Nothing Special   »   [go: up one dir, main page]

JPWO2009048051A1 - 照明光学装置、並びに露光方法及び装置 - Google Patents

照明光学装置、並びに露光方法及び装置 Download PDF

Info

Publication number
JPWO2009048051A1
JPWO2009048051A1 JP2009536994A JP2009536994A JPWO2009048051A1 JP WO2009048051 A1 JPWO2009048051 A1 JP WO2009048051A1 JP 2009536994 A JP2009536994 A JP 2009536994A JP 2009536994 A JP2009536994 A JP 2009536994A JP WO2009048051 A1 JPWO2009048051 A1 JP WO2009048051A1
Authority
JP
Japan
Prior art keywords
illumination
light
polarization
polarization state
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009536994A
Other languages
English (en)
Inventor
田中 裕久
裕久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2009048051A1 publication Critical patent/JPWO2009048051A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Polarising Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

複数の偏光状態の制御を常に高精度に行うことができる照明光学装置である。照明光でマスク(M)のパターン面を照明する照明光学装置(ILS)において、その照明光の光路中に配置されて、その照明光の偏光状態を所定方向の偏光方向を有する直線偏光状態に可変する1/2波長板(5)及びPBS(4)を含む偏光光学系と、その偏光光学系よりもマスク(M)側に配置され、その偏光光学系から射出された照明光の偏光状態を可変するデポラライザ(6)とを備える。

Description

本発明は、複数の偏光状態の照明光で被照射面を照明する照明光学装置、この照明光学装置を用いる露光技術、及びこの露光技術を用いる電子デバイスの製造技術に関する。
例えば半導体素子又は液晶表示素子等の電子デバイス(マイクロデバイスを含む)を製造するためのリソグラフィ工程中で、マスク(レチクル又はフォトマスク等)のパターンを投影光学系を介してウエハ(又はガラスプレート等)の各ショット領域に転写するために、ステッパ等の一括露光型の投影露光装置、又はスキャニング・ステッパ等の走査露光型の投影露光装置等の露光装置が使用されている。これらの露光装置においては、解像度を高めるために、露光波長が短波長化されており、最近では露光光源として、KrFエキシマレーザ(波長248nm)又はArFエキシマレーザ(波長193nm)などのエキシマレーザ光源が使用されている。また、より高い解像度を得るために、転写対象のパターンに応じて照明光の偏光状態を所定の直線偏光に設定する偏光照明も使用されている。エキシマレーザ光源からはほぼ直線偏光のレーザ光が射出されるため、偏光照明には好適である。
実際には、転写対象のパターンによっては、照明光を偏光方向がランダムな非偏光状態に設定することもある。そこで、エキシマレーザ光源を露光光源として、照明光学系中に、回転可能な1/2波長板及び1/4波長板と、光路に挿脱自在な非偏光状態設定用の光学部材とを含む偏光制御部を備え、この偏光制御部中の波長板の回転及び光学部材の挿脱を組み合わせることによって、マスクに照明される照明光の偏光状態を種々の状態に制御するようにした露光装置が提案されている(例えば、特許文献1参照)。
国際公開2004/051717号パンフレット
従来の偏光制御部は、エキシマレーザ光源から供給されるレーザ光の偏光状態が所定の状態、例えば予め定められた方向の直線偏光であることを前提としていた。しかしながら、実際には、エキシマレーザ光源のようなレーザ光源から射出されるレーザ光の偏光方向は経時変化等によって変動することがある。また、エキシマレーザ光源から偏光制御部までの間に送光光学系等が設置され、かつ偏光制御部までの光路が長いような場合には、エキシマレーザ光源から偏光制御部までの間にレーザ光の偏光状態が僅かに変化する恐れもある。
このように偏光制御部に入射するレーザ光の偏光状態が、設計上で定められている状態から変化すると、偏光制御部から射出されるレーザ光(照明光)の偏光状態が目標とする状態からずれて、解像度が低下する恐れがある。
本発明は、かかる事情に鑑みてなされたものであり、照明光の偏光状態の制御を常に高精度に行うことができる照明光学技術、並びにその照明光学技術を用いる露光技術及びデバイス製造技術を提供することを目的とする。
本発明による照明光学装置は、照明光で被照射面を照明する照明光学装置において、その照明光の光路中に配置されて、その照明光の偏光状態を所定方向の偏光方向を有する直線偏光状態に可変(制御)する直線偏光可変機構と、その直線偏光可変機構より下流(被照射面側)に配置され、その直線偏光可変機構から射出されたその照明光の偏光状態を可変する偏光状態可変機構と、を備えるものである。
また、本発明による露光方法は、投影光学系を用いて感光性基板にパターンを露光する露光方法において、本発明の照明光学装置を用いて被照射面を照明する工程と、その被照射面に配置されるマスクのパターンをその感光性基板に露光する露光工程と、を有するものである。
また、本発明による露光装置は、本発明の照明光学装置を備えるとともに、被照射面に配置されるマスクを照明する照明光を供給する光源部と、そのマスクのパターンを感光性基板に露光する投影光学系と、を備えるものである。
また、本発明によるデバイス製造方法は、リソグラフィ工程を含む電子デバイスの製造方法であって、そのリソグラフィ工程において、本発明の露光装置を用いるものである。
本発明によれば、例えば外部の光源等から供給される照明光の偏光状態が経時変化等によって僅かに変動しても、直線偏光可変機構によって設定された所定方向に偏光する直線偏光が偏光状態可変機構に供給される。また、偏光方向が異なる直線偏光の光を偏光状態可変機構に供給することで、複数の偏光状態の光を生成できる。従って、偏光状態の制御を常に高精度に行うことができる。
図1は、本発明の実施形態の一例の照明光学系を備えた露光装置の構成を概略的に示す図である。 図2(A)、図2(B)、図2(C)はそれぞれ図1中の偏光制御部の構成を示す斜視図である。 図3(A)は転写対象のパターンの一例を示す図、図3(B)は2極照明の一例を示す図、図3(C)は転写対象のパターンの他の例を示す図、図3(D)は2極照明の他の例を示す図である。 図1の偏光制御部の変形例を示す斜視図である。 図5(A)は偏光ビームスプリッタの代わりに使用できる光学部材を示す図、図5(B)は図5(A)の光学部材の使用方法の他の例を示す図である。 図6(A)、図6(B)はそれぞれ1/2波長板5の代わりに使用できる旋光素子を示す図である。 半導体デバイスの製造工程の一例を示すフローチャートである。
符号の説明
ILS…照明光学系、PL…投影光学系、1…光源、4…偏光ビームスプリッタ(PBS)、5…1/2波長板、6…デポラライザ、6a…水晶プリズム、7A〜7C…回折光学素子、9…ズームレンズ、10…アキシコン系、11…マイクロレンズアレイ、21…照明制御系
以下、本発明の実施形態の一例につき図面を参照して説明する。
図1は、本実施形態の露光装置の概略構成を示す図である。図1において、その露光装置は、露光用の光源1と、光源1からの露光用の照明光(露光光)ILでマスクMのパターン面(マスク面)を照明する照明光学系ILSと、マスクMの位置決めを行うマスクステージ(不図示)と、マスクMのパターンの像をウエハW(感光性基板)上に投影する投影光学系PLと、ウエハWの位置決めを行うウエハステージ(不図示)と、装置全体の動作を統括制御するコンピュータよりなる主制御系20と、各種駆動系等とを備えている。図1において、ウエハWの載置面の法線方向に沿ってZ軸を設定し、Z軸に垂直な平面内において図1の紙面に平行な方向にY軸を、図1の紙面に垂直な方向にX軸をそれぞれ設定している。
図1の露光装置は、光源1として、波長193nmのほぼ直線偏光のレーザ光を供給するArFエキシマレーザ光源を備えている。なお、光源1として、波長248nmのレーザ光を供給するKrFエキシマレーザ光源、波長157nmのレーザ光を供給するF2 レーザ光源、固体レーザ光源の高調波発生装置、又はi線(365nm)等の輝線を供給する水銀ランプなどを用いることができる。
光源1からZ方向に射出されたほぼ平行光束で、かつほぼ直線偏光のレーザ光よりなる照明光ILは、X方向に沿って細長い矩形状の断面を有し、不図示のビームマッチングユニット(送光光学系)を介して、一対のZY面内で屈折力を持つレンズ2a及び2bからなるビームエキスパンダ2(整形光学系)に入射する。照明光ILは、ビームエキスパンダ2によってその断面形状がY方向に拡大されて、所定の矩形状断面を有する光束に整形される。
ビームエキスパンダ2から射出された照明光ILは、光路折り曲げ用のミラー3でY方向に反射された後、照明光学系ILSの光軸AXIに沿って順次、1/2波長板5、プリズム型の偏光ビームスプリッタ(以下、PBSと言う。)4、及びデポラライザ6を通過して回折光学素子(Diffractive Optical Element:DOE)7A,7B,7C等のいずれかに入射する。1/2波長板5、PBS4、及びデポラライザ6を含んで偏光制御部が構成されている。
図2(A)、(B)、(C)は、それぞれ図1の偏光制御部を示す斜視図である。図2(A)において、1/2波長板5及びPBS4は、それぞれ光軸AXIに平行な軸5Y及び4Yを中心として、時計周り及び反時計周りに回転可能に支持されている。さらに、1/2波長板5が軸5Yの周りに角度θだけ回転されるときに、PBS4は軸4Yの周りに2倍の角度(2θ)だけ回転されるように構成されている。また、1/2波長板5の第1結晶軸5A(後述)が、光軸AXIを通りZ軸に平行な軸A1に平行である状態を、1/2波長板5の回転角θが0である初期状態とする。さらに、光軸AXIに平行にPBS4に入射する光束のうちで、PBS4の偏光ビームスプリッタ面で反射される光束がZ軸に平行な軸A3に沿って射出される状態を、PBS4の回転角(2θ)が0である初期状態とする。なお、本実施形態では、軸5Y及び軸4Yは共通の回転軸である光軸AXIに合致している。
図1に戻り、一例として、1/2波長板5及びPBS4はそれぞれ円筒状の保持部材27A及び27Bを介して不図示の鏡筒内に収納され、その鏡筒は照明光学系ILS用の支持フレーム(不図示)に支持されている。保持部材27A及び27Bの外面の一部に歯車が形成されている。また、光軸AXIに平行で歯車22a及び22bが固定された駆動軸と、この駆動軸を回転する駆動部22とが、上記の支持フレームに支持されている。その駆動軸には回転角をモニタするためのロータリエンコーダ(不図示)が組み込まれている。歯車22a及び22bはそれぞれ不図示の鏡筒の開口を通して保持部材27A及び27Bに設けられた歯車に噛合している。この場合、歯車22aと保持部材27Aの歯車との歯数の比の値に対して、歯車22bと保持部材27Bの歯車との歯数の比の値は2倍に設定されている。この結果、駆動部22によって歯車22a,22bを一体的に回転して1/2波長板5の回転角がθになると、PBS4の回転角は2θとなる。主制御系20からの偏光照明を設定するコマンドに応じて、照明制御系21が駆動部22を介してその回転角θを制御する。なお、偏光制御部の詳細については後述する。
図1において、回折光学素子7A等は、ガラス基板に露光波長程度のピッチを有する微小な段差を二次元的に形成することによって構成され、入射ビームを種々の所望の角度に回折する作用を有する。回折光学素子7Aは、入射した矩形状の平行光束を回折してファーフィールドに円形状の光束を形成する機能を有する発散光束形成素子である。さらに、入射した照明光ILを回折して、ファーフィールドに光軸AXIに対してほぼ対称にそれぞれX方向及びZ方向(マスク面でのY方向に対応する)に偏心した2箇所の照明領域(照野)を形成する機能を有する2極照明用の回折光学素子7B,7C、偏心した4箇所の照明領域を形成する4極照明用の回折光学素子(不図示)、及び輪帯状の照明領域を形成する輪帯照明用の回折光学素子(不図示)等が備えられている。これらの回折光学素子7A〜7C等は、一例として円板8の周囲に保持されている。主制御系20からの照明条件を設定する指令に応じて、照明制御系21が回転モータ等の駆動部23によって円板8を回転することによって、その照明条件に応じた回折光学素子を照明光ILの光路上に配置できるように構成されている。図1では、照明光ILの光路上に通常照明用の回折光学素子7Aが設定されている。
図1において、回折光学素子7A(又は7B,7C等)を介して回折された光束は、前群レンズ系9a、凹の円錐面を持つ第1プリズム10aと凸の円錐面を持つ第2プリズム10bとからなるアキシコン系10、及び後群レンズ系9bを介して、オプティカルインテグレータとしてのマイクロレンズアレイ11を照明する。前群レンズ系9a及び後群レンズ系9bから、所定範囲で焦点距離を連続的に変化させるズームレンズ(変倍光学系)9が構成されている。ズームレンズ9は、回折光学素子7Aの射出面とマイクロレンズアレイ11の後側焦点面とを光学的にほぼ共役に結んでいる。換言すると、ズームレンズ9は、回折光学素子7Aの射出面とマイクロレンズアレイ11の入射面とを実質的にフーリエ変換の関係に結んでいる。
回折光学素子7A等から射出される照明光ILは、ズームレンズ9の後側焦点面(ひいてはマイクロレンズアレイ11の入射面)に、円形、2極状等の所定形状の照明領域(照野)を形成する。このように回折光学装置7A等とズームレンズ9とは、照明領域形成手段を構成している。その照明領域の全体的な大きさは、ズームレンズ9の焦点距離に依存して変化する。ズームレンズ9のレンズ系9a及び9bをそれぞれ照明制御系21の指令に基づいて例えばスライド機構を含む駆動部24及び26によって光軸AXIに沿って駆動することで、ズームレンズ9の焦点距離が所望の値に制御される。
また、アキシコン系10において、第1プリズム10aと第2プリズム10bとの円錐面は対向して配置され、第2プリズム10bは、照明制御系21の指令に基づいて例えばスライド機構を含む駆動部25によって光軸AXIに沿って駆動される。このようにプリズム10a及び10bの光軸AXIに沿った間隔を制御することによって、回折光学素子7A等から射出された光束のマイクロレンズアレイ11の入射面における光軸AXIに対して半径方向の位置を制御できる。従って、例えば後述の図3(B)の2極状の照明領域32A及び32Bを使用する場合、図1のアキシコン系10のプリズム10a及び10bの間隔を制御することによって、照明領域32A,32Bの中心の光軸AXIからの距離を制御できる。一方、上記のズームレンズ9の焦点距離を制御することによって、照明領域32A,32Bの個々の大きさを制御できる。
マイクロレンズアレイ11は、縦横に稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子である。マイクロレンズアレイ11を構成する各微小レンズは、マスクM上において形成すべき照明領域の形状(ひいてはウエハW上において形成すべき露光領域の形状)と相似な矩形状の断面を有する。一般に、マイクロレンズアレイは、たとえば平行平面ガラス板にエッチング処理を施して微小レンズ群を形成することによって構成される。マイクロレンズアレイ11を構成する各微小レンズは、通常のフライアイレンズを構成する各レンズエレメントよりも微小である。なお、図1では、図面の明瞭化のために、マイクロレンズアレイ11を構成する微小レンズの数を実際よりも非常に少なく表している。
従って、マイクロレンズアレイ11に入射した光束は多数の微小レンズにより二次元的に分割され、各微小レンズの後側焦点面には多数の光源がそれぞれ形成される。こうして、マイクロレンズアレイ11の後側焦点面である照明光学系ILSの瞳面(照明瞳面)12には、マイクロレンズアレイ11への入射光束によって形成される照明領域(例えば円形領域又は図3(B)の2極の照明領域32A,32B等)とほぼ同じ光強度分布を有する二次光源、すなわち光軸AXIを中心とした実質的な面光源からなる二次光源が形成される。
図1において、マイクロレンズアレイ11の後側焦点面(照明瞳面12)に形成された二次光源からの照明光ILは、必要に応じてその照明領域の光強度分布の輪郭を規定する開口絞り(不図示)を介して制限された後、第1リレーレンズ13、マスクブラインド14(視野絞り)、第2リレーレンズ15、光路折り曲げ用のミラー16、及びコンデンサ光学系17を介して、転写用のパターンが形成されたマスクMを重畳的に照明する。ビームエキスパンダ2から偏光制御部までの光学部材、及び回折光学素子7A等からコンデンサ光学系17までの光学部材を含んで照明光学系ILSが構成されている。
マスクMのパターンを経た照明光ILは、投影光学系PLを介して、レジスト(感光材料)が塗布されたウエハW上にマスクパターンの像を形成する。こうして、投影光学系PLの光軸(Z軸に平行)と直交する平面(XY平面)内においてウエハWを二次元的に駆動制御しながら一括露光又は走査露光を行うことにより、ウエハWの各ショット領域にはマスクMのパターンが逐次露光される。
なお、一括露光では、いわゆるステップ・アンド・リピート方式にしたがって、ウエハの各ショット領域に対してマスクパターンを一括的に露光する。この場合、マスクM上での照明領域の形状は正方形に近い矩形状であり、マイクロレンズアレイ11の各微小レンズの断面形状も正方形に近い矩形状となる。一方、走査露光では、いわゆるステップ・アンド・スキャン方式にしたがって、マスクM及びウエハWを投影光学系PLに対して相対移動させながらウエハWの各ショット領域に対してマスクパターンを露光する。この場合、マスクM上での照明領域の形状は短辺と長辺との比が例えば1:3の長方形状であり、マイクロレンズアレイ11の各微小レンズの断面形状もこれと相似な長方形状となる。
次に、図1の照明光学系ILS内の1/2波長板5、PBS4、及びデポラライザ6を含む偏光制御部の構成及び作用につき説明する。なお、図2等において、説明の便宜上、偏光制御部内を通過する照明光ILを照明光IL1A〜IL8として表している。
図2(A)において、1/2波長板5は、入射する照明光ILの断面形状を覆うことができる大きさの光軸AXI(Y軸に平行な軸)に垂直な円板状の基板より形成されている。1/2波長板5は、ArFエキシマレーザを透過する水晶、フッ化マグネシウム(MgF2)等の複屈折性を持つ材料からなる所定厚さの材料から形成できる。また、1/2波長板5は、第1結晶軸5Aとこれに直交する第2結晶軸(不図示)とを有し、入射する露光波長λの光束が射出される際に、第1結晶軸5Aの方向の偏光成分と第2結晶軸の方向の偏光成分との間に180°(λ/2)の位相差が生じる。
本実施形態では、例えば、図1の駆動部22によって、図2(B)及び図2(C)に示すように、1/2波長板5を初期状態に対して光軸AXI(軸5Y)を中心として、時計周り(又は反時計周りでもよい)に45°及び22.5°だけ回転できればよい。従って、駆動部22には、ロータリエンコーダを設ける代わりに、1/2波長板5が初期状態、及びその初期状態から45°及び22.5°だけ回転した状態を検出するための3個のリミットスイッチを設けてもよい。
本実施形態の図1の光源1は、ほぼ直線偏光のレーザ光を射出するArFエキシマレーザ光源であり、1/2波長板5に入射する際の照明光ILの偏光方向は、Z方向になるように設定されている。しかしながら、実際には、光源1の発光状態の微妙な変化若しくは経時変化、及びビームマッチングユニット(不図示)の振動等によって、図2(A)の1/2波長板5に入射する際の照明光ILの偏光状態は、偏光方向がZ方向から僅かにずれたり、僅かに楕円偏光になったりする。以下では、説明の便宜上、1/2波長板5に入射する照明光ILの偏光状態(電場ベクトルの状態)は、Z軸にほぼ平行な方向に細長い楕円偏光であるとする。
また、PBS4は、ArFエキシマレーザ(波長193nm)を透過する石英又は蛍石(CaF2 )等の光学材料から形成した2つの断面形状が正三角形のプリズムの接合面に、偏光ビームスプリッタ膜を被着した後、その2つのプリズムを接合することによって製造できる。PBS4は、1/2波長板5から入射する照明光のうちのP偏光成分(入射面に平行に直線偏光した光)よりなる照明光をデポラライザ6側に透過させて、S偏光成分(入射面に垂直に直線偏光した光)よりなる照明光IL2を反射する。例えば、本実施形態では、1/2波長板5の回転角θに対して、PBS4の回転角は2θであるため、1/2波長板5の回転角が45°及び22.5°であるときに、PBS4の回転角はそれぞれ90°及び45°となる。1/2波長板5に入射する照明光ILの偏光状態が変動しても、PBS4を設けることによって、後段のデポラライザ6に対して常に所望の方向に直線偏光した照明光を供給することができ、偏光制御を高精度に行うことができる。
図1において、デポラライザ6は、照明光ILの断面形状を覆う大きさで中心軸が光軸AXIに平行な円板状で、厚さ方向に楔型の水晶プリズム6aと、この水晶プリズム6aと相補的な形状を有する楔型の石英ガラスプリズム6b(例えば、水晶プリズム6aとほぼ同じ形状で、かつ回転角が180°異なる状態で対向するように近接して配置された石英ガラスプリズム6b)とを、不図示の支持フレームで支持することによって構成されている。水晶プリズム6aの代わりに、ArFエキシマレーザを透過するフッ化マグネシウム等の複屈折性を持つ材料からなるプリズムも使用できる。また、水晶プリズム6aだけでは照明光ILの光路が曲がるため、照明光ILの光路が曲がらないように、デポラライザ6が全体として平板状になるように、石英ガラスプリズム6bが設けられている。石英ガラスプリズム6bの代わりに、ArFエキシマレーザを透過する蛍石等の複屈折性がないか、又は複屈折性の小さい光学材料からなるプリズムを使用してもよい。
図2(A)に示すように、デポラライザ6の水晶プリズム6aは、その方向の屈折率が異なる直交する第1結晶軸6aA及び第2結晶軸6aBを有しており、水晶プリズム6aの厚さは、一例として、第1結晶軸6aAに平行な方向では一定であり、第2結晶軸6aBに平行な方向でほぼ線形に変化している。また、水晶プリズム6aは、水晶プリズム6aの第1結晶軸6aAがZ軸に平行になるように、即ち第2結晶軸6aBがX軸に平行になるような角度で安定に支持されている。
次に、図1のマスクM上の転写対象のパターンが、図3(A)に示すように、X方向に微細なピッチで形成されたライン・アンド・スペースパターン(以下、L&Sパターンという)31Xである場合、その照明光を2極照明として、その照明光の偏光状態を偏光方向B1がY方向の直線偏光とするものとする。この場合、図1の主制御系20の指令に基づいて照明制御系21は、駆動部23を介して照明光の光路上に、照明瞳面12上で図3(B)に示すように、X方向に離れた2箇所の照明領域32A,32Bで光量を大きくするための、2極照明用の回折光学素子7Bを設置する。さらに、照明制御系21は、1/2波長板5及びPBS4の回転角は、図2(A)の初期状態のままに設定しておく。
この結果、図2(A)において、1/2波長板5に入射するほぼZ軸に平行な楕円偏光の照明光ILは、ほぼ同じ楕円偏光(ただし、電場ベクトルの回転方向は逆転している)の照明光IL1AとしてPBS4に入射する。PBS4に入射した照明光IL1Aのうちで、Z方向に直線偏光した光量の大きい照明光IL3(P偏光成分)はPBS4を透過してデポラライザ6に入射し、光量の小さいS偏光成分の照明光IL2は反射される。この場合、照明光IL3の偏光方向は水晶プリズム6aの第1結晶軸6aAに平行であるため、水晶プリズム6a及びデポラライザ6からは偏光方向が入射時と同じZ方向の直線偏光の照明光IL4が射出される。なお、図1において、光路折り曲げ用のミラー16が設けられているため、偏光制御部及び照明瞳面12におけるZ方向は、マスクM上のY方向に対応している。
そして、図3(B)の照明瞳面12の2極の照明領域32A,32Bは偏光方向B2がZ方向である直線偏光の照明光IL4によって照明され、図3(A)のL&Sパターン31XはY方向に直線偏光した2極照明によって照明されるため、L&Sパターン31Xを高解像度でウエハW上に転写することができる。
一方、図1のマスクM上の転写対象のパターンが、図3(C)に示すように、Y方向に微細なピッチで形成されたL&Sパターン31Yである場合、その照明光をY方向の2極照明として、その偏光状態を偏光方向B3がX方向の直線偏光とするものとする。この場合、照明瞳面12上で図3(D)に示すように、Y方向に離れた2箇所の照明領域33A,33Bで光量を大きくするために、図1の照明光の光路上に2極照明用の回折光学素子7Cを設置する。さらに、照明制御系21は、図2(B)に示すように、1/2波長板5の回転角θを初期状態から45°に設定し、PBS4の回転角(2θ)を初期状態から90°に設定する。即ち、1/2波長板5の第1結晶軸5Aを初期状態の直線A1に平行な状態から光軸AXIの周りに45°回転し、X方向に偏光した直線偏光がPBS4を透過するようにPBS4を回転する。
この結果、図2(B)において、楕円偏光の照明光ILは、1/2波長板5で偏光方向が90°回転して、X軸にほぼ平行な方向に細長い楕円偏光(ただし、電場ベクトルの回転方向は逆である)の照明光IL1BとしてPBS4に入射する。そして、照明光IL1Bのうちで、X方向に直線偏光した光量の大きい照明光IL5(P偏光成分)はPBS4を透過してデポラライザ6に入射し、光量の小さいS偏光成分の照明光IL2は反射される。この場合、照明光IL5の偏光方向は水晶プリズム6aの第2結晶軸6aBに平行であるため、水晶プリズム6a及びデポラライザ6からは偏光方向が入射時と同じX方向の直線偏光の照明光IL6が射出される。そして、図3(D)の照明瞳面12の2極の照明領域33A,33Bは偏光方向B4がX方向の直線偏光の照明光IL6によって照明され、図3(C)のL&Sパターン31YはX方向に直線偏光した2極照明によって照明されるため、L&Sパターン31Yを高解像度でウエハW上に転写することができる。
次に、図1のマスクM上の転写対象のパターンが、例えば密集度の低い粗いパターンであるような場合には、その照明光の偏光状態をランダム偏光(非偏光)に設定するものとする。この場合、図1の照明光の光路上には例えば回折光学素子7Aが設置される。さらに、照明制御系21は、例えば、図2(C)に示すように、1/2波長板5の回転角θを初期状態から22.5°(=45°/2)に設定し、PBS4の回転角(2θ)を初期状態から45°に設定する。即ち、1/2波長板5の第1結晶軸5Aを初期状態の直線A1に平行な状態から光軸AXIの周りに22.5°回転し、Z軸(及びX軸)に対して45°で交差する方向に偏光した直線偏光がPBS4を透過するようにPBS4を回転する。
この結果、図2(C)において、楕円偏光の照明光ILは、1/2波長板5で偏光方向が45°回転して、Z軸(及びX軸)にほぼ45°で交差する方向に細長い楕円偏光の照明光IL1CとしてPBS4に入射する。そして、照明光IL1Cのうちで、Z軸(及びX軸)に対して45°で交差する斜め方向に直線偏光した光量の大きい照明光IL7(P偏光成分)はPBS4を透過してデポラライザ6に入射し、光量の小さいS偏光成分の照明光IL2は反射される。この場合、照明光IL7の偏光方向は水晶プリズム6aの2つの結晶軸6aA,6aBに45°で傾斜しており、かつその偏光方向に沿って水晶プリズム6aの厚さは次第に変化している。従って、水晶プリズム6a及びデポラライザ6からは偏光方向(又は楕円偏光の形状)が位置によってランダムの非偏光の照明光IL8が射出される。従って、この照明光IL8を図1のマイクロレンズアレイ11(オプティカルインテグレータ)を介して重畳してマスクMに照射することによって、マスクMのパターンは非偏光の照明光によって照明される。
このように本実施形態の露光装置によれば、照明光学系ILS中の1/2波長板5及びPBS4の回転角を制御することによって、マスクMに照射される照明光の偏光状態を、偏光方向がX方向の直線偏光、偏光方向がY方向の直線偏光、及び偏光状態がランダムの非偏光のいずれかに設定することができる。従って、転写対象のパターンに応じて照明光の偏光状態を容易に最適化できるため、各種パターンをそれぞれ高解像度でウエハW上に露光できる。なお、いわゆるPBS4の消光比は、完全であること又はより高いことが望ましいが、所望の偏光方向と略直交する方向の偏光方向を有する直線偏光のPBS4に対する透過率が概ね10%以下であれば、ウエハ上のパターンのコントラストをそれ程低下させることなく、パターンを露光することができる。
本実施形態の作用効果及び変形例は以下の通りである。
(1)図1の照明光学系ILSは、照明光でマスクMのパターン面(マスク面、被照射面)を照明する照明光学装置において、その照明光の光路中に配置されて、その照明光の偏光状態を所定方向(図2(A)のZ方向、X方向、斜め方向のいずれか)の偏光方向を有する直線偏光状態に可変(制御)する1/2波長板5及びPBS4を含む偏光光学系(5,4)と、その偏光光学系(5,4)より下流(マスク面側)に配置され、その偏光光学系から射出された照明光の偏光状態を可変(制御)するデポラライザ6とを備えている。
従って、光源1から偏光光学系(5,4)に供給される照明光ILの偏光状態が経時変化等によって変動しても、偏光光学系(5,4)からデポラライザ6に対して3つの方向のうちのいずれかの方向に正確に直線偏光した光量の大きい照明光が供給される。そして、デポラライザ6によって3種類の異なる偏光状態の照明光を生成できる。従って、複数の偏光状態の制御を常に高精度に行うことができる。
(2)また、図2(A)〜(C)に示すように、入射する照明光ILがほぼZ方向の楕円偏光(又は直線偏光)の場合、Z方向又はX方向に直線偏光した状態を第1偏光状態、Z軸(又はX軸)に45°で交差する方向に直線偏光した状態を第2偏光状態とする。このとき、その偏光光学系(5,4)は、照明光ILをZ軸(若しくはX軸)にほぼ平行な偏光状態(ほぼ第1偏光状態)の照明光IL1A(若しくはIL1B)、又はZ軸にほぼ45°で交差する方向の偏光状態(ほぼ第2偏光状態)の照明光IL1Cに可変する1/2波長板5(直線偏光可変素子)と、その第1偏光状態の直線偏光の照明光IL3(若しくはIL5)、又はその第2偏光状態の直線偏光の照明光IL7を選択的に透過させるPBS4(直線偏光抽出素子)とを備えている。
このように、1/2波長板5とPBS4とを組み合わせることによって、入射する照明光ILの利用効率を低下させることなく、PBS4からデポラライザ6に対して偏光方向の異なる複数の直線偏光を供給することができる。
(3)また、デポラライザ6は、その第1偏光状態の照明光IL3(又はIL5)を偏光方向が同じ直線偏光(第3偏光状態)の照明光IL4(又はIL6)に可変し、その第2偏光状態の照明光IL7を非偏光(第4偏光状態)の照明光IL8に可変する。これによって、照明光ILの利用効率を低下させることなく、直交する2方向の直線偏光の照明光又は非偏光の照明光を生成できる。
(4)また、図1において、PBS4は、1/2波長板5とマスク面との間に配置され、デポラライザ6はPBS4とマスク面との間に配置されている。この配置によって、光源1から供給される照明光ILの偏光状態が僅かに変動しても、常に所定方向に直線偏光した照明光をデポラライザ6に供給できるため、マスク面に照射される照明光の偏光状態を正確に制御できる。
(5)また、図2(A)において、1/2波長板5は軸5Y(第1回転軸)を中心として回転可能である。軸5Yは照明光学系ILSの光軸AXIと等しいが、光軸AXIに平行でもよい。これによって、マスク面で必要な照明光の偏光状態に応じて1/2波長板5を回転できる。
(6)この場合、1/2波長板5は、マスク面の照明条件に応じて、軸5Yを中心として回転される。これによって、照明光の利用効率を高く維持して、偏光制御を行うことができる。
(7)さらに、PBS4は、軸4Y(第2回転軸)を中心として回転可能に構成され、1/2波長板5と連動して回転される。軸4Yは照明光学系ILSの光軸AXIと等しいが、光軸AXIに平行でもよい。
このように、1/2波長板5と連動してPBS4を回転することで、照明光ILの利用効率を高く維持して、マスク面上での照明光の偏光状態を直交する2方向の直線偏光、又は非偏光のいずれにも正確に設定できる。
(8)また、1/2波長板5の回転角をθとすると、PBS4は、1/2波長板5と連動して2θだけ回転する。一般に、1/2波長板5の回転角がθであるとき、入射する照明光の偏光方向は2θだけ回転する。従って、入射する照明光ILが直線偏光である場合、PBS4の回転角を1/2波長板5の回転角の2倍にすることによって、極めて少ない光量損失で、入射する照明光ILに対して偏光方向が2θだけ異なる直線偏光の光を生成できる。
(9)また、図1において、1/2波長板5とPBS4とを回転させる回転軸は1つ(光軸AXI)である。この場合、共通の駆動部22によって1/2波長板5とPBS4とを連動して回転できるため、回転機構を簡素化できる。
(10)なお、1/2波長板5とPBS4とを回転させる回転軸は、図2(A9の軸5Y又は軸4Yでもよい。
ただし、1/2波長板5及びPBS4をそれぞれ異なる回転駆動機構によって回転してもよい。
(11)また、デポラライザ6は、複屈折性の水晶プリズム6aを含んでいる。従って、水晶プリズム6aを楔形にするだけで容易に非偏光状態の光を生成できる部材を製造できる。
なお、図4に示すように、デポラライザ6を光軸AXI又は光軸AXIに平行な軸(第3回転軸)を中心として回転可能として、デポラライザ6の回転角を駆動部28によって制御できるようにしてもよい。図1の照明制御系21によって制御される駆動部28は、一例としてデポラライザ6を保持する円筒状部材(不図示)を回転する歯車機構から構成できる。
図4の変形例において、マスクMを照明する照明光の偏光状態を非偏光にする場合には、1/2波長板5及びPBS4の回転角を図2(A)の状態(初期状態)にしておき、駆動部28によってデポラライザ6を初期状態から時計回り(反時計回りでもよい)に45°回転する。このとき、水晶プリズム6aの結晶軸6aAは、Z軸に平行な軸A2に対して45°で傾斜する。この結果、PBS4からデポラライザ6に向かうZ方向に偏光した照明光IL3の偏光方向は、水晶プリズム6aの結晶軸6aA,6aBのいずれにも45°で傾斜しているため、デポラライザ6からは非偏光の照明光IL8が射出される。図4の変形例においては、デポラライザ6に入射する照明光IL3の偏光状態が正確にZ軸に平行であるため、非偏光状態を正確に、かつ高い照明効率で設定できる。
(12)また、図1では、1/2波長板5を用いているため、その回転角を制御するのみで、射出される照明光の偏光方向を制御できる。
(13)なお、1/2波長板5の代わりに、図6(A)、図6(B)に示すように、入射する照明光ILの偏光方向をそれぞれ90°及び45°回転して照明光IL1B及びIL1Cとして射出する旋光素子36A及び36Bを用いてもよい。旋光素子36A,36Bは水晶等の複屈折性材料の厚さを制御することで製造できる。この場合には、図1の回転可能な1/2波長板5の代わりに、旋光素子36A,36Bを照明光ILの光路に対して挿脱自在に構成すればよい。例えば、ターレット等を用いて、旋光素子36A,36Bを照明光ILの光路に対して切り換え自在に構成すればよい。
(14)また、図1の照明光学系ILSでは、1/2波長板5からの光から直線偏光の光を抽出するために、プリズム型のPBS4を用いている。PBS4は入射光と射出光との光路が同一直線上にあるため、光学系の設計・製造が容易である。
(15)なお、ArFエキシマレーザ光に対するPBS4の偏光ビームスプリッタ膜の製造が困難で、PBS4の製造コストが高いような場合には、PBS4の代わりに、図5(A)に示す光学部材35を用いてもよい。光学部材35は、厚さ1mm程度の平板状の石英等のガラス板34を斜めに複数枚(例えば10枚〜20枚程度)積み重ねたものであり、その製造は極めて容易である。図5(A)のように光学部材35に対する照明光ILの入射角θiを45°とした場合には、ガラス板34の1面でのP偏光の照明光IL1の透過率は約99%、S偏光の照明光IL2の透過率は約90%である。従って、例えばガラス板34を15枚(30面)重ねた場合には、S偏光の透過率はほぼ5%以下に低下する。従って、光学部材35は、入射光からほぼP偏光の照明光IL1のみを高精度に抽出する安価な光学部材として使用できる。
また、図5(B)に示すように、ガラス板34に入射する照明光ILの入射角θiをブリュースタ角θbにすることによって、ガラス板34におけるS偏光の照明光IL2の透過率をさらに低下できる。従って、より少ない枚数のガラス板34を用いて光学部材35を構成できる。
なお、いわゆる光学部材35(ここでは、ガラス板34を斜めに複数枚(例えば10枚〜20枚程度)積み重ねたもの)の消光比は、完全であること又はより高いことが望ましいが、所望の偏光方向と略直交する方向の偏光方向を有する直線偏光の光学部材35に対する透過率が概ね10%以下であれば、ウエハ上のパターンのコントラストをそれ程低下させることなく、パターンを露光することができる。
(16)また、図1の照明光学系ILSは、デポラライザ6とマスク面との間の光路中に配置されて、照明光でマスク面を均一に照明するためのマイクロレンズアレイ11(オプティカルインテグレータ)を備えている。これによって、マスク面の照度分布を均一化できる。マイクロレンズアレイ11の代わりに通常のフライアイレンズも使用できる。
なお、波面分割型のインテグレータであるマイクロレンズアレイ11に代えて、内面反射型のオプティカルインテグレータとしてのロッド型インテグレータを用いることもできる。この場合、図1において、ズームレンズ9よりもマスクM側に集光光学系を追加して回折光学素子7A等の共役面を形成し、この共役面近傍に入射端が位置決めされるようにロッド型インテグレータを配置する。
また、このロッド型インテグレータの射出端面又は射出端面近傍に配置される照明視野絞りの像をマスクM上に形成するためのリレー光学系を配置する。この構成の場合、二次光源はリレー光学系の瞳面に形成される(二次光源の虚像はロッド型インテグレータの入射端近傍に形成される)。また、ロッド型インテグレータからの光束をマスクMへ導くためのリレー光学系が導光光学系となる。
(17)また、マイクロレンズアレイ11とマスク面との間の光路中に配置されて、マイクロレンズアレイ11からの光束をマスク面へ導くためのリレー光学系(13,15)及びコンデンサ光学系17(導光光学系)をさらに備えている。これによって、オプティカルインテグレータからの光束が重畳してマスクM上に照射される。
(18)また、デポラライザ6とマスク面との間の光路中に挿脱可能に配置されて、所定形状の光強度分布を有する照明光を形成する回折光学素子7A〜7C等(光強度分布形成手段)を備えている。回折光学素子7A等によって効率的に照明光の光強度分布を所望の分布に形成できる。なお、照明光ILの利用効率が低下してもよい場合には、回折光学素子の代わりに照明瞳面に配置されて種々の形状の開口絞りを備えた開口絞り系を使用してもよい。
(19)また、図1の実施形態では、照明光ILを供給する光源1を備えている。本実施形態では、光源1からの照明光ILの偏光状態が変動しても、高精度に偏光制御を行うことができる。
また、上記の実施形態の露光方法は、投影光学系PLを用いてウエハW(感光性基板)にパターンを露光する露光方法において、照明光学系ILSを用いてマスク面を照明する照明工程と、マスク面に配置されるマスクのパターンをウエハWに露光する露光工程と、を有する。
また、上記の実施形態の露光装置は、照明光学系ILSを備えるとともに、マスク面に配置されるマスクMを照明する照明光を供給する光源1と、マスクMのパターンをウエハWに露光する投影光学系PLと、を備えている。
この場合、高精度に偏光制御を行うことができるため、微細なパターンを高解像度でウエハW上に転写できる。
なお、本発明は、例えば国際公開第99/49504号パンフレットなどに開示される液浸型露光装置、又はプロキシミティ方式の露光装置等にも適用することができる。
また、上記の実施形態の露光装置を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、電子デバイスは、図7に示すように、電子デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいてマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置(投影露光装置)によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
言い換えると、このデバイスの製造方法は、リソグラフィ工程を含み、そのリソグラフィ工程で上記の実施形態の露光装置を用いて感光性基板を露光している。このとき、偏光制御を高精度に行って微細なパターンを高解像度で感光性基板上に転写できるため、高機能の電子デバイスを高精度に製造できる。
また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス)の製造プロセスにも広く適用できる。
さらに、上述の各実施形態では、照明光学装置を備えた露光装置を例にとって本発明を説明したが、マスク以外の被照射面を照明するための一般的な照明光学装置に本発明を適用することができることは明らかである。
また、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。また、明細書、特許請求の範囲、図面、及び要約を含む2007年10月12日付け提出の日本国特願2007−267256の全ての開示内容は、そっくりそのまま引用して本願に組み込まれている。
本発明による照明光学装置は、リソグラフィ工程で用いられる露光装置に搭載されて、照明光で被照射面を照明する照明光学装置であって、その被照射面に達する照明光の偏光状態を可変とする照明光学装置において、その照明光の光路中に配置されて、その照明光の偏光状態を所定方向の偏光方向を有する直線偏光状態に可変(制御)する直線偏光可変機構と、その直線偏光可変機構より下流(被照射面側)に配置され、その直線偏光可変機構から射出されたその照明光の偏光状態を可変する偏光状態可変機構と、を備えるものである。

Claims (23)

  1. 照明光で被照射面を照明する照明光学装置において、
    前記照明光の光路中に配置されて、前記照明光の偏光状態を所定方向の偏光方向を有する直線偏光状態に可変する直線偏光可変機構と、
    前記直線偏光可変機構より下流に配置され、前記直線偏光可変機構から射出された前記照明光の偏光状態を可変する偏光状態可変機構と、
    を備えることを特徴とする照明光学装置。
  2. 前記直線偏光可変機構は、前記照明光の偏光状態をほぼ第1偏光状態又は第2偏光状態に可変する直線偏光可変素子と、前記第1偏光状態を有する直線偏光又は前記第2偏光状態を有する直線偏光を選択的に透過させる直線偏光抽出素子と、を備えることを特徴とする請求項1に記載の照明光学装置。
  3. 前記偏光状態可変機構は、前記第1偏光状態を第3偏光状態に可変し、前記第2偏光状態を第4偏光状態に可変することを特徴とする請求項2に記載の照明光学装置。
  4. 前記直線偏光抽出素子は、前記直線偏光可変素子と前記被照射面との間に配置され、
    前記偏光状態可変機構は、前記直線偏光抽出素子と前記被照射面との間に配置されることを特徴とする請求項2又は3に記載の照明光学装置。
  5. 前記直線偏光可変素子は、第1回転軸を中心として回転可能であることを特徴とする請求項2から4いずれか一項に記載の照明光学装置。
  6. 前記直線偏光可変素子は、前記被照射面を照明する照明条件に応じて、前記第1回転軸を中心として回転されることを特徴とする請求項5に記載の照明光学装置。
  7. 前記直線偏光抽出素子は、第2回転軸を中心として回転可能に構成され、前記直線偏光可変素子と連動して回転されることを特徴とする請求項5又は6に記載の照明光学装置。
  8. 前記直線偏光抽出素子は、前記直線偏光可変素子の回転角をθとすると、前記直線偏光可変素子と連動して角度2θだけ回転されることを特徴とする請求項7に記載の照明光学装置。
  9. 前記直線偏光可変素子と前記直線偏光抽出素子とを回転させる回転軸は1つであることを特徴とする請求項7又は8に記載の照明光学装置。
  10. 前記回転軸は、前記第1回転軸又は前記第2回転軸であることを特徴とする請求項9に記載の照明光学装置。
  11. 前記偏光状態可変機構は、複屈折性の光学部材を含むとともに、
    前記光学部材は、第3回転軸を中心として回転可能であることを特徴とする請求項2から10のいずれか一項に記載の照明光学装置。
  12. 前記直線偏光可変素子は、1/2波長板であることを特徴とする請求項2から11のいずれか一項に記載の照明光学装置。
  13. 前記直線偏光可変素子は、旋光素子であることを特徴とする請求項2から4、請求項7、請求項11のいずれか一項に記載の照明光学装置。
  14. 前記直線偏光可変素子は、少なくとも2つの旋光素子を含むとともに、
    前記少なくとも2つの旋光素子は、前記照明光の光路に対して切り換え自在に構成されることを特徴とする請求項2から7、請求項11のいずれか一項に記載の照明光学装置。
  15. 前記直線偏光抽出素子は、偏光ビームスプリッタであることを特徴とする請求項2から14のいずれか一項に記載の照明光学装置。
  16. 前記直線偏光抽出素子は、重ね配列された複数の平板ガラスであることを特徴とする請求項2から14のいずれか一項に記載の照明光学装置。
  17. 前記偏光状態可変機構と前記被照射面との間の光路中に配置されて、前記照明光で前記被照射面を均一に照明するためのオプティカルインテグレータを備えることを特徴とする請求項1から16のいずれか一項に記載の照明光学装置。
  18. 前記オプティカルインテグレータと前記被照射面との間の光路中に配置されて、前記オプティカルインテグレータからの光束を前記被照射面へ導くための導光光学系をさらに備えることを特徴とする請求項17に記載の照明光学装置。
  19. 前記偏光状態可変機構と前記被照射面との間の光路中に挿脱可能に配置されて、所定形状の光強度分布を有する前記照明光を形成する光強度分布形成手段を備えることを特徴とする請求項1から18のいずれか一項に記載の照明光学装置。
  20. 前記照明光を供給する光源部をさらに備えることを特徴とする請求項1から19のいずれか一項に記載の照明光学装置。
  21. 投影光学系を用いて感光性基板にパターンを露光する露光方法において、
    請求項1から20のいずれか一項に記載の照明光学装置を用いて被照射面を照明する工程と、
    前記被照射面に配置されるマスクのパターンを前記感光性基板に露光する露光工程と、
    を有することを特徴とする露光方法。
  22. 請求項1から19のいずれか一項に記載の照明光学装置を備えるとともに、
    被照射面に配置されるマスクを照明する照明光を供給する光源部と、
    前記マスクのパターンを感光性基板に露光する投影光学系と、
    を備えることを特徴とする露光装置。
  23. リソグラフィ工程を含む電子デバイスの製造方法であって、
    前記リソグラフィ工程において、請求項22に記載の露光装置を用いることを特徴とする電子デバイスの製造方法。
JP2009536994A 2007-10-12 2008-10-07 照明光学装置、並びに露光方法及び装置 Withdrawn JPWO2009048051A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007267256 2007-10-12
JP2007267256 2007-10-12
PCT/JP2008/068206 WO2009048051A1 (ja) 2007-10-12 2008-10-07 照明光学装置、並びに露光方法及び装置

Publications (1)

Publication Number Publication Date
JPWO2009048051A1 true JPWO2009048051A1 (ja) 2011-02-17

Family

ID=40549195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009536994A Withdrawn JPWO2009048051A1 (ja) 2007-10-12 2008-10-07 照明光学装置、並びに露光方法及び装置

Country Status (6)

Country Link
US (2) US8300213B2 (ja)
EP (1) EP2200070A4 (ja)
JP (1) JPWO2009048051A1 (ja)
KR (1) KR20100085974A (ja)
TW (1) TW200928607A (ja)
WO (1) WO2009048051A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
EP1716457B9 (en) * 2004-01-16 2012-04-04 Carl Zeiss SMT GmbH Projection system with a polarization-modulating element having a variable thickness profile
US20070019179A1 (en) * 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
JPWO2009048051A1 (ja) * 2007-10-12 2011-02-17 株式会社ニコン 照明光学装置、並びに露光方法及び装置
CN101526755B (zh) * 2009-04-21 2011-01-05 清华大学 一种193nm浸没式光刻照明系统
JP2012083383A (ja) * 2010-10-06 2012-04-26 V Technology Co Ltd 露光装置
JP6858206B2 (ja) * 2017-02-17 2021-04-14 富士フイルム株式会社 液晶表示装置
DE102018218064B4 (de) * 2018-10-22 2024-01-18 Carl Zeiss Smt Gmbh Optisches System, insbesondere für die Mikrolithographie

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063751A (ja) * 1983-09-19 1985-04-12 Olympus Optical Co Ltd 光磁気ピツクアツプ装置
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
TW200412617A (en) * 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
WO2005005694A1 (ja) * 2003-07-10 2005-01-20 Nikon Corporation 人工水晶部材、露光装置、及び露光装置の製造方法
WO2005036619A1 (ja) * 2003-10-09 2005-04-21 Nikon Corporation 照明光学装置、露光装置および露光方法
TWI366219B (en) * 2004-02-06 2012-06-11 Nikon Corp Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
US7345740B2 (en) * 2004-12-28 2008-03-18 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
TWI423301B (zh) * 2005-01-21 2014-01-11 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
JP2007263897A (ja) * 2006-03-29 2007-10-11 Nikon Corp 偏光計測装置の校正方法及び装置、偏光計測装置及び該装置を備えた露光装置、並びに位相遅れ量の計測方法及び波長板
JPWO2009048051A1 (ja) * 2007-10-12 2011-02-17 株式会社ニコン 照明光学装置、並びに露光方法及び装置

Also Published As

Publication number Publication date
KR20100085974A (ko) 2010-07-29
WO2009048051A1 (ja) 2009-04-16
US8300213B2 (en) 2012-10-30
EP2200070A4 (en) 2012-11-21
US20130114058A1 (en) 2013-05-09
TW200928607A (en) 2009-07-01
EP2200070A1 (en) 2010-06-23
US20090128796A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
KR101624140B1 (ko) 조명 광학 장치, 노광 장치, 조명 방법, 노광 방법 및 디바이스 제조 방법
JP6323425B2 (ja) 照明光学装置及び投影露光装置
EP1821149A2 (en) Exposure apparatus and device manufacturing method
JPWO2009048051A1 (ja) 照明光学装置、並びに露光方法及び装置
US9581910B2 (en) Method of lithographically transferring a pattern on a light sensitive surface and illumination system of a microlithographic projection exposure apparatus
WO2005010963A1 (ja) 照明光学装置、露光装置および露光方法
JP2005116831A (ja) 投影露光装置、露光方法、及びデバイス製造方法
JP2009099629A (ja) 照明光学装置、露光方法及び装置、並びに電子デバイスの製造方法
WO2013042679A1 (ja) 照明光学装置、光学系ユニット、照明方法、並びに露光方法及び装置
JP2010141091A (ja) 偏光制御ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2010283101A (ja) 偏光子ユニット、照明光学系、露光装置、およびデバイス製造方法
JP2007048871A (ja) 照明光学装置、露光装置及びマイクロデバイスの製造方法
WO2014077404A1 (ja) 照明光学系及び照明方法、並びに露光方法及び装置
JP2010283100A (ja) 偏光変換ユニット、照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110