JPWO2004078961A1 - Floating carrier and floating / collecting method - Google Patents
Floating carrier and floating / collecting method Download PDFInfo
- Publication number
- JPWO2004078961A1 JPWO2004078961A1 JP2005503141A JP2005503141A JPWO2004078961A1 JP WO2004078961 A1 JPWO2004078961 A1 JP WO2004078961A1 JP 2005503141 A JP2005503141 A JP 2005503141A JP 2005503141 A JP2005503141 A JP 2005503141A JP WO2004078961 A1 JPWO2004078961 A1 JP WO2004078961A1
- Authority
- JP
- Japan
- Prior art keywords
- sol
- gel
- temperature
- carrier
- floating carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/04—Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/089—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/082—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C12N11/087—Acrylic polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Gynecology & Obstetrics (AREA)
- Reproductive Health (AREA)
- Dispersion Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
ハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体。該浮遊担体は低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示す。該浮遊担体中における鉄球(直径4mm)の沈降速度は、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上である。被浮遊物に対する外力の印加が制限された状態で(例えば、浮遊担体を収容すべき容器壁に、被浮遊物を実質的に接触させずに)、被浮遊物を浮遊させることが可能な浮遊担体および該担体を利用した浮遊・回収方法が提供される。A gel-forming floating carrier comprising at least a hydrogel-forming polymer. The floating carrier exhibits a thermoreversible sol-gel transition which is a sol state at a low temperature and a gel state at a high temperature, and is substantially insoluble in water at a high temperature gel state. The sedimentation rate of the iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature and 5 mm / min at a temperature 6 ° C. lower than the sol-gel transition temperature. That's it. Floating capable of floating the suspended matter in a state where application of external force to the suspended matter is limited (for example, without substantially bringing the suspended matter into contact with the container wall that should accommodate the floating carrier) Provided are a carrier and a method for floating and collecting using the carrier.
Description
本発明は、好適な浮遊状態(すなわち、被浮遊物に対する外力の印加が制限された状態)において、被浮遊物を浮遊させることが可能な浮遊担体に関する。
本発明の浮遊担体の用途は、例えば、動植物細胞および/又は組織の培養(例えば、未分化な細胞の三次元培養あるいは浮遊培養)のための担体として特に好適に使用可能である。The present invention relates to a floating carrier capable of floating a floating object in a suitable floating state (that is, a state where application of external force to the floating object is limited).
The use of the suspension carrier of the present invention can be particularly suitably used as a carrier for, for example, animal and plant cell and / or tissue culture (for example, three-dimensional culture or suspension culture of undifferentiated cells).
本発明の浮遊担体の使用法ないし用途は特に制限されないが、説明の便宜上、最近のトピックスである未分化な動植物細胞および/又は組織の培養に関連する先行技術について述べる。
近年、未分化な動植物の培養方法として、未分化状態を維持し易い点から、液体培養ないしは浮遊培養が広く行われている。植物細胞の培養の場合は、植物体からプロトプラストを単離し、該プロトプラストを培養しカルスあるいは毛状根を再生し育成する技術が開発され、特にプロトプラストの段階で遺伝子導入して目的にあった植物体を育種することが行われている。このプロトプラストの培養は主に液体培養で行われているが、液体培養では攪拌を必要とするためプロトプラストに衝突などの物理的傷害を与える可能性がある。
動物細胞の培養の場合は、個体の全ての細胞に分化する能力を有する胚性幹細胞(Embryonic Stem Cells,ES細胞)が、最近特に注目されている。例えば、マウスES細胞は、インターロイキン6(interleukin−6,IL−6)ファミリーに属する白血病抑制因子(Leukemia inhibitory factor,LIF)の共存下では、未分化状態を維持したまま増殖できることが知られている。マウスES細胞は胚盤胞に注入すると胎盤以外の全ての組識に分化することができる。
このようなインビボ(in vivo)と同じ条件をインビトロ(in vitro)で作り出すために、胚様体(Embryoid body,EB)を形成させることが広く行われている。EBからは内胚葉、中胚葉、外胚葉への分化が認められ、内皮系細胞、血液細胞、筋細胞、神経細胞、脂肪細胞が得られることが報告されている(倭 英司ら、細胞工学、Vol.20,No.7,989−993(2001);非特許文献1)。
上記したEBは、LIFを除いた状態でES細胞を球状に保ち浮遊培養することで得ることができるが、ES細胞が容器壁に付着しない状態で培養することが事実上は必須である。これは、ES細胞が容器壁に付着した場合には、繊維芽細胞様の接着性細胞に分化してしまうという理由による。
このようにES細胞が容器壁に付着しない状態で培養することを可能とするEBの作成方法としては、ES細胞を含む培養液をシャーレの天井などにつるし三次元的に培養するハンギング・カルチャー(hanging culture)法や、メチルセルロースを含有する高粘度液体培地中でES細胞を三次元的に培養するメチルセルロース法が知られている(これらのハンギング・カルチャー法およびメチルセルロース法の詳細に関しては、例えば、文献Desbaillets I,etal:Exp Physiol.,85,645−651(2000)(非特許文献2)を参照することができる)。
上記ハンギング・カルチャー法では吊された細胞は重力により培養液の滴の下部に集まり、しだいに球形を呈するようになるが、この方法では1滴のカルチャーで1個のEBしか作ることができず、大量のEBを作成することは困難である。また、このハンギング・カルチャー法では、通常は別個の細胞が凝集してEBを作るため、単一のES細胞が増殖してEBを形成したという保証はなく、他の細胞のコンタミネーションが問題となる。
他方、上記メチルセルロース法では、ES細胞あるいはES細胞が増殖した細胞塊が徐々に沈降して容器底に付着し、繊維芽細胞等の付着性細胞が発生するという問題がある。更に、メチルセルロース含有培地が高粘度のため、ES細胞の播種、混和、更にEBの回収操作が困難であるという問題もある。
加えて、上記したハンギング・カルチャー法およびメチルセルロース法のいずれにおいても、これらの方法による培養の途中で培地交換が困難であるため、養分の補給や老廃物の除去が出来ず、EBの成長速度が遅いという問題があった。
In recent years, liquid culture or suspension culture has been widely used as a method for culturing undifferentiated animals and plants from the viewpoint of easily maintaining an undifferentiated state. In the case of plant cell culture, a technique for isolating protoplasts from plant bodies, culturing the protoplasts, and regenerating and growing callus or hairy roots has been developed. Breeding the body is done. This protoplast culture is mainly carried out in liquid culture. However, liquid culture requires agitation and may cause physical damage such as collision to the protoplast.
In the case of culturing animal cells, embryonic stem cells (ES cells) having the ability to differentiate into all cells of an individual have recently attracted particular attention. For example, mouse ES cells are known to be able to proliferate while maintaining an undifferentiated state in the presence of a leukemia inhibitory factor (LIF) belonging to the interleukin-6 (IL-6) family. Yes. Mouse ES cells can differentiate into all tissues except placenta when injected into blastocysts.
In order to create the same conditions as in vivo in vitro, it is widely performed to form an embryoid body (EB). From EB, differentiation into endoderm, mesoderm, and ectoderm is recognized, and it has been reported that endothelial cells, blood cells, muscle cells, nerve cells, and fat cells can be obtained (Eiji Tsuji et al., Cell Engineering, Vol.20, No.7, 989-993 (2001);
The above-mentioned EB can be obtained by suspending ES cells in a spherical shape without LIF, but it is practically essential that the ES cells are not attached to the vessel wall. This is because when ES cells adhere to the container wall, they differentiate into fibroblast-like adhesive cells.
As described above, the EB can be cultured in a state in which ES cells do not adhere to the vessel wall. A hanging culture (three-dimensional culture is performed by hanging a culture solution containing ES cells on a petri dish ceiling or the like). (hanging culture) method and methylcellulose method in which ES cells are three-dimensionally cultured in a high-viscosity liquid medium containing methylcellulose are known (for details of these hanging culture methods and methylcellulose methods, for example, literature Desbaillets I, etal: Exp Physiol., 85, 645-651 (2000) (non-patent document 2) can be referred to).
In the hanging culture method, suspended cells gather under the drop of the culture solution due to gravity and gradually become spherical, but this method can only make one EB in one drop of culture. It is difficult to create a large amount of EBs. In this hanging culture method, since separate cells usually aggregate to form EB, there is no guarantee that a single ES cell has proliferated to form EB, and contamination of other cells is a problem. Become.
On the other hand, the methyl cellulose method has a problem that ES cells or a cell mass in which ES cells have proliferated gradually settle and adhere to the bottom of the container, and adherent cells such as fibroblasts are generated. Furthermore, since the methylcellulose-containing medium has a high viscosity, there is a problem that it is difficult to seed and mix ES cells and to collect EB.
In addition, in any of the above-described hanging culture method and methylcellulose method, it is difficult to change the medium during the culture by these methods, so it is not possible to supply nutrients or remove waste products, and the growth rate of EB is high. There was a problem of being slow.
本発明の目的は、上記した従来技術の欠点を解消した浮遊担体、および該担体を利用した浮遊・回収方法を提供することにある。
本発明の他の目的は、被浮遊物に対する外力の印加が制限された状態で(例えば、浮遊担体を収容すべき容器壁に、被浮遊物を実質的に接触させずに)、被浮遊物を浮遊させることが可能な浮遊担体および該担体を利用した浮遊・回収方法を提供することにある。
本発明者は鋭意研究の結果、より低温でゾル化し、より高温でゲル化するゾル−ゲル転移温度を有し、且つ該ゾル−ゲル転移が熱可逆的なハイドロゲル形成性の高分子を少なくとも含む組成物であって、しかも特定の鉄球沈降速度を与えるゲル形成性組成物を浮遊担体として利用することが、上記目的の達成のために極めて効果的なことを見出した。
本発明の浮遊担体は上記知見に基づくものであり、より詳しくは、ハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示し、
該浮遊担体中における鉄球(直径4mm)の沈降速度が、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上であることを特徴とするものである。
本発明によれば、更に、ハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示し、
該浮遊担体中における鉄球(直径4mm)の沈降速度が、37℃において1mm/分以下であり、且つ10℃において5mm/分以上であることを特徴とする浮遊担体が提供される。
本発明によれば、更に、水と、ハイドロゲル形成性の高分子とを少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ高温のゲル状態で実質的に水不溶性を示し;該浮遊担体中における鉄球(直径4mm)の沈降速度が、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上である浮遊担体を用い;
該浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、
該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、
再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することを特徴とする浮遊・回収方法が提供される。
本発明によれば、更にハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示し、該浮遊担体中における鉄球(直径4mm)の沈降速度が、37℃において1mm/分以下であり、且つ10℃において5mm/分以上である浮遊担体を用い;
該浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、
該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、
再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することを特徴とする浮遊・回収方法。
本発明者は上記知見に基づいて更に研究を進めた結果、上記の浮遊担体を用いた場合には、生体由来の物質(例えば、細胞ないし組織)の培養および回収が極めて容易となることをも見出した。例えば、本発明の遊担体を用いた場合には、ES細胞等の未分化な細胞を、その未分化な状態を維持したままで増殖させ得ることを見出した。
例えば、上記構成を有する本発明の浮遊担体を水を含むゲル形成性組成物とした場合は、低温(ゾル−ゲル転移温度より低い温度)で流動性のあるゾル状態にあるため、未分化な細胞を容易に播種、混和することができる。このゲル形成性組成物は、高温(ゾル−ゲル転移温度より高い温度;例えば室温あるいは37℃の培養温度)でそのままでゲル化することができるため、本発明の浮遊担体中で幹細胞や前駆細胞を、生体内と同様の環境下で3次元的に培養することが可能となる。
更に、本発明の浮遊担体は高温のゲル状態で適度な比重と粘度を有するため、細胞や細胞集合体が該浮遊担体中で実質的に沈降せず、培養容器の底面に付着することを回避できる。更に驚くべきことに、本発明の浮遊担体中では、ES細胞などの未分化な細胞が未分化な状態を維持したまま増殖することができる。
本発明の浮遊担体では、ハイドロゲル形成性のゲル形成性組成物が高温(培養温度)のゲル状態で実質的に水不溶性を示すため、本発明の浮遊担体の上に液体培地を重層したり(図1)、液体培地中に本発明の浮遊担体を浮遊させて細胞を培養したり(図2)することが容易である。未分化な細胞が増殖する際には大量の養分を必要とするが、本発明の浮遊担体を用いる培養方法では外部の液体培地からその必要な養分を補給することができる。また、細胞が生成する老廃物などの細胞増殖を阻害する物質を外部の液体培地中へ排出することができる。その結果、本発明の浮遊担体を用いる培養方法では従来の細胞培養方法に比べて細胞の増殖を促進することができる。
未分化な細胞を目的の細胞に分化誘導するには、幹細胞や前駆細胞のような細胞のみでなく、その分化や増殖を促す細胞成長因子のような種々の化学仲介物質(chemical mediator)が通常は必要である。本発明の浮遊担体は培養温度でゲル化してハイドロゲル形成性高分子が3次元的な網目構造を形成しているため、これらの化学仲介物質を浮遊担体中に長期間にわたって保持しておくことができる。この結果、未分化細胞から目的とする細胞への良好な分化誘導が達成される。
本発明の浮遊担体中で、例えば細胞や器官等を培養した後、再び冷却すれば低温で流動性のあるゾル状態に戻るため、培養された細胞や器官等を容易に且つ傷害を与えることなく回収することができる。また、本発明の浮遊担体はそのゾル−ゲル転移温度より低温のゾル状態では、水により容易に希釈できるため、更に流動性を高くでき、更に培養された細胞や器官等の回収を容易にすることができる。
上記した本発明の浮遊担体および浮遊・回収方法は、例えば、以下のような態様を含む。
[1] ハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示し、
該浮遊担体中における鉄球(直径4mm)の沈降速度が、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上であることを特徴とする浮遊担体。
[2] 前記ゾル−ゲル転移温度より16℃高い温度における沈降速度(a)と、ゾル−ゲル転移温度より6℃低い温度における沈降速度(b)との比(b/a)が5以上である[1]に記載の浮遊担体。
[3] ハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示し、
該浮遊担体中における鉄球(直径4mm)の沈降速度が、37℃において1mm/分以下であり、且つ10℃において5mm/分以上であることを特徴とする浮遊担体。
[4] 37℃における沈降速度(c)と、10℃における沈降速度(d)との比(c/d)が5以上である[3]に記載の浮遊担体。
[5] 前記浮遊担体中で実質的に繊維芽細胞が増殖しない[1]〜[4]のいずれかに記載の浮遊担体。
[6] 前記ハイドロゲル形成性の高分子が、曇点を有する複数のブロックと親水性のブロックとが結合した高分子である[1]〜[5]のいずれかに記載の浮遊担体。
[7] 前記ゾル−ゲル転移温度が0℃より高く45℃以下である[1]〜[6]のいずれかに記載の浮遊担体。
[8] 更に水を含む[1]〜[7]のいずれかに記載の浮遊担体。
[9] 更に化学仲介物質を含有する[1]〜[8]のいずれかに記載の浮遊担体。
[10] 水と、ハイドロゲル形成性の高分子とを少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ高温のゲル状態で実質的に水不溶性を示し;該浮遊担体中における鉄球(直径4mm)の沈降速度が、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上である浮遊担体を用い;
該浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、
該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、
再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することを特徴とする浮遊・回収方法。
[11] ハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体であって;該浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、高温のゲル状態で実質的に水不溶性を示し、該浮遊担体中における鉄球(直径4mm)の沈降速度が、37℃において1mm/分以下であり、且つ10℃において5mm/分以上である浮遊担体を用い;
該浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、
該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、
再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することを特徴とする浮遊・回収方法。
[12] 前記被浮遊物が、生体由来の細胞および/又は組織であり、且つ浮遊担体中で生体由来の細胞および/又は組織の培養を行う[10]または[11]に記載の浮遊・回収方法。
[13] 前記被浮遊物がES細胞である[12]に記載の浮遊・回収方法。
[14] 前記[12]に記載の方法で培養、回収されたことを特徴とするES細胞。
[15] 前記[12]に記載の方法で培養、回収されたことを特徴とする胚様体(Embryoid body、EB)。An object of the present invention is to provide a floating carrier that has solved the above-mentioned drawbacks of the prior art, and a floating / collecting method using the carrier.
Another object of the present invention is that the application of external force to the suspended object is limited (for example, without substantially bringing the suspended object into contact with the container wall in which the suspended carrier is to be accommodated). It is an object of the present invention to provide a floating carrier capable of floating the liquid and a floating / recovering method using the carrier.
As a result of diligent research, the present inventor has at least a hydrogel-forming polymer having a sol-gel transition temperature at which a sol is gelled at a lower temperature and gelled at a higher temperature, and the sol-gel transition is thermoreversible. It has been found that the use of a gel-forming composition that is a composition containing a specific iron ball sedimentation rate as a floating carrier is extremely effective for achieving the above object.
The floating carrier of the present invention is based on the above findings, and more specifically, is a gel-forming floating carrier containing at least a hydrogel-forming polymer; the floating carrier is a sol state at a low temperature and a gel at a high temperature. Exhibits a thermoreversible sol-gel transition to a state, and is substantially insoluble in water at a high temperature gel state,
The sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature and 5 mm / min at a temperature 6 ° C. lower than the sol-gel transition temperature. It is the above, It is characterized by the above.
According to the present invention, there is further provided a gel-forming floating carrier containing at least a hydrogel-forming polymer; the thermally-reversible sol-gel in which the floating carrier is in a sol state at a low temperature and in a gel state at a high temperature. Exhibit a transition and substantially insoluble in a hot gel state,
There is provided a floating carrier characterized in that the sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at 37 ° C. and 5 mm / min or more at 10 ° C.
According to the present invention, there is further provided a gel-forming floating carrier comprising at least water and a hydrogel-forming polymer, wherein the floating carrier is in a sol state at a low temperature and in a gel state at a high temperature. The sol-gel transition and substantially insoluble in the high temperature gel state; the sedimentation rate of iron spheres (diameter 4 mm) in the suspended carrier is 16 ° C. higher than the sol-gel transition temperature. Using a floating carrier of 1 mm / min or less and 5 mm / min or more at a temperature 6 ° C. lower than the sol-gel transition temperature;
The suspended carrier is made into a sol state lower than the sol-gel transition temperature, and a suspended matter is added to the suspended carrier,
Hold the suspended object in a gel state higher than the sol-gel transition temperature,
A suspension / recovery method is provided that collects the suspended matter after being held in a sol state lower than the sol-gel transition temperature again.
According to the present invention, a gel-forming floating carrier further comprising at least a hydrogel-forming polymer; a thermoreversible sol-gel transition in which the floating carrier is in a sol state at a low temperature and in a gel state at a high temperature. And exhibit substantially water insolubility in a high temperature gel state, and the sedimentation rate of iron spheres (diameter 4 mm) in the floating carrier is 1 mm / min or less at 37 ° C. and 5 mm / min at 10 ° C. Using a floating carrier that is more than 5 minutes;
The suspended carrier is made into a sol state lower than the sol-gel transition temperature, and a suspended matter is added to the suspended carrier,
Hold the suspended object in a gel state higher than the sol-gel transition temperature,
A floatation / recovery method characterized by recovering the suspended matter after being held again in a sol state lower than the sol-gel transition temperature.
As a result of further research based on the above findings, the present inventors have found that when the above-mentioned floating carrier is used, culture and recovery of biologically derived substances (for example, cells or tissues) may be extremely easy. I found it. For example, it has been found that when the play carrier of the present invention is used, undifferentiated cells such as ES cells can be grown while maintaining the undifferentiated state.
For example, when the floating carrier of the present invention having the above structure is a gel-forming composition containing water, it is undifferentiated because it is in a fluid sol state at a low temperature (a temperature lower than the sol-gel transition temperature). Cells can be seeded and mixed easily. Since this gel-forming composition can be gelated as it is at a high temperature (a temperature higher than the sol-gel transition temperature; for example, a room temperature or a culture temperature of 37 ° C.), stem cells and progenitor cells in the suspension carrier of the present invention. Can be cultured three-dimensionally in the same environment as in vivo.
Furthermore, since the floating carrier of the present invention has an appropriate specific gravity and viscosity in a high-temperature gel state, cells and cell aggregates are not substantially settled in the floating carrier and are prevented from adhering to the bottom surface of the culture vessel. it can. Further surprisingly, in the floating carrier of the present invention, undifferentiated cells such as ES cells can be grown while maintaining an undifferentiated state.
In the floating carrier of the present invention, the hydrogel-forming gel-forming composition is substantially water-insoluble in a gel state at a high temperature (culture temperature). Therefore, a liquid medium is overlaid on the floating carrier of the present invention. (FIG. 1) It is easy to culture cells by suspending the suspension carrier of the present invention in a liquid medium (FIG. 2). When undifferentiated cells proliferate, a large amount of nutrients is required. In the culture method using the floating carrier of the present invention, the necessary nutrients can be supplied from an external liquid medium. In addition, substances that inhibit cell growth, such as waste products generated by cells, can be discharged into an external liquid medium. As a result, in the culture method using the floating carrier of the present invention, cell proliferation can be promoted as compared with the conventional cell culture method.
In order to induce differentiation of undifferentiated cells into target cells, not only cells such as stem cells and progenitor cells but also various chemical mediators such as cell growth factors that promote differentiation and proliferation are usually used. Is necessary. Since the floating carrier of the present invention is gelled at the culture temperature and the hydrogel-forming polymer forms a three-dimensional network structure, these chemical mediators should be retained in the floating carrier for a long period of time. Can do. As a result, good differentiation induction from undifferentiated cells to the target cells is achieved.
In the floating carrier of the present invention, for example, after culturing cells, organs, etc., if cooled again, it returns to a sol state having fluidity at low temperatures, so that the cultured cells, organs, etc. can be easily and without damaging. It can be recovered. In addition, since the floating carrier of the present invention can be easily diluted with water in a sol state lower than its sol-gel transition temperature, it can further increase the fluidity and further facilitate the recovery of cultured cells and organs. be able to.
The above-described floating carrier and floating / collecting method of the present invention include, for example, the following aspects.
[1] A gel-forming floating carrier containing at least a hydrogel-forming polymer, wherein the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and in a gel state at a high temperature; Show substantially water insolubility in the hot gel state,
The sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature and 5 mm / min at a temperature 6 ° C. lower than the sol-gel transition temperature. A floating carrier characterized by the above.
[2] The ratio (b / a) of the sedimentation rate (a) at a temperature 16 ° C. higher than the sol-gel transition temperature to the sedimentation rate (b) at a temperature 6 ° C. lower than the sol-gel transition temperature is 5 or more. The floating carrier according to [1].
[3] A gel-forming floating carrier containing at least a hydrogel-forming polymer, wherein the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and in a gel state at a high temperature, and Show substantially water insolubility in the hot gel state,
A floating carrier characterized in that the sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at 37 ° C and 5 mm / min or more at 10 ° C.
[4] The floating carrier according to [3], wherein a ratio (c / d) between a sedimentation rate (c) at 37 ° C. and a sedimentation rate (d) at 10 ° C. is 5 or more.
[5] The floating carrier according to any one of [1] to [4], wherein fibroblasts do not substantially grow in the floating carrier.
[6] The floating carrier according to any one of [1] to [5], wherein the hydrogel-forming polymer is a polymer in which a plurality of blocks having a cloud point and a hydrophilic block are combined.
[7] The floating carrier according to any one of [1] to [6], wherein the sol-gel transition temperature is higher than 0 ° C and lower than 45 ° C.
[8] The floating carrier according to any one of [1] to [7], further comprising water.
[9] The floating carrier according to any one of [1] to [8], further containing a chemical mediator.
[10] A gel-forming floating carrier containing at least water and a hydrogel-forming polymer; a thermoreversible sol-gel transition in which the floating carrier is in a sol state at a low temperature and in a gel state at a high temperature. And substantially insoluble in water in a high temperature gel state; the sedimentation rate of iron spheres (diameter 4 mm) in the suspended carrier is 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature. And using a floating carrier that is 5 mm / min or more at a temperature 6 ° C. lower than the sol-gel transition temperature;
The suspended carrier is made into a sol state lower than the sol-gel transition temperature, and a suspended matter is added to the suspended carrier,
Hold the suspended object in a gel state higher than the sol-gel transition temperature,
A floatation / recovery method characterized by recovering the suspended matter after being held again in a sol state lower than the sol-gel transition temperature.
[11] A gel-forming floating carrier comprising at least a hydrogel-forming polymer; the floating carrier exhibits a thermoreversible sol-gel transition in which the floating carrier becomes a sol state at a low temperature and a gel state at a high temperature; The solution is substantially water-insoluble in a high-temperature gel state, and the sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at 37 ° C. and 5 mm / min or more at 10 ° C. Using a floating carrier;
The suspended carrier is made into a sol state lower than the sol-gel transition temperature, and a suspended matter is added to the suspended carrier,
Hold the suspended object in a gel state higher than the sol-gel transition temperature,
A floatation / recovery method characterized by recovering the suspended matter after being held again in a sol state lower than the sol-gel transition temperature.
[12] The suspension / collection according to [10] or [11], wherein the suspended matter is a cell and / or tissue derived from a living body, and the cell and / or tissue derived from the living body are cultured in a floating carrier Method.
[13] The suspension / collection method according to [12], wherein the suspended matter is an ES cell.
[14] An ES cell cultured and recovered by the method according to [12].
[15] Embryoid body (EB) characterized by being cultured and recovered by the method described in [12] above.
図1は、本発明の浮遊担体中で細胞を培養する方法の1態様(実施例2に相当)を示す模式断面図である。
図2は、本発明の浮遊担体中で細胞を培養する方法の他の1態様を示す模式断面図である。
図3は、本発明の浮遊担体中でマウスES細胞を6日間培養した(実施例1)後の顕微鏡写真(倍率100倍)である。
図4は、本発明の浮遊担体中でマウスES細胞を6日間培養した(実施例2)後の顕微鏡写真(倍率100倍)であり、3日目に重層培地の交換を行ったものである。
図5は、市販のメチルセルロース培地中でマウスES細胞を6日間培養した(比較例)後の顕微鏡写真(倍率40倍)である。
図6は、本発明の浮遊担体(LIFあり)中で培養されたマウスES細胞のアルカリ性フォスファターゼ染色像(位相差顕微鏡観察倍率100倍)である。
図7 本発明の浮遊担体(LIFなし)中で培養されたマウスES細胞のアルカリ性フォスファターゼ染色像(位相差顕微鏡観察倍率100倍)
図8 feeder細胞上(LIFあり)で培養されたマウスES細胞のアルカリ性フォスファターゼ染色像(位相差顕微鏡観察倍率100倍)
図9 本発明の浮遊担体(LIFなし)中で培養されたカニクイザルES細胞のアルカリ性フォスファターゼ染色像(位相差顕微鏡観察倍率400倍)
図10 feeder細胞上(LIFなし)で培養されたカニクイザルES細胞のアルカリ性フォスファターゼ染色像(位相差顕微鏡観察倍率400倍)FIG. 1 is a schematic cross-sectional view showing one embodiment (corresponding to Example 2) of the method for culturing cells in the floating carrier of the present invention.
FIG. 2 is a schematic cross-sectional view showing another embodiment of the method for culturing cells in the floating carrier of the present invention.
FIG. 3 is a micrograph (
FIG. 4 is a photomicrograph (
FIG. 5 is a micrograph (magnification 40 times) after culturing mouse ES cells in a commercially available methylcellulose medium for 6 days (Comparative Example).
FIG. 6 is an alkaline phosphatase-stained image of a mouse ES cell cultured in the suspension carrier of the present invention (with LIF) (100-magnification observation with a phase contrast microscope).
Fig. 7 Alkaline phosphatase-stained image of mouse ES cells cultured in the suspension carrier of the present invention (without LIF) (100-magnification with phase contrast microscope)
Fig. 8 Alkaline phosphatase-stained image of mouse ES cells cultured on feeder cells (with LIF) (100-magnification with phase contrast microscope)
Fig. 9 Alkaline phosphatase-stained image of cynomolgus monkey ES cells cultured in the suspension carrier of the present invention (without LIF) (magnification of 400 times phase contrast microscope)
Fig. 10 Alkaline phosphatase-stained image of cynomolgus monkey ES cells cultured on feeder cells (without LIF) (magnification of phase contrast microscope: 400 times)
以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。
(浮遊担体)
本発明の浮遊担体は、その水溶液がゾル−ゲル転移温度を有するハイドロゲル形成性の高分子を少なくとも含むゲル形成性の浮遊担体である。このゲル形成性浮遊担体は、低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、且つ、該ゲル形成性浮遊担体が高温のゲル状態で実質的に水不溶性を示す。
更に、本発明の浮遊担体は、担体中における鉄球(直径4mm)の沈降速度が、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上である。
本発明において、「浮遊」とは、被浮遊物質が本発明の担体(媒体)中で、該担体を保持ないし収容すべき固体材料(例えば、本発明の担体を収容すべき容器の内壁)に実質的に接触することなく、本発明の担体によって実質的に保持されていることを言う。
(ゾル−ゲル転移温度)
本発明において「ゾル状態」、「ゲル状態」および「ゾル−ゲル転移温度の定義および測定は、文献(H.Yoshiokaら、Journal of Macromolecular Science,A31(1),113(1994))に記載された定義および方法に基づく。即ち、観測周波数1Hzにおける試料の動的弾性率を低温側から高温側へ徐々に温度を変化(1℃/1分)させて測定し、該試料の貯蔵弾性率(G´、弾性項)が損失弾性率(G”、粘性項)を上回る点の温度をゾル−ゲル転移温度とする。一般に、G”>G´の状態がゾルであり、G”<G´の状態がゲルであると定義される。このゾル−ゲル転移温度の測定に際しては、下記の測定条件が好適に使用可能である。
<動的弾性率の測定条件>
測定機器(商品名):ストレス制御式レオメーターAR500(TAインスツルメンツ社製)
試料溶液(ないし分散液)の濃度(ただし「ゾル−ゲル転移温度を有する高分子化合物」の濃度として):10(重量)%
試料溶液の量:約0.8g
測定用セルの形状・寸法:アクリル製平行円盤(直径4.0cm)、
ギャップ600μm
測定周波数:1Hz
適用ストレス:線形領域内。
好適なゾル−ゲル転移温度を有するハイドロゲルは、後述するような具体的な化合物の中から、上記したスクリーニング方法(ゾル−ゲル転移温度測定法)に従って容易に選択することができる。本発明の浮遊担体を用いて被浮遊物を処理および回収する一連の操作においては、上記したゾル−ゲル転移温度(e℃)を、被浮遊物の処理温度(f℃)と、被浮遊物を分散、混和あるいは回収するための冷却時の温度(g℃)との間に設定することが好ましい。すなわち、上記した3種の温度e℃、f℃、およびg℃の間には、f>e>gの関係があることが好ましい。より具体的には、(f−e)は1〜90℃、更には2〜50℃であることが好ましく、また(e−g)は1〜50℃、更には2〜40℃であることが好ましい。
(細胞や生体組織の培養に用いる態様)
本発明の浮遊担体を細胞や生体組織の培養に用いる態様においては、細胞や生体組織の熱的損傷を防ぐ点からは、上記ゾル−ゲル転移温度は0℃より高く、45℃以下であることが好ましく、更には、0℃より高く42℃以下(特に4℃以上40℃以下)であることが好ましい。
このような好適なゾル−ゲル転移温度を有するハイドロゲルは、後述するような具体的な化合物の中から、上記したスクリーニング方法(ゾル−ゲル転移温度測定法)に従って容易に選択することができる。本発明の浮遊担体を用いて細胞を培養する一連の操作においては、上記したゾル−ゲル転移温度(e℃)を細胞の培養温度(f℃)と、細胞を播種、混和あるいは回収するための冷却時の温度(g℃)との間に設定することが好ましい。すなわち、上記した3種の温度e℃、f℃、およびg℃の間には、f>e>gの関係があることが好ましい。より具体的には、(f−e)は1〜40℃、更には2〜30℃であることが好ましく、また(e−g)は1〜40℃、更には2〜30℃であることが好ましい。
(鉄球の沈降速度)
本発明の浮遊担体は、被浮遊物(細胞等)の沈降を回避するために、適度な比重と粘度を有する。本発明の浮遊担体が、このような好適な比重と粘度を有することは、例えば、以下の方法で本発明の浮遊担体中における鉄球の沈降速度を測定することによって判別できる。
<鉄球の沈降速度の測定>
鉄球(ボールベアリング用ステンレス鋼球):直径4mm、質量:0.26g
試料の量:5mL
測定器具:透明ガラス製5mLメスシリンダー(1mLの目盛り間隔が約14mm)
透明ガラス製5mLメスシリンダーに測定対象試料(浮遊担体)約5mLを入れ、恒温器内で所定温度になるまで静置(約2時間)する。所定温度で鉄球(直径4mm、質量:0.26g)を前記メスシリンダー中の試料上に静かに置く。恒温器内で所定温度に保ちながら、鉄球の沈降速度を測定する。
より具体的には例えば、鉄球の上端がメスシリンダーの4mLの目盛りを通過した時点から鉄球の上端が3mLの目盛りを通過するまでの時間を測定(T分間)し、4mLの目盛りと3mLの目盛りの間隔(Dmm)を除して鉄球の沈降速度(Vmm/分)を求める。
V=D/T
本発明の浮遊担体は、ゾル−ゲル転移温度より16℃高い温度における上記鉄球の沈降速度V+16が1mm/分以下である。この沈降速度V+16は、好ましくは0.1mm/分以下、より好ましくは0.01mm/分以下、更に好ましくは0.001mm/分以下である。ゾル−ゲル転移温度より16℃高い温度における浮遊担体中の上記鉄球の沈降速度V+16がこの範囲を超えると、高温ゲル状態で細胞培養中に浮遊担体中で被浮遊物が沈降し易くなり、該被浮遊物が容器底面に付着し易くなる傾向が生ずる。
また、本発明の浮遊担体は、ゾル−ゲル転移温度より6℃低い温度における上記鉄球の沈降速度V−6が5mm/分以上である。この沈降速度は、好ましくは10mm/分以上、より好ましくは50mm/分以上、更に好ましくは500mm/分以上である。ゾル−ゲル転移温度より6℃低い温度における浮遊担体中の上記鉄球の沈降速度V−6がこの範囲を下回ると、低温ゾル状態での被浮遊物の分散、混和あるいは回収操作が困難となる傾向が生ずる。
また、本発明の浮遊担体では、V−6/V+16が5以上、更には50以上、特に好ましくは500以上(更には5000以上)であることが好ましい。
(生体由来材料に用いる態様)
生体由来材料に用いる態様においては、本発明の浮遊担体は、37℃における上記鉄球の沈降速度V37が1mm/分以下であることが好ましい。この沈降速度V37は、より好ましくは0.1mm/分以下、更に好ましくは0.01mm/分以下、特に好ましくは0.001mm/分以下である。37℃における浮遊担体中上記鉄球の沈降速度V37がこの範囲を超えると、高温ゲル状態で細胞培養中に浮遊担体中で細胞が沈降し易く、培養容器底面に付着し易くなるので好ましくない。
生体由来材料に用いる態様においては、本発明の浮遊担体は、10℃における上記鉄球の沈降速度V10が5mm/分以上であることが好ましく、より好ましくは10mm/分以上、更に好ましくは50mm/分以上、特に好ましくは500mm/分以上である。10℃における浮遊担体中上記鉄球の沈降速度V10がこの範囲を下回ると、低温ゾル状態での細胞の播種、混和あるいは回収操作が困難となるので好ましくない。
また、本発明の浮遊担体では、V10/V37が5以上、更には50以上、特に好ましくは500以上、更には5000以上であることが好ましい。
(沈降速度の調整)
本発明の浮遊担体中における浮遊物(固体又は液体の場合;鉄球を含む)の沈降速度を低下させるには、1)浮遊担体の比重を上げる、2)ハイドロゲル形成性高分子の濃度を増大させる、3)ハイドロゲル形成性高分子の分子量を増大させる、4)ゾル−ゲル転移温度を低くする、5)ハイドロゲルの架橋点を増加させるなどの手段を用いることができる。
一方、本発明の浮遊担体中における浮遊物(固体又は液体の場合;鉄球を含む)の沈降速度を増大させるには、1)浮遊担体の比重を下げる、2)ハイドロゲル形成性高分子の濃度を減少させる、3)ハイドロゲル形成性高分子の分子量を低下させる、4)ゾル−ゲル転移温度を高くする、5)ハイドロゲルの架橋点を減少させるなどの手段を用いることができる。
(浮遊担体の動作に対する追従性)
本発明の浮遊担体に基づくハイドロゲルは、その細胞増殖に伴う細胞集塊の形態変化への追従性のバランスの点から、より高い周波数に対しては固体的な挙動を示し、他方、より低い周波数に対しては液体的な挙動を示すことが好ましい。より具体的には、該ハイドロゲルの動作に対する追従性は以下の方法で好適に測定することが可能である。
(動作に対する追従性の測定方法)
ハイドロゲル形成性の高分子を含む本発明の浮遊担体(ハイドロゲルとして1mL)をゾル状態(ゾル−ゲル転移温度より低い温度)で内径1cmの試験管に入れ、該浮遊担体のゾル−ゲル転移温度よりも充分高い温度(たとえば該ゾル−ゲル転移温度よりも約10℃高い温度)とした水浴中で上記試験管を12時間保持し、該ハイドロゲルをゲル化させる。
次いで、該試験管の上下を逆にした場合に溶液/空気の界面(メニスカス)が溶液の自重で変形するまでの時間(Tm)を測定する。ここで1/Tm(sec−1)より低い周波数の動作に対しては該ハイドロゲルは液体として振舞い、1/Tm(sec−1)より高い周波数の動作に対しては該ハイドロゲルは固体として振舞うことになる。本発明のハイドロゲルの場合にはTmは1分〜24時間、好ましくは5分〜10時間である。
(定常流動粘度)
本発明の浮遊担体に基づくハイドロゲルのゲル的性質は、定常流動粘度の測定によっても好適に測定可能である。定常流動粘度η(イータ)は、例えばクリープ実験によって測定することができる。
クリープ実験では一定のずり応力を試料に与え、ずり歪の時間変化を観測する。一般に粘弾性体のクリープ挙動では、初期にずり速度が時間とともに変化するが、その後ずり速度が一定となる。この時のずり応力とずり速度の比を定常流動粘度ηと定義する。この定常流動粘度は、ニュートン粘度と呼ばれることもある。ただし、ここで定常流動粘度は、ずり応力にほとんど依存しない線形領域内で決定されなければならない。
具体的な測定方法は、測定装置としてストレス制御式粘弾性測定装置CSL型レオメーター(CSL500、米国キャリーメド社製)を、測定デバイスにアクリル製円盤(直径4cm)を使用し、試料厚み600μmとして少なくとも5分間以上の測定時間クリープ挙動(遅延曲線)を観測する。サンプリング時間は、最初の100秒間は1秒に1回、その後は10秒に1回とする。
適用するずり応力(ストレス)の決定にあたっては、10秒間ずり応力を負荷して偏移角度が2×10−3rad以上検出される最低値に設定する。解析には5分以降の少なくとも20以上の測定値を採用する。本発明の浮遊担体に基づくハイドロゲルは、そのゾル−ゲル転移温度より約10℃高い温度において、ηが5×103〜5×106Pa・secであることが好ましく、更には8×103〜2×106Pa・sec、特に1×104Pa・sec以上、1×106Pa・sec以下であることが好ましい。
上記ηが5×103Pa・sec未満では短時間の観測でも流動性が比較的高くなり、ゲルによる細胞や組織の3次元的な保持が不十分となり、浮遊担体として機能し難くなる。他方、ηが5×106Pa・secを超えると、長時間の観測でもゲルが流動性をほとんど示さなくなる傾向が強まり、生物体組織の再生に伴う動きに追従することの困難性が増大する。また、ηが5×106を超えるとゲルが脆さを呈する可能性が強まり、わずかの純弾性変形の後、一挙にもろく破壊する脆性破壊が生起しやすい傾向が強まる。
(動的弾性率)
本発明の浮遊担体に基づくハイドロゲルのゲル的性質は、動的弾性率によっても好適に測定可能である。該ゲルに振幅γ0、振動数をω/2πとする歪みγ(t)=γ0cosωt(tは時間)を与えた際に、一定応力をσ0、位相差をδとするσ(t)=σ0cos(ωt+δ)が得られたとする。|G|=σ0/γ0とすると、動的弾性率G’(ω)=|G|cosδと、損失弾性率G”(ω)=|G|sinδとの比(G”/G’)が、ゲル的性質を表す指標となる。
本発明の浮遊担体に基づくハイドロゲルは、ω/2π=1Hzの歪み(速い動作に対応する)に対しては固体として挙動し、且つ、ω/2π=10−4Hzの歪み(遅い動作に対応する)に対しては固体として挙動する。より具体的には、本発明の浮遊担体に基づくハイドロゲルは、以下の性質を示すことが好ましい(このような弾性率測定の詳細については、例えば、文献:小田良平ら編集、近代工業化学19、第359頁、朝倉書店、1985を参照することができる)。
ω/2π=1Hz(ゲルが固体として挙動する振動数)の際に、(G”/G’)s=(tan δ)sが1未満であることが好ましい(より好ましくは0.8以下、特に好ましくは0.5以下)。
ω/2π=10−4Hz(ゲルが液体として挙動する振動数)の際に、(G”/G’)L=(tan δ)Lが1以上であることが好ましい(より好ましくは1.5以上、特に好ましくは2以上)。
上記(tan δ)sと、(tan δ)Lとの比{(tan δ)s/(tan δ)L}が1未満であることが好ましい(より好ましくは0.8以下、特に好ましくは0.5以下)。
<測定条件>
ハイドロゲル形成性高分子の濃度:約8質量% 温度:浮遊担体のゾル−ゲル転移温度より約10℃高い温度 測定機器:ストレス制御式レオメータ(機種名:CSL 500、米国キャリーメド社製)
(ハイドロゲル形成性の高分子)
上述したような熱可逆的なゾル−ゲル転移を示す(すなわち、ゾル−ゲル転移温度を有する)限り、本発明の浮遊担体に使用可能なハイドロゲル形成性の高分子は特に制限されない。生体由来材料に用いる態様、すなわち本発明の担体が生理的温度(0〜42℃程度)において好適なゾル−ゲル変化を示すことが容易な点からは、例えば、該ハイドロゲル形成性の高分子中の曇点を有する複数のブロックと親水性のブロックの曇点、両ブロックの組成および両ブロックの疎水性度、親水性度、および/又は分子量等をそれぞれ調整することによって達成することが好ましい。
その水溶液がゾル−ゲル転移温度を有し、該転移温度より低い温度で可逆的にゾル状態を示す高分子の具体例としては、例えば、ポリプロピレンオキサイドとポリエチレンオキサイドとのブロック共重合体等に代表されるポリアルキレンオキサイドブロック共重合体;メチルセルロース、ヒドロキシプロピルセルロース等のエーテル化セルロース;キトサン誘導体(K.R.Holme.et al.Macromolecules,24,3828(1991))等が知られている。
ポリアルキレンオキサイドブロック共重合体として、ポリプロピレンオキサイドの両端にポリエチレンオキサイドが結合したプルロニック(Pluronic)F−127(商品名、BASF Wyandotte Chemicals Co.製)ゲルが開発されている。このプルロニックF−127の高濃度水溶液は、約20℃以上でハイドロゲルとなり、これより低い温度で水溶液となることが知られている。しかしながら、この材料の場合は約20質量%以上の高濃度でしかゲル状態にはならず、また約20質量%以上の高濃度でゲル化温度より高い温度に保持しても、更に水を加えるとゲルが溶解してしまう。また、プルロニックF−127は分子量が比較的小さく、約20質量%以上の高濃度のゲル状態で非常に高い浸透圧を示すのみならず細胞膜を容易に透過するため、細胞・組織に悪影響を及ぼす可能性がある。
一方、メチルセルロース、ヒドロキシプロピルセルロース等に代表されるエーテル化セルロースの場合は、通常は、ゾル−ゲル転移温度が高く約45℃以上である(N.Sarkar,J.Appl.Polym.Science,24,1073,1979)。これに対して、生体の体温は通常37℃近辺の温度であるため、上記エーテル化セルロースはゾル状態であり、該エーテル化セルロースを本発明の浮遊担体として用いることは事実上は困難である。
上記したように、その水溶液がゾル−ゲル転移点を有し、且つ該転移温度より低い温度で可逆的にゾル状態を示す従来の高分子の問題点は、1)ゾル−ゲル転移温度より高い温度で一旦ゲル化しても、更に水を添加するとゲルが溶解してしまうこと、2)ゾル−ゲル転移温度が生体の体温(37℃近辺)よりも高く、体温ではゾル状態であること、3)ゲル化させるためには、水溶液の高分子濃度を非常に高くする必要があること、等である。
これに対して、本発明者らの検討によれば、好ましくは0℃より高く42℃以下であるゾル−ゲル転移温度を有するハイドロゲル形成性の高分子(例えば、曇点を有する複数のブロックと親水性のブロックが結合してなり、その水溶液がゾル−ゲル転移温度を有し、且つ、ゾル−ゲル転移温度より低い温度で可逆的にゾル状態を示す高分子)を用いて本発明の浮遊担体を構成した場合に、上記問題は解決されることが判明している。
(好適なハイドロゲル形成性の高分子)
本発明の浮遊担体として好適に使用可能な疎水結合を利用したハイドロゲル形成性の高分子は、曇点を有する複数のブロックと親水性のブロックが結合してなることが好ましい。該親水性のブロックは、ゾル−ゲル転移温度より低い温度で該ハイドロゲルが水溶性になるために存在することが好ましく、また曇点を有する複数のブロックは、ハイドロゲルがゾル−ゲル転移温度より高い温度でゲル状態に変化するために存在することが好ましい。換言すれば、曇点を有するブロックは該曇点より低い温度では水に溶解し、該曇点より高い温度では水に不溶性に変化するために、曇点より高い温度で、該ブロックはゲルを形成するための疎水結合からなる架橋点としての役割を果たす。すなわち、疎水性結合に由来する曇点が、上記ハイドロゲルのゾル−ゲル転移温度に対応する。
ただし、該曇点とゾル−ゲル転移温度とは必ずしも一致しなくてもよい。これは、上記した「曇点を有するブロック」の曇点は、一般に、該ブロックと親水性ブロックとの結合によって影響を受けるためである。
本発明に用いるハイドロゲルは、疎水性結合が温度の上昇と共に強くなるのみならず、その変化が温度に対して可逆的であるという性質を利用したものである。1分子内に複数個の架橋点が形成され、安定性に優れたゲルが形成される点からは、ハイドロゲル形成性の高分子が「曇点を有するブロック」を複数個有することが好ましい。
一方、上記ハイドロゲル形成性の高分子中の親水性ブロックは、前述したように、該ハイドロゲル形成性の高分子がゾル−ゲル転移温度よりも低い温度で水溶性に変化させる機能を有し、上記転移温度より高い温度で疎水性結合力が増大しすぎて上記ハイドロゲルが凝集沈澱してしまうことを防止しつつ、含水ゲルの状態を形成させる機能を有する。
(曇点を有する複数のブロック)
曇点を有するブロックとしては、水に対する溶解度−温度係数が負を示す高分子のブロックであることが好ましく、より具体的には、ポリプロピレンオキサイド、プロピレンオキサイドと他のアルキレンオキサイドとの共重合体、ポリN−置換アクリルアミド誘導体、ポリN−置換メタアクリルアミド誘導体、N−置換アクリルアミド誘導体とN−置換メタアクリルアミド誘導体との共重合体、ポリビニルメチルエーテル、ポリビニルアルコール部分酢化物からなる群より選ばれる高分子が好ましく使用可能である。上記の高分子(曇点を有するブロック)の曇点が4℃より高く40℃以下であることが、本発明に用いる高分子(曇点を有する複数のブロックと親水性のブロックが結合した化合物)のゾル−ゲル転移温度を4℃より高く40℃以下とする点から好ましい。
ここで曇点の測定は、例えば、上記の高分子(曇点を有するブロック)の約1質量%の水溶液を冷却して透明な均一溶液とした後、除々に昇温(昇温速度約1℃/min)して、該溶液がはじめて白濁する点を曇点とすることによって行うことが可能である。
本発明に使用可能なポリN−置換アクリルアミド誘導体、ポリN−置換メタアクリルアミド誘導体の具体的な例を以下に列挙する。
ポリ−N−アクリロイルピペリジン;ポリ−N−n−プロピルメタアクリルアミド;ポリ−N−イソプロピルアクリルアミド;ポリ−N,N−ジエチルアクリルアミド;ポリ−N−イソプロピルメタアクリルアミド;ポリ−N−シクロプロピルアクリルアミド;ポリ−N−アクリロイルピロリジン;ポリ−N,N−エチルメチルアクリルアミド;ポリ−N−シクロプロピルメタアクリルアミド;ポリ−N−エチルアクリルアミド。
上記の高分子は単独重合体(ホモポリマー)であっても、上記重合体を構成する単量体と他の単量体との共重合体であってもよい。このような共重合体を構成する他の単量体としては、親水性単量体、疎水性単量体のいずれも用いることができる。一般的には、親水性単量体と共重合すると生成物の曇点は上昇し、疎水性単量体と共重合すると生成物の曇点は下降する。従って、これらの共重合すべき単量体を選択することによっても、所望の曇点(例えば4℃より高く40℃以下の曇点)を有する高分子を得ることができる。
(親水性単量体)
上記親水性単量体としては、N−ビニルピロリドン、ビニルピリジン、アクリルアミド、メタアクリルアミド、N−メチルアクリルアミド、ヒドロキシエチルメタアクリレート、ヒドロキシエチルアクリレート、ヒドロキシメチルメタアクリレート、ヒドロキシメチルアクリレート、酸性基を有するアクリル酸、メタアクリル酸およびそれらの塩、ビニルスルホン酸、スチレンスルホン酸等、並びに塩基性基を有するN,N−ジメチルアミノエチルメタクリレート、N,N−ジエチルアミノエチルメタクリート、N,N−ジメチルアミノプロピルアクリルアミドおよびそれらの塩等が挙げられるが、これらに限定されるものではない。
(疎水性単量体)
一方、上記疎水性単量体としては、エチルアクリレート、メチルメタクリレート、グリシジルメタクリレート等のアクリレート誘導体およびメタクリレート誘導体、N−n−ブチルメタアクリルアミド等のN−置換アルキルメタアクリルアミド誘導体、塩化ビニル、アクリロニトリル、スチレン、酢酸ビニル等が挙げられるが、これらに限定されるものではない。
(親水性のブロック)
一方、上記した曇点を有するブロックと結合すべき親水性のブロックとしては、具体的には、メチルセルロース、デキストラン、ポリエチレンオキサイド、ポリビニルアルコール、ポリN−ビニルピロリドン、ポリビニルピリジン、ポリアクリルアミド、ポリメタアクリルアミド、ポリN−メチルアクリルアミド、ポリヒドロキシメチルアクリレート、ポリアクリル酸、ポリメタクリル酸、ポリビニルスルホン酸、ポリスチレンスルホン酸およびそれらの塩;ポリN,N−ジメチルアミノエチルメタクリレート、ポリN,N−ジエチルアミノエチルメタクリレート、ポリN,N−ジメチルアミノプロピルアクリルアミドおよびそれらの塩等が挙げられる。
曇点を有するブロックと上記の親水性のブロックとを結合する方法は特に制限されないが、例えば、上記いずれかのブロック中に重合性官能基(例えばアクリロイル基)を導入し、他方のブロックを与える単量体を共重合させることによって行うことができる。また、曇点を有するブロックと上記の親水性のブロックとの結合物は、曇点を有するブロックを与える単量体と、親水性のブロックを与える単量体とのブロック共重合によって得ることも可能である。また、曇点を有するブロックと親水性のブロックとの結合は、予め両者に反応活性な官能基(例えば水酸基、アミノ基、カルボキシル基、イソシアネート基等)を導入し、両者を化学反応により結合させることによって行うこともできる。この際、親水性のブロック中には通常、反応活性な官能基を複数導入する。また、曇点を有するポリプロピレンオキサイドと親水性のブロックとの結合は、例えば、アニオン重合またはカチオン重合で、プロピレンオキサイドと「他の親水性ブロック」を構成するモノマー(例えばエチレンオキサイド)とを繰り返し逐次重合させることで、ポリプロピレンオキサイドと「親水性ブロック」(例えばポリエチレンオキサイド)が結合したブロック共重合体を得ることができる。このようなブロック共重合体は、ポリプロピレンオキサイドの末端に重合性基(例えばアクリロイル基)を導入後、親水性のブロックを構成するモノマーを共重合させることによっても得ることができる。更には、親水性のブロック中に、ポリプロピレンオキサイド末端の官能基(例えば水酸基)と結合反応し得る官能基を導入し、両者を反応させることによっても、本発明に用いる高分子を得ることができる。また、ポリプロピレングリコールの両端にポリエチレングリコールが結合した、プルロニック F−127(商品名、旭電化工業(株)製)等の材料を連結させることによっても、本発明に用いるハイドロゲル形成性の高分子を得ることができる。
この曇点を有するブロックを含む態様における本発明の高分子は、曇点より低い温度においては、分子内に存在する上記「曇点を有するブロック」が親水性のブロックとともに水溶性であるため、完全に水に溶解し、ゾル状態を示す。しかし、この高分子の水溶液の温度を上記曇点より高い温度に加温すると、分子内に存在する「曇点を有するブロック」が疎水性となり、疎水的相互作用によって、別個の分子間で会合する。
一方、親水性のブロックは、この時(曇点より高い温度に加温された際)でも水溶性であるため、本発明の高分子は水中において、曇点を有するブロック間の疎水性会合部を架橋点とした三次元網目構造を有するハイドロゲルを生成する。このハイドロゲルの温度を再び、分子内に存在する「曇点を有するブロック」の曇点より低い温度に冷却すると、該曇点を有するブロックが水溶性となり、疎水性会合による架橋点が解放され、ハイドロゲル構造が消失して、本発明の高分子は、再び完全な水溶液となる。このように、好適な態様における本発明の高分子のゾル−ゲル転移は、分子内に存在する曇点を有するブロックの該曇点における可逆的な親水性、疎水性の変化に基づくものであるため、温度変化に対応して、完全な可逆性を有する。
(ゲルの溶解性)
上述したように水溶液中でゾル−ゲル転移温度を有する高分子を少なくとも含む本発明のハイドロゲル形成性の高分子は、該ゾル−ゲル転移温度より高い温度(h℃)で実質的に水不溶性を示し、ゾル−ゲル転移温度より低い温度(i℃)で可逆的に水可溶性を示す。
上記した高い温度(h℃)は、ゾル−ゲル転移温度より1℃以上高い温度であることが好ましく、2℃以上(特に5℃以上)高い温度であることが更に好ましい。また、上記「実質的に水不溶性」とは、上記温度(h℃)において、水100mLに溶解する上記高分子の量が、5.0g以下(更には0.5g以下、特に0.1g以下)であることが好ましい。
一方、上記した低い温度(i℃)は、ゾル−ゲル転移温度より(絶対値で)1℃以上低い温度であることが好ましく、2℃以上(特に5℃以上)低い温度であることが更に好ましい。また、上記「水可溶性」とは、上記温度(i℃)において、水100mLに溶解する上記高分子の量が、0.5g以上(更には1.0g以上)であることが好ましい。更に「可逆的に水可溶性を示す」とは、上記ハイドロゲル形成性の高分子の水溶液が、一旦(ゾル−ゲル転移温度より高い温度において)ゲル化された後においても、ゾル−ゲル転移温度より低い温度においては、上記した水可溶性を示すことをいう。
上記高分子は、その10%水溶液が5℃で、10〜3,000センチポイズ(更には50〜1,000センチポイズ)の粘度を示すことが好ましい。このような粘度は、例えば以下のような測定条件下で測定することが好ましい。
粘度計:ストレス制御式レオメータ(機種名:CSL 500、米国 キャリーメド社製)
ローター直径:60mm
ローター形状:平行平板
測定周波数:1Hz(ヘルツ)
本発明のハイドロゲル形成性の高分子の水溶液は、上記ゾル−ゲル転移温度より高い温度でゲル化させた後、多量の水中に浸漬しても、該ゲルは実質的に溶解しない。上記浮遊担体の上記特性は、例えば、以下のようにして確認することが可能である。
すなわち、本発明のハイドロゲル形成性の高分子0.15gを、上記ゾル−ゲル転移温度より低い温度(例えば氷冷下)で、蒸留水1.35gに溶解して10W%の水溶液を作製し、該水溶液を径が35mmのプラスチックシャーレ中に注入し、37℃に加温することによって、厚さ約1.5mmのゲルを該シャーレ中に形成させた後、該ゲルを含むシャーレ全体の重量(jグラム)を測定する。次いで、該ゲルを含むシャーレ全体を250mL中の水中に37℃で10時間静置した後、該ゲルを含むシャーレ全体の重量(kグラム)を測定して、ゲル表面からの該ゲルの溶解の有無を評価する。この際、本発明のハイドロゲル形成性の高分子においては、上記ゲルの重量減少率、すなわち(j−k)/jが、5.0%以下であることが好ましく、更には1.0%以下(特に0.1%以下)であることが好ましい。
本発明のハイドロゲル形成性の高分子の水溶液は、上記ゾル−ゲル転移温度より高い温度でゲル化させた後、多量(体積比で、ゲルの0.1〜100倍程度)の水中に浸漬しても、長期間に亘って該ゲルは溶解することがない。このような本発明に用いる高分子の性質は、例えば、該高分子内に曇点を有するブロックが2個以上(複数個)存在することによって達成される。
これに対して、ポリプロピレンオキサイドの両端にポリエチレンオキサイドが結合してなる前述のプルロニックF−127を用いて同様のゲルを作成した場合には、数時間の静置で該ゲルは完全に水に溶解することを、本発明者らは見出している。
非ゲル化時の細胞毒性をできる限り低いレベルに抑える点からは、水に対する濃度、すなわち{(高分子)/(高分子+水)}×100(%)で、20%以下(更には15%以下、特に10%以下)の濃度でゲル化が可能なハイドロゲル形成性の高分子を用いることが好ましい。
(液体成分)
上記したハイドロゲル形成性の高分子とともに、本発明の担体(ゲル形成性の組成物)を構成する際に使用可能な液体成分(ないし分散媒)は、上記したように、ゲル形成性を有する浮遊担体が低温でゾル状態、高温でゲル状態となる熱可逆的なゾル−ゲル転移を示し、該ゲル形成性浮遊担体が高温のゲル状態で実質的に水不溶性を示す限り、特に制限されない。この液体成分は、本発明の担体をゾル状態で使用すべき温度において、実質的に液体状態を示すものである。
このような液体成分としては、種々の無機液体、有機液体、およびこれらの2種以上の組合せないし混合物を使用することができる。本発明の担体を生体由来の成分に使用すべき態様においては、この液体成分は、親水性ないし水溶性の液体であることが好ましく、更には、含水液体(特に、水を80質量%以上含有する液体)であることが好ましい。
(他の成分)
本発明の浮遊担体は、上記したゾル−ゲル転移温度を有する高分子を少なくとも含むものであるが、必要に応じて他の成分を含んでいてもよい。このような態様における「他の成分」としては、例えば、抗生剤、抗癌剤、コラーゲン等のECM、後述の局所性化学仲介物質、インスリン、細胞成長因子等のホルモン類、外来遺伝子等が挙げられる。
(被浮遊物質)
本発明において、上記した浮遊担体により浮遊させるべき被浮遊物質は、特に制限されない。すなわち、該被浮遊物質は、生体由来であっても、生体由来でなくてもよい。この被浮遊物質の好ましい態様は、以下の通りである。
比重:ゾル状態の本発明の担体中で、遠心分離(例えば、500〜10,000rpm、100〜10,000G、5〜30分間程度の条件)で、該担体から実質的に分離可能な程度の比重を有すること。
上記被浮遊物質としては、例えば、以下のものが挙げられる。
細胞、コロイド粒子(親水性および/又は疎水性)、液体、気体。
(繊維芽細胞の増殖性)
未分化細胞を未分化状態のまま増殖させることを目的として本発明の担体を生体由来の成分に使用すべき態様においては、該担体を構成するハイドロゲル形成性高分子が形成するハイドロゲルにおいては、該ゲル内で実質的に繊維芽細胞が増殖しないことが好ましい。繊維芽細胞は通常、細胞培養ディッシュ(プレート)上の単層培養やコラーゲンゲル内での培養において、繊維芽細胞に特徴的な樹枝状の形態変化を伴った著しい増殖が認められる。一方、本発明のハイドロゲル内では繊維芽細胞は単細胞の形態を保ったままで実質的に増殖を示さない。
繊維芽細胞の増殖性は、例えば以下の方法により評価できる(吉川剛司、月川賢、聖マリアンナ医科大学雑誌、28巻、第4号、161−170(2000)参照)。本発明の浮遊担体を構成するハイドロゲル形成性高分子を培養液、例えばRPMI1640(Life Technologies,N.Y.,USA)に低温(例えば4℃)下で攪拌溶解し、正常ヒト肺繊維芽細胞(Normal Human Lung Fibroblasts,NHLF、宝酒造(株)社製))を6x104個/mLの細胞密度になるように分散させる。このNHLF分散液0.2mLを24−ウェルプレート(材料:プラスチック製、ウェル1個の大きさは縦15mm、横15mm、深さ20mm程度;市販品では、例えばBecton−Dickinson社製の商品名:Multiwell)の各ウェル中に注入し、37℃でゲル化させた後、培養液0.4mLを添加して37℃、5%CO2大気圧下で培養する。繊維芽細胞の増殖の様子は経日的に(例えば、0、1、3、7日)位相差顕微鏡による観察で確認する。
(繊維芽細胞の増殖率)
更に以下の酵素活性を利用する方法により培養期間中の繊維芽細胞の増殖率を測定可能である。本発明の浮遊担体中で繊維芽細胞を所定期間培養後、該浮遊担体をそのゾル−ゲル転移温度より低い温度(例えば、ゾル−ゲル転移温度より10℃低い温度)に下げることによって該浮遊担体を溶解した後、各ウェル中にコハク酸脱水素酵素活性測定用試薬たるWST−8試薬(同仁化学(株)製)50μLを添加する。この24−ウェルプレートを、37℃で10時間反応させた後、約4℃に1時間保存し完全に均一な水溶液の状態にする。該水溶液を96−ウェルプレートに200μLづつ分注し、マイクロプレート用比色計を用いて450nm(参照波長620nm)で吸光度(OD(450))を測定する。このOD(450)と、生細胞数とは比例関係にあることが確かめられている(例えば、文献Furukawa,T.et al,”High in vitro−in vitro correlation of drug response using spongegel−supported three−dimensional histoculture and MTT end point”,Int.J.Cancer 51:489、1992を参照)。すなわち、繊維芽細胞の増殖率は培養開始時の吸光度(OD(450))と培養後の吸光度(OD(450))の比により求められる。
本発明において、3日間37℃で培養した後の繊維芽細胞の増殖率は70%から200%、更には80%から150%の範囲、より好ましくは90%から120%の範囲であることが望ましい。
(化学仲介物質)
未分化細胞の増殖や分化には、前駆細胞のような細胞のみでなく、その分化や増殖を促す細胞成長因子のような種々の化学仲介物質(chemical mediator)が通常は必要である。これらの化学仲介物質は通常細胞自身から分泌されるが、再生を効率良く進めるために本発明の浮遊担体に予めこれらの化学仲介物質を含有させて外部から補給することが効果的である。
この化学仲介物質としては、1)細胞のごく近傍でしか作用しない局所性化学仲介物質(local chemical mediator)、2)神経細胞から分泌され有効作用距離がごく短い神経伝達物質(neurotransmitter)、3)内分泌細胞から分泌され血流等を通じて全身の標的細胞に作用するホルモン(hormone)等が挙げられる。
この1)の局所性化学仲介物質としては、神経細胞成長因子等のタンパク、走化性因子等のペプチド、ヒスタミン等のアミノ酸誘導体、プロスタグランジン等の脂肪酸誘導体等が挙げられる。
上記2)の神経伝達物質としては、グリシン等のアミノ酸、ノルアドレナリン、アセチルコリン、エンケファリン等の低分子ペプチド等の低分子量物質が挙げられる。
上記3)のホルモンとしては、線維芽細胞成長因子(fibroblast growth factor、FGF)、上皮細胞成長因子(epithelial growth factor、EGF)、血管内皮細胞成長因子(vascular endothelial growth factor、VEGF)、肝細胞増殖因子(hepatocyte growth factor、HGF)等の細胞成長因子、インスリン、ソマトトロピン、ソマトメジン、副腎皮質刺激ホルモン(ACTH)、副甲状腺ホルモン(PTH)、甲状腺刺激ホルモン(TSH)等のタンパク、または糖タンパク、TSH放出因子、バソプレシン、ソマトスタチン等のアミノ酸誘導体、コルチゾール、エストラジオール、テストステロン等のステロイド等が挙げられる。
(浮遊・回収方法)
本発明においては、上記した本発明の浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することができる。この回収の際には、必要に応じて、公知の分離手段(例えば、遠心分離)を使用することができる。
上記以外の条件は、後述する生体由来成分の浮遊・回収方法を参照しつつ、被浮遊物の性質・性状等に応じて、適宜修正することができる。
(生体由来成分の浮遊・回収方法)
本発明の浮遊担体中に幹細胞や前駆細胞あるいはそれらを含有する組織等を播種、混和するには、本発明の浮遊担体を構成するハイドロゲル形成性高分子を培養液、例えばRPMI1640(Life Technologies,N.Y.,USA)に低温(例えば4℃)下で攪拌溶解し、本発明の浮遊担体をそのゾル−ゲル転移温度以下の水溶液(ゾル)の状態として該細胞や組織を添加、懸濁させれば良い。ここで用いる培養液には特に制限はなく、目的の幹細胞や前駆細胞が増殖・分化し易いものを適宜選択して用いれば良い。またこの培養液に目的の幹細胞や前駆細胞の増殖・分化を促進する前述の化学仲介物質を含有させることは効果的である。
本発明の浮遊担体中で細胞を培養するには、上記懸濁液を本発明の浮遊担体のゾル−ゲル転移温度以上の温度(室温あるいは37℃)に昇温してゲル化させた後、該温度(室温あるいは37℃)で幹細胞や前駆細胞あるいはそれらを含有する組織等を培養する。
本発明の浮遊担体では、ハイドロゲル形成性のゲル形成性組成物が高温のゲル状態(培養温度)で実質的に水不溶性を示すため、本発明の浮遊担体の上に液体培地を重層したり、液体培地中に本発明の浮遊担体を浮遊させて細胞を培養したりすることができる。未分化な細胞が増殖する際には大量の養分を必要とするが、本発明の浮遊担体では外部の液体培地からその必要な養分を補給することができる。また、細胞が生成する老廃物などの細胞増殖を阻害する物質を外部の液体培地中へ排出することができる。その結果、本発明の浮遊担体では従来の細胞培養方法に比べて細胞の増殖を促進することができる。
本発明の浮遊担体中で目的の組織・器官が誘導され、これらを本発明の浮遊担体から回収するには、目的の組織・器官を含む本発明の浮遊担体を該ゾル−ゲル転移温度以下の温度(例えば4℃)に冷却して本発明の浮遊担体をゾル状態に戻し、遠心分離等の方法で目的の組織・器官と本発明の浮遊担体を分離すれば良い。また、本発明の浮遊担体はそのゾル−ゲル転移温度より低温のゾル状態では、水により容易に希釈できるので更に流動性を高くでき、更に培養された細胞や器官等の回収を容易にすることができる。
本発明の浮遊担体は繊維芽細胞の増殖を抑え、幹細胞や前駆細胞の増殖や分化を促す特徴を有するので本発明の浮遊担体中で目的とする組織・器官を効率よく形成させることができる。
(回収されたES細胞および/又は胚様体)
上記した本発明の浮遊担体(生体由来物質に適用する態様)を用いることにより、容器壁に付着させずに浮遊状態で培養させる必要がある動植物細胞(例えばプロトプラスト、ES細胞やEBなど)を容易に播種、混和することができるのみならず、好適に回収することができる。これは、本発明によれば、培養中は該動植物細胞を容器壁に付着させずに浮遊状態で培養可能であり、且つ、培養途中での培地交換が可能で、培養終了後は増殖あるいは分化した細胞ないし細胞塊を容易に回収できるからである。
したがって、本発明の浮遊担体を用いることにより、例えば、ES細胞および/又は胚様体を好適に培養および回収することができる。
ES細胞の臨床応用に際しては、未分化性を維持したまま大量に培養することが使用の前提条件になる。マウスES細胞に関してはLIF(leukemia inhibitory factor)の使用により未分化性の維持が可能であることが明らかとなったが、ヒトを含めた霊長類ES細胞では未分化性維持機構は解明されていない(実験医学、21巻、第8号(増刊)、「幹細胞研究の最先端」、編集:岡野栄之、中辻憲夫、2003年、羊土社発行、参照)。
現在マウス線維芽細胞をfeederとして用いることにより、経験的に霊長類ES細胞の未分化性維持が可能であるとの報告(Nakatsuji N,Suemori H、Embryonic stem cell lines of nonhuman primates、Scientific World Journal、Jun 26;2(6):1762(2002))がある。この報告によれば、カニクイザルES細胞はLIFを含まない液体培地を用い、マウス線維芽細胞をfeederとして用いた平面培養により、一層の島状のコロニーを作って未分化性を維持したまま増殖するとされている。しかしながら、このような他種動物細胞(繊維芽細胞)との共培養はヒトへの臨床応用に際して重大な問題となる。
一方、本発明の浮遊担体を用いることにより、LIFおよびfeeder細胞を用いずに、マウスES細胞やカニクイザル、ヒトなどの霊長類ES細胞を未分化状態を維持して培養することができる。このように他種動物の細胞との共培養を必要としないことはES細胞の臨床応用において極めて有利である。また、本発明の浮遊担体中では繊維芽細胞が増殖しないという特徴もあるので、もし、他の動物の繊維芽細胞が混入していたとしても、ES細胞のみを選択的に増殖させることが可能となる。
このように本発明の浮遊担体を用いて培養および回収されたES細胞ないしは胚様体は、以下のような好適な特性を有する。
<回収されたES細胞の特性>
通常、ES細胞はLIF存在下では未分化状態を維持しながら増殖するが、LIF非存在下では神経や血球、筋肉などの成熟細胞に分化してしまう。しかし、本発明の浮遊担体を用いて培養および回収されたES細胞は、LIF非存在下の培養でも未分化な状態を維持することができるという特性を有する。
未分化な状態を維持していることは、遺伝子発現状態をDNAチップ(マイクロアレイ)によって解析することによって確認できる。培養前のES細胞の遺伝子発現と比較して、培養後の細胞の遺伝子発現が変わらない、あるいは変化が小さければ未分化状態を維持していると判断される。また、培養後のES細胞集合体の遺伝子発現が培養前のES細胞の遺伝子発現と比較して変わらない、あるいは変化が小さければ、他の細胞へ分化した細胞のコンタミネーションも無いか、あるいは少ないと判断される。
また未分化な状態を維持していることは、回収したES細胞をフィーダー細胞上で培養した時、アーモンド形のコロニーを形成することからも確認できる。また未分化な状態を維持していることは、ノックアウトマウス(キメラマウス)の作成によっても確認できる。
また、ES細胞が未分化な状態を維持していることはアルカリ性フォスファターゼの活性を観測することによっても確認できる。アルカリ性フォスファターゼ活性が高ければ、細胞をVector Red Alkaline Phosphatase Substrate Kit I(VECTOR製)を用いて染色した際に赤く染まる。
上記した特性確認方法については文献「再生医学−ティッシュエンジニアリングの基礎から最先端技術まで−」監訳代表:大野典也、相澤益男、発行者:吉田 隆、発行所:株式会社エヌ・ティー・エス、2002年、(東京)を参照することができる。
本発明において回収されたES細胞が未分化な状態を維持しているので、さらにES細胞(万能細胞)として利用できる。回収されたES細胞が未分化な状態を維持しているので、種々の化学仲介物質などを用いて目的の細胞や器官に分化誘導することができる。本発明の浮遊担体はこのような化学仲介物質などを用いたEBの分化誘導工程に利用することもできる。
<回収された胚様体(EB)の特性>
本発明の浮遊担体を用いて培養および回収されたEBは、未分化な状態を維持することができるという特性を有する。EBが未分化な状態を維持していることは、上記のES細胞の場合と同様の方法で確認できる。またEBが未分化な状態を維持していることの確認方法は、文献「再生医学−ティッシュエンジニアリングの基礎から最先端技術まで−」監訳代表:大野典也、相澤益男、発行者:吉田 隆、発行所:株式会社エヌ・ティー・エス、2002年、(東京)を参照することもできる。
本発明において回収されたEBが未分化な状態を維持しているので、種々の化学仲介物質などを用いて目的の細胞や器官に分化誘導することができる。本発明の浮遊担体はこのようなEBの分化誘導工程に利用することもできる。
EBの作成に前述したハンギングカルチャー法を採用する場合は、別個のES細胞が液滴の下部で集合してEBが形成されるので、単一のESからEBが形成されているとは限らない。一方、本発明の浮遊担体を用いて培養および回収されたEBは、単一の(1個の)細胞が増殖してEBを形成することができるので、純粋なEBを形成することができる。このようにEBが純粋であることは上記と同様に遺伝子発現の解析によって確認できる。
以下、実施例により本発明を更に具体的に説明するが、本発明の範囲は特許請求の範囲により限定されるものであり、以下の実施例によって限定されるものではない。Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass unless otherwise specified.
(Floating carrier)
The floating carrier of the present invention is a gel-forming floating carrier whose aqueous solution contains at least a hydrogel-forming polymer having a sol-gel transition temperature. This gel-forming floating carrier exhibits a thermoreversible sol-gel transition that becomes a sol state at a low temperature and a gel state at a high temperature, and the gel-forming floating carrier is substantially insoluble in water at a high temperature gel state. Show.
Furthermore, the floating carrier of the present invention has an iron ball (diameter 4 mm) sedimentation rate in the carrier of 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature, and 6 from the sol-gel transition temperature. It is 5 mm / min or more at a low temperature.
In the present invention, “floating” refers to a solid material in which the suspended substance is to hold or contain the carrier in the carrier (medium) of the invention (for example, the inner wall of a container in which the carrier of the invention is to be contained). It is said to be substantially retained by the carrier of the present invention without substantial contact.
(Sol-gel transition temperature)
In the present invention, the definition and measurement of “sol state”, “gel state” and “sol-gel transition temperature” are described in the literature (H. Yoshioka et al., Journal of Macromolecular Science, A31 (1), 113 (1994)). That is, the dynamic elastic modulus of the sample at an observation frequency of 1 Hz is measured by gradually changing the temperature from the low temperature side to the high temperature side (1 ° C./1 min), and the storage elastic modulus ( The temperature at which G ′, the elastic term) exceeds the loss modulus (G ″, viscosity term) is defined as the sol-gel transition temperature. In general, the state of G ″> G ′ is defined as sol, and the state of G ″ <G ′ is defined as gel. In measuring the sol-gel transition temperature, the following measurement conditions can be preferably used.
<Measuring conditions of dynamic elastic modulus>
Measuring instrument (trade name): Stress-controlled rheometer AR500 (manufactured by TA Instruments)
Concentration of sample solution (or dispersion) (however, as the concentration of “polymer compound having sol-gel transition temperature”): 10 (weight)%
Amount of sample solution: about 0.8 g
Shape and dimensions of measuring cell: acrylic parallel disk (diameter 4.0 cm),
Gap 600μm
Measurement frequency: 1Hz
Applied stress: in the linear region.
A hydrogel having a suitable sol-gel transition temperature can be easily selected according to the screening method (sol-gel transition temperature measurement method) described above from specific compounds as described below. In a series of operations for processing and collecting a suspended matter using the floating carrier of the present invention, the above-described sol-gel transition temperature (e ° C.), the treatment temperature of the suspended matter (f ° C.), and the suspended matter Is preferably set to a temperature (g ° C.) during cooling for dispersing, mixing or recovering. That is, it is preferable that there is a relationship of f>e> g among the above three temperatures e ° C., f ° C., and g ° C. More specifically, (fe) is preferably 1 to 90 ° C., more preferably 2 to 50 ° C., and (eg) is 1 to 50 ° C., further 2 to 40 ° C. Is preferred.
(Aspect used for culturing cells and biological tissues)
In an embodiment in which the floating carrier of the present invention is used for culturing cells and biological tissues, the sol-gel transition temperature is higher than 0 ° C and lower than 45 ° C from the viewpoint of preventing thermal damage of the cells and biological tissues. Further, it is preferably higher than 0 ° C. and 42 ° C. or lower (particularly 4 ° C. or higher and 40 ° C. or lower).
A hydrogel having such a suitable sol-gel transition temperature can be easily selected from the specific compounds described below according to the screening method (sol-gel transition temperature measurement method) described above. In a series of operations for culturing cells using the floating carrier of the present invention, the sol-gel transition temperature (e ° C.) described above is the cell culture temperature (f ° C.) and the cells are seeded, mixed or collected. It is preferable to set between the temperature at the time of cooling (g ° C.). That is, it is preferable that there is a relationship of f>e> g among the above three temperatures e ° C., f ° C., and g ° C. More specifically, (fe) is preferably 1 to 40 ° C., more preferably 2 to 30 ° C., and (eg) is 1 to 40 ° C., more preferably 2 to 30 ° C. Is preferred.
(Settling speed of iron ball)
The floating carrier of the present invention has an appropriate specific gravity and viscosity in order to avoid sedimentation of suspended matter (cells and the like). The fact that the floating carrier of the present invention has such a suitable specific gravity and viscosity can be determined, for example, by measuring the sedimentation rate of iron balls in the floating carrier of the present invention by the following method.
<Measurement of sedimentation velocity of iron ball>
Iron ball (stainless steel ball for ball bearing): Diameter 4mm, Mass: 0.26g
Sample volume: 5 mL
Measuring instrument: Clear glass 5 mL graduated cylinder (1 mL scale interval is approximately 14 mm)
About 5 mL of a sample to be measured (floating carrier) is placed in a 5 mL graduated cylinder made of transparent glass, and left to stand (about 2 hours) until reaching a predetermined temperature in a thermostat. An iron ball (diameter 4 mm, mass: 0.26 g) is gently placed on the sample in the graduated cylinder at a predetermined temperature. While maintaining a predetermined temperature in a thermostat, the sedimentation rate of the iron ball is measured.
More specifically, for example, the time from when the upper end of the iron ball passes the 4 mL scale of the graduated cylinder until the upper end of the iron ball passes the 3 mL scale is measured (T minutes), and the 4 mL scale and 3 mL are measured. The settling velocity (Vmm / min) of the iron ball is obtained by dividing the interval (Dmm).
V = D / T
The floating carrier of the present invention has the above iron ball sedimentation velocity V at a temperature 16 ° C. higher than the sol-gel transition temperature. +16 Is 1 mm / min or less. This settling velocity V +16 Is preferably 0.1 mm / min or less, more preferably 0.01 mm / min or less, and still more preferably 0.001 mm / min or less. Sedimentation velocity V of the iron ball in the suspended carrier at a temperature 16 ° C. higher than the sol-gel transition temperature V +16 If this range is exceeded, the suspended matter tends to settle in the suspended carrier during cell culture in a high-temperature gel state, and the suspended matter tends to adhere to the bottom surface of the container.
In addition, the floating carrier of the present invention has a sedimentation velocity V of the iron ball at a temperature 6 ° C. lower than the sol-gel transition temperature. -6 Is 5 mm / min or more. The sedimentation rate is preferably 10 mm / min or more, more preferably 50 mm / min or more, and further preferably 500 mm / min or more. Sedimentation velocity V of the iron ball in the suspended carrier at a temperature 6 ° C. lower than the sol-gel transition temperature -6 When the value is below this range, there is a tendency that dispersion, mixing or recovery of suspended matter in a low-temperature sol state becomes difficult.
In the floating carrier of the present invention, V -6 / V +16 Is preferably 5 or more, more preferably 50 or more, and particularly preferably 500 or more (more preferably 5000 or more).
(Aspect used for biological material)
In an embodiment used for a biological material, the floating carrier of the present invention has a sedimentation velocity V of the iron ball at 37 ° C. 37 Is preferably 1 mm / min or less. This settling velocity V 37 Is more preferably 0.1 mm / min or less, still more preferably 0.01 mm / min or less, and particularly preferably 0.001 mm / min or less. Sedimentation velocity V of the above iron ball in the floating carrier at 37 ° C 37 If this range is exceeded, cells are likely to settle in the floating carrier during cell culture in a high-temperature gel state, and are liable to adhere to the bottom surface of the culture vessel.
In an embodiment used for a biological material, the floating carrier of the present invention has a sedimentation velocity V of the iron ball at 10 ° C. 10 Is preferably 5 mm / min or more, more preferably 10 mm / min or more, still more preferably 50 mm / min or more, and particularly preferably 500 mm / min or more. Sedimentation velocity V of the iron ball in the floating carrier at 10 ° C 10 If it is below this range, cell seeding, mixing or recovery in a low-temperature sol state becomes difficult, which is not preferable.
In the floating carrier of the present invention, V 10 / V 37 Is preferably 5 or more, more preferably 50 or more, particularly preferably 500 or more, and further preferably 5000 or more.
(Adjustment of sedimentation speed)
In order to decrease the sedimentation rate of suspended matter (in the case of solid or liquid; including iron balls) in the suspended carrier of the present invention, 1) increase the specific gravity of the suspended carrier, and 2) increase the concentration of the hydrogel-forming polymer. Means to increase, 3) increase the molecular weight of the hydrogel-forming polymer, 4) lower the sol-gel transition temperature, and 5) increase the crosslinking point of the hydrogel can be used.
On the other hand, in order to increase the sedimentation rate of suspended matter (in the case of solid or liquid; including iron balls) in the suspended carrier of the present invention, 1) lower the specific gravity of the suspended carrier, 2) the hydrogel-forming polymer Means such as decreasing the concentration, 3) decreasing the molecular weight of the hydrogel-forming polymer, 4) increasing the sol-gel transition temperature, and 5) decreasing the crosslinking point of the hydrogel can be used.
(Followability for movement of floating carrier)
The hydrogel based on the floating carrier of the present invention shows a solid behavior at a higher frequency and lower on the other hand in terms of the balance of conformity to the morphological change of the cell clump accompanying the cell proliferation. It is preferable to exhibit a liquid behavior with respect to the frequency. More specifically, the followability to the operation of the hydrogel can be suitably measured by the following method.
(Measuring method for tracking performance)
The floating carrier of the present invention containing a hydrogel-forming polymer (1 mL as a hydrogel) is put in a test tube having an inner diameter of 1 cm in a sol state (temperature lower than the sol-gel transition temperature), and the sol-gel transition of the floating carrier is performed. The test tube is held for 12 hours in a water bath at a temperature sufficiently higher than the temperature (for example, about 10 ° C. higher than the sol-gel transition temperature) to gel the hydrogel.
Next, the time (Tm) until the solution / air interface (meniscus) is deformed by its own weight when the test tube is turned upside down is measured. Here, the hydrogel behaves as a liquid for operation at a frequency lower than 1 / Tm (sec-1), and the hydrogel as a solid for operation at a frequency higher than 1 / Tm (sec-1). Will behave. In the case of the hydrogel of the present invention, Tm is 1 minute to 24 hours, preferably 5 minutes to 10 hours.
(Steady flow viscosity)
The gel-like properties of the hydrogel based on the floating carrier of the present invention can also be suitably measured by measuring the steady flow viscosity. The steady flow viscosity η (eta) can be measured, for example, by a creep experiment.
In the creep experiment, a constant shear stress is applied to the sample and the temporal change of shear strain is observed. Generally, in the creep behavior of a viscoelastic body, the shear rate initially changes with time, but thereafter the shear rate becomes constant. The ratio between the shear stress and the shear rate at this time is defined as the steady flow viscosity η. This steady flow viscosity is sometimes referred to as Newtonian viscosity. Here, however, the steady flow viscosity must be determined within a linear region that is largely independent of shear stress.
A specific measuring method is as follows: a stress-controlled viscoelasticity measuring device CSL type rheometer (CSL500, manufactured by Carrie Med, USA) is used as a measuring device, an acrylic disk (diameter 4 cm) is used as a measuring device, and a sample thickness is 600 μm. Observe the measurement time creep behavior (delay curve) of at least 5 minutes. Sampling time is once per second for the first 100 seconds and then once every 10 seconds.
In determining the applied shear stress (stress), the displacement angle is 2 × 10 by applying the shear stress for 10 seconds. -3 Set to the lowest value detected above rad. The analysis employs at least 20 measured values after 5 minutes. The hydrogel based on the floating carrier of the present invention has a η of 5 × 10 at a temperature about 10 ° C. higher than its sol-gel transition temperature. 3 ~ 5x10 6 It is preferably Pa · sec, and more preferably 8 × 10. 3 ~ 2x10 6 Pa · sec, especially 1 × 10 4 Pa · sec or more, 1 × 10 6 It is preferably Pa · sec or less.
The above η is 5 × 10 3 If it is less than Pa · sec, the fluidity is relatively high even in short-time observation, and the three-dimensional retention of cells and tissues by the gel becomes insufficient, making it difficult to function as a floating carrier. On the other hand, η is 5 × 10 6 When Pa · sec is exceeded, the gel tends to hardly exhibit fluidity even when observed for a long time, and the difficulty of following the movement accompanying the regeneration of the biological tissue increases. Η is 5 × 10 6 If it exceeds 1, the possibility that the gel exhibits brittleness increases, and after a slight pure elastic deformation, the tendency to easily cause brittle fracture that breaks at once increases.
(Dynamic elastic modulus)
The gel property of the hydrogel based on the floating carrier of the present invention can be suitably measured also by the dynamic elastic modulus. The gel has an amplitude γ 0 , Strain γ (t) = γ with frequency ω / 2π 0 When cos ωt (t is time) is given, the constant stress is σ 0 , Σ (t) = σ, where δ is the phase difference 0 Assume that cos (ωt + δ) is obtained. | G | = σ 0 / Γ 0 Then, the ratio (G ″ / G ′) between the dynamic elastic modulus G ′ (ω) = | G | cos δ and the loss elastic modulus G ″ (ω) = | G | sin δ is an index representing gel-like properties. It becomes.
The hydrogel based on the floating carrier of the present invention behaves as a solid with respect to strain of ω / 2π = 1 Hz (corresponding to fast operation) and ω / 2π = 10. -4 It behaves as a solid against Hz distortions (corresponding to slow operation). More specifically, the hydrogel based on the floating carrier of the present invention preferably exhibits the following properties (for details of such elastic modulus measurement, see, for example, Document: Ryohei Oda, Modern Industrial Chemistry 19 359, Asakura Shoten, 1985).
When ω / 2π = 1 Hz (frequency at which the gel behaves as a solid), (G ″ / G ′) s = (Tan δ) s Is preferably less than 1 (more preferably 0.8 or less, particularly preferably 0.5 or less).
ω / 2π = 10 -4 In the case of Hz (frequency at which the gel behaves as a liquid), (G ″ / G ′) L = (Tan δ) L Is preferably 1 or more (more preferably 1.5 or more, particularly preferably 2 or more).
Above (tan δ) s And (tan δ) L And ratio {(tan δ) s / (Tan δ) L } Is preferably less than 1 (more preferably 0.8 or less, particularly preferably 0.5 or less).
<Measurement conditions>
Concentration of hydrogel-forming polymer: about 8% by mass Temperature: Temperature about 10 ° C. higher than the sol-gel transition temperature of the floating carrier Measuring instrument: Stress-controlled rheometer (model name: CSL 500, manufactured by Carrie Med, USA)
(Hydrogel-forming polymer)
As long as the thermoreversible sol-gel transition as described above is exhibited (that is, having a sol-gel transition temperature), the hydrogel-forming polymer that can be used in the floating carrier of the present invention is not particularly limited. For example, the hydrogel-forming polymer can be used from the viewpoint that the carrier used in the biological material, that is, the carrier of the present invention easily exhibits a suitable sol-gel change at a physiological temperature (about 0 to 42 ° C.). It is preferably achieved by adjusting the cloud point of a plurality of blocks having a cloud point in the middle and the hydrophilic block, the composition of both blocks and the hydrophobicity, hydrophilicity, and / or molecular weight of both blocks, respectively. .
Specific examples of the polymer in which the aqueous solution has a sol-gel transition temperature and reversibly shows a sol state at a temperature lower than the transition temperature include, for example, a block copolymer of polypropylene oxide and polyethylene oxide. Known polyalkylene oxide block copolymers; etherified celluloses such as methyl cellulose and hydroxypropyl cellulose; chitosan derivatives (KR Holme. Et al. Macromolecules, 24, 3828 (1991)) and the like are known.
As a polyalkylene oxide block copolymer, a pluronic F-127 (trade name, manufactured by BASF Wyandotte Chemicals Co.) gel in which polyethylene oxide is bonded to both ends of polypropylene oxide has been developed. It is known that this high-concentration aqueous solution of Pluronic F-127 becomes a hydrogel at about 20 ° C. or higher and becomes an aqueous solution at a lower temperature. However, in the case of this material, it becomes a gel state only at a high concentration of about 20% by mass or more, and even if it is kept at a temperature higher than the gelation temperature at a high concentration of about 20% by mass or more, further water is added. And the gel will dissolve. Pluronic F-127 has a relatively small molecular weight and not only exhibits a very high osmotic pressure in a gel state of high concentration of about 20% by mass or more, but also easily permeates the cell membrane, thus adversely affecting cells and tissues. there is a possibility.
On the other hand, in the case of etherified cellulose represented by methyl cellulose, hydroxypropyl cellulose and the like, usually, the sol-gel transition temperature is high and is about 45 ° C. or higher (N. Sarkar, J. Appl. Polym. Science, 24 , 1073, 1979). On the other hand, since the body temperature of the living body is usually around 37 ° C., the etherified cellulose is in a sol state, and it is practically difficult to use the etherified cellulose as the floating carrier of the present invention.
As described above, the problems of the conventional polymer in which the aqueous solution has a sol-gel transition point and reversibly shows a sol state at a temperature lower than the transition temperature are 1) higher than the sol-gel transition temperature. Once gelled at temperature, the gel dissolves when water is further added. 2) The sol-gel transition temperature is higher than the body temperature of the living body (around 37 ° C.), and the body temperature is in the sol state. ) In order to cause gelation, the polymer concentration of the aqueous solution needs to be very high.
On the other hand, according to the study by the present inventors, a hydrogel-forming polymer having a sol-gel transition temperature that is preferably higher than 0 ° C. and not higher than 42 ° C. (for example, a plurality of blocks having cloud points) And a hydrophilic block, and the aqueous solution has a sol-gel transition temperature and a polymer that reversibly shows a sol state at a temperature lower than the sol-gel transition temperature). It has been found that the above problem is solved when a floating carrier is constructed.
(Suitable hydrogel-forming polymer)
The hydrogel-forming polymer utilizing a hydrophobic bond that can be suitably used as the floating carrier of the present invention is preferably formed by bonding a plurality of blocks having a cloud point and a hydrophilic block. The hydrophilic block is preferably present because the hydrogel becomes water-soluble at a temperature lower than the sol-gel transition temperature, and the plurality of blocks having a cloud point have a hydrogel having a sol-gel transition temperature. It is preferably present to change to a gel state at higher temperatures. In other words, a block having a cloud point dissolves in water at a temperature lower than the cloud point and changes to insoluble in water at a temperature higher than the cloud point, so that at a temperature higher than the cloud point, the block has a gel. It serves as a cross-linking point consisting of a hydrophobic bond to form. That is, the cloud point derived from the hydrophobic bond corresponds to the sol-gel transition temperature of the hydrogel.
However, the cloud point and the sol-gel transition temperature do not necessarily match. This is because the cloud point of the “block having a cloud point” described above is generally affected by the bond between the block and the hydrophilic block.
The hydrogel used in the present invention utilizes the property that not only the hydrophobic bond becomes stronger as the temperature increases, but also the change is reversible with respect to temperature. From the viewpoint that a plurality of crosslinking points are formed in one molecule and a gel having excellent stability is formed, the hydrogel-forming polymer preferably has a plurality of “blocks having cloud points”.
On the other hand, the hydrophilic block in the hydrogel-forming polymer has the function of changing the hydrogel-forming polymer to water-soluble at a temperature lower than the sol-gel transition temperature, as described above. The hydrogel has a function of forming a hydrogel state while preventing the hydrogel from aggregating and precipitating at a temperature higher than the transition temperature.
(Multiple blocks with cloud points)
The block having a cloud point is preferably a polymer block having a negative solubility-temperature coefficient in water, and more specifically, polypropylene oxide, a copolymer of propylene oxide and another alkylene oxide, A polymer selected from the group consisting of poly N-substituted acrylamide derivatives, poly N-substituted methacrylamide derivatives, copolymers of N-substituted acrylamide derivatives and N-substituted methacrylamide derivatives, polyvinyl methyl ether, and polyvinyl alcohol partially acetylated products. Can be preferably used. The above polymer (block having a cloud point) has a cloud point higher than 4 ° C. and not higher than 40 ° C., and the polymer used in the present invention (a compound in which a plurality of blocks having a cloud point and a hydrophilic block are combined) ) To a sol-gel transition temperature of 4 ° C. or higher and 40 ° C. or lower.
Here, the cloud point is measured by, for example, cooling an aqueous solution of about 1% by mass of the above polymer (block having a cloud point) to form a transparent uniform solution, and then gradually increasing the temperature (temperature increase rate of about 1). C./min), and the point at which the solution becomes cloudy for the first time is taken as the cloud point.
Specific examples of poly N-substituted acrylamide derivatives and poly N-substituted methacrylamide derivatives that can be used in the present invention are listed below.
Poly-N-acryloylpiperidine; poly-Nn-propylmethacrylamide; poly-N-isopropylacrylamide; poly-N, N-diethylacrylamide; poly-N-isopropylmethacrylamide; poly-N-cyclopropylacrylamide; -N-acryloylpyrrolidine; poly-N, N-ethylmethylacrylamide; poly-N-cyclopropylmethacrylamide; poly-N-ethylacrylamide.
The polymer may be a homopolymer or a copolymer of a monomer constituting the polymer and another monomer. As another monomer constituting such a copolymer, either a hydrophilic monomer or a hydrophobic monomer can be used. In general, copolymerization with a hydrophilic monomer raises the cloud point of the product and copolymerization with a hydrophobic monomer lowers the cloud point of the product. Therefore, a polymer having a desired cloud point (for example, a cloud point higher than 4 ° C. and lower than 40 ° C.) can be obtained also by selecting the monomer to be copolymerized.
(Hydrophilic monomer)
Examples of the hydrophilic monomer include N-vinyl pyrrolidone, vinyl pyridine, acrylamide, methacrylamide, N-methyl acrylamide, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxymethyl methacrylate, hydroxymethyl acrylate, and acrylic having an acid group. Acid, methacrylic acid and salts thereof, vinyl sulfonic acid, styrene sulfonic acid and the like, and N, N-dimethylaminoethyl methacrylate, N, N-diethylaminoethyl methacrylate, N, N-dimethylaminopropyl having a basic group Examples include, but are not limited to, acrylamide and salts thereof.
(Hydrophobic monomer)
On the other hand, examples of the hydrophobic monomer include acrylate derivatives and methacrylate derivatives such as ethyl acrylate, methyl methacrylate and glycidyl methacrylate, N-substituted alkylmethacrylamide derivatives such as Nn-butylmethacrylamide, vinyl chloride, acrylonitrile and styrene. And vinyl acetate and the like, but are not limited thereto.
(Hydrophilic block)
On the other hand, as the hydrophilic block to be combined with the above-described block having a cloud point, specifically, methyl cellulose, dextran, polyethylene oxide, polyvinyl alcohol, poly N-vinyl pyrrolidone, polyvinyl pyridine, polyacrylamide, polymethacrylamide , Poly N-methylacrylamide, polyhydroxymethyl acrylate, polyacrylic acid, polymethacrylic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid and their salts; poly N, N-dimethylaminoethyl methacrylate, poly N, N-diethylaminoethyl methacrylate , Poly N, N-dimethylaminopropylacrylamide and salts thereof.
The method for bonding the block having a cloud point and the hydrophilic block is not particularly limited. For example, a polymerizable functional group (for example, acryloyl group) is introduced into one of the blocks to give the other block. This can be done by copolymerizing monomers. Further, the combined product of a block having a cloud point and the hydrophilic block may be obtained by block copolymerization of a monomer that gives a block having a cloud point and a monomer that gives a hydrophilic block. Is possible. In addition, the block having a cloud point and the hydrophilic block are bonded to each other by introducing a reactive functional group (for example, a hydroxyl group, an amino group, a carboxyl group, an isocyanate group, etc.) in advance and bonding them together by a chemical reaction. Can also be done. At this time, usually a plurality of reactive functional groups are introduced into the hydrophilic block. In addition, the bond between the polypropylene oxide having a cloud point and the hydrophilic block is repeated, for example, by anionic polymerization or cationic polymerization by repeatedly repeating propylene oxide and a monomer (for example, ethylene oxide) constituting “another hydrophilic block”. By polymerizing, a block copolymer in which polypropylene oxide and a “hydrophilic block” (for example, polyethylene oxide) are bonded can be obtained. Such a block copolymer can also be obtained by copolymerizing monomers constituting a hydrophilic block after introducing a polymerizable group (for example, acryloyl group) to the terminal of polypropylene oxide. Furthermore, the polymer used in the present invention can also be obtained by introducing a functional group capable of binding reaction with a functional group (for example, hydroxyl group) at the end of polypropylene oxide into the hydrophilic block and reacting both. . Moreover, the hydrogel-forming polymer used in the present invention can also be obtained by linking materials such as Pluronic F-127 (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) in which polyethylene glycol is bonded to both ends of polypropylene glycol. Can be obtained.
Since the polymer of the present invention in a mode including a block having a cloud point is water-soluble at a temperature lower than the cloud point, the above “block having a cloud point” present in the molecule is water-soluble. It is completely dissolved in water and shows a sol state. However, when the temperature of the polymer aqueous solution is raised to a temperature higher than the above cloud point, the “block having a cloud point” present in the molecule becomes hydrophobic, and is associated between separate molecules by hydrophobic interaction. To do.
On the other hand, since the hydrophilic block is still water-soluble at this time (when heated to a temperature higher than the cloud point), the polymer of the present invention is a hydrophobic association part between blocks having a cloud point in water. A hydrogel having a three-dimensional network structure with a cross-linking point as a cross-linking point is generated. When the temperature of this hydrogel is cooled again to a temperature lower than the cloud point of the “block having cloud point” existing in the molecule, the block having the cloud point becomes water-soluble and the crosslinking point due to hydrophobic association is released. The hydrogel structure disappears and the polymer of the present invention becomes a complete aqueous solution again. Thus, the sol-gel transition of the polymer of the present invention in a preferred embodiment is based on reversible changes in hydrophilicity and hydrophobicity at the cloud point of the block having the cloud point present in the molecule. Therefore, it has complete reversibility in response to temperature changes.
(Gel solubility)
As described above, the hydrogel-forming polymer of the present invention containing at least a polymer having a sol-gel transition temperature in an aqueous solution is substantially water-insoluble at a temperature (h ° C.) higher than the sol-gel transition temperature. And reversibly water soluble at a temperature (i ° C.) lower than the sol-gel transition temperature.
The high temperature (h ° C.) is preferably a temperature that is 1 ° C. or more higher than the sol-gel transition temperature, and more preferably a temperature that is 2 ° C. or more (especially 5 ° C. or more) higher. The term “substantially water-insoluble” means that the amount of the polymer dissolved in 100 mL of water at the temperature (h ° C.) is 5.0 g or less (more preferably 0.5 g or less, particularly 0.1 g or less. ) Is preferable.
On the other hand, the above-mentioned low temperature (i ° C.) is preferably 1 ° C. or more lower than the sol-gel transition temperature (in absolute value), more preferably 2 ° C. or higher (particularly 5 ° C. or higher). preferable. The “water-soluble” means that the amount of the polymer dissolved in 100 mL of water at the temperature (i ° C.) is 0.5 g or more (more preferably 1.0 g or more). Furthermore, “reversibly water-soluble” means that the aqueous solution of the hydrogel-forming polymer is once gelled (at a temperature higher than the sol-gel transition temperature), even after the gelation. At a lower temperature, it means to exhibit water solubility as described above.
The polymer preferably has a 10% aqueous solution at 5 ° C. and a viscosity of 10 to 3,000 centipoise (more preferably 50 to 1,000 centipoise). Such viscosity is preferably measured under the following measurement conditions, for example.
Viscometer: Stress-controlled rheometer (Model name: CSL 500, manufactured by Carrie Med, USA)
Rotor diameter: 60mm
Rotor shape: parallel plate
Measurement frequency: 1 Hz (Hertz)
The aqueous gel solution of the hydrogel-forming polymer of the present invention is substantially not dissolved even if it is gelled at a temperature higher than the sol-gel transition temperature and then immersed in a large amount of water. The characteristics of the floating carrier can be confirmed, for example, as follows.
That is, 0.15 g of the hydrogel-forming polymer of the present invention is dissolved in 1.35 g of distilled water at a temperature lower than the sol-gel transition temperature (for example, under ice cooling) to prepare a 10 W% aqueous solution. The aqueous solution was poured into a plastic petri dish having a diameter of 35 mm and heated to 37 ° C. to form a gel having a thickness of about 1.5 mm in the petri dish, and then the weight of the whole petri dish containing the gel (J-gram) is measured. Next, after the whole petri dish containing the gel was allowed to stand at 37 ° C. for 10 hours in water in 250 mL, the weight (k grams) of the whole petri dish containing the gel was measured, and the dissolution of the gel from the gel surface was measured. Evaluate presence or absence. At this time, in the hydrogel-forming polymer of the present invention, the weight reduction rate of the gel, that is, (j−k) / j is preferably 5.0% or less, more preferably 1.0%. Or less (particularly 0.1% or less).
The aqueous solution of the hydrogel-forming polymer of the present invention is gelled at a temperature higher than the sol-gel transition temperature, and then immersed in a large amount of water (by volume, about 0.1 to 100 times the gel). Even so, the gel does not dissolve over a long period of time. Such a property of the polymer used in the present invention is achieved by, for example, the presence of two or more (plural) blocks having a cloud point in the polymer.
On the other hand, when a similar gel was prepared using the aforementioned Pluronic F-127 in which polyethylene oxide was bonded to both ends of polypropylene oxide, the gel was completely dissolved in water after standing for several hours. The inventors have found that this is the case.
From the standpoint of suppressing the non-gelling cytotoxicity to the lowest possible level, the concentration in water, that is, {(polymer) / (polymer + water)} × 100 (%), 20% or less (and 15 It is preferable to use a hydrogel-forming polymer that can be gelled at a concentration of not more than%, particularly not more than 10%.
(Liquid component)
The liquid component (or dispersion medium) that can be used in constructing the carrier (gel-forming composition) of the present invention together with the above-described hydrogel-forming polymer has gel-forming properties as described above. There is no particular limitation as long as the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and a gel state at a high temperature, and the gel-forming floating carrier is substantially insoluble in a high temperature gel state. This liquid component exhibits a substantially liquid state at a temperature at which the carrier of the present invention should be used in a sol state.
As such a liquid component, various inorganic liquids, organic liquids, and combinations or mixtures of two or more thereof can be used. In an embodiment in which the carrier of the present invention should be used as a component derived from a living body, this liquid component is preferably a hydrophilic or water-soluble liquid, and further contains a water-containing liquid (particularly, containing 80% by mass or more of water). Liquid).
(Other ingredients)
The floating carrier of the present invention contains at least the polymer having the above-mentioned sol-gel transition temperature, but may contain other components as necessary. Examples of “other components” in such an embodiment include antibiotics, anticancer agents, ECM such as collagen, local chemical mediators described later, hormones such as insulin and cell growth factor, foreign genes, and the like.
(Floating substances)
In the present invention, the floating substance to be suspended by the above-described floating carrier is not particularly limited. That is, the suspended substance may be derived from a living body or not. Preferred embodiments of the suspended substance are as follows.
Specific gravity: In the carrier of the present invention in a sol state, it can be substantially separated from the carrier by centrifugation (for example, conditions of 500 to 10,000 rpm, 100 to 10,000 G, about 5 to 30 minutes). Have specific gravity.
Examples of the substance to be suspended include the following.
Cells, colloidal particles (hydrophilic and / or hydrophobic), liquids, gases.
(Proliferation of fibroblasts)
In an embodiment in which the carrier of the present invention should be used as a biological component for the purpose of growing undifferentiated cells in an undifferentiated state, in the hydrogel formed by the hydrogel-forming polymer constituting the carrier, Preferably, fibroblasts do not substantially grow in the gel. Fibroblasts usually show significant proliferation with dendritic morphological changes characteristic of fibroblasts in monolayer culture on a cell culture dish (plate) or in a collagen gel. On the other hand, in the hydrogel of the present invention, fibroblasts do not substantially proliferate while maintaining the single cell form.
The proliferation of fibroblasts can be evaluated, for example, by the following method (see, Tsuyoshi Yoshikawa, Ken Tsukikawa, St. Marianna University School of Medicine, Vol. 28, No. 4, 161-170 (2000)). A normal human lung fibroblast is obtained by stirring and dissolving the hydrogel-forming polymer constituting the suspension carrier of the present invention in a culture solution such as RPMI 1640 (Life Technologies, NY, USA) at a low temperature (eg, 4 ° C.). (Normal Human Lung Fibroblasts, NHLF, manufactured by Takara Shuzo Co., Ltd.)) 6 × 10 4 Disperse to a cell density of 1 cell / mL. 0.2 mL of this NHLF dispersion was added to a 24-well plate (material: plastic, the size of one well was 15 mm long, 15 mm wide, and about 20 mm deep; commercially available products such as Becton-Dickinson's trade name: After injecting into each well of Multiwell) and gelling at 37 ° C., 0.4 mL of the culture solution was added, and 37 ° C., 5% CO 2 was added. 2 Incubate under atmospheric pressure. The state of fibroblast proliferation is confirmed by observation with a phase contrast microscope over time (for example, 0, 1, 3, 7 days).
(Proliferation rate of fibroblasts)
Furthermore, the proliferation rate of fibroblasts during the culture period can be measured by the following method utilizing the enzyme activity. After culturing fibroblasts in the floating carrier of the present invention for a predetermined period, the floating carrier is lowered to a temperature lower than its sol-gel transition temperature (for example, 10 ° C. lower than the sol-gel transition temperature). Then, 50 μL of WST-8 reagent (manufactured by Dojindo) is added to each well as a reagent for measuring succinate dehydrogenase activity. The 24-well plate is reacted at 37 ° C. for 10 hours and then stored at about 4 ° C. for 1 hour to make a completely uniform aqueous solution. The aqueous solution is dispensed into a 96-well plate by 200 μL, and the absorbance (OD (450)) is measured at 450 nm (reference wavelength: 620 nm) using a microplate colorimeter. It has been confirmed that this OD (450) and the number of living cells are in a proportional relationship (for example, the document Furukawa, T. et al, “High in vitro-in vitro correlation of drug response-suppressed-stressed-suppressed-the-supplemented-suppressed-the-supple- Dimensional history and MTT end point ”, Int. J. Cancer 51: 489, 1992). That is, the proliferation rate of fibroblasts is determined by the ratio between the absorbance at the start of culture (OD (450)) and the absorbance after culture (OD (450)).
In the present invention, the proliferation rate of fibroblasts after culturing at 37 ° C. for 3 days is in the range of 70% to 200%, further 80% to 150%, more preferably 90% to 120%. desirable.
(Chemical mediator)
For proliferation and differentiation of undifferentiated cells, not only cells such as progenitor cells but also various chemical mediators such as cell growth factors that promote differentiation and proliferation are usually required. These chemical mediators are normally secreted from the cells themselves. However, in order to promote the regeneration efficiently, it is effective to replenish the floating carrier of the present invention with these chemical mediators from the outside in advance.
The chemical mediators are: 1) a local chemical mediator that acts only in the immediate vicinity of the cell, 2) a neurotransmitter that is secreted from a neuron and has a very short effective action distance, and 3) Examples thereof include hormones that are secreted from endocrine cells and act on target cells throughout the body through blood flow and the like.
Examples of the local chemical mediator of 1) include proteins such as nerve cell growth factors, peptides such as chemotactic factors, amino acid derivatives such as histamine, and fatty acid derivatives such as prostaglandins.
Examples of the neurotransmitter 2) include low molecular weight substances such as amino acids such as glycine, low molecular weight peptides such as noradrenaline, acetylcholine, and enkephalin.
Examples of the hormone 3) include fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), liver VEGF, and VEGF. Cell growth factor such as hepatocyte growth factor (HGF), protein such as insulin, somatotropin, somatomedin, corticotropin (ACTH), parathyroid hormone (PTH), thyroid stimulating hormone (TSH), or glycoprotein, TSH Release factors, amino acid derivatives such as vasopressin, somatostatin, steroids such as cortisol, estradiol, testosterone, etc. It is.
(Floating / collecting method)
In the present invention, the above-mentioned floating carrier of the present invention is put into a sol state at a temperature lower than the sol-gel transition temperature, a suspended substance is added to the floating carrier, and the floating carrier is coated in a gel state at a temperature higher than the sol-gel transition temperature. The suspended matter can be retained, and then the suspended matter after the retention can be recovered again in a sol state lower than the sol-gel transition temperature. In the case of this collection | recovery, a well-known separation means (for example, centrifugation) can be used as needed.
Conditions other than those described above can be modified as appropriate according to the properties, properties, etc. of the suspended matter, with reference to a method for floating / recovering biological components described later.
(Floating / collecting method of biological components)
In order to seed and mix stem cells, progenitor cells or tissues containing them in the suspension carrier of the present invention, a hydrogel-forming polymer constituting the suspension carrier of the present invention is added to a culture solution such as RPMI 1640 (Life Technologies, NY, USA) with stirring and dissolution at a low temperature (for example, 4 ° C.), the suspended carrier of the present invention is added to and suspended in the state of an aqueous solution (sol) below its sol-gel transition temperature. You can do it. There is no particular limitation on the culture medium used here, and a target stem cell or progenitor cell that is easily proliferated and differentiated may be appropriately selected and used. Moreover, it is effective to contain the aforementioned chemical mediator that promotes the proliferation and differentiation of the target stem cells and progenitor cells in this culture solution.
In order to culture cells in the suspension carrier of the present invention, the suspension is heated to a temperature equal to or higher than the sol-gel transition temperature of the suspension carrier of the present invention (room temperature or 37 ° C.), and then gelled. Stem cells, progenitor cells or tissues containing them are cultured at the temperature (room temperature or 37 ° C.).
In the floating carrier of the present invention, the hydrogel-forming gel-forming composition is substantially water-insoluble in a high temperature gel state (culture temperature), so that a liquid medium is overlaid on the floating carrier of the present invention. The cells can be cultured by suspending the floating carrier of the present invention in a liquid medium. When undifferentiated cells proliferate, a large amount of nutrients are required, but the floating carrier of the present invention can supply the necessary nutrients from an external liquid medium. In addition, substances that inhibit cell growth, such as waste products generated by cells, can be discharged into an external liquid medium. As a result, the floating carrier of the present invention can promote cell growth as compared with conventional cell culture methods.
In order to recover the target tissue / organ in the floating carrier of the present invention and recover them from the floating carrier of the present invention, the floating carrier of the present invention containing the target tissue / organ is below the sol-gel transition temperature. After cooling to a temperature (for example, 4 ° C.), the floating carrier of the present invention is returned to the sol state, and the target tissue / organ and the floating carrier of the present invention are separated by a method such as centrifugation. In addition, since the floating carrier of the present invention can be easily diluted with water in a sol state lower than its sol-gel transition temperature, the fluidity can be further increased, and the cultured cells and organs can be easily recovered. Can do.
Since the suspension carrier of the present invention has the characteristics of suppressing the proliferation of fibroblasts and promoting the proliferation and differentiation of stem cells and progenitor cells, the target tissue / organ can be efficiently formed in the suspension carrier of the present invention.
(Recovered ES cells and / or embryoid bodies)
By using the above-described floating carrier of the present invention (a mode applied to a biological substance), it is easy to produce animal and plant cells (for example, protoplasts, ES cells, EBs, etc.) that need to be cultured in a floating state without adhering to the container wall. In addition to seeding and mixing, it can be suitably recovered. According to the present invention, it is possible to culture the animal and plant cells in a floating state without adhering to the vessel wall during the culture, and the medium can be changed during the culture. This is because the collected cells or cell mass can be easily recovered.
Accordingly, by using the floating carrier of the present invention, for example, ES cells and / or embryoid bodies can be suitably cultured and recovered.
In clinical application of ES cells, it is a precondition for use to culture in large quantities while maintaining undifferentiation. Regarding mouse ES cells, it has become clear that the use of LIF (leukemia inhibitory factor) can maintain undifferentiation, but the mechanism of maintaining undifferentiation has not been elucidated in primate ES cells including humans. (See Experimental Medicine, Vol. 21, No. 8 (Special Issue), “Cutting-edge of Stem Cell Research”, edited by Eiyuki Okano and Norio Nakajo, 2003, published by Yodosha).
Currently, it is reported that primate ES cells can be maintained undifferentiated by using mouse fibroblasts as a feeder (Nakatsuji N, Suemiri H, Embryonic stem cell lines of nonhuman primates, Scientific ref. Jun 26; 2 (6): 1762 (2002)). According to this report, when cynomolgus monkey ES cells are grown in a liquid culture medium that does not contain LIF, and in a flat culture using mouse fibroblasts as a feeder, one island-like colony is formed and the undifferentiated state is maintained. Has been. However, such co-culture with other animal cells (fibroblasts) is a serious problem in clinical application to humans.
On the other hand, by using the floating carrier of the present invention, mouse ES cells, cynomolgus monkeys, humans and other primate ES cells can be cultured in an undifferentiated state without using LIF and feeder cells. Thus, it is extremely advantageous in clinical application of ES cells that no co-culture with cells of other species is required. In addition, since the fibroblasts do not proliferate in the floating carrier of the present invention, it is possible to selectively proliferate only ES cells even if fibroblasts of other animals are mixed. It becomes.
Thus, the ES cells or embryoid bodies cultured and recovered using the floating carrier of the present invention have the following suitable characteristics.
<Characteristics of recovered ES cells>
Normally, ES cells proliferate while maintaining an undifferentiated state in the presence of LIF, but in the absence of LIF, they differentiate into mature cells such as nerves, blood cells, and muscles. However, ES cells cultured and collected using the suspension carrier of the present invention have a characteristic that they can maintain an undifferentiated state even in culture in the absence of LIF.
Maintenance of the undifferentiated state can be confirmed by analyzing the gene expression state with a DNA chip (microarray). If the gene expression of the cells after the culture does not change or the change is small compared to the gene expression of the ES cells before the culture, it is determined that the undifferentiated state is maintained. In addition, if the gene expression of the ES cell aggregate after culturing does not change compared to the gene expression of the ES cell before culturing, or the change is small, there is no or little contamination of cells differentiated into other cells. It is judged.
The maintenance of an undifferentiated state can also be confirmed from the formation of almond-shaped colonies when the recovered ES cells are cultured on feeder cells. The maintenance of the undifferentiated state can also be confirmed by creating a knockout mouse (chimeric mouse).
It can also be confirmed by observing the activity of alkaline phosphatase that the ES cells are maintained in an undifferentiated state. If the alkaline phosphatase activity is high, the cells are stained red when stained with Vector Red Alkaline Phosphatase Substrate Kit I (VECTOR).
Regarding the above-mentioned characteristic confirmation method, the document “Regenerative Medicine-From Basics of Tissue Engineering to Cutting-Edge Technology” Director: Norio Ohno, Masao Aizawa, Publisher: Takashi Yoshida, Publisher: NTS Corporation, Reference can be made to 2002, (Tokyo).
Since the recovered ES cells in the present invention maintain an undifferentiated state, they can be further used as ES cells (universal cells). Since the recovered ES cells are maintained in an undifferentiated state, differentiation can be induced into target cells and organs using various chemical mediators. The floating carrier of the present invention can also be used in an EB differentiation induction process using such a chemical mediator.
<Characteristics of recovered embryoid body (EB)>
EB cultured and recovered using the floating carrier of the present invention has a characteristic that it can maintain an undifferentiated state. It can confirm that EB is maintaining the undifferentiated state by the method similar to the case of said ES cell. The method for confirming that EB is still in an undifferentiated state can be found in the literature "Regenerative Medicine-From the Basics of Tissue Engineering to the Cutting-Edge Technology-" Director: Noriya Ohno, Masuo Aizawa, Publisher: Takashi Yoshida, Publisher: NTS Corporation, 2002, (Tokyo) can also be referred to.
Since the EB collected in the present invention maintains an undifferentiated state, it can be induced to differentiate into a target cell or organ using various chemical mediators. The floating carrier of the present invention can also be used for such EB differentiation induction process.
When the above-described hanging culture method is used to create EBs, EBs are not always formed from a single ES because separate ES cells gather at the bottom of the droplets to form EBs. . On the other hand, EBs cultured and recovered using the floating carrier of the present invention can form pure EBs because single (one) cells can proliferate to form EBs. Thus, the purity of EB can be confirmed by gene expression analysis as described above.
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is limited by a claim, and is not limited by a following example.
製造例1
ポリプロピレンオキサイド−ポリエチレンオキサイド共重合体(プロピレンオキサイド/エチレンオキサイド平均重合度約60/180、旭電化工業(株)製:プルロニックF−127)10gを乾燥クロロホルム30mLに溶解し、五酸化リン共存下、ヘキサメチレンジイソシアネート0.13gを加え、沸点還流下に6時間反応させた。溶媒を減圧留去後、残さを蒸留水に溶解し、分画分子量3万の限外濾過膜(アミコンPM−30)を用いて限外濾過を行い、高分子量重合体と低分子量重合体を分画した。得られた水溶液を凍結して、F−127高重合体およびF−127低重合体を得た。
上記により得たF−127高重合体(本発明のハイドロゲル形成性高分子、TGP−1)を、氷冷下、8質量%の濃度で蒸留水に溶解した。この水溶液をゆるやかに加温していくと、21℃から徐々に粘度が上昇し、約27℃で固化して、ハイドロゲルとなった。このハイドロゲルを冷却すると、21℃で水溶液に戻った。この変化は、可逆的に繰り返し観測された。一方、上記F−127低重合体を、氷点下8質量%の濃度で蒸留水に溶解したものは、60℃以上に加熱しても全くゲル化しなかった。
製造例2
トリメチロールプロパン1モルに対し、エチレンオキサイド160モルをカチオン重合により付加して、平均分子量約7000のポリエチレンオキサイドトリオールを得た。
上記により得たポリエチレンオキサイドトリオール100gを蒸留水1000mLに溶解した後、室温で過マンガン酸カリウム12gを徐々に加えて、そのまま約1時間、酸化反応させた。固形物を濾過により除いた後、生成物をクロロホルムで抽出し、溶媒(クロロホルム)を減圧留去してポリエチレンオキサイドトリカルボキシル体90gを得た。
上記により得たポリエチレンオキサイドトリカルボキシル体10gと、ポリプロピレンオキサイドジアミノ体(プロピレンオキサイド平均重合度約65、米国ジェファーソンケミカル社製、商品名:ジェファーミンD−4000、曇点:約9℃)10gとを四塩化炭素1000mLに溶解し、ジシクロヘキシルカルボジイミド1.2gを加えた後、沸点還流下に6時間反応させた。反応液を冷却し、固形物を濾過により除いた後、溶媒(四塩化炭素)を減圧留去し、残さを真空乾燥して、複数のポリプロピレンオキサイドとポリエチレンオキサイドとが結合した本発明のハイドロゲル形成性高分子(TGP−2)を得た。これを氷冷下、10質量%の濃度で蒸留水に溶解し、そのゾル−ゲル転移温度を測定したところ、約16℃であった。
製造例3
N−イソプロピルアクリルアミド(イーストマンコダック社製)96g、N−アクリロキシスクシンイミド(国産化学(株)製)17g、およびn−ブチルメタクリレート(関東化学(株)製)7gをクロロホルム4000mLに溶解し、窒素置換後、N,N’−アゾビスイソブチロニトリル1.5gを加え、60℃で6時間重合させた。反応液を濃縮した後、ジエチルエーテルに再沈(再沈殿)した。濾過により固形物を回収した後、真空乾燥して、78gのポリ(N−イソプロピルアクリルアミド−コ−N−アクリロキシスクシンイミド−コ−n−ブチルメタクリレート)を得た。
上記により得たポリ(N−イソプロピルアクリルアミド−コ−N−アクリロキシスクシンイミド−コ−n−ブチルメタクリレート)に、過剰のイソプロピルアミンを加えてポリ(N−イソプロピルアクリルアミド−コ−n−ブチルメタクリレート)を得た。このポリ(N−イソプロピルアクリルアミド−コ−n−ブチルメタクリレート)の水溶液の曇点は19℃であった。
前記のポリ(N−イソプロピルアクリルアミド−コ−N−アクリロキシスクシンイミド−コ−n−ブチルメタクリレート)10g、および両末端アミノ化ポリエチレンオキサイド(分子量6,000、川研ファインケミカル(株)製)5gをクロロホルム1000mLに溶解し、50℃で3時間反応させた。室温まで冷却した後、イソプロピルアミン1gを加え、1時間放置した後、反応液を濃縮し、残渣をジエチルエーテル中に沈澱させた。濾過により固形物を回収した後、真空乾燥して、複数のポリ(N−イソプロピルアクリルアミド−コ−n−ブチルメタクリレート)とポリエチレンオキサイドとが結合した本発明のハイドロゲル形成性高分子(TGP−3)を得た。
このようにして得たTGP−3を氷冷下、10質量%の濃度で蒸留水に溶解し、そのゾル−ゲル転移温度を測定したところ、約21℃であった。
製造例4
(滅菌方法)
上記した本発明のハイドロゲル形成性高分子(TGP−3)の2.0gを、EOG(エチレンオキサイドガス)滅菌バッグ(ホギメディカル社製、商品名:ハイブリッド滅菌バッグ)に入れ、EOG滅菌装置(イージーパック、井内盛栄堂製)でEOGをバッグに充填し、室温にて一昼夜放置した。更に40℃で半日放置した後、EOGをバッグから抜き、エアレーションを行った。バッグを真空乾燥器(40℃)に入れ、時々エアレーションしながら半日放置することにより滅菌した。
この滅菌操作により高分子のゾル−ゲル転移温度が変化しないことを、別途確認した。
製造例5
N−イソプロピルアクリルアミド37gと、n−ブチルメタクリレート3gと、ポリエチレンオキサイドモノアクリレート(分子量4,000、日本油脂(株)製:PME−4000)28gとを、ベンゼン340mLに溶解した後、2,2´−アゾビスイソブチロニトリル0.8gを加え、60℃で6時間反応させた。得られた反応生成物にクロロホルム600mLを加えて溶解し、該溶液をエーテル20L(リットル)に滴下して沈澱させた。得られた沈殿を濾過により回収し、該沈澱を約40℃で24時間真空乾燥した後、蒸留水6Lに再び溶解し、分画分子量10万のホローファイバー型限外濾過膜(アミコン社製H1P100−43)を用いて10℃で2lまで濃縮した。該濃縮液に蒸留水4lを加えて希釈し、上記希釈操作を再度行った。上記の希釈、限外濾過濃縮操作を更に5回繰り返し、分子量10万以下のものを除去した。この限外濾過により濾過されなかったもの(限外濾過膜内に残留したもの)を回収して凍結乾燥し、分子量10万以上の本発明のハイドロゲル形成性高分子(TGP−4)60gを得た。
上記により得た本発明のハイドロゲル形成性高分子(TGP−4)1gを、9gの蒸留水に氷冷下で溶解した。この水溶液のゾル−ゲル転移温度を測定したところ、該ゾル−ゲル転移温度は25℃であった。
製造例6
製造例3の本発明のハイドロゲル形成性高分子(TGP−3)を10質量%の濃度で蒸留水に溶解し、37℃におけるηを測定したところ、5.8×105Pa・secであった。一方、寒天を2質量%の濃度で蒸留水に90℃で溶解して、10℃で1時間ゲル化させた後、37℃におけるηを測定したところ、そのηは機器の測定限界(1×107Pa・sec)を越えていた。
製造例7
(繊維芽細胞の増殖性評価)
製造例3で作製した本発明のハイドロゲル形成性高分子(TGP−3)を製造例4の方法によって滅菌した後、該ポリマーの最終濃度が約8%になるように20%の胎児牛血清(FCS;Dainippon Pharmaceutical社製、商品名:Fetal Calf Serum)および抗生剤(Life Technologies社製、商品名:penicillin;最終濃度10,000U/mL)を含有するRPMI−1640(Life Technologies社製)中に、4℃で24時間、撹拌下に溶解した。この操作は無菌的に実施した。
上記の本発明の浮遊担体(TGP−3/RPMI)に正常ヒト肺繊維芽細胞(Normal Human Lung Fibroblasts,NHLF、宝酒造(株)社製))を6x104個/mLの細胞密度になるように分散させた。このNHLF分散液を24wellプレート[flat bottom multiwell tissue culture plate(FALCON,Becton Dickinson & Company)]の各wellに0.2mLずつ分注し、37℃でゲル化させた後、培養液0.4mLを添加して37℃、5%CO2大気圧下で培養した。24wellプレートは顕微鏡観察用と繊維芽細胞増殖率測定用の各2枚を0,1,3,7日目用分合計8枚用意した。これとは別に比較用としてTGP−3を用いないで上記の培養液に6x104個/mLの細胞密度になるように分散させたNHLF分散液を調製し、同様にして24wellプレート8枚を用意して同様の培養試験を行った。
位相差顕微鏡により経日的(0,1,3,7日)に観察した結果、比較例の培養では1日後から繊維芽細胞に特徴的な樹枝状の増殖が見られ、7日後にはコンフルエントの状態となったのに対し、本発明の浮遊担体中では7日後まで繊維芽細胞が単細胞の形態を保ったままで増殖の様子は認められなかった。
所定培養日数の経過後、24wellプレートを4℃に下げることによって該浮遊担体を溶解した後、各ウェル中にコハク酸脱水素酵素活性測定用試薬たるWST−8試薬(同仁化学(株)製)50μLを添加した。この24wellプレートを37℃で10時間反応させた後4℃に冷却して完全に均一な水溶液の状態にした。該水溶液を96−ウェルプレートに200μLづつ分注し、マイクロプレート用比色計を用いて450nm(参照波長620nm)で吸光度(OD(450))を測定した。繊維芽細胞の増殖率は培養開始時(0日)の吸光度(OD(450))と培養後(1、3、7日後)の吸光度(OD(450))の比により求めた。本発明の浮遊担体中では1、3、7日後の繊維芽細胞の増殖率がそれぞれ105%、120%、125%であったのに対し、比較例では1、3、7日後の繊維芽細胞の増殖率がそれぞれ170%、370%、420%であった。 Production Example 1
10 g of a polypropylene oxide-polyethylene oxide copolymer (propylene oxide / ethylene oxide average polymerization degree of about 60/180, manufactured by Asahi Denka Kogyo Co., Ltd .: Pluronic F-127) was dissolved in 30 mL of dry chloroform, and in the presence of phosphorus pentoxide, Hexamethylene diisocyanate (0.13 g) was added, and the reaction was allowed to proceed for 6 hours under reflux at the boiling point. After distilling off the solvent under reduced pressure, the residue was dissolved in distilled water, and ultrafiltration was performed using an ultrafiltration membrane (Amicon PM-30) with a molecular weight cut off of 30,000 to obtain a high molecular weight polymer and a low molecular weight polymer. Fractionated. The obtained aqueous solution was frozen to obtain F-127 high polymer and F-127 low polymer.
The F-127 high polymer (hydrogel-forming polymer of the present invention, TGP-1) obtained as described above was dissolved in distilled water at a concentration of 8% by mass under ice cooling. When this aqueous solution was gently heated, the viscosity gradually increased from 21 ° C. and solidified at about 27 ° C. to form a hydrogel. When this hydrogel was cooled, it returned to an aqueous solution at 21 ° C. This change was repeatedly observed reversibly. On the other hand, the F-127 low polymer dissolved in distilled water at a concentration of 8% by mass below freezing did not gel at all even when heated to 60 ° C. or higher.
Production Example 2
160 mol of ethylene oxide was added by cationic polymerization to 1 mol of trimethylolpropane to obtain a polyethylene oxide triol having an average molecular weight of about 7000.
After dissolving 100 g of the polyethylene oxide triol obtained above in 1000 mL of distilled water, 12 g of potassium permanganate was gradually added at room temperature, and the reaction was allowed to proceed for about 1 hour. After removing the solid matter by filtration, the product was extracted with chloroform, and the solvent (chloroform) was distilled off under reduced pressure to obtain 90 g of a polyethylene oxide tricarboxylate.
10 g of the polyethylene oxide tricarboxylate obtained above and 10 g of polypropylene oxide diamino (propylene oxide average polymerization degree: about 65, manufactured by Jefferson Chemical Co., USA, trade name: Jeffamine D-4000, cloud point: about 9 ° C.) It melt | dissolved in 1000 mL of carbon tetrachloride, and after adding 1.2 g of dicyclohexylcarbodiimide, it was made to react under boiling point recirculation | reflux for 6 hours. After cooling the reaction solution and removing solids by filtration, the solvent (carbon tetrachloride) is distilled off under reduced pressure, and the residue is vacuum-dried, and the hydrogel of the present invention in which a plurality of polypropylene oxides and polyethylene oxides are combined. A forming polymer (TGP-2) was obtained. This was dissolved in distilled water at a concentration of 10% by mass under ice-cooling, and its sol-gel transition temperature was measured and found to be about 16 ° C.
Production Example 3
96 g of N-isopropylacrylamide (manufactured by Eastman Kodak), 17 g of N-acryloxysuccinimide (manufactured by Kokusan Chemical Co., Ltd.), and 7 g of n-butyl methacrylate (manufactured by Kanto Chemical Co., Ltd.) are dissolved in 4000 mL of chloroform, and nitrogen is added. After the substitution, 1.5 g of N, N′-azobisisobutyronitrile was added and polymerized at 60 ° C. for 6 hours. After the reaction solution was concentrated, it was reprecipitated (reprecipitated) in diethyl ether. The solid was collected by filtration and then vacuum dried to obtain 78 g of poly (N-isopropylacrylamide-co-N-acryloxysuccinimide-co-n-butyl methacrylate).
To the poly (N-isopropylacrylamide-co-N-acryloxysuccinimide-co-n-butyl methacrylate) obtained above, an excess of isopropylamine was added to obtain poly (N-isopropylacrylamide-co-n-butyl methacrylate). Obtained. The cloud point of this aqueous solution of poly (N-isopropylacrylamide-co-n-butyl methacrylate) was 19 ° C.
Chloroform 10 g of the above poly (N-isopropylacrylamide-co-N-acryloxysuccinimide-co-n-butyl methacrylate) and 5 g of both ends aminated polyethylene oxide (molecular weight 6,000, manufactured by Kawaken Fine Chemical Co., Ltd.) It melt | dissolved in 1000 mL and made it react at 50 degreeC for 3 hours. After cooling to room temperature, 1 g of isopropylamine was added and allowed to stand for 1 hour, and then the reaction solution was concentrated, and the residue was precipitated in diethyl ether. The solid matter was collected by filtration and then vacuum-dried to form the hydrogel-forming polymer (TGP-3) of the present invention in which a plurality of poly (N-isopropylacrylamide-co-n-butyl methacrylate) and polyethylene oxide were bonded. )
The TGP-3 thus obtained was dissolved in distilled water at a concentration of 10% by mass under ice cooling, and the sol-gel transition temperature was measured to be about 21 ° C.
Production Example 4
(Sterilization method)
2.0 g of the above-described hydrogel-forming polymer (TGP-3) of the present invention is put into an EOG (ethylene oxide gas) sterilization bag (trade name: hybrid sterilization bag, manufactured by Hogi Medical Co., Ltd.), and an EOG sterilizer ( The bag was filled with EOG with Easy Pack (manufactured by Inoue Seieido) and left at room temperature all day and night. Further, after standing at 40 ° C. for half a day, the EOG was removed from the bag and aerated. The bag was sterilized by placing it in a vacuum dryer (40 ° C.) and leaving it for half a day with occasional aeration.
It was separately confirmed that the sol-gel transition temperature of the polymer was not changed by this sterilization operation.
Production Example 5
After dissolving 37 g of N-isopropylacrylamide, 3 g of n-butyl methacrylate and 28 g of polyethylene oxide monoacrylate (molecular weight 4,000, manufactured by NOF Corporation: PME-4000) in 340 mL of benzene, 2,2 ′ -0.8 g of azobisisobutyronitrile was added and reacted at 60 ° C for 6 hours. The obtained reaction product was dissolved by adding 600 mL of chloroform, and the solution was added dropwise to 20 L (liter) of ether to cause precipitation. The obtained precipitate was recovered by filtration, and the precipitate was vacuum-dried at about 40 ° C. for 24 hours, and then dissolved again in 6 L of distilled water, and a hollow fiber ultrafiltration membrane (H1P100 manufactured by Amicon Co., Ltd.) having a molecular weight cut-off of 100,000. -43) and concentrated to 2 liters at 10 ° C. The concentrated solution was diluted by adding 4 l of distilled water, and the above dilution operation was repeated. The above dilution and ultrafiltration concentration operations were further repeated 5 times to remove those having a molecular weight of 100,000 or less. What was not filtered by this ultrafiltration (remaining in the ultrafiltration membrane) was recovered and lyophilized to obtain 60 g of the hydrogel-forming polymer (TGP-4) of the present invention having a molecular weight of 100,000 or more. Obtained.
1 g of the hydrogel-forming polymer (TGP-4) of the present invention obtained as described above was dissolved in 9 g of distilled water under ice cooling. When the sol-gel transition temperature of this aqueous solution was measured, the sol-gel transition temperature was 25 ° C.
Production Example 6
When the hydrogel-forming polymer (TGP-3) of Production Example 3 of the present invention was dissolved in distilled water at a concentration of 10% by mass and measured at η at 37 ° C., it was 5.8 × 10 5 Pa · sec. there were. On the other hand, after agar was dissolved in distilled water at a concentration of 2% by mass at 90 ° C. and gelled at 10 ° C. for 1 hour, η at 37 ° C. was measured. 10 7 Pa · sec).
Production Example 7
(Evaluation of fibroblast proliferation)
After sterilizing the hydrogel-forming polymer (TGP-3) of the present invention produced in Production Example 3 by the method of Production Example 4, 20% fetal bovine serum so that the final concentration of the polymer is about 8%. (FCS; manufactured by Dainippon Pharmaceutical, trade name: Fetal Calf Serum) and antibiotics (Life Technologies, trade name: penicillin; final concentration 10,000 U / mL) in RPMI-1640 (manufactured by Life Technologies) Was dissolved under stirring at 4 ° C. for 24 hours. This operation was performed aseptically.
Normal human lung fibroblasts (Normal Human Lung Fibroblasts, NHLF, manufactured by Takara Shuzo Co., Ltd.)) on the above-described floating carrier of the present invention (TGP-3 / RPMI)) at a cell density of 6 × 10 4 cells / mL. Dispersed. After 0.2 mL of this NHLF dispersion was dispensed into each well of a 24 well plate [FAL bottom multiwell tissue culture plate (FALCON, Becton Dickinson & Company)] and gelled at 37 ° C., 0.4 mL of the culture solution was added. After addition, the cells were cultured at 37 ° C. and 5% CO 2 at atmospheric pressure. A total of 8 24-well plates were prepared for the 0th, 1st, 3rd, and 7th days, each for microscopic observation and fibroblast proliferation rate measurement. Separately, for comparison, without using TGP-3, an NHLF dispersion was prepared in which the cell density was 6 × 10 4 cells / mL without using TGP-3. Similarly, 8 24-well plates were prepared. Then, the same culture test was conducted.
As a result of observation with a phase contrast microscope on a daily basis (0, 1, 3, 7 days), in the culture of the comparative example, a dendritic growth characteristic of fibroblasts was observed after 1 day, and confluent after 7 days. On the other hand, in the suspension carrier of the present invention, the state of proliferation was not observed until 7 days after the fibroblasts remained in the form of single cells.
After elapse of the predetermined culture days, the floating carrier was dissolved by lowering the 24 well plate to 4 ° C., and then the WST-8 reagent (manufactured by Dojin Chemical Co., Ltd.) as a reagent for measuring succinate dehydrogenase activity in each well. 50 μL was added. The 24 well plate was reacted at 37 ° C. for 10 hours and then cooled to 4 ° C. to make a completely uniform aqueous solution. The aqueous solution was dispensed into a 96-well plate by 200 μL, and the absorbance (OD (450)) was measured at 450 nm (reference wavelength: 620 nm) using a microplate colorimeter. The proliferation rate of fibroblasts was determined by the ratio of the absorbance at the start of culture (day 0) (OD (450)) and the absorbance after culture (after 1, 3, 7 days) (OD (450)). In the floating carrier of the present invention, the proliferation rate of fibroblasts after 1, 3 and 7 days was 105%, 120% and 125%, respectively, whereas in the comparative example, the fibroblasts after 1, 3 and 7 days The growth rates were 170%, 370%, and 420%, respectively.
製造例3で作製した本発明のハイドロゲル形成性高分子(TGP−3)を製造例4の方法によって滅菌した後、該ポリマーの最終濃度が9.1%になるように15%仔牛胎児血清、450mMモノチオグリセロール、10mg/L インスリンを添加したIscove’s Modified Dulbecco’s Medium(IMDM,GIBCO社製)培地に溶解した。
この水溶液(本発明の浮遊担体)のゾル−ゲル転移温度は20℃であった。また37℃におけるこの水溶液中の鉄球(直径4mm)沈降速度V37は0.001mm/分以下、10℃におけるこの水溶液中の鉄球(直径4mm)沈降速度V10は500mm/分以上であった。
上記本発明の浮遊担体にマウスES細胞(129SV、大日本製薬(株)製)を5×103細胞/mLの濃度で播種し、あらかじめ37℃に温めておいたバクテリア用培養皿(直径100mm)へ2mL滴下して島状になるようにした。5% CO2、37℃の培養条件下に30分間静置することでゲル化した。蓋をかぶせてそのまま5% CO2、37℃の培養条件下で6日間培養しEBを調製した(図3)。本発明の浮遊担体では、細胞は播種時の位置関係が保存され、単細胞であるES細胞からのEB誘導が観察できた。
培養後、20〜30mLのPBSを加え氷上に3〜5分間静置した後、手で軽くゆするとゲルが容易に希釈できた。この希釈液を遠心分離することでEBを回収することができた。After sterilizing the hydrogel-forming polymer (TGP-3) of the present invention produced in Production Example 3 by the method of Production Example 4, 15% calf fetal serum so that the final concentration of the polymer is 9.1% , 450 mM monothioglycerol, 10 mg / L Insulin's Modified Dulbecco's Medium (IMDM, manufactured by GIBCO) medium supplemented with insulin.
The sol-gel transition temperature of this aqueous solution (the floating carrier of the present invention) was 20 ° C. The iron ball (diameter 4 mm) sedimentation rate V 37 in this aqueous solution at 37 ° C. was 0.001 mm / min or less, and the iron ball (diameter 4 mm) sedimentation rate V 10 in this aqueous solution at 10 ° C. was 500 mm / min or more. It was.
Mouse ES cells (129SV, manufactured by Dainippon Pharmaceutical Co., Ltd.) were seeded at a concentration of 5 × 10 3 cells / mL on the suspension carrier of the present invention, and the culture dish for bacteria (
After incubation, 20-30 mL of PBS was added and allowed to stand on ice for 3-5 minutes, and then gently diluted by hand to easily dilute the gel. EB could be recovered by centrifuging this diluted solution.
製造例3で作製した本発明のハイドロゲル形成性高分子(TGP−3)を製造例4の方法によって滅菌した後、該ポリマーの最終濃度が9.1%になるように、15%仔牛胎児血清、450mMモノチオグリセロール、10mg/L インスリンを添加したIscove’s Modified Dulbecco’s Medium(IMDM,GIBCO社製)培地に溶解した。
上記本発明の浮遊担体にマウスES細胞(129SV、大日本製薬(株)製)を5×103細胞/mLの濃度で播種し、あらかじめ37℃に温めておいたバクテリア用培養皿(直径100mm)へ2mL滴下して島状になるようにした。5% CO2、37℃の培養条件下に30分間静置することでゲル化した。そのゲルの上にそのゲルを覆うように37℃に温めた20mLの15%仔牛胎児血清含有IMDM培地を重層した。蓋をかぶせてそのまま5% CO2、37℃の培養条件下で3日間培養した後、重層したIMDM培地を37℃に雰囲気を保ったまま吸引除去し、37℃に温めた20mLの15%仔牛胎児血清含有IMDM培地をあらためて重層し、新鮮な培地に交換した。蓋をかぶせてそのまま5% CO2、37℃の培養条件下で更に3日間培養した(図4)。重層培地および培地交換の効果により、実施例1よりもEBの成長速度が速かった。
重層したIMDM培地を37℃に雰囲気を保ったまま吸引除去し、20〜30mLのPBSを加え氷上に3〜5分間静置した後、手で軽くゆするとゲルが容易に希釈できた。この希釈液を遠心分離することでEBを回収することができた。
比較例1
市販のメチルセルロース含有IMDM培地(ES−Cult(商標)、M3120,StemCell Technologies社製、メチルセルロース濃度2.5%)を15%仔牛胎児血清、450mMモノチオグリセロール、10mg/L インスリンを添加したIscove’s Modified Dulbecco’s Medium(IMDM,GIBCO社製)培地で希釈し、メチルセルロース濃度が1%となるように調製した。この浮遊担体は0℃〜45℃の範囲にゾル−ゲル転移温度を有していなかった。また37℃におけるこの浮遊担体中の鉄球(直径4mm)沈降速度V37は500mm/分以上(沈降が速すぎて、測定困難)であり、10℃におけるこの水溶液中の鉄球(直径4mm)沈降速度V10も500mm/分以上であった。
この浮遊担体(メチルセルロース培養担体)にマウスES細胞(129SV、大日本製薬(株)製)を5×103細胞/mLの濃度で播種し、あらかじめ37℃に温めておいたバクテリア用培養皿(直径100mm)へ2mL滴下して、5% CO2、37℃の培養条件下で6日間培養しEBを調製した(図3)。メチルセルロース培養担体は、高粘度の液体であるため次第に成長していくEBは早い段階で沈降し、培養皿底面に接着し、ES細胞由来繊維芽細胞様の接着性細胞の発生が認められた。
培養後、20〜30mLのPBSを加え氷上に3〜5分間静置した後、手で軽くゆすったが、メチルセルロース培養担体は容易に希釈できなかった。更にピペットを使って、吸引と排出を繰り返したが、液体培地を重層していないために、メチルセルロース培地の乾燥が進み、希釈は容易ではなかった。また回収されたEBにはES細胞由来繊維芽細胞様の接着性細胞のコンタミネーションが避けられなかった。After sterilizing the hydrogel-forming polymer (TGP-3) of the present invention produced in Production Example 3 by the method of Production Example 4, 15% calf fetus so that the final concentration of the polymer is 9.1%. It was dissolved in Iscove's Modified Dulbecco's Medium (IMDM, manufactured by GIBCO) medium supplemented with serum, 450 mM monothioglycerol, 10 mg / L insulin.
Mouse ES cells (129SV, manufactured by Dainippon Pharmaceutical Co., Ltd.) were seeded at a concentration of 5 × 10 3 cells / mL on the suspension carrier of the present invention, and the culture dish for bacteria (
The layered IMDM medium was removed by suction while maintaining the atmosphere at 37 ° C., 20-30 mL of PBS was added, and the mixture was allowed to stand on ice for 3-5 minutes. After gently shaking by hand, the gel could be easily diluted. EB could be recovered by centrifuging this diluted solution.
Comparative Example 1
Iscove's supplemented with commercially available methylcellulose-containing IMDM medium (ES-Cult ™, M3120, StemCell Technologies, methylcellulose concentration 2.5%) with 15% calf fetal serum, 450 mM monothioglycerol, 10 mg / L insulin It was diluted with Modified Dulbecco's Medium (IMDM, manufactured by GIBCO) medium to prepare a methylcellulose concentration of 1%. This floating carrier did not have a sol-gel transition temperature in the range of 0 ° C to 45 ° C. The 37 iron ball of the floating carrier in ° C. (diameter 4 mm) sedimentation rate V 37 is 500 mm / min or more (by settling too fast, the measurement difficult), and iron ball in the aqueous solution at 10 ° C. (diameter 4 mm) sedimentation rate V 10 also was 500mm / min or more.
Mouse suspension cells (129SV, manufactured by Dainippon Pharmaceutical Co., Ltd.) were seeded at a concentration of 5 × 10 3 cells / mL on this suspension carrier (methylcellulose culture carrier) and pre-warmed to 37 ° C. for bacterial culture dishes ( EB was prepared by dropping 2 mL onto a 100 mm diameter) and culturing for 6 days under 5% CO 2 and 37 ° C. culture conditions (FIG. 3). Since the methylcellulose culture carrier is a high-viscosity liquid, the EB that gradually grows settles at an early stage, adheres to the bottom of the culture dish, and the generation of ES cell-derived fibroblast-like adhesive cells was observed.
After culturing, 20-30 mL of PBS was added and allowed to stand on ice for 3-5 minutes, and then gently shaken by hand, but the methylcellulose culture carrier could not be easily diluted. Further, suction and discharge were repeated using a pipette. However, since the liquid medium was not overlaid, the drying of the methylcellulose medium proceeded, and dilution was not easy. In addition, contamination of ES cell-derived fibroblast-like adhesive cells could not be avoided in the collected EB.
あらかじめマウスES細胞用培地として、LIFあり培地とLIFなし培地それぞれを用意した。LIFあり培地としては、ES細胞用調製済培地(大日本製薬製)を使用した。LIFなし培地としては、ES細胞用D−MEM液(大日本製薬製)にES細胞用血清15%、ES細胞用ヌクレオシド液(100×)、ES細胞用非必須アミノ酸液(100×)、100×Penicillin−Streptomycin−Glutamine,liquid(GIBCO製)を各1%、βME(sigma製)110μMを添加したものを使用した。
製造例3で作成した本発明のハイドロゲル形成性高分子(TGP−3)を製造例4の方法によって滅菌した後、該ポリマーの最終濃度が9.1%になるように、LIFあり培地とLIFなし培地それぞれに4℃で溶解し、本発明の浮遊担体(LIFあり)と本発明の浮遊担体(LIFなし)を調製した。
マウスES細胞(129SV、大日本製薬製)を8×103個/mlになるように本発明の浮遊担体(LIFあり)と本発明の浮遊担体(LIFなし)それぞれに4℃で分散させた。該分散液それぞれを4℃のまま6ウェルプレートの各ウェルに500μLずつ分注し、37℃インキュベーター中に15分間静置して本発明の浮遊担体をゲル化させた。各ES細胞分散ゲル(LIFありおよびLIFなし)に、37℃に加温した各ES細胞用培地(LIFありおよびLIFなし)をそれぞれ4mlずつ重層し、37℃インキュベーター中培地交換なしで5日間培養した。
重層培地を除去し、リン酸緩衝液(PBS、pH7.4)を4ml加え、氷中で冷やしながら15分程度振とうしゲルを溶解した。完全にゲルが溶解した後、ウェル中の細胞塊(スフェロイド)を沈降させて集め、集めた細胞塊を含む約80μLを別に用意した6wellプレート中の4%パラホルムアルデヒド−リン酸緩衝液(PFA,WAKO製)4mlに加えて10分間室温で固定した。ウェル中の細胞塊(スフェロイド)を集め、集めた細胞塊を含む約80μLを別に用意した6wellプレート中のPBS4mlに加えて洗浄した。
ウェル中のスフェロイドを集め(約40μL)、1.5mLの遠心チューブに入れたアルカリ性フォスファターゼ染色液(400μL)に移し35分間室温暗所に静置して染色した。アルカリ性フォスファターゼ染色液の調製は、Vector Red Alkaline Phosphatase Substrate Kit I(VECTOR製)を使用し、100mMトリス−塩酸緩衝液(Tris−HCl、pH8.2)5mlにReagent1を2滴加えて良く撹拌した後、Reagent2液を2滴加えて撹拌、さらにReagent3液を2滴加えて良く撹拌した。染色後、8000×g、3分間遠心分離を行い、沈殿しているスフェロイド(約120μL)をPBS(4ml)に再分散させ位相差顕微鏡(倍率100倍)にて観察した。
LIFあり培地で培養したマウスES細胞(図6)も、LIFなし培地で培養したマウスES細胞(図7)もアルカリ性フォスファターゼ染色により赤色に染色され、本発明の浮遊担体を用いて培養されたES細胞はアルカリ性フォスファターゼ活性が高いこと、すなわち、未分化性を維持していることが示された。特に図7に示すLIFなし培地で培養したマウスES細胞の方が強く赤色に染まり、より未分化性の高いことが示唆された。
比較例2
培養フラスコ(FALCON、培養面積25cm2)の底面をES細胞用0.1%ゼラチン液(大日本製薬)2mlでなじませ室温4時間静置後、PBS2mlで2回洗浄し風乾した。初代マウス胚繊維芽細胞(ハイグロマイシン耐性、マイトマイシンC処理済)(大日本製薬)を1フラスコあたり1.2×106個を播種し、培地として10%FBS(GIBCO)含有DMEM(GIBCO)に100×Penicillin−Streptomycin−Glutamine,liquid(GIBCO)を1%添加したものを加え、1日間培養して、これをfeeder細胞とした。feeder細胞の培地を除去し、ES細胞用調製済培地(大日本製薬)に置き換え、マウスES細胞(大日本製薬)(129SV:継代数15〜30)を1フラスコあたり1×106個播種した。毎日培地を交換し3日間培養した後、培地を除去し、PBS5mlで2回洗浄した。4%パラホルムアルデヒド−リン酸緩衝液(PFA,WAKO製)2mlを加えて10分間室温で固定した。PBS2mlで2回洗浄した後、実施例3と同じアルカリ性フォスファターゼ染色液2mlを加えて35分間室温暗所に静置して染色した。PBS2mlで2回洗浄した後、位相差顕微鏡(倍率100倍)にて観察した。feeder細胞上LIF共存下で培養したマウスES細胞をアルカリ性フォスファターゼ染色した結果、図8に示すように薄く赤色に染色された。これはfeeder細胞上で培養したにもかかわらず、ES細胞の未分化性は実施例3の本発明の浮遊担体中(LIFなし)よりも低いことを示している。As a medium for mouse ES cells, a medium with LIF and a medium without LIF were prepared in advance. As the medium with LIF, a prepared medium for ES cells (Dainippon Pharmaceutical Co., Ltd.) was used. As a medium without LIF, ES cell D-MEM solution (Dainippon Pharmaceutical Co., Ltd.), ES cell serum 15%, ES cell nucleoside solution (100 ×), ES cell non-essential amino acid solution (100 ×), 100 X Penicillin-Streptomycin-Glutamine, liquid (manufactured by GIBCO) 1% each and βME (manufactured by Sigma) 110 μM were used.
After sterilizing the hydrogel-forming polymer (TGP-3) of the present invention prepared in Production Example 3 by the method of Production Example 4, the medium with LIF was adjusted so that the final concentration of the polymer was 9.1%. Each of the LIF-free medium was dissolved at 4 ° C. to prepare the floating carrier of the present invention (with LIF) and the floating carrier of the present invention (without LIF).
Mouse ES cells (129SV, manufactured by Dainippon Pharmaceutical Co., Ltd.) were dispersed at 4 ° C. in each of the suspension carrier of the present invention (with LIF) and the suspension carrier of the present invention (without LIF) at 8 × 10 3 cells / ml. . 500 μL of each dispersion was dispensed at 4 ° C. into each well of a 6-well plate and allowed to stand in a 37 ° C. incubator for 15 minutes to gel the floating carrier of the present invention. Each ES cell dispersion gel (with and without LIF) was overlaid with 4 ml of each ES cell medium (with and without LIF) heated to 37 ° C., and cultured for 5 days without medium change in a 37 ° C. incubator. did.
The overlay medium was removed, 4 ml of phosphate buffer (PBS, pH 7.4) was added, and the gel was dissolved by shaking for about 15 minutes while cooling in ice. After the gel was completely dissolved, the cell clumps (spheroids) in the wells were sedimented and collected, and about 80 μL containing the collected cell clumps were separately prepared in 4% paraformaldehyde-phosphate buffer (PFA, (4) (manufactured by WAKO) and fixed at room temperature for 10 minutes. The cell mass (spheroid) in the well was collected, and about 80 μL containing the collected cell mass was added to 4 ml of PBS in a separately prepared 6-well plate and washed.
The spheroids in the wells were collected (about 40 μL), transferred to an alkaline phosphatase staining solution (400 μL) in a 1.5 mL centrifuge tube, and allowed to stand at room temperature in a dark place for 35 minutes for staining. The alkaline phosphatase staining solution was prepared by adding 2 drops of Reagent 1 to 5 ml of 100 mM Tris-HCl buffer (Tris-HCl, pH 8.2) using Vector Red Alkaline Phosphatase Substrate Kit I (manufactured by VECTOR). Then, 2 drops of Reagent 2 liquid were added and stirred, and 2 drops of Reagent 3 liquid were further added and stirred well. After staining, centrifugation was performed at 8000 × g for 3 minutes, and the precipitated spheroid (about 120 μL) was redispersed in PBS (4 ml) and observed with a phase contrast microscope (
Both mouse ES cells cultured in a medium with LIF (FIG. 6) and mouse ES cells cultured in a medium without LIF (FIG. 7) were stained in red by alkaline phosphatase staining, and were cultured using the suspension carrier of the present invention. The cells were shown to have high alkaline phosphatase activity, ie, remain undifferentiated. In particular, the mouse ES cells cultured in the LIF-free medium shown in FIG. 7 were stained more strongly in red, suggesting that they were more undifferentiated.
Comparative Example 2
The bottom of the culture flask (FALCON, culture area 25 cm 2 ) was familiarized with 2 ml of a 0.1% gelatin solution for ES cells (Dainippon Pharmaceutical), allowed to stand at room temperature for 4 hours, then washed twice with 2 ml of PBS and air-dried. Primary mouse embryonic fibroblasts (hygromycin resistant, treated with mitomycin C) (Dainippon Pharmaceutical Co., Ltd.) are seeded at 1.2 × 10 6 per flask, and the medium is added to DMEM (GIBCO) containing 10% FBS (GIBCO). 100% Penicillin-Streptomycin-Glutamine, liquid (GIBCO) added at 1% was added and cultured for 1 day, which was used as feeder cells. The feeder cell medium was removed and replaced with a prepared medium for ES cells (Dainippon Pharmaceutical), and mouse ES cells (Dainippon Pharmaceutical) (129SV: passage number 15-30) were seeded at 1 × 10 6 per flask. . After changing the medium every day and culturing for 3 days, the medium was removed and washed twice with 5 ml of PBS. 2 ml of 4% paraformaldehyde-phosphate buffer (PFA, manufactured by WAKO) was added and fixed at room temperature for 10 minutes. After washing twice with 2 ml of PBS, 2 ml of the same alkaline phosphatase staining solution as in Example 3 was added, and the mixture was allowed to stand in a dark place at room temperature for 35 minutes for staining. The plate was washed twice with 2 ml of PBS and then observed with a phase contrast microscope (
製造例3で作成した本発明のハイドロゲル形成性高分子(TGP−3)を製造例4の方法によって滅菌した後、該ポリマーの最終濃度が9.1%になるように、カニクイザルES用培地(ES細胞用培地添加物(ESMS−201、旭テクノグラス製)を添加したカニクイザルES用基本培地(ESBM−101、旭テクノグラス製))に溶解した。この本発明の浮遊担体0.5mlにカニクイザルES細胞(CMES−001、旭テクノグラス製)1x105個を分散させ、6wellプレート中心に該細胞を含む浮遊担体0.5mlをドロップ状に配した後、30分間培養器内で37℃に保ち、浮遊担体がゲル化した後に上記カニクイザルES用培地10mlを重層し3次元培養を行った。重層培地は隔日で交換し、1週間の培養により、カニクイザルES細胞は平面培養と全く異なるマウスES細胞におけるEB様の球体状の細胞塊を形成した。
さらにこの球状細胞塊を実施例3と同様に回収し、未分化性の確認の為アルカリフォスファターゼ染色を行い、位相差顕微鏡(倍率400倍)にて観察した。その結果、回収されたカニクイザルES細胞塊は図9に示すように強く赤色に染色され、本発明の浮遊担体を用いて培養されたカニクイザルES細胞はアルカリ性フォスファターゼ活性が高いこと、すなわち、未分化性を維持していることが示された。本発明浮遊担体を用いることにより、霊長類ES細胞においても他種動物繊維芽細胞(feeder細胞)を用いずに未分化性を維持した培養が可能であった。
比較例3
マウス胎児繊維芽細胞(旭テクノグラス製)をフィーダー培地(フィーダー細胞用培地添加物(旭テクノグラス)を添加したフィーダー細胞用基本培地(DMEM、旭テクノグラス))に1×105個/mlになるように分散させ、ES細胞用ゼラチンコートDISH(直径60mm、旭テクノグラス)1ディッシュあたり5mlずつ播種した。1日間培養して、これをfeeder細胞とした。feeder細胞の培地を除去し、カニクイザルES用培地に分散させたカニクイザルES細胞(CMES−001、旭テクノグラス製)を播種した。培地交換なしで5日間培養した後、比較例2と同様にしてアルカリフォスファターゼ染色を行い、位相差顕微鏡(倍率400倍)にて観察した。その結果、図10に示すように薄く赤色に染色された。これはfeeder細胞上で培養したにもかかわらず、カニクイザルES細胞の未分化性は実施例4よりも低いことを示している。After sterilizing the hydrogel-forming polymer (TGP-3) of the present invention prepared in Production Example 3 by the method of Production Example 4, the medium for cynomolgus monkey ES is such that the final concentration of the polymer is 9.1%. It was dissolved in a basic medium for cynomolgus monkey ES (ESBM-101, manufactured by Asahi Techno Glass) supplemented with a medium additive for ES cells (ESMS-201, manufactured by Asahi Techno Glass). After dispersing 1 × 10 5 cynomolgus monkey ES cells (CMES-001, manufactured by Asahi Techno Glass) in 0.5 ml of the floating carrier of the present invention, and placing 0.5 ml of the floating carrier containing the cells in the center of a 6-well plate in a drop shape The mixture was kept at 37 ° C. in an incubator for 30 minutes, and after the floating carrier was gelled, 10 ml of the above medium for cynomolgus monkey ES was overlaid and three-dimensional culture was performed. The stratified medium was changed every other day, and cynomolgus monkey ES cells formed EB-like spherical cell masses in mouse ES cells that were completely different from flat culture by culturing for one week.
Further, this spherical cell mass was collected in the same manner as in Example 3, and stained with alkaline phosphatase to confirm undifferentiation, and observed with a phase contrast microscope (400 magnifications). As a result, the collected cynomolgus monkey ES cell mass was strongly stained red as shown in FIG. 9, and the cynomolgus monkey ES cells cultured using the suspension carrier of the present invention have high alkaline phosphatase activity, that is, undifferentiated. It was shown to be maintained. By using the floating carrier of the present invention, it was possible to culture primate ES cells while maintaining undifferentiation without using other animal fibroblasts (feeder cells).
Comparative Example 3
Mouse fetal fibroblasts (manufactured by Asahi Techno Glass) in feeder medium (feeder cell basic medium (DMEM, Asahi Techno Glass) supplemented with feeder cell medium additive (Asahi Techno Glass)) 1 × 10 5 cells / ml Then, 5 ml per seed was inoculated with gelatin coated DISH (diameter 60 mm, Asahi Techno Glass) for ES cells. The cells were cultured for 1 day and used as feeder cells. The feeder cell medium was removed, and cynomolgus monkey ES cells (CMES-001, manufactured by Asahi Techno Glass Co., Ltd.) dispersed in the cynomolgus monkey ES medium were seeded. After culturing for 5 days without exchanging the medium, alkaline phosphatase staining was performed in the same manner as in Comparative Example 2 and observed with a phase contrast microscope (400 magnifications). As a result, as shown in FIG. This shows that the undifferentiated nature of cynomolgus monkey ES cells is lower than that of Example 4 despite culturing on feeder cells.
上述したように、本発明の浮遊担体は低温でゾル状態、体温でゲル化するハイドロゲル形成性の高分子から構成されるため、低温のゾル状態で本発明の浮遊担体中に被浮遊物(例えば、未分化幹細胞や前駆細胞あるいはそれらを含有する組織等)を播種ないしは分散、混和することができ、そのまま適当な処理(例えば培養)温度で本発明の浮遊担体をゲル化させることによって、該浮遊担体をゲル状態として、被浮遊物(例えば未分化幹細胞)を、浮遊担体を収容する容器壁に接触させずに処理(例えば培養)できる。
本発明の浮遊担体では、ハイドロゲル形成性のゲル形成性組成物が高温のゲル状態(処理温度)で実質的に水不溶性を示すため、本発明の浮遊担体の上に液体成分(例えば液体培地)を重層したり、液体成分中に本発明の浮遊担体を浮遊させて処理(例えば、細胞培養)したりすることができる。
生体由来成分に本発明の担体を使用する態様において、未分化な細胞が増殖する際には大量の養分を必要とするが、本発明の浮遊担体では外部の液体培地からその必要な養分を補給することができる。また、細胞が生成する老廃物などの細胞増殖を阻害する物質を外部の液体培地中へ排出することができる。その結果、本発明の浮遊担体では従来の細胞培養方法に比べて細胞の増殖を促進することができる。
本発明の浮遊担体中で目的の処理(例えば、組織・器官の誘導)を行った後、これらを本発明の浮遊担体から回収するには、目的の被浮遊物を含む本発明の浮遊担体を該ゾル−ゲル転移温度以下の温度(例えば4℃)に冷却して、本発明の浮遊担体をゾル状態に戻し、遠心分離等の方法で目的の被浮遊物と本発明の浮遊担体を分離すれば良い。また、本発明の浮遊担体はそのゾル−ゲル転移温度より低温のゾル状態では、水により容易に希釈できるため、更に流動性を高くでき、被浮遊物の回収を更に容易にすることができる。
生体由来成分に本発明の担体を使用する態様において、本発明の浮遊担体は繊維芽細胞の増殖を抑え、幹細胞や前駆細胞の増殖や分化を促す特性を有することができるため、本発明の浮遊担体中で目的とする組織・器官を効率よく形成させることができる。As described above, since the floating carrier of the present invention is composed of a hydrogel-forming polymer that gels at a low temperature and in a sol state at a low temperature, the suspended substance ( For example, undifferentiated stem cells, progenitor cells, or tissues containing them) can be seeded or dispersed, mixed, and the suspension carrier of the present invention is gelled at an appropriate treatment (for example, culture) temperature as it is. With the floating carrier in a gel state, the suspended matter (for example, undifferentiated stem cells) can be treated (for example, cultured) without being brought into contact with the container wall containing the floating carrier.
In the floating carrier of the present invention, since the hydrogel-forming gel-forming composition is substantially water-insoluble in a high temperature gel state (treatment temperature), a liquid component (for example, a liquid medium) is formed on the floating carrier of the present invention. ), And the suspended carrier of the present invention is suspended in a liquid component for treatment (for example, cell culture).
In an embodiment in which the carrier of the present invention is used as a biological component, a large amount of nutrients are required when undifferentiated cells grow. However, the floating carrier of the present invention replenishes the necessary nutrients from an external liquid medium. can do. In addition, substances that inhibit cell growth, such as waste products generated by cells, can be discharged into an external liquid medium. As a result, the floating carrier of the present invention can promote cell growth as compared with conventional cell culture methods.
In order to recover these from the floating carrier of the present invention after performing the desired treatment (for example, induction of tissues / organs) in the floating carrier of the present invention, the floating carrier of the present invention including the target suspended matter is collected. After cooling to a temperature below the sol-gel transition temperature (for example, 4 ° C.), the floating carrier of the present invention is returned to the sol state, and the target suspended matter and the floating carrier of the present invention are separated by a method such as centrifugation. It ’s fine. In addition, since the floating carrier of the present invention can be easily diluted with water in a sol state lower than its sol-gel transition temperature, the fluidity can be further increased and the suspended matter can be more easily recovered.
In an embodiment in which the carrier of the present invention is used as a component derived from a living body, the floating carrier of the present invention can suppress the growth of fibroblasts and can promote the proliferation and differentiation of stem cells and progenitor cells. The target tissue / organ can be efficiently formed in the carrier.
Claims (15)
該浮遊担体中における鉄球(直径4mm)の沈降速度が、前記ゾル−ゲル転移温度より16℃高い温度において1mm/分以下であり、且つゾル−ゲル転移温度より6℃低い温度において5mm/分以上であることを特徴とする浮遊担体。A gel-forming floating carrier comprising at least a hydrogel-forming polymer; the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and in a gel state at a high temperature; Substantially insoluble in water in the gel state,
The sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature and 5 mm / min at a temperature 6 ° C. lower than the sol-gel transition temperature. A floating carrier characterized by the above.
該浮遊担体中における鉄球(直径4mm)の沈降速度が、37℃において1mm/分以下であり、且つ10℃において5mm/分以上であることを特徴とする浮遊担体。A gel-forming floating carrier comprising at least a hydrogel-forming polymer; the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and in a gel state at a high temperature; Substantially insoluble in water in the gel state,
A floating carrier characterized in that the sedimentation rate of iron balls (diameter 4 mm) in the floating carrier is 1 mm / min or less at 37 ° C and 5 mm / min or more at 10 ° C.
該浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、
該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、
再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することを特徴とする浮遊・回収方法。A gel-forming floating carrier comprising at least water and a hydrogel-forming polymer; wherein the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and in a gel state at a high temperature; And substantially water insoluble in a high temperature gel state; the sedimentation rate of iron spheres (diameter 4 mm) in the suspended carrier is 1 mm / min or less at a temperature 16 ° C. higher than the sol-gel transition temperature; Using a floating carrier that is at least 5 mm / min at a temperature 6 ° C. below the sol-gel transition temperature;
The suspended carrier is made into a sol state lower than the sol-gel transition temperature, and a suspended matter is added to the suspended carrier,
Hold the suspended object in a gel state higher than the sol-gel transition temperature,
A floatation / recovery method characterized by recovering the suspended matter after being held again in a sol state lower than the sol-gel transition temperature.
該浮遊担体を該ゾル−ゲル転移温度より低温のゾル状態として、該浮遊担体に被浮遊物を添加し、
該ゾル−ゲル転移温度より高温のゲル状態で被浮遊物を保持し、その後、
再度該ゾル−ゲル転移温度より低温のゾル状態として保持後の被浮遊物を回収することを特徴とする浮遊・回収方法。A gel-forming floating carrier comprising at least a hydrogel-forming polymer; the floating carrier exhibits a thermoreversible sol-gel transition in which it is in a sol state at a low temperature and in a gel state at a high temperature; A floating carrier that is substantially water-insoluble in a gel state and has a sedimentation rate of iron balls (diameter 4 mm) in the floating carrier of 1 mm / min or less at 37 ° C. and 5 mm / min or more at 10 ° C. Use;
The suspended carrier is made into a sol state lower than the sol-gel transition temperature, and a suspended matter is added to the suspended carrier,
Hold the suspended object in a gel state higher than the sol-gel transition temperature,
A floatation / recovery method characterized by recovering the suspended matter after being held again in a sol state lower than the sol-gel transition temperature.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003061810 | 2003-03-07 | ||
JP2003061810 | 2003-03-07 | ||
PCT/JP2004/002867 WO2004078961A1 (en) | 2003-03-07 | 2004-03-05 | Floatation support and method of floatation/recovery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2004078961A1 true JPWO2004078961A1 (en) | 2006-06-08 |
Family
ID=32958975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005503141A Pending JPWO2004078961A1 (en) | 2003-03-07 | 2004-03-05 | Floating carrier and floating / collecting method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2004078961A1 (en) |
WO (1) | WO2004078961A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010158180A (en) * | 2009-01-06 | 2010-07-22 | Hokkaido Univ | Scaffold material |
US20140329317A1 (en) * | 2011-11-25 | 2014-11-06 | Kyoto University | Method for culturing pluripotent stem cell |
EP2799544B1 (en) | 2011-12-28 | 2017-08-23 | National Cerebral and Cardiovascular Center | Method for producing cell having nucleic acid introduced therein |
JP2014054230A (en) * | 2012-09-14 | 2014-03-27 | Toyama Prefecture | Method for inducing callus and cultured cells from plant tissue and method of producing transformant |
JP6029102B2 (en) * | 2012-11-14 | 2016-11-24 | グンゼ株式会社 | Method for producing three-dimensional cultured elastic fiber tissue |
KR20190040334A (en) * | 2016-09-30 | 2019-04-17 | 후지필름 가부시키가이샤 | Medium evaluation method, medium, and culture method |
JP2021003062A (en) * | 2019-06-26 | 2021-01-14 | 積水化学工業株式会社 | Scaffold material for cell culture and container for cell culture |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001070022A1 (en) * | 2000-03-21 | 2001-09-27 | Yuichi Mori | Coating materials for biological tissues, coated biological tissues and method of coating biological tissues |
JP2004043749A (en) * | 2002-07-12 | 2004-02-12 | Mebiol Kk | Hydrogel, gelatinous material and method for controlling diffusion of substance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0387975A1 (en) * | 1989-03-16 | 1990-09-19 | W.R. Grace & Co.-Conn. | Cell culture substrate cell sheet, cell cluster and preparations thereof |
JPH0466082A (en) * | 1990-07-06 | 1992-03-02 | W R Grace & Co | Method of forming cellular mass controlled in number of cell and cell cultivation medium used therefor |
-
2004
- 2004-03-05 JP JP2005503141A patent/JPWO2004078961A1/en active Pending
- 2004-03-05 WO PCT/JP2004/002867 patent/WO2004078961A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001070022A1 (en) * | 2000-03-21 | 2001-09-27 | Yuichi Mori | Coating materials for biological tissues, coated biological tissues and method of coating biological tissues |
JP2004043749A (en) * | 2002-07-12 | 2004-02-12 | Mebiol Kk | Hydrogel, gelatinous material and method for controlling diffusion of substance |
Non-Patent Citations (3)
Title |
---|
JPN6010035007, 窪田倭,他3名,"温度感応性ゲル内での細胞培養と制癌剤薬効評価への応用",科学技術振興事業団共同研究支援 * |
JPN6010035008, Artif.Organs,1996,20(11),p.1232−7 * |
JPN6010035009, Exp.Physiol.,2000,85(6),p.645−651 * |
Also Published As
Publication number | Publication date |
---|---|
WO2004078961A1 (en) | 2004-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2669589C (en) | In vitro expansion of postpartum-derived cells using microcarriers | |
US6897064B2 (en) | Cell or tissue-culturing carrier, and culturing method | |
US10131874B2 (en) | Cell culture support and associated method for cell growth and release | |
JP2010508851A5 (en) | ||
Oda et al. | Efficient differentiation of stem cells encapsulated in a cytocompatible phospholipid polymer hydrogel with tunable physical properties | |
JPH06327462A (en) | Formation of cell aggregate | |
US11499136B2 (en) | Cell culture substrate | |
Peng et al. | Long term expansion profile of mesenchymal stromal cells at protein nanosheet-stabilised bioemulsions for next generation cell culture microcarriers | |
EP1657302A1 (en) | Container for germ layer formation and method of forming germ layer | |
JP6519168B2 (en) | Three-dimensional cell assembly, method for producing the same, and solution for forming the same | |
JPWO2004078961A1 (en) | Floating carrier and floating / collecting method | |
EP2958987B1 (en) | Method of storing or preserving live human stem cells in stasis | |
JP2017131144A (en) | Materials for preparing three-dimensional cell aggregates, compositions for preparing three-dimensional cell aggregates, three-dimensional cell aggregate preparation sets, composition-receiving containers, and production methods of three-dimensional cell aggregates | |
JP2010158180A (en) | Scaffold material | |
CN107075444B (en) | The method for preparing embryoid formation container | |
JP7416185B2 (en) | Method for manufacturing three-dimensional cell structures | |
WO2018043153A1 (en) | Cell culture carrier, cell culture carrier preparation kit, and method for producing gel/cell hybrid tissue using cell culture carrier and cell culture carrier preparation kit | |
WO2019075166A2 (en) | Hollow microcarrier for shear-free culture of adherent cells in bioreactors | |
Jiabei et al. | Protocols in stem cell culture | |
JPWO2004074463A1 (en) | Cell separation hydrogel and cell separation method | |
US20220186179A1 (en) | Method for separating cells using a stimulus-responsive polymer | |
WO2022065328A1 (en) | Cell population production method | |
WO2023282253A1 (en) | Cell culture base material for serum-free medium | |
JP2007216067A (en) | Separation/recovery apparatus and separation/recovery method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100622 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101019 |