になる場合、
もしくは前記検出した特徴対応点の重心位置の画像の中心からの変移がしきい値を超えた場合に、前記マニュアルの修正請求のアラームを出すことを特徴とするステレオカメラ装置。
The stereo camera system according to claim 8,
The posture adjustment necessity determination unit records the number of feature corresponding points detected by the corresponding point detection unit,
When the number of feature corresponding points is less than the lower limit of the number of corresponding points required for calibration,
Alternatively, when the ratio of the number of feature points of the left image or the right image and the detected feature corresponding points is equal to or less than a threshold value,
Alternatively, when the shift from the center of the image of the barycentric position of the detected feature corresponding point exceeds a threshold value, the stereo camera device issues an alarm requesting correction of the manual.
JP2015529231A 2013-07-29 2013-07-29 On-vehicle stereo camera system and calibration method thereof Expired - Fee Related JP6035620B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070415 WO2015015542A1 (en) 2013-07-29 2013-07-29 Vehicle-mounted stereo camera system and calibration method therefor

Publications (2)

Publication Number Publication Date
JP6035620B2 JP6035620B2 (en) 2016-11-30
JPWO2015015542A1 true JPWO2015015542A1 (en) 2017-03-02

Family

ID=52431124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529231A Expired - Fee Related JP6035620B2 (en) 2013-07-29 2013-07-29 On-vehicle stereo camera system and calibration method thereof

Country Status (2)

Country Link
JP (1) JP6035620B2 (en)
WO (1) WO2015015542A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208314A1 (en) * 2016-05-31 2017-12-07 株式会社日立製作所 Camera system and self-calibration method therfor
KR101828558B1 (en) * 2017-06-22 2018-02-14 주식회사 디아이랩 vehicle velocity detector and method using stereo camera having auto calibration function
JP7294148B2 (en) * 2018-02-09 2023-06-20 ソニーグループ株式会社 CALIBRATION DEVICE, CALIBRATION METHOD AND PROGRAM
JP7118717B2 (en) * 2018-04-18 2022-08-16 日立Astemo株式会社 Image processing device and stereo camera device
JP7493302B2 (en) * 2018-10-02 2024-05-31 カシオ計算機株式会社 Image processing device, image processing method, and program
US12018926B2 (en) 2018-12-13 2024-06-25 Sony Group Corporation Controller and control method
TWI705011B (en) * 2019-03-12 2020-09-21 緯創資通股份有限公司 Car lens offset detection method and car lens offset detection system
US12112502B2 (en) 2021-04-21 2024-10-08 Kabushiki Kaisha Toshiba Three-dimensional map estimation apparatus and obstacle detection apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354257A (en) * 2003-05-29 2004-12-16 Olympus Corp Calibration slippage correction device, and stereo camera and stereo camera system equipped with the device
JP2008275366A (en) * 2007-04-26 2008-11-13 Tokyo Institute Of Technology Stereoscopic 3-d measurement system
JP5247590B2 (en) * 2009-05-21 2013-07-24 キヤノン株式会社 Information processing apparatus and calibration processing method

Also Published As

Publication number Publication date
WO2015015542A1 (en) 2015-02-05
JP6035620B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6035620B2 (en) On-vehicle stereo camera system and calibration method thereof
US10620000B2 (en) Calibration apparatus, calibration method, and calibration program
JP6334734B2 (en) Data processing system and method for calibration of vehicle surround view system
JP4919036B2 (en) Moving object recognition device
KR101969030B1 (en) Method and apparatus for providing camera calibration for vehicles
US8385595B2 (en) Motion detection method, apparatus and system
CN106960454B (en) Depth of field obstacle avoidance method and equipment and unmanned aerial vehicle
CN108470356B (en) Target object rapid ranging method based on binocular vision
US9087374B2 (en) Automatic airview correction method
CN109410264B (en) Front vehicle distance measuring method based on laser point cloud and image fusion
KR101449160B1 (en) Apparatus and method for providing information of blind spot
CA3000859A1 (en) Camera-based speed estimation and system calibration therefor
US20060093239A1 (en) Image processing method and image processing device
JP2014074632A (en) Calibration apparatus of in-vehicle stereo camera and calibration method
US10235579B2 (en) Vanishing point correction apparatus and method
JP5501084B2 (en) Planar area detection apparatus and stereo camera system
JP5228614B2 (en) Parameter calculation apparatus, parameter calculation system and program
JP6956051B2 (en) Image processing equipment, driving support system, image processing method and program
JP2016200557A (en) Calibration device, distance measurement apparatus and calibration method
JP4586571B2 (en) Object judgment device
JP6543935B2 (en) PARALLEL VALUE DERIVING DEVICE, DEVICE CONTROL SYSTEM, MOBILE OBJECT, ROBOT, PARALLEL VALUE DERIVING METHOD, AND PROGRAM
KR102065337B1 (en) Apparatus and method for measuring movement information of an object using a cross-ratio
KR102565603B1 (en) Performance evaluation apparatus and method for autonomous emergency braking system
JP2008224323A (en) Stereoscopic photograph measuring instrument, stereoscopic photograph measuring method, and stereoscopic photograph measuring program
CN113723432B (en) Intelligent identification and positioning tracking method and system based on deep learning

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R151 Written notification of patent or utility model registration

Ref document number: 6035620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees