Nothing Special   »   [go: up one dir, main page]

JPWO2004012248A1 - Polishing liquid and polishing method - Google Patents

Polishing liquid and polishing method Download PDF

Info

Publication number
JPWO2004012248A1
JPWO2004012248A1 JP2004524136A JP2004524136A JPWO2004012248A1 JP WO2004012248 A1 JPWO2004012248 A1 JP WO2004012248A1 JP 2004524136 A JP2004524136 A JP 2004524136A JP 2004524136 A JP2004524136 A JP 2004524136A JP WO2004012248 A1 JPWO2004012248 A1 JP WO2004012248A1
Authority
JP
Japan
Prior art keywords
polishing
compound
polishing liquid
acid
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004524136A
Other languages
Japanese (ja)
Inventor
深沢 正人
正人 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2004012248A1 publication Critical patent/JPWO2004012248A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

酸化剤、水、pH調整剤、及び被研磨面の化学的研磨を促進する環状有機化合物を含む研磨液であって、pHが5〜10であることか、または前記環状有機化合物がイミダゾール骨格を有する化合物を含むことを特徴とする。これにより、研磨速度を十分上昇させ、被研磨面が金属の場合に金属表面の腐食とディッシングの発生を抑制し、半導体デバイスの配線形成工程で信頼性の高い金属膜の埋め込みパターン形成を可能とする。A polishing liquid comprising an oxidizing agent, water, a pH adjuster, and a cyclic organic compound that promotes chemical polishing of the surface to be polished, wherein the pH is 5 to 10, or the cyclic organic compound has an imidazole skeleton. It has the compound which has. This makes it possible to increase the polishing rate sufficiently, suppress the occurrence of corrosion and dishing on the metal surface when the surface to be polished is metal, and enable the formation of a highly reliable embedded pattern of a metal film in the wiring formation process of a semiconductor device. To do.

Description

本発明は、半導体デバイスの配線形成工程に好適な研磨液及びそれを用いた研磨方法に関する。  The present invention relates to a polishing liquid suitable for a wiring formation process of a semiconductor device and a polishing method using the same.

近年、半導体集積回路(LSI)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下CMPという。)法もそのひとつであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成において頻繁に利用される技術である。この技術は、例えば米国特許No.4944836号明細書に開示されている。
近年、LSIを高性能化するために、配線材料として銅合金の利用が試みられている。しかし、銅合金は、従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝を形成してある絶縁膜上に銅合金薄膜を堆積して埋め込み、次に溝以外の銅合金薄膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば日本特開平2−278822号公報に開示されている。
金属のCMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を金属用の研磨液で浸し、基板の金属膜を形成した面を研磨パッドへ押し付けて、その裏面から所定の圧力(研磨圧力或いは研磨荷重)を加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との機械的摩擦によって凸部の金属膜を除去するものである。
CMPに用いられる研磨液は、一般には酸化剤及び固体砥粒からなっており必要に応じてさらに酸化金属溶解剤、金属防食剤等が添加される。まず、酸化によって金属膜表面を酸化し、その酸化層を固体砥粒によって削り取るのが基本的なメカニズムと考えられている。凹部の金属表面の酸化層は研磨パッドにあまり触れず、固体砥粒による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属層が除去されて基板表面は平坦化される。この詳細についてはジャーナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)の第138巻11号(1991年発行)の3460〜3464頁に開示されている。
CMPによる研磨速度を高める方法として、研磨液のpHを低く設定し、酸化金属溶解剤を添加することが有効とされている。固体砥粒によって削り取られた金属酸化物の粒を研磨液に溶解させてしまうと、固体砥粒による削り取り効果が増すためであると解釈できる。但し、凹部の金属膜表面の酸化層も溶解(エッチング)されて金属膜表面が露出すると、酸化剤によって金属膜表面がさらに酸化される。これが繰り返されると凹部の金属膜のエッチングが進行してしまい、平坦化効果が損なわれること(ディッシング)が懸念される。研磨速度及び平坦化特性を維持するためには、エッチングが進行しない高めのpH領域の研磨液を用い、添加剤によって金属表面を改質し、研磨速度及び平坦化特性を得ることが望ましい。
このようにpHの制御と添加剤を加えることにより、CMPによる研磨速度が向上するとともに、CMPされる金属表面の損傷(ダメージ)も低減される効果が得られる。
一方、配線材料の銅或いは銅合金等の下層には、層間絶縁膜中への銅の拡散防止のためにバリア層として、タンタル、窒化タンタル、タンタル合金またはその他のタンタル化合物、タングステン、窒化タングステン、タングステン合金またはその他のタングステン化合物等の導体層が形成される。従って、銅或いは銅合金を埋め込む配線部分以外では、露出したこのバリア層をCMPにより取り除く必要がある。
しかし、これらのバリア導体層は、銅或いは銅合金に比べ硬度が高いために、銅または銅合金用の研磨材料の組み合わせでは十分なCMP速度が得られない。またバリア導体層をCMPにより取り除く間に銅又は銅合金等がエッチングされる。さらに表面に腐食やディッシングが発生し、これにより配線厚さが低下するという問題が生じる。
そこで、本発明は、エッチング速度を低く保ちつつ、研磨速度を十分上昇させ、金属表面の腐食とディッシングの発生を抑制し、信頼性の高い金属膜の埋め込みパターン形成を可能とする研磨液を提供する。また、そのような金属膜の埋め込みパターン形成を、生産性、作業性、歩留まり良く行うことのできる研磨方法を提供するものである。
In recent years, new microfabrication techniques have been developed along with higher integration and higher performance of semiconductor integrated circuits (LSIs). A chemical mechanical polishing (hereinafter referred to as CMP) method is one of them, and is a technique frequently used in planarization of an interlayer insulating film, formation of a metal plug, and formation of a buried wiring in an LSI manufacturing process, particularly in a multilayer wiring forming process. This technique is described, for example, in US Pat. No. 4,944,836.
In recent years, attempts have been made to use copper alloys as wiring materials in order to improve the performance of LSIs. However, the copper alloy is difficult to be finely processed by the dry etching method frequently used in the formation of the conventional aluminum alloy wiring. Therefore, a so-called damascene method is mainly employed, in which a copper alloy thin film is deposited and embedded on an insulating film in which grooves are formed in advance, and then the copper alloy thin film other than the grooves is removed by CMP to form embedded wiring. ing. This technique is disclosed in, for example, Japanese Patent Laid-Open No. 2-278822.
A general method of metal CMP is to apply a polishing pad on a circular polishing platen (platen), immerse the polishing pad surface with a metal polishing liquid, and use the surface on which the metal film of the substrate is formed to the polishing pad. Pressing and turning the polishing platen with a predetermined pressure (polishing pressure or polishing load) applied from the back side, and removing the convex metal film by mechanical friction between the polishing liquid and the convex part of the metal film It is.
The polishing liquid used for CMP is generally composed of an oxidizer and solid abrasive grains, and a metal oxide solubilizer, a metal corrosion inhibitor, and the like are further added as necessary. First, it is considered that the basic mechanism is to oxidize the surface of a metal film by oxidation and scrape the oxidized layer with solid abrasive grains. Since the oxide layer on the metal surface of the concave portion does not touch the polishing pad so much and the effect of scraping off by the solid abrasive grains is not exerted, the metal layer of the convex portion is removed and the substrate surface is flattened with the progress of CMP. Details thereof are disclosed in pages 3460 to 3464 of Journal of Electrochemical Society, Vol. 138, No. 11 (published in 1991), Journal of Electrochemical Society.
As a method for increasing the polishing rate by CMP, it is effective to set the pH of the polishing liquid to be low and add a metal oxide dissolving agent. If the metal oxide particles scraped off by the solid abrasive grains are dissolved in the polishing liquid, it can be interpreted that the scraping effect by the solid abrasive grains is increased. However, when the oxide layer on the surface of the metal film in the recess is also dissolved (etched) to expose the surface of the metal film, the surface of the metal film is further oxidized by the oxidizing agent. If this is repeated, the etching of the metal film in the recesses proceeds, and there is a concern that the planarization effect is impaired (dishing). In order to maintain the polishing rate and the flattening characteristics, it is desirable to use a polishing solution in a high pH region where etching does not proceed and modify the metal surface with an additive to obtain the polishing rate and the flattening characteristics.
Thus, by controlling the pH and adding the additive, the polishing rate by CMP is improved, and the damage (damage) of the metal surface to be CMPed is reduced.
On the other hand, the lower layer such as copper or copper alloy of the wiring material, as a barrier layer for preventing copper diffusion into the interlayer insulating film, tantalum, tantalum nitride, tantalum alloy or other tantalum compounds, tungsten, tungsten nitride, A conductor layer such as a tungsten alloy or other tungsten compound is formed. Therefore, it is necessary to remove this exposed barrier layer by CMP except for the wiring portion in which copper or copper alloy is embedded.
However, since these barrier conductor layers have higher hardness than copper or copper alloys, a sufficient CMP rate cannot be obtained with a combination of polishing materials for copper or copper alloys. Also, copper or a copper alloy or the like is etched while the barrier conductor layer is removed by CMP. Furthermore, corrosion and dishing occur on the surface, which causes a problem that the wiring thickness decreases.
Accordingly, the present invention provides a polishing liquid that can increase the polishing rate sufficiently while keeping the etching rate low, suppress the occurrence of corrosion and dishing on the metal surface, and form a highly reliable embedded pattern of the metal film. To do. It is another object of the present invention to provide a polishing method capable of forming such a buried pattern of a metal film with good productivity, workability, and yield.

本発明は、(1) 酸化剤、水、pH調整剤、及び化学的な研磨を促進する環状有機化合物を含む研磨液であって、pHが5〜10であること、または前記環状有機化合物がイミダゾール骨格を有する化合物を含むことを特徴とする研磨液に関する。
また本発明は、(2) 前記環状有機化合物が、イミダゾール骨格を有する化合物、ピラゾール骨格を有する化合物、チアゾール骨格を有する化合物およびトリアゾール骨格を有する化合物からなる群より選ばれる少なくとも1種の化合物を含む前記(1)記載の研磨液に関する。
また本発明は、(3) 前記イミダゾール骨格を有する化合物が、下記一般式(I)

Figure 2004012248
(式(I)中、R、R及びRは、それぞれ独立して水素原子、アミノ基、又はCからC12のアルキル基を示す。)で表される化合物及びメルカプトベンゾイミダゾールから選ばれる少なくとも1種である前記(1)または(2)記載の研磨液に関する。
また本発明は、(4) 前記イミダゾール骨格を有する化合物が、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−プロピルイミダゾール、2−イソブチルイミダゾール、2−ブチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−アミノイミダゾール及びメルカプトベンゾイミダゾールからなる群より選ばれる少なくとも1種である前記(1)〜(3)のいずれか記載の研磨液に関する。
また本発明は、(5) ピラゾール骨格を有する化合物が、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾール、3−アミノ−5−ヒドロキシピラゾールである前記(2)記載の研磨液に関する。
また本発明は、(6) チアゾール骨格を有する化合物が、2−アミノチアゾール、4,5−ジメチルチアゾール、2−アミノ−2−チアゾリン、2,4−ジメチルチアゾール、2−アミノ−4−メチルチアゾールである前記(2)記載の研磨液に関する。
また本発明は、(7) トリアゾール骨格を有する化合物が、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、1,2,4−トリアゾロ[1,5−a]ピリミジンである前記(2)記載の研磨液に関する。
また本発明は、(8) さらに、水溶性ポリマを含む前記(1)〜(7)のいずれか記載の研磨液に関する。
また本発明は、(9) 水溶性ポリマが、多糖類、ポリカルボン酸、ポリカルボン酸エステル、ポリカルボン酸塩、ポリアクリルアミド及びビニル系ポリマからなる群より選ばれる少なくとも1種である前記(8)記載の研磨液に関する。
また本発明は、(10) 酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、過硫酸塩及びオゾン水からなる群より選ばれる少なくとも1種である前記(1)〜(9)のいずれか記載の研磨液に関する。
また本発明は、(11) pH調整剤が、有機酸、有機酸のエステル、有機酸のアンモニウム塩及び硫酸からなる群より選ばれる少なくとも1種である前記(1)〜(10)のいずれか記載の研磨液に関する。
また本発明は、(12) さらに、砥粒を含む前記(1)〜(11)のいずれか記載の研磨液に関する。
また本発明は、(13) 研磨されるのが金属膜であり、該金属膜が、銅、銅合金、銅の酸化物、銅合金の酸化物、タンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物からなる群より選ばれる少なくとも1種である前記(1)〜(12)のいずれか記載の研磨液に関する。
また本発明は、(14) 研磨定盤の研磨布上に前記(1)〜(13)のいずれかの研磨液を供給しながら、基体の被研磨面を研磨布に押圧した状態で研磨布と基体とを相対的に動かして被研磨面を研磨する研磨方法に関する。
また本発明は、(15) 研磨定盤の研磨布上に前記(1)〜(13)のいずれか記載の研磨液を供給しながら、2種以上の金属膜の積層膜を連続して研磨する研磨方法に関する。
また本発明は、(16) 金属膜の積層膜の組み合わせが、先に研磨する層が銅、銅合金、銅の酸化物、銅合金の酸化物から選ばれる少なくとも1種であり、前記層の次の層がタンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物からなる群より選ばれる少なくとも1種である前記(15)記載の研磨方法に関する。
また本発明は、(17) 表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア導体層と、前記凹部を充填してバリア導体層を被覆する金属層とを有する基板の金属層を研磨して前記凸部のバリア導体層を露出させる第1研磨工程と、該第1研磨工程後に、少なくともバリア導体層および凹部の金属層を研磨して凸部の層間絶縁膜を露出させる第2研磨工程とを含み、第1研磨工程および第2研磨工程の少なくとも一方の工程で前記(1)〜(13)のいずれか記載の研磨液を用いて研磨する研磨方法に関する。The present invention is (1) a polishing liquid comprising an oxidizing agent, water, a pH adjuster, and a cyclic organic compound that promotes chemical polishing, wherein the pH is 5 to 10, or the cyclic organic compound is The present invention relates to a polishing liquid comprising a compound having an imidazole skeleton.
In the present invention, (2) the cyclic organic compound includes at least one compound selected from the group consisting of a compound having an imidazole skeleton, a compound having a pyrazole skeleton, a compound having a thiazole skeleton, and a compound having a triazole skeleton. The present invention relates to the polishing liquid described in (1).
In the present invention, (3) the compound having the imidazole skeleton is represented by the following general formula (I):
Figure 2004012248
(In formula (I), R 1 , R 2 and R 3 each independently represents a hydrogen atom, an amino group, or a C 1 to C 12 alkyl group) and a mercaptobenzimidazole. The present invention relates to the polishing liquid according to (1) or (2), which is at least one selected.
In the present invention, (4) the compound having the imidazole skeleton is imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-propylimidazole, 2-isobutylimidazole, 2-butylimidazole, 4- The above (1) to (3) which are at least one selected from the group consisting of methylimidazole, 4-ethylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-aminoimidazole and mercaptobenzimidazole. ).
In the present invention, the compound (5) wherein the compound having a pyrazole skeleton is 3,5-dimethylpyrazole, 3-methyl-5-pyrazolone, 3-amino-5-methylpyrazole, or 3-amino-5-hydroxypyrazole. (2) The present invention relates to the polishing liquid.
In the present invention, (6) the compound having a thiazole skeleton is 2-aminothiazole, 4,5-dimethylthiazole, 2-amino-2-thiazoline, 2,4-dimethylthiazole, 2-amino-4-methylthiazole. This relates to the polishing liquid according to (2).
In the present invention, (7) the compound having a triazole skeleton is 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole, 1,2 , 4-triazolo [1,5-a] pyrimidine, the polishing liquid according to (2) above.
The present invention also relates to (8) the polishing liquid according to any one of (1) to (7), further comprising a water-soluble polymer.
In the present invention, (9) the water-soluble polymer is at least one selected from the group consisting of polysaccharides, polycarboxylic acids, polycarboxylic acid esters, polycarboxylic acid salts, polyacrylamides, and vinyl polymers (8 ).
In the present invention, (10) the oxidizing agent is at least one selected from the group consisting of hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, persulfate, and ozone water. The polishing liquid according to any one of (9).
Moreover, this invention is (11) any one of said (1)-(10) whose pH adjuster is at least 1 sort (s) chosen from the group which consists of organic acid, the ester of organic acid, the ammonium salt of organic acid, and a sulfuric acid. It relates to the polishing liquid described.
The present invention also relates to (12) the polishing liquid according to any one of (1) to (11), further comprising abrasive grains.
Further, in the present invention, (13) the metal film to be polished is copper, copper alloy, copper oxide, copper alloy oxide, tantalum and its compound, titanium and its compound, tungsten. And the polishing liquid according to any one of (1) to (12), which is at least one selected from the group consisting of compounds thereof.
The present invention also provides: (14) A polishing cloth in a state where the polishing surface of the substrate is pressed against the polishing cloth while supplying the polishing liquid of any one of (1) to (13) onto the polishing cloth of the polishing surface plate. The present invention relates to a polishing method for polishing a surface to be polished by relatively moving a substrate and a substrate.
Further, the present invention is (15) continuously polishing a laminated film of two or more kinds of metal films while supplying the polishing liquid according to any one of (1) to (13) above on a polishing cloth of a polishing surface plate. The present invention relates to a polishing method.
Moreover, this invention is (16) The combination of the laminated | multilayer film of a metal film is the at least 1 sort (s) as which the layer polished previously is chosen from copper, the copper alloy, the oxide of copper, and the oxide of a copper alloy, The following layer relates to the polishing method according to (15), wherein the next layer is at least one selected from the group consisting of tantalum and its compounds, titanium and its compounds, tungsten and its compounds.
The present invention also provides: (17) an interlayer insulating film having a concave portion and a convex surface, a barrier conductor layer covering the interlayer insulating film along the surface, and a metal filling the concave portion and covering the barrier conductive layer A first polishing step for polishing the metal layer of the substrate having a layer to expose the barrier conductor layer of the convex portion, and after the first polishing step, at least the barrier conductor layer and the metal layer of the concave portion are polished to form the convex portion. And a second polishing step for exposing the interlayer insulating film, and polishing using the polishing liquid according to any one of (1) to (13) in at least one of the first polishing step and the second polishing step The present invention relates to a polishing method.

以下、本発明を詳細に説明する。
本発明の研磨液は、主要構成成分として酸化剤、水、pH調整剤、及び化学的な研磨を促進する環状有機化合物を含む。
本発明における研磨液のpHはCMPによる研磨速度が大きく、エッチング速度を効果的に抑制できるという点で5〜10である必要がある。ただし、化学的な研磨を促進する環状有機化合物が後述するイミダゾール骨格を有する化合物を含む場合は除き、この場合は特に5〜10である必要はない。研磨液のpHは特にpH6〜9の範囲が好ましい。pHが5より低くなると金属のエッチング量が増大する傾向にあり、pHが10を超えると、研磨速度が極端に減少する傾向がある。pHは酸の添加量により調整することができる。またアンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ成分の添加によっても調整可能である。
本発明における化学的な研磨を促進する環状有機化合物(以下、環状有機化合物ともいう。)は、イミダゾール骨格を有する化合物、ピラゾール骨格を有する化合物、チアゾール骨格を有する化合物、トリアゾール骨格を有する化合物が挙げられ、これらからなる群より1種類単独で、もしくは2種類以上混合して用いることができる。好ましくは、環状有機化合物はイミダゾール骨格を有する化合物を含み、より好ましくは、イミダゾール骨格を有する化合物である。
環状有機化合物は、少なくとも、研磨に使用するpH領域内、具体的には上記したpH5〜10の研磨液において、被研磨面の化学的な研磨を促進する作用を有するのが好ましい。なお上述のように、環状有機化合物がイミダゾール骨格を有する化合物を含む場合、研磨液pHは特に限定されない。環状有機化合物は、塩基性の環状有機化合物であることが好ましい。
イミダゾール骨格を有する化合物としては、特に制限はなく、例えば前記一般式(I)で表される化合物及びメルカプトベンゾイミダゾール等が挙げられ、これらから選ばれた一種以上を用いることができる。なお、式(I)中、R、R及びRは、それぞれ独立して水素原子、アミノ基、又はCからC12のアルキル基を示す。具体的にはイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−プロピルイミダゾール、2−イソブチルイミダゾール、2−ブチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−アミノイミダゾール及びメルカプトベンゾイミダゾール等を例示することができる。これらは1種類単独で、もしくは2種類以上組み合わせて用いることができる。
ピラゾール骨格を有する化合物としては、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾール、3−アミノ−5−ヒドロキシピラゾール等を例示することができる。これらは単独でまたは2種以上組み合わせて使用できる。
チアゾール骨格を有する化合物としては、2−アミノチアゾール、4,5−ジメチルチアゾール、2−アミノ−2−チアゾリン、2,4−ジメチルチアゾール、2−アミノ−4−メチルチアゾール等を例示することができる。これらは単独でまたは2種以上組み合わせて使用できる。
トリアゾール骨格を有する化合物としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、1,2,4−トリアゾロ[1,5−a]ピリミジン等を例示することができる。これらは単独でまたは2種以上組み合わせて使用できる。
本発明における化学的な研磨を促進する環状有機化合物の配合量は、研磨液の総量に対して0.001〜10重量%とすることが好ましく、0.01〜8重量%とすることがより好ましく、0.02〜5重量%とすることが特に好ましい。この配合量が0.001重量%未満では、研磨速度が低くなる傾向があり、10重量%を超えると金属のエッチング量が増大する傾向がある。
本発明における酸化剤としては、過酸化水素(H)、硝酸、過ヨウ素酸カリウム、次亜塩素酸、過硫酸塩及びオゾン水等が挙げられ、その中でも過酸化水素が特に好ましい。これらは1種類単独で、もしくは2種類以上混合して用いることができる。研磨の適用対象の基体が集積回路用素子を含むシリコン基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染は望ましくないので、不揮発成分を含まない酸化剤が望ましい。但し、オゾン水は組成の時間変化が激しいので過酸化水素が最も適している。但し、基体が半導体素子を含まないガラス基板などである場合は不揮発成分を含む酸化剤であっても差し支えない。
酸化剤の配合量は、研磨液の総量に対して、0.1〜50重量%とすることが好ましく、0.2〜25重量%とすることがより好ましく、0.3〜15重量%とすることが特に好ましい。配合量が、0.1重量%未満では、金属の酸化が不十分でCMP速度が低くなる傾向があり、50重量%を超えると、被研磨面に荒れが生じる傾向がある。
本発明におけるpH調整剤は、水溶性のものであれば特に制限はなく、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸等の有機酸、これら有機酸のエステル及びこれら有機酸のアンモニウム塩等が例示できる。また塩酸、硫酸、硝酸等の無機酸、これら無機酸のアンモニウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等、クロム酸等が挙げられる。
これらの中で特に、効果的に金属層をCMP研磨できるという点でギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸、コハク酸、グルタル酸、アジピン酸の有機酸、有機酸のエステル、有機酸のアンモニウム塩及び硫酸が好適である。これらpH調整剤は1種類単独で、もしくは2種類以上混合して用いることができる。
本発明におけるpH調整剤の配合量は、研磨液の総量に対して0.001〜10重量%とすることが好ましく、0.01〜8重量%とすることがより好ましく、0.02〜5重量%とすることが特に好ましい。この配合量が0.001重量%未満になると研磨速度が極端に減少する傾向にあり、10重量%を超えると、研磨速度が飽和する傾向がある。
本発明の研磨液は水溶性ポリマを含むことができる。水溶性ポリマとしては、特に制限はなく、例えばアルギン酸、ペクチン酸、カルボキシメチルセルロース、寒天、カードラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、ポリアミノアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸、ポリカルボン酸エステル、ポリカルボン酸塩及びポリカルボン酸誘導体;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;これらのエステル、アンモニウム塩等が挙げられる。但し、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基体がガラス基板等である場合はその限りではない。中でも多糖類、ポリカルボン酸、ポリカルボン酸エステル、ポリカルボン酸塩、ポリアクリルアミド及びビニル系ポリマからなる群より選ばれる少なくとも1種であるのが好ましく、具体的にはペクチン酸、寒天、ポリリンゴ酸、ポリメタクリル酸、ポリアクリル酸、ポリアクリルアミド、ポリビニルアルコール及びポリビニルピロリドン、それらのエステル及びそれらのアンモニウム塩が好ましい。
水溶性ポリマを配合する場合の配合量は、研磨液の総量に対して10重量%以下とすることが好ましく、5重量%以下とすることがより好ましく、1重量%以下とすることが特に好ましい。この配合量が10重量%を超えると研磨速度が低下する傾向がある。
水溶性ポリマの重量平均分子量は500以上とすることが好ましく、1,500以上とすることがより好ましく5,000以上とすることが特に好ましい。重量平均分子量の上限は特に規定するものではないが、溶解性の観点から500万以下が好ましい。重量平均分子量が500未満では高い研磨速度が発現しない傾向にある。本発明では、重量平均分子量が500以上である少なくとも1種の水溶性ポリマを用いることが好ましい。
本発明の研磨液は砥粒を添加することもできる。砥粒としては、シリカ、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒を例示することができる。研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数の少ない、平均粒径が100nm以下のコロイダルシリカ、コロイダルアルミナが好ましい。
砥粒を添加する場合の配合量は全重量に対して10重量%以下であることが好ましく、5重量%以下であることがより好ましい。この配合量が10重量%を超えるとCMPによる研磨速度は飽和し、それ以上加えても研磨速度の増加は見られない。
本発明の研磨液には、上述した材料のほかにアニオン系、カチオン系、ノニオン系の界面活性剤、ビクトリアピュアブルー等の染料、フタロシアニングリーン等の顔料等の着色剤を含有させてもよい。なお、水の配合量は残部で良く、含有されていれば特に制限はない。
本発明の研磨液を適用して研磨されるものには金属膜が挙げられ、該金属膜としては、銅、銅合金、銅の酸化物、銅合金の酸化物(以下、銅及びその化合物という。)、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物(以下、タンタル及びその化合物という。)、チタン、窒化チタン、チタン合金、その他のチタン化合物(以下、チタン及びその化合物という。)、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物(以下、タングステン及びその化合物という。)等を例示することができ、公知のスパッタ法、メッキ法により成膜できる。これらは1種または2種以上を組み合わせて研磨される。
金属膜は、二種以上の上記金属を組み合わせた積層膜であってもよい。本発明を適用する積層膜としては、研磨される金属膜の積層膜のうち、先に研磨される第1の層が前記銅及びその化合物から選ばれ、該層の次に研磨される第2の層が前記タンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物から選ばれる組み合わせの積層膜が挙げられる。
本発明の研磨液を用いることにより上記の二種以上の金属膜の積層膜を連続して研磨することもできる。
本発明の第一の研磨方法は、研磨定盤の研磨布上に前記本発明の研磨液を供給しながら、基体の被研磨面を研磨布に押圧した状態で研磨布と基体とを相対的に動かして被研磨面を研磨することを特徴とする研磨方法である。
研磨する装置としては、例えば、研磨パッド(研磨布)を貼り付け可能で回転数が変更可能なモータ等が接続されているある研磨定盤と、研磨される基体を保持するホルダーとを有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用でき、特に制限はない。研磨条件には制限はないが、定盤の回転速度は基体が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基体の研磨布への押し付け圧力(研磨圧力)が1〜100kPaであることが好ましく、CMP速度の被研磨面内均一性及びパターンの平坦性を満足するためには、5〜50kPaであることがより好ましい。研磨している間、研磨布には研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。研磨終了後の基体は、流水中でよく洗浄後、スピンドライ等を用いて基体上に付着した水滴を払い落としてから乾燥させることが好ましい。
研磨布と基体とを相対的に動かすには、研磨定盤を回転させる他に、ホルダーを回転や揺動させて研磨しても良い。また、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨パッドを長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは固定、回転、揺動のいずれの状態でも良い。これらの研磨方法は、研磨パッドと基体とを相対的に動かすのであれば、被研磨面や研磨装置により適宜選択できる。
また、本発明の第二の研磨方法は、研磨定盤の研磨布上に本発明の研磨液を供給しながら、二種以上の金属膜の積層膜を連続して研磨するものである。例えば、金属膜の積層膜の組み合わせとして、先に研磨される層が、前記銅及びその化合物から選ばれる少なくとも一種であり、この先に研磨される層と積層している層すなわち次の層が、前記タンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物から選ばれる少なくとも一種である積層膜が挙げられる。
本発明は、例えば半導体デバイスの配線層の形成における、金属配線用の導電性物質層と、層間絶縁膜へ前記導電性物質が拡散するのを防ぐバリア導体層(以下、バリア層という。)と、層間絶縁膜との化学機械研磨(CMP)に適用することができる。前記先に研磨される層が導電性物質層、該層の次の層がバリア層に相当する。
すなわち本発明の第三の研磨方法は、表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア層と、前記凹部を充填してバリア層を被覆する金属層とを有する基板の金属層を研磨して前記凸部のバリア層を露出させる第1研磨工程と、該第1研磨工程後に、少なくともバリア層および凹部の金属層を研磨して凸部の層間絶縁膜を露出させる第2研磨工程とを含み、第1研磨工程および第2研磨工程の少なくとも一方の工程で本発明の研磨液を用いて研磨することを特徴とする。
以下、本発明の研磨方法の実施態様の一例を、半導体デバイスにおける配線層の形成に沿って説明する。
まず、シリコンの基板上に二酸化シリコン等の層間絶縁膜を積層する。次いで、レジスト層形成、エッチング等の公知の手段によって、層間絶縁膜表面に所定パターンの凹部(基板露出部)を形成して凸部と凹部とからなる層間絶縁膜とする。この層間絶縁膜上に、表面の凸凹に沿って層間絶縁膜を被覆するバリア層として、タンタル等を蒸着またはCVD等により成膜する。さらに、前記凹部を充填するようにバリア層を被覆する導電性物質層(以下、金属層という。)として銅等を蒸着、めっきまたはCVD等により形成して金属膜の積層膜を得る。層間絶縁膜、バリア層および金属層の形成厚さは、それぞれ0.01〜2.0μm、1〜100nm、0.01〜2.5μm程度が好ましい。
(第1研磨工程)次に、この半導体基板を研磨装置に固定し、表面の金属層を被研磨面として、本発明の研磨液を供給しながら研磨する。これにより、層間絶縁膜凸部のバリア層が基板表面に露出し、層間絶縁膜凹部に前記金属層が残された所望の導体パターンが得られる。
(第2研磨工程)次いで、前記導体パターンの、少なくとも、前記露出しているバリア層および凹部の金属層を被研磨面として、本発明の研磨液を供給しながら研磨する。凸部のバリア層の下の層間絶縁膜が全て露出し、凹部に配線層となる前記金属層が残され、凸部と凹部との境界にバリア層の断面が露出した所望のパターンが得られた時点で研磨を終了する。なお、研磨終了時のより優れた平坦性を確保するために、さらに、オーバー研磨(例えば、第2研磨工程で所望のパターンを得られるまでの時間が100秒の場合、この100秒の研磨に加えて50秒追加して研磨することをオーバー研磨50%という。)して凸部の層間絶縁膜の一部を含む深さまで研磨しても良い。
この第1研磨工程および第2研磨工程の少なくとも一方で、本発明の研磨液を使用して研磨することにより、エッチング速度を低く保ちつつ、研磨速度を充分上昇させ、被研磨面の腐蝕とディッシングの発生を抑制できる。第1研磨工程および第2研磨工程で、上述のように引き続いて、本発明の研磨液を使用して研磨してもよい。この場合、第1研磨工程と第2研磨工程との間は、特に被研磨面の洗浄工程や乾燥工程等を行う必要はないが、研磨定盤や研磨布を取り換えたり、加工荷重等を変更させたりするために停止させてもよい。第1研磨工程および第2研磨工程で使用する本発明の研磨液は同一組成でも異なった組成でもよいが、同一組成であれば、第1研磨工程から第2研磨工程へ停止せずに連続して研磨を続けることができるため、生産性に優れる。
このようにして形成された金属配線の上に、さらに、層間絶縁膜、バリア層および第2層目の配線金属層を形成し、これを研磨して半導体基板全面に渡って平滑な面として第2層目の金属配線を形成する。この工程を所定数繰り返すことにより、所望の配線層数を有する半導体デバイスを製造することができる。
Hereinafter, the present invention will be described in detail.
The polishing liquid of the present invention contains an oxidizing agent, water, a pH adjuster, and a cyclic organic compound that promotes chemical polishing as main components.
The pH of the polishing liquid in the present invention needs to be 5 to 10 in that the polishing rate by CMP is large and the etching rate can be effectively suppressed. However, in the case where the cyclic organic compound that promotes chemical polishing includes a compound having an imidazole skeleton, which will be described later, it is not particularly necessary to be 5 to 10. The pH of the polishing liquid is particularly preferably in the range of pH 6-9. When the pH is lower than 5, the metal etching amount tends to increase, and when the pH exceeds 10, the polishing rate tends to decrease extremely. The pH can be adjusted by the amount of acid added. It can also be adjusted by adding alkali components such as ammonia, sodium hydroxide, tetramethylammonium hydroxide (TMAH).
Examples of the cyclic organic compound that promotes chemical polishing in the present invention (hereinafter also referred to as a cyclic organic compound) include a compound having an imidazole skeleton, a compound having a pyrazole skeleton, a compound having a thiazole skeleton, and a compound having a triazole skeleton. From the group consisting of these, one kind can be used alone, or two or more kinds can be mixed and used. Preferably, the cyclic organic compound includes a compound having an imidazole skeleton, and more preferably a compound having an imidazole skeleton.
The cyclic organic compound preferably has an action of promoting chemical polishing of the surface to be polished in at least a pH region used for polishing, specifically, in the above-described polishing solution having a pH of 5 to 10. As described above, when the cyclic organic compound includes a compound having an imidazole skeleton, the polishing solution pH is not particularly limited. The cyclic organic compound is preferably a basic cyclic organic compound.
There is no restriction | limiting in particular as a compound which has an imidazole frame | skeleton, For example, the compound represented by the said general formula (I), a mercapto benzimidazole, etc. are mentioned, One or more selected from these can be used. In the formula (I), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an amino group, or a C 1 to C 12 alkyl group. Specifically, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-propylimidazole, 2-isobutylimidazole, 2-butylimidazole, 4-methylimidazole, 4-ethylimidazole, 2,4- Examples thereof include dimethylimidazole, 2-ethyl-4-methylimidazole, 2-aminoimidazole and mercaptobenzimidazole. These can be used alone or in combination of two or more.
Examples of the compound having a pyrazole skeleton include 3,5-dimethylpyrazole, 3-methyl-5-pyrazolone, 3-amino-5-methylpyrazole, 3-amino-5-hydroxypyrazole and the like. These can be used alone or in combination of two or more.
Examples of the compound having a thiazole skeleton include 2-aminothiazole, 4,5-dimethylthiazole, 2-amino-2-thiazoline, 2,4-dimethylthiazole, 2-amino-4-methylthiazole and the like. . These can be used alone or in combination of two or more.
Examples of the compound having a triazole skeleton include 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole, 1,2,4-triazolo [1, 5-a] pyrimidine and the like can be exemplified. These can be used alone or in combination of two or more.
In the present invention, the amount of the cyclic organic compound that promotes chemical polishing is preferably 0.001 to 10% by weight, more preferably 0.01 to 8% by weight, based on the total amount of the polishing liquid. Preferably, 0.02 to 5% by weight is particularly preferable. If the blending amount is less than 0.001% by weight, the polishing rate tends to be low, and if it exceeds 10% by weight, the etching amount of the metal tends to increase.
Examples of the oxidizing agent in the present invention include hydrogen peroxide (H 2 O 2 ), nitric acid, potassium periodate, hypochlorous acid, persulfate, and ozone water. Among them, hydrogen peroxide is particularly preferable. These may be used alone or in combination of two or more. When the substrate to which the polishing is applied is a silicon substrate including an integrated circuit element, contamination by alkali metal, alkaline earth metal, halide, or the like is not desirable. Therefore, an oxidizing agent that does not contain a nonvolatile component is desirable. However, hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. However, when the substrate is a glass substrate or the like that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.
The blending amount of the oxidizing agent is preferably 0.1 to 50% by weight, more preferably 0.2 to 25% by weight, and 0.3 to 15% by weight with respect to the total amount of the polishing liquid. It is particularly preferable to do this. If the blending amount is less than 0.1% by weight, the metal oxidation is insufficient and the CMP rate tends to be low, and if it exceeds 50% by weight, the surface to be polished tends to become rough.
The pH adjuster in the present invention is not particularly limited as long as it is water-soluble. Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2 -Ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid Examples thereof include organic acids such as acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid and citric acid, esters of these organic acids, and ammonium salts of these organic acids. Further, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and ammonium salts of these inorganic acids, for example, ammonium persulfate, ammonium nitrate, ammonium chloride and the like, chromic acid and the like can be mentioned.
Among these, formic acid, malonic acid, malic acid, tartaric acid, citric acid, succinic acid, glutaric acid, adipic acid organic acid, organic acid ester, organic acid are particularly effective in that the metal layer can be polished by CMP. Ammonium salts and sulfuric acid are preferred. These pH adjusters can be used alone or in combination of two or more.
The blending amount of the pH adjuster in the present invention is preferably 0.001 to 10% by weight, more preferably 0.01 to 8% by weight, more preferably 0.02 to 5%, based on the total amount of the polishing liquid. It is especially preferable to set it as weight%. When this amount is less than 0.001% by weight, the polishing rate tends to be extremely reduced, and when it exceeds 10% by weight, the polishing rate tends to be saturated.
The polishing liquid of the present invention can contain a water-soluble polymer. The water-soluble polymer is not particularly limited. For example, polysaccharides such as alginic acid, pectic acid, carboxymethylcellulose, agar, curdlan and pullulan; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid Ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide, polyaminoacrylamide, ammonium polyacrylate, sodium polyacrylate Polycarboxylic acids such as salts, polyamic acids, polyamic acid ammonium salts, polyamic acid sodium salts and polyglyoxylic acids, polycarboxylic acid esters, polycarboxylic acid salts and polycarboxylic acid derivatives; Polyvinyl alcohol, vinyl polymers such as polyvinyl pyrrolidone and polyacrolein; these esters, ammonium salts and the like. However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide, or the like is not desirable, so an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like. Among these, at least one selected from the group consisting of polysaccharides, polycarboxylic acids, polycarboxylic acid esters, polycarboxylic acid salts, polyacrylamides, and vinyl polymers is preferable. Specifically, pectinic acid, agar, and polymalic acid are preferable. Polymethacrylic acid, polyacrylic acid, polyacrylamide, polyvinyl alcohol and polyvinylpyrrolidone, esters thereof and ammonium salts thereof are preferred.
The blending amount in the case of blending the water-soluble polymer is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less based on the total amount of the polishing liquid. . If this amount exceeds 10% by weight, the polishing rate tends to decrease.
The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 1,500 or more, and particularly preferably 5,000 or more. The upper limit of the weight average molecular weight is not particularly specified, but is preferably 5 million or less from the viewpoint of solubility. When the weight average molecular weight is less than 500, a high polishing rate tends not to be exhibited. In the present invention, it is preferable to use at least one water-soluble polymer having a weight average molecular weight of 500 or more.
Abrasive grains can also be added to the polishing liquid of the present invention. Examples of the abrasive grains include inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania, germania, and silicon carbide, and organic abrasive grains such as polystyrene, polyacryl, and polyvinyl chloride. Colloidal silica and colloidal alumina having good dispersion stability in the polishing liquid, few occurrences of polishing scratches (scratches) caused by CMP, and an average particle diameter of 100 nm or less are preferable.
The blending amount when adding abrasive grains is preferably 10% by weight or less, more preferably 5% by weight or less, based on the total weight. If this blending amount exceeds 10% by weight, the polishing rate by CMP is saturated, and even if it is added more than that, no increase in the polishing rate is observed.
In addition to the materials described above, the polishing liquid of the present invention may contain an anionic, cationic or nonionic surfactant, a dye such as Victoria Pure Blue, and a colorant such as a pigment such as phthalocyanine green. In addition, the compounding quantity of water may be the remainder, and if it contains, there will be no restriction | limiting in particular.
Examples of the metal film to be polished by applying the polishing liquid of the present invention include copper, copper alloy, copper oxide, copper alloy oxide (hereinafter referred to as copper and its compounds). ), Tantalum, tantalum nitride, tantalum alloys, other tantalum compounds (hereinafter referred to as tantalum and compounds thereof), titanium, titanium nitride, titanium alloys, other titanium compounds (hereinafter referred to as titanium and compounds thereof), tungsten , Tungsten nitride, tungsten alloy, other tungsten compounds (hereinafter referred to as tungsten and its compounds), and the like, and can be formed by a known sputtering method or plating method. These are polished by one kind or a combination of two or more kinds.
The metal film may be a laminated film in which two or more of the above metals are combined. As the laminated film to which the present invention is applied, among the laminated films of the metal film to be polished, the first layer to be polished is selected from the copper and the compound thereof, and the second layer to be polished next to the layer. And a laminated film of a combination of the tantalum and its compound, titanium and its compound, tungsten and its compound.
By using the polishing liquid of the present invention, the laminated film of the two or more metal films can be polished continuously.
In the first polishing method of the present invention, while supplying the polishing liquid of the present invention onto the polishing cloth of the polishing surface plate, the polishing cloth and the base are relatively placed while the surface to be polished of the base is pressed against the polishing cloth. And polishing the surface to be polished.
As an apparatus for polishing, for example, a general polishing machine having a polishing platen to which a polishing pad (polishing cloth) can be attached and a motor capable of changing the number of rotations is connected, and a holder for holding a substrate to be polished A typical polishing apparatus can be used. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out. The pressing pressure (polishing pressure) of the substrate having the surface to be polished to the polishing cloth is preferably 1 to 100 kPa, and in order to satisfy the uniformity of the surface to be polished at the CMP rate and the flatness of the pattern, More preferably, it is 50 kPa. During polishing, the polishing liquid is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid. The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.
In order to move the polishing cloth and the substrate relative to each other, in addition to rotating the polishing surface plate, polishing may be performed by rotating or swinging the holder. Further, a polishing method in which a polishing platen is rotated on a planetary surface, a polishing method in which a belt-like polishing pad is moved linearly in one direction in the longitudinal direction, and the like can be given. The holder may be in any state of being fixed, rotating and swinging. These polishing methods can be appropriately selected depending on the surface to be polished and the polishing apparatus as long as the polishing pad and the substrate are moved relatively.
Moreover, the 2nd grinding | polishing method of this invention grind | polishes continuously the laminated film of 2 or more types of metal films, supplying the polishing liquid of this invention on the polishing cloth of a polishing surface plate. For example, as a combination of laminated films of metal films, the layer to be polished first is at least one selected from the copper and the compound thereof, and the layer laminated with the layer to be polished first, that is, the next layer, Examples thereof include a laminated film which is at least one selected from the above tantalum and its compounds, titanium and its compounds, tungsten and its compounds.
The present invention provides, for example, a conductive material layer for metal wiring in the formation of a wiring layer of a semiconductor device, and a barrier conductor layer (hereinafter referred to as a barrier layer) that prevents the conductive material from diffusing into an interlayer insulating film. It can be applied to chemical mechanical polishing (CMP) with an interlayer insulating film. The previously polished layer corresponds to a conductive material layer, and the next layer corresponds to a barrier layer.
That is, in the third polishing method of the present invention, an interlayer insulating film whose surface is composed of a concave portion and a convex portion, a barrier layer that covers the interlayer insulating film along the surface, and a barrier layer that fills the concave portion and covers the barrier layer. A first polishing step of polishing a metal layer of a substrate having a metal layer to expose the barrier layer of the convex portion, and after the first polishing step, polishing at least the barrier layer and the metal layer of the concave portion to And a second polishing step for exposing the interlayer insulating film, and polishing with the polishing liquid of the present invention in at least one of the first polishing step and the second polishing step.
Hereinafter, an example of an embodiment of the polishing method of the present invention will be described along with formation of a wiring layer in a semiconductor device.
First, an interlayer insulating film such as silicon dioxide is laminated on a silicon substrate. Next, a concave portion (substrate exposed portion) having a predetermined pattern is formed on the surface of the interlayer insulating film by a known means such as resist layer formation or etching to form an interlayer insulating film composed of convex portions and concave portions. On this interlayer insulating film, tantalum or the like is deposited by vapor deposition or CVD as a barrier layer covering the interlayer insulating film along the surface irregularities. Furthermore, copper or the like is formed by vapor deposition, plating, CVD, or the like as a conductive material layer (hereinafter referred to as a metal layer) covering the barrier layer so as to fill the concave portion, thereby obtaining a laminated film of metal films. The formation thickness of the interlayer insulating film, the barrier layer, and the metal layer is preferably about 0.01 to 2.0 μm, 1 to 100 nm, and about 0.01 to 2.5 μm, respectively.
(First Polishing Step) Next, the semiconductor substrate is fixed to a polishing apparatus, and the polishing is performed while supplying the polishing liquid of the present invention using the metal layer on the surface as the surface to be polished. Thereby, the barrier layer of the convex part of the interlayer insulating film is exposed on the substrate surface, and a desired conductor pattern in which the metal layer is left in the concave part of the interlayer insulating film is obtained.
(Second Polishing Step) Next, polishing is performed while supplying the polishing liquid of the present invention using at least the exposed barrier layer and the concave metal layer of the conductor pattern as the surface to be polished. The interlayer insulating film under the convex barrier layer is all exposed, leaving the metal layer to be a wiring layer in the concave portion, and a desired pattern in which the cross section of the barrier layer is exposed at the boundary between the convex portion and the concave portion is obtained. At this point, the polishing is finished. In addition, in order to ensure better flatness at the end of polishing, further polishing (for example, when the time until a desired pattern is obtained in the second polishing step is 100 seconds, this polishing for 100 seconds) In addition, polishing for an additional 50 seconds may be referred to as over-polishing 50%) and may be polished to a depth including a part of the interlayer insulating film of the convex portion.
At least one of the first polishing step and the second polishing step is polished using the polishing liquid of the present invention, so that the polishing rate is sufficiently increased while keeping the etching rate low, and the surface to be polished is corroded and dished. Can be suppressed. In the first polishing process and the second polishing process, the polishing liquid of the present invention may be used for subsequent polishing as described above. In this case, there is no need to perform a cleaning process or a drying process on the surface to be polished between the first polishing process and the second polishing process, but the polishing surface plate or polishing cloth is replaced, or the processing load is changed. You may stop to make it. The polishing liquid of the present invention used in the first polishing step and the second polishing step may have the same composition or different compositions. However, if the composition is the same, the first polishing process continues to the second polishing process without stopping. Therefore, it is excellent in productivity.
An interlayer insulating film, a barrier layer, and a second wiring metal layer are further formed on the metal wiring formed in this manner, and this is polished to form a smooth surface over the entire surface of the semiconductor substrate. A second level metal wiring is formed. By repeating this step a predetermined number of times, a semiconductor device having a desired number of wiring layers can be manufactured.

以下、実施例により本発明をさらに説明する。本発明はこれらの実施例により制限されるものではない。
(実施例1〜138及び比較例1〜6:研磨速度)
〔研磨液作製方法〕
研磨液総量に対して、表1〜表6に示す化学的な研磨を促進する環状有機化合物 0.1重量%、平均粒径50nmのコロイダルシリカ0.5重量%、30%過酸化水素水 30重量%及び残部 水を混合後、コハク酸またはアンモニアを添加してpHを6、7、または8に調整して作製した。
〔研磨条件〕
銅基体:厚さ1500nmの銅金属を堆積したシリコン基板
タングステン基体:厚さ600nmのタングステン化合物(窒化タングステン)を堆積したシリコン基板
研磨定盤上の研磨パッド:発泡ポリウレタン樹脂(ロデール社製型番IC1000)
基体と研磨基盤との相対速度:20m/分
研磨圧力:30kPa
〔研磨品評価項目〕
研磨速度:各膜の研磨前後での膜厚差を電気抵抗値から換算して求めた。
表1〜3に銅基体に対するCMP研磨速度を、表4〜6にタングステン基体に対するCMP研磨速度の結果を示した。

Figure 2004012248
Figure 2004012248
Figure 2004012248
Figure 2004012248
Figure 2004012248
Figure 2004012248
実施例1〜69は銅の研磨速度がいずれも100nm/min以上であり、比較例1〜3と比較して改善されている。
窒化タングステンの研磨速度は、実施例70〜117、121〜126ではいずれも100nm/min以上であり、実施例118〜120、127〜138では、いずれも75nm/min以上であり、30nm/min以下の比較例4〜6と比較して改善されている。
(実施例139:ディッシング)
研磨液総量に対して、化学的な研磨を促進する環状有機化合物として、イミダゾール 0.1重量%、平均粒径50nmのコロイダルシリカ 0.5重量%、水溶性ポリマ 0.2重量%、30%過酸化水素水 30重量%、残部 水を混合した後、コハク酸を添加してpH6に調整して研磨液を作製した。
二酸化シリコン中に深さ0.5〜100μmの溝を形成して、公知の方法によってバリア層として厚さ50nmの窒化タングステン層を形成し、その上層に銅膜を1.0μm形成したシリコン基板を用意した。この基板表面全面で二酸化シリコンの凸部が露出するまで上記研磨液によって研磨を行った。研磨時間は2分であり、約500nm/min以上の研磨速度が得られた。次に、触針式段差計で配線金属部幅100μm、絶縁膜部幅100μmが交互に並んだストライプ状パターン部の表面形状から絶縁膜部に対する配線金属部の膜減り量(ディッシング量)を求めたところ75nmであり、十分実用的な値であった。Hereinafter, the present invention will be further described by examples. The present invention is not limited by these examples.
(Examples 1 to 138 and Comparative Examples 1 to 6: polishing rate)
[Polishing method]
30% by weight of cyclic organic compound that promotes chemical polishing shown in Tables 1 to 6 and 0.5% by weight of colloidal silica with an average particle diameter of 50 nm, 30% hydrogen peroxide solution with respect to the total amount of polishing liquid After mixing the weight% and the remaining water, the mixture was prepared by adding succinic acid or ammonia to adjust the pH to 6, 7, or 8.
[Polishing conditions]
Copper substrate: Silicon substrate tungsten substrate on which copper metal with a thickness of 1500 nm is deposited: Polishing pad on a silicon substrate polishing surface plate on which a tungsten compound (tungsten nitride) with a thickness of 600 nm is deposited: Foam polyurethane resin (model number IC1000 manufactured by Rodel)
Relative speed between substrate and polishing base: 20 m / min Polishing pressure: 30 kPa
[Evaluation items for polished products]
Polishing speed: The film thickness difference before and after polishing of each film was calculated from the electric resistance value.
Tables 1 to 3 show the CMP polishing rate for the copper substrate, and Tables 4 to 6 show the CMP polishing rate for the tungsten substrate.
Figure 2004012248
Figure 2004012248
Figure 2004012248
Figure 2004012248
Figure 2004012248
Figure 2004012248
In Examples 1 to 69, the polishing rate of copper is 100 nm / min or more, which is improved as compared with Comparative Examples 1 to 3.
The polishing rate of tungsten nitride is 100 nm / min or more in each of Examples 70 to 117 and 121 to 126, and in Examples 118 to 120 and 127 to 138, all are 75 nm / min or more and 30 nm / min or less. It is improved as compared with Comparative Examples 4-6.
(Example 139: Dishing)
As a cyclic organic compound for promoting chemical polishing, 0.1% by weight of imidazole, 0.5% by weight of colloidal silica having an average particle size of 50 nm, 0.2% by weight of water-soluble polymer, 30% with respect to the total amount of the polishing liquid After mixing 30% by weight of hydrogen peroxide and the remaining water, succinic acid was added to adjust the pH to 6 to prepare a polishing liquid.
A silicon substrate in which a groove having a depth of 0.5 to 100 μm is formed in silicon dioxide, a tungsten nitride layer having a thickness of 50 nm is formed as a barrier layer by a known method, and a copper film is formed on the upper layer by 1.0 μm is formed. Prepared. Polishing was carried out with the above polishing liquid until the convex portions of silicon dioxide were exposed on the entire surface of the substrate. The polishing time was 2 minutes, and a polishing rate of about 500 nm / min or more was obtained. Next, using a stylus profilometer, the film metal removal amount (dishing amount) with respect to the insulating film part is obtained from the surface shape of the stripe pattern part in which the wiring metal part width of 100 μm and the insulating film part width of 100 μm are alternately arranged. As a result, it was 75 nm, which was a sufficiently practical value.

バリア層として窒化タングステン層の代わりに厚さ50nmの窒化タンタル層を形成した以外は実施例139と同様にしたシリコン基板を用い、基板表面全面で二酸化シリコンの凸部が露出するまで上記実施例139で作製した研磨液によって研磨を行った。研磨時間は2分であり、約500nm/min以上の研磨速度が得られた。
次に、実施例139と同様にして絶縁膜部に対する配線金属部の膜減り量を求めたところ65nmであり、十分実用的な値であった。
A silicon substrate similar to that in Example 139 was used except that a tantalum nitride layer having a thickness of 50 nm was formed instead of the tungsten nitride layer as the barrier layer, and Example 139 was used until the convex portions of silicon dioxide were exposed on the entire surface of the substrate. Polishing was performed with the polishing liquid prepared in (1). The polishing time was 2 minutes, and a polishing rate of about 500 nm / min or more was obtained.
Next, when the film reduction amount of the wiring metal part with respect to the insulating film part was determined in the same manner as in Example 139, it was 65 nm, which was a sufficiently practical value.

産業上の利用の可能性Industrial applicability

本発明の研磨液は、研磨速度を十分上昇させ、金属表面の腐食とディッシングの発生を抑制し、信頼性の高い金属膜の埋め込みパターン形成を可能とするものである。
また、本発明の研磨方法は、研磨速度を十分上昇させ、金属表面の腐食とディッシングの発生を抑制し、信頼性の高い金属膜の埋め込みパターン形成を生産性、作業性、歩留まりよく行うことのできるものである。
The polishing liquid of the present invention sufficiently increases the polishing rate, suppresses the occurrence of corrosion and dishing on the metal surface, and makes it possible to form a highly reliable embedded pattern of a metal film.
Further, the polishing method of the present invention sufficiently increases the polishing rate, suppresses the occurrence of corrosion and dishing on the metal surface, and performs highly reliable embedding pattern formation of the metal film with high productivity, workability, and yield. It can be done.

Claims (17)

酸化剤、水、pH調整剤、及び化学的な研磨を促進する環状有機化合物を含む研磨液であって、pHが5〜10であること、または前記環状有機化合物がイミダゾール骨格を有する化合物を含むことを特徴とする研磨液。A polishing liquid comprising an oxidizing agent, water, a pH adjuster, and a cyclic organic compound that promotes chemical polishing, wherein the pH is 5 to 10, or the cyclic organic compound includes a compound having an imidazole skeleton. A polishing liquid characterized by that. 前記環状有機化合物が、イミダゾール骨格を有する化合物、ピラゾール骨格を有する化合物、チアゾール骨格を有する化合物およびトリアゾール骨格を有する化合物からなる群より選ばれる少なくとも1種の化合物を含む請求の範囲第1項記載の研磨液。The range of claim 1, wherein the cyclic organic compound comprises at least one compound selected from the group consisting of a compound having an imidazole skeleton, a compound having a pyrazole skeleton, a compound having a thiazole skeleton, and a compound having a triazole skeleton. Polishing fluid. 前記イミダゾール骨格を有する化合物が、下記一般式(I)
Figure 2004012248
(式(I)中、R、R及びRは、それぞれ独立して水素原子、アミノ基、又はCからC12のアルキル基を示す。)で表される化合物及びメルカプトベンゾイミダゾールから選ばれる少なくとも1種である請求の範囲第1項または第2項記載の研磨液。
The compound having the imidazole skeleton is represented by the following general formula (I)
Figure 2004012248
(In formula (I), R 1 , R 2 and R 3 each independently represents a hydrogen atom, an amino group, or a C 1 to C 12 alkyl group) and a mercaptobenzimidazole. The polishing liquid according to claim 1 or 2, which is at least one selected.
前記イミダゾール骨格を有する化合物が、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、2−プロピルイミダゾール、2−イソブチルイミダゾール、2−ブチルイミダゾール、4−メチルイミダゾール、4−エチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−アミノイミダゾール及びメルカプトベンゾイミダゾールからなる群より選ばれる少なくとも1種である請求の範囲第1項〜第3項のいずれか記載の研磨液。The compound having the imidazole skeleton is imidazole, 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-propylimidazole, 2-isobutylimidazole, 2-butylimidazole, 4-methylimidazole, 4-ethylimidazole, The method according to any one of claims 1 to 3, which is at least one selected from the group consisting of 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-aminoimidazole and mercaptobenzimidazole. Polishing fluid. ピラゾール骨格を有する化合物が、3,5−ジメチルピラゾール、3−メチル−5−ピラゾロン、3−アミノ−5−メチルピラゾール、3−アミノ−5−ヒドロキシピラゾールである請求の範囲第2項記載の研磨液。The polishing according to claim 2, wherein the compound having a pyrazole skeleton is 3,5-dimethylpyrazole, 3-methyl-5-pyrazolone, 3-amino-5-methylpyrazole, or 3-amino-5-hydroxypyrazole. liquid. チアゾール骨格を有する化合物が、2−アミノチアゾール、4,5−ジメチルチアゾール、2−アミノ−2−チアゾリン、2,4−ジメチルチアゾール、2−アミノ−4−メチルチアゾールである請求の範囲第2項記載の研磨液。The compound having a thiazole skeleton is 2-aminothiazole, 4,5-dimethylthiazole, 2-amino-2-thiazoline, 2,4-dimethylthiazole, or 2-amino-4-methylthiazole. The polishing liquid as described. トリアゾール骨格を有する化合物が、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、4−アミノ−1,2,4−トリアゾール、1,2,4−トリアゾロ[1,5−a]ピリミジンである請求の範囲第2項記載の研磨液。Compounds having a triazole skeleton are 1,2,4-triazole, 3-amino-1,2,4-triazole, 4-amino-1,2,4-triazole, 1,2,4-triazolo [1,5 The polishing liquid according to claim 2, which is -a] pyrimidine. さらに、水溶性ポリマを含む請求の範囲第1項〜第7項のいずれか記載の研磨液。The polishing liquid according to any one of claims 1 to 7, further comprising a water-soluble polymer. 水溶性ポリマが、多糖類、ポリカルボン酸、ポリカルボン酸エステル、ポリカルボン酸塩、ポリアクリルアミド及びビニル系ポリマからなる群より選ばれる少なくとも1種である請求の範囲第8項記載の研磨液。The polishing liquid according to claim 8, wherein the water-soluble polymer is at least one selected from the group consisting of polysaccharides, polycarboxylic acids, polycarboxylic acid esters, polycarboxylates, polyacrylamides, and vinyl polymers. 酸化剤が、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸、過硫酸塩及びオゾン水からなる群より選ばれる少なくとも1種である請求の範囲第1項〜第9項のいずれか記載の研磨液。The oxidant is at least one selected from the group consisting of hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid, persulfate, and ozone water. The polishing liquid as described. pH調整剤が、有機酸、有機酸のエステル、有機酸のアンモニウム塩及び硫酸からなる群より選ばれる少なくとも1種である請求の範囲第1項〜第10項のいずれか記載の研磨液。The polishing liquid according to any one of claims 1 to 10, wherein the pH adjusting agent is at least one selected from the group consisting of organic acids, esters of organic acids, ammonium salts of organic acids, and sulfuric acid. さらに、砥粒を含む請求の範囲第1項〜第11項のいずれか記載の研磨液。The polishing liquid according to any one of claims 1 to 11, further comprising abrasive grains. 研磨されるのが金属膜であり、該金属膜が、銅、銅合金、銅の酸化物、銅合金の酸化物、タンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物からなる群より選ばれる少なくとも1種である請求の範囲第1項〜第12項のいずれか記載の研磨液。The metal film to be polished is selected from the group consisting of copper, copper alloy, copper oxide, copper alloy oxide, tantalum and its compound, titanium and its compound, tungsten and its compound. The polishing liquid according to any one of claims 1 to 12, which is at least one selected from the group consisting of: 研磨定盤の研磨布上に請求の範囲第1項〜第13項のいずれか記載の研磨液を供給しながら、基体の被研磨面を研磨布に押圧した状態で研磨布と基体とを相対的に動かして被研磨面を研磨することを特徴とする研磨方法。While supplying the polishing liquid according to any one of claims 1 to 13 onto the polishing cloth of the polishing surface plate, the polishing cloth and the base are relatively moved while the surface to be polished of the base is pressed against the polishing cloth. A polishing method characterized in that the surface to be polished is polished by moving in a moving manner. 研磨定盤の研磨布上に請求の範囲第1項〜第13項のいずれか記載の研磨液を供給しながら、2種以上の金属膜の積層膜を連続して研磨することを特徴とする研磨方法。A laminated film of two or more metal films is continuously polished while supplying the polishing liquid according to any one of claims 1 to 13 onto a polishing cloth of a polishing surface plate. Polishing method. 金属膜の積層膜の組み合わせが、先に研磨する層が銅、銅合金、銅の酸化物、銅合金の酸化物から選ばれる少なくとも1種であり、前記層の次の層がタンタル及びその化合物、チタン及びその化合物、タングステン及びその化合物からなる群より選ばれる少なくとも1種である請求の範囲第15項記載の研磨方法。The combination of the laminated films of the metal films is at least one selected from copper, a copper alloy, a copper oxide, and a copper alloy oxide, and the next layer is tantalum and a compound thereof. The polishing method according to claim 15, wherein the polishing method is at least one selected from the group consisting of titanium and its compounds, tungsten and its compounds. 表面が凹部および凸部からなる層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア導体層と、前記凹部を充填してバリア導体層を被覆する金属層とを有する基板の金属層を研磨して前記凸部のバリア導体層を露出させる第1研磨工程と、該第1研磨工程後に、少なくともバリア導体層および凹部の金属層を研磨して凸部の層間絶縁膜を露出させる第2研磨工程とを含み、第1研磨工程および第2研磨工程の少なくとも一方の工程で請求の範囲第1項〜第13項のいずれか記載の研磨液を用いて研磨することを特徴とする研磨方法。A metal layer of a substrate having an interlayer insulating film having a concave portion and a convex surface, a barrier conductor layer covering the interlayer insulating film along the surface, and a metal layer filling the concave portion and covering the barrier conductor layer A first polishing step to polish the barrier conductor layer of the convex portion, and after the first polishing step, at least the barrier conductor layer and the metal layer of the concave portion are polished to expose the interlayer insulating film of the convex portion. Polishing using the polishing liquid according to any one of claims 1 to 13 in at least one of the first polishing step and the second polishing step. Method.
JP2004524136A 2002-07-25 2003-07-24 Polishing liquid and polishing method Pending JPWO2004012248A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002216423 2002-07-25
JP2002216428 2002-07-25
JP2002216423 2002-07-25
JP2002216428 2002-07-25
PCT/JP2003/009389 WO2004012248A1 (en) 2002-07-25 2003-07-24 Polishing fluid and polishing method

Publications (1)

Publication Number Publication Date
JPWO2004012248A1 true JPWO2004012248A1 (en) 2005-11-24

Family

ID=31190292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004524136A Pending JPWO2004012248A1 (en) 2002-07-25 2003-07-24 Polishing liquid and polishing method

Country Status (4)

Country Link
JP (1) JPWO2004012248A1 (en)
AU (1) AU2003248101A1 (en)
TW (1) TWI257126B (en)
WO (1) WO2004012248A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010379A1 (en) * 2004-03-03 2005-09-22 Schott Ag Process for the production of wafers with low-defect surfaces, the use of such wafers and electronic components obtained therefrom
JP4316406B2 (en) * 2004-03-22 2009-08-19 株式会社フジミインコーポレーテッド Polishing composition
JP4644434B2 (en) * 2004-03-24 2011-03-02 株式会社フジミインコーポレーテッド Polishing composition
JP5648567B2 (en) * 2010-05-07 2015-01-07 日立化成株式会社 Polishing liquid for CMP and polishing method using the same
JP5953766B2 (en) * 2012-01-24 2016-07-20 日立化成株式会社 Polishing liquid and substrate polishing method
JP6589361B2 (en) * 2015-05-01 2019-10-16 日立化成株式会社 Abrasive, abrasive set, and substrate polishing method
WO2020231723A1 (en) * 2019-05-13 2020-11-19 Ecolab Usa Inc. 1,2,4-triazolo[1,5-a] pyrimidine derivative as copper corrosion inhibitor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252243A (en) * 1998-12-28 2000-09-14 Hitachi Chem Co Ltd Polishing liquid for metal and polishing method using the same
JP2001144051A (en) * 1999-11-15 2001-05-25 Hitachi Chem Co Ltd Polishing solution for metal and method of polishing substrate using same
WO2001071789A1 (en) * 2000-03-21 2001-09-27 Wako Pure Chemical Industries, Ltd. Semiconductor wafer cleaning agent and cleaning method
JP2002121541A (en) * 2000-10-12 2002-04-26 Jsr Corp Aqueous dispersion for chemical machinery polishing
JP2002164310A (en) * 2000-11-24 2002-06-07 Nec Corp Slurry for chemical-mechanical polishing
JP2002519471A (en) * 1998-06-26 2002-07-02 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing slurry useful for copper / tantalum substrates
JP2003188120A (en) * 2001-12-17 2003-07-04 Hitachi Chem Co Ltd Polishing liquid and polishing method for metal
WO2003094216A1 (en) * 2002-04-30 2003-11-13 Hitachi Chemical Co., Ltd. Polishing fluid and polishing method
JP2004031446A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
JP2004031442A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538109B2 (en) * 1999-02-18 2010-09-08 株式会社トッパンTdkレーベル Chemical mechanical polishing composition
JP2001185514A (en) * 1999-12-27 2001-07-06 Hitachi Chem Co Ltd Cmp abrasive and method for polishing substrate
JP3841995B2 (en) * 1999-12-28 2006-11-08 Necエレクトロニクス株式会社 Chemical mechanical polishing slurry
JP3768401B2 (en) * 2000-11-24 2006-04-19 Necエレクトロニクス株式会社 Chemical mechanical polishing slurry

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519471A (en) * 1998-06-26 2002-07-02 キャボット マイクロエレクトロニクス コーポレイション Chemical mechanical polishing slurry useful for copper / tantalum substrates
JP2000252243A (en) * 1998-12-28 2000-09-14 Hitachi Chem Co Ltd Polishing liquid for metal and polishing method using the same
JP2001144051A (en) * 1999-11-15 2001-05-25 Hitachi Chem Co Ltd Polishing solution for metal and method of polishing substrate using same
WO2001071789A1 (en) * 2000-03-21 2001-09-27 Wako Pure Chemical Industries, Ltd. Semiconductor wafer cleaning agent and cleaning method
JP2002121541A (en) * 2000-10-12 2002-04-26 Jsr Corp Aqueous dispersion for chemical machinery polishing
JP2002164310A (en) * 2000-11-24 2002-06-07 Nec Corp Slurry for chemical-mechanical polishing
JP2003188120A (en) * 2001-12-17 2003-07-04 Hitachi Chem Co Ltd Polishing liquid and polishing method for metal
WO2003094216A1 (en) * 2002-04-30 2003-11-13 Hitachi Chemical Co., Ltd. Polishing fluid and polishing method
JP2004031446A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method
JP2004031442A (en) * 2002-06-21 2004-01-29 Hitachi Chem Co Ltd Polishing solution and polishing method

Also Published As

Publication number Publication date
TWI257126B (en) 2006-06-21
TW200405453A (en) 2004-04-01
AU2003248101A1 (en) 2004-02-16
WO2004012248A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP5472049B2 (en) Abrasives for chemical mechanical polishing
JP4853494B2 (en) Polishing liquid and polishing method
KR101445429B1 (en) Polishing liquid for metal film and polishing method
TWI454561B (en) A polishing composition for planarizing the metal layer
JP4400562B2 (en) Polishing liquid for metal and polishing method
JP2004031443A (en) Polishing solution and polishing method
JP2004031446A (en) Polishing solution and polishing method
JP4992826B2 (en) Polishing liquid and polishing method
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
JP4951808B2 (en) Polishing liquid for metal and polishing method
JPWO2004012248A1 (en) Polishing liquid and polishing method
JP2003068683A (en) Polishing liquid for metal and method for polishing
JP2004031442A (en) Polishing solution and polishing method
JP2010103409A (en) Metal polishing solution and polishing method using same
JP4759779B2 (en) Substrate polishing method
JP5088352B2 (en) Polishing liquid for metal and polishing method
JP2003188120A (en) Polishing liquid and polishing method for metal
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP3902897B2 (en) Substrate polishing method using metal polishing liquid
JP2016196530A (en) Abrasive, storage liquid for abrasive and polishing method
JP2004363141A (en) Liquid and method for polishing metal
JP2004123931A (en) Polishing solution and polishing method
KR100679551B1 (en) Polishing fluid for metal and polishing method
JP4774669B2 (en) Polishing liquid and polishing method
JP2003183628A (en) Polishing liquid for metal and method for grinding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707