JPS6398593A - Earthquakeproof supporter for large-sized vessel - Google Patents
Earthquakeproof supporter for large-sized vesselInfo
- Publication number
- JPS6398593A JPS6398593A JP61242946A JP24294686A JPS6398593A JP S6398593 A JPS6398593 A JP S6398593A JP 61242946 A JP61242946 A JP 61242946A JP 24294686 A JP24294686 A JP 24294686A JP S6398593 A JPS6398593 A JP S6398593A
- Authority
- JP
- Japan
- Prior art keywords
- shear lug
- support device
- protrusion
- shear
- earthquake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005489 elastic deformation Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 238000007665 sagging Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、IM子炉容器に代表される大型の圧力容器の
耐震支持装置に係り、設置スペースを節約するのに好適
なシャラグ式耐震支持装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an earthquake-resistant support device for a large pressure vessel, such as an IM reactor vessel, and is a shag-type earthquake-resistant support device suitable for saving installation space. Regarding equipment.
従来の装置は、特開昭61−20892号(第7図)に
記載のように凸形のシャラグ(ラジアルキーとも云う)
と凹型のシャラグ受け(ラジアルキー受けとも云う)の
対とから成り、原子力容器の外周とガードベッセルの間
に等間隔に複数の対を設置されたものであった。進展力
が第7図の矢印の方向からかかると、力の方向と同じ方
向の接線Y1とYb上に配置されている耐農支持装[3
0dと30gのシャラグ31dと31gとシャラグ受け
32dと32gのスペーサ34又は35とが接触し、さ
らに力が増すとシャラグはスリットの効果により弾性範
囲内にて変位を起し、力を支持する構造となっていた。The conventional device is a convex shag (also called radial key) as described in Japanese Patent Application Laid-Open No. 61-20892 (Figure 7).
It consisted of a pair of recessed shag holders (also called radial key holders) and a plurality of pairs were installed at equal intervals between the outer periphery of the nuclear reactor vessel and the guard vessel. When a developing force is applied from the direction of the arrow in Fig. 7, the agricultural support equipment [3
When the sharugs 31d and 31g of 0d and 30g and the spacer 34 or 35 of the sharag receivers 32d and 32g come into contact, and the force increases further, the sharags are displaced within the elastic range due to the effect of the slit, creating a structure that supports the force. It became.
[発明が解決しようとする問題点〕
上記従来技術は、シャラグとシャラグ受けの弾性範囲内
強度で地震力を支持する構造で、地震力の大きい高地震
帯向プラントの場合は、地震の力が大きくなるのに応じ
耐震支持装置も大きくなり、建屋も大きくせざるを得な
かった。また弾性支持であるため、地震波の振動に対す
る減衰についても弾性減衰範囲内の効果しか期待できな
い。[Problems to be solved by the invention] The above-mentioned conventional technology has a structure that supports seismic force with the strength within the elastic range of the shag and shag holder. As the building grew larger, the seismic support equipment also became larger, and the building had to be larger as well. Furthermore, since it is supported elastically, it is only possible to expect an effect within the range of elastic damping in terms of damping the vibrations of seismic waves.
本発明の目、的は、取付スペースの小さい耐震支持装置
を提供することにある。An object of the present invention is to provide an earthquake-resistant support device that requires a small installation space.
[問題点を解決するための手段] 第2図に示す通り、1対の耐震支持装置10は。[Means for solving problems] As shown in FIG. 2, a pair of seismic support devices 10.
凸形のシャラグ11と凹形のシャラグ受け12の対から
構成され、第3図に示す通りシャラグ11とシャラグ受
け12の相対する而14と面16には同一の傾斜角0を
つけ、また面15と面17にも同一の傾斜角θをつけ、
またシャラグ受け12の2つの突起部18と19の厚み
寸法MとNには差をつけて剛性に差をつけた構造とする
ことにより1本発明の目的は達成される。It is composed of a pair of a convex shag 11 and a concave shag holder 12, and as shown in FIG. 15 and surface 17 with the same inclination angle θ,
Further, one object of the present invention can be achieved by providing a structure in which the thickness dimensions M and N of the two projections 18 and 19 of the shag holder 12 are different, and the rigidity is different.
説明を容易にするため、第2図と第3図に矢印で示す方
向から地震力Wがかかるものとし、耐震支持装置10に
はa ” Qの符号をつける、シヤラグとシャラグ受け
の相対する面は、第3図に示すように、設置部の接線方
向に対し角度りのテーパ状の傾斜面とし、耐震支持装置
10は、面の傾斜角0と同じ等角度θで配置されている
ものとする。For ease of explanation, it is assumed that the seismic force W is applied from the direction indicated by the arrows in FIGS. 2 and 3, and the seismic support device 10 is marked with a ” Q, and the facing surfaces of the shear lug and the shear lug receiver are As shown in Fig. 3, is a tapered inclined surface angled with respect to the tangential direction of the installation part, and the seismic support device 10 is arranged at an equal angle θ equal to the inclination angle 0 of the surface. do.
シャラグ11とシャラグ受け12の相対する面の間には
、大型容器の熱膨張に対応した空隙13を設ける。この
空隙13の寸法を、第4図に示すように耐震支持装置の
取付部の法線方向Q、傾斜面直角方向R1取付部の接線
方向Sとすると、次の関係がある。A gap 13 is provided between the opposing surfaces of the shag 11 and the shag holder 12 to accommodate thermal expansion of the large container. Assuming that the dimensions of this gap 13 are the normal direction Q to the attachment part of the seismic support device, the direction perpendicular to the slope surface R1, and the tangential direction S to the attachment part, as shown in FIG. 4, the following relationship exists.
Q == S tan O= R/ cosθ
−(1)R=Ssin θ −(2
)力Wがかかると、大型容器4とガードベッセル8は相
対変位を起して空隙13はつめられ、第3図の破線に示
す位置に移動する、シヤラグ11とシャラグ受け12の
相対する面14,15,16゜17は、角度0の傾斜と
上記の式(1)と(2)の関係から、力Wの方向と角度
θの位置に配置された耐震支持装置10bの面14bと
面16b。Q == S tan O= R/ cosθ
−(1) R=Ssin θ −(2
) When the force W is applied, the large container 4 and the guard vessel 8 undergo relative displacement, the gap 13 is closed, and the facing surfaces 14 of the shear lug 11 and the shear lug receiver 12 move to the position shown by the broken line in FIG. , 15, 16° 17 are the surfaces 14b and 16b of the seismic support device 10b placed at the direction of the force W and the angle θ from the relationship between the inclination at an angle of 0 and the above equations (1) and (2). .
耐震支持装!10Mの面15j1と面17gとが最初に
接触し、さらに力Wが増すとシャラグ受け12Qの突起
部寸法NQがシャラグ受は突起部寸法Mbより小さいた
め、剛性の差により突起部19fiは突起部18bより
大きい弾性変形を起す。Earthquake-resistant support equipment! When the surface 15j1 and the surface 17g of 10M first come into contact and the force W increases further, the protrusion dimension NQ of the shag holder 12Q is smaller than the protrusion dimension Mb of the shag holder, so the protrusion 19fi becomes a protrusion due to the difference in rigidity. 18b causes a larger elastic deformation.
同時に接触する面1512と17Q、面14bと而16
bの間にすベリを起し、隣接位置の耐震支持装置10a
の面14aと面16a、15aと面17aが接触し合う
ようになる。さらに力Wが増すと、耐震支持装置10a
においても上記と同じ弾性変形と接触面間のすベリを起
す。さらに力Wが増すに応じて順次接触する面の数を増
やしながら上記と同じように弾性変形とすべりを繰り返
し、大型容器4とガードベッセル8は相対的に捩れた変
位の状態となり、力Wは複数の耐震支持装置に分散され
る。上記のように本発明の耐震支持装置は、力Wを分散
支持するとともに接触面間にすべりを起させることによ
り、地震エネルギーの力と振動を吸収しながら大型容器
を支持することとなる。Surfaces 1512 and 17Q, surfaces 14b and 16 that are in contact at the same time
The seismic support device 10a at the adjacent position
The surface 14a and the surface 16a, and the surface 15a and the surface 17a come into contact with each other. When the force W further increases, the seismic support device 10a
In this case, the same elastic deformation and sagging between the contact surfaces as described above occur. Furthermore, as the force W increases, the number of surfaces in contact increases sequentially, and elastic deformation and sliding are repeated in the same way as above, and the large container 4 and the guard vessel 8 become in a relatively twisted state of displacement, and the force W increases. Distributed across multiple seismic support devices. As described above, the seismic support device of the present invention supports a large container while absorbing the force and vibration of seismic energy by dispersing the force W and causing slippage between the contact surfaces.
以下、本発明の実施例を第1図〜第5図により説明する
。Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
第1図は、原子炉プラントの縦断面図で、原子炉建屋1
に設けられたペデスタル2にリングガーダ3が設置され
、大型容器4は内部に炉心5と炉心支持構造物6を有し
て上部フランジ7にてリングガーダ3に支えられている
。上部開口部には、ルーフスラブ9が設けられている。Figure 1 is a vertical cross-sectional view of the reactor plant, showing the reactor building 1.
A ring girder 3 is installed on a pedestal 2 provided at a pedestal 2, and a large vessel 4 has a core 5 and a core support structure 6 inside and is supported by the ring girder 3 at an upper flange 7. A roof slab 9 is provided in the upper opening.
耐震支持装ff1oは、大型容器4とガードベッセル8
の間に複数対設置される。Earthquake-resistant support equipment ff1o consists of large container 4 and guard vessel 8.
Multiple pairs are installed between.
第2図は、第1図のx−X親図で、大型容器4とガード
ベッセル8の間に耐震支持装置10が複数対設置されて
いることを示している。FIG. 2 is an XX parent diagram of FIG. 1, and shows that a plurality of pairs of seismic support devices 10 are installed between the large container 4 and the guard vessel 8.
第3図は、第2図の部分拡大図で、耐震支持装置101
11.10a、10bの部分を示し、第4図は、シアラ
グ11とシアラグ受け12の接触面間に設けた空隙13
の設置部法線方向寸法Q、傾斜側直角方向寸法R1設置
部接線方向寸法Sを示す。FIG. 3 is a partially enlarged view of FIG. 2, showing the seismic support device 101.
11.10a and 10b are shown, and FIG. 4 shows the gap 13 provided between the contact surfaces of the shear lug 11 and the shear lug receiver 12
The installation part normal direction dimension Q, the slope side perpendicular direction dimension R1 and the installation part tangential direction dimension S are shown.
地震の力Wが第2図の矢印の方向からかかると、大型容
器4とガードベッセル8は相対変位を起し、シャラグ1
1 n、 11 a、 1 l bは第3図の破線の位
置に移動し、面15Qと面17Q、面14bと而16b
の2箇所が最初に接触し、さらに力Wが増すと、シャラ
グ受け12+1の突起部19Qが弾性変形を起し、而1
5111と面17Q、面14bと面16bの接触面間で
すべりを起し、次に耐震支持装置LOaの而14aと而
16a、面15aと而17aが接触し、さらに力Wが増
すとシャラグ受け12aの突起部19aが弾性変形を起
す。When the earthquake force W is applied from the direction of the arrow in Fig. 2, the large container 4 and the guard vessel 8 undergo relative displacement, and the
1 n, 11 a, and 1 l b move to the positions indicated by the broken lines in Fig. 3, and the surfaces 15Q, 17Q, 14b, and 16b
When the two points first come into contact and the force W increases further, the protrusion 19Q of the shag holder 12+1 causes elastic deformation, and then the 1
Slip occurs between the contact surfaces of 5111 and surface 17Q, and surface 14b and surface 16b, and then the surface 14a and surface 16a and surface 15a and surface 17a of the seismic support device LOa come into contact, and when the force W increases further, the shag holder The protrusion 19a of 12a causes elastic deformation.
上記のように、力Wの大きさに応じ順次接触面の数は増
え、力Wは分散支持されるため、地震による力Wが大き
くなっても、耐震支持装置10の1対の負担する力は地
震の力Wの大きさに比例した大きさとはならない。As mentioned above, the number of contact surfaces increases sequentially according to the magnitude of the force W, and the force W is distributed and supported, so even if the force W due to an earthquake becomes large, the force borne by one pair of the seismic support device 10 is not proportional to the magnitude of the earthquake force W.
第5図は、本発明の他の実施例を示す。本実施例は、シ
ャラグ受け12の一方の突起部21にスリット22を設
け、他方の突起部20との剛性に差をつけた構造とした
ものである。FIG. 5 shows another embodiment of the invention. In this embodiment, a slit 22 is provided in one protrusion 21 of the shag holder 12, and the structure is such that the rigidity is different from that of the other protrusion 20.
第6図は、本発明の更に他の実施例を示す。この実施例
は、シャラグ受け12の突起部23の接触面24にはな
めらかな凸形の丸味をつけ、他方の突起部25の接触面
26の傾斜角γと、シャラグ11の接触面15の傾斜角
θとは角度を変え、面15と面26の接触時の衝撃を緩
和するようにしたものである。FIG. 6 shows yet another embodiment of the invention. In this embodiment, the contact surface 24 of the protrusion 23 of the shag holder 12 has a smooth convex roundness, and the inclination angle γ of the contact surface 26 of the other protrusion 25 and the inclination of the contact surface 15 of the shag 11 are adjusted. The angle θ is changed to reduce the impact when the surfaces 15 and 26 come into contact.
本発明によれば、耐震支持装置は、地震の力の大きさに
応じた弾性変形と接触面間のすべりを起すことにより、
力の分散と振動の吸収が行われ、1対の耐震支持装置は
従来のものより小さくなり、従って設置スペースも小さ
くてすみ、建屋も小さくなる。とくに高地震帯向はプラ
ントにおいては効果が大きい。According to the present invention, the seismic support device causes elastic deformation and sliding between the contact surfaces in accordance with the magnitude of the earthquake force.
Force is dispersed and vibrations are absorbed, and the pair of seismic support devices is smaller than conventional ones, thus requiring less installation space and making the building smaller. This is especially effective for plants in areas with high seismic zones.
第1図は本発明の一実施例の原子炉プラントの縦断面図
、第2図は第1図のX−X線断面図、第3図は第2図の
部分拡大図、第4図は空隙13の説明図、第5図は本発
明の他の実施例、第6図は更に他の実施例、第7図は従
来の一例を示す図である。
4・・・大型容器1,8・・・ガードベッセル、10・
・・耐震支持装置、11・・・シャラグ、12・・・シ
ャラグ受け、13・・・空隙、14・・・面(シャラグ
)、15・・・面(シャラグ)、16・・・面(シャラ
グ受け)、17・・・而(シャラグ受け)、18・・・
突起部、19・・・突起部、20・・・突起部、21・
・・突起部、22・・・スリット、23・・・突起部、
24・・・面(シャラグ受け)、25・・・突起部、2
6・・・面(シャラグ受け)。FIG. 1 is a vertical sectional view of a nuclear reactor plant according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line X-X of FIG. 1, FIG. 3 is a partially enlarged view of FIG. 2, and FIG. An explanatory diagram of the void 13, FIG. 5 is a diagram showing another embodiment of the present invention, FIG. 6 is a diagram showing still another embodiment, and FIG. 7 is a diagram showing a conventional example. 4... Large container 1, 8... Guard vessel, 10.
...Earthquake-resistant support device, 11... Sharag, 12... Sharag receiver, 13... Gap, 14... Surface (Sharag), 15... Surface (Sharag), 16... Surface (Sharag) Uke), 17... and (Sharag Uke), 18...
Protrusion, 19...Protrusion, 20...Protrusion, 21.
...Protrusion, 22...Slit, 23...Protrusion,
24... Surface (sharug holder), 25... Protrusion, 2
6... side (sharag receiver).
Claims (1)
らはさむように2個の突起部を持つ凹形のシヤラグ受け
の対とから成り、大型容器の外周上に空隙を設けて複数
対が設置され、水平方向の地震力に対して大型容器を支
持する耐震支持装置において、 シヤラグとシヤラグ受けの相対する面はテーパ状の傾斜
面をなし、シヤラグ受けの2個の突起部の剛性寸法に違
いをもたせたことを特徴とする大型容器の耐震支持装置
。 2、前記第1項において、シヤラグ受けの一方の突起部
にスリットが設けられたことを特徴とする大型容器の耐
震支持装置。 3、前記第1項において、シヤラグ受けの一方の突起部
のシヤラグと相対する面はなめらかな凸状の曲面をなし
、他方の突起部のシヤラグと相対する面の傾斜は、シヤ
ラグ側の面の傾斜角度と変えられていることを特徴とす
る大型容器の耐震支持装置。[Claims] 1. Consisting of a convex shear lug and a pair of concave shear lug holders having two protrusions sandwiching the protrusion of the shear lug from both sides, and forming a gap on the outer periphery of the large container. In an earthquake-resistant support device that supports a large container against horizontal seismic force, multiple pairs of shear lugs and shear lug receivers are installed in pairs. An earthquake-resistant support device for large containers characterized by having different rigidity dimensions of protrusions. 2. The seismic support device for a large container according to item 1, characterized in that a slit is provided in one of the projections of the shear lug receiver. 3. In item 1 above, the surface of one protrusion of the shear lug holder facing the shear lug has a smooth convex curved surface, and the slope of the surface of the other protrusion facing the shear lug is equal to the slope of the surface on the shear lug side. An earthquake-resistant support device for large containers characterized by a variable inclination angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61242946A JPH0795108B2 (en) | 1986-10-15 | 1986-10-15 | Seismic support device for large containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61242946A JPH0795108B2 (en) | 1986-10-15 | 1986-10-15 | Seismic support device for large containers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6398593A true JPS6398593A (en) | 1988-04-30 |
JPH0795108B2 JPH0795108B2 (en) | 1995-10-11 |
Family
ID=17096574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61242946A Expired - Lifetime JPH0795108B2 (en) | 1986-10-15 | 1986-10-15 | Seismic support device for large containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0795108B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE38276E1 (en) | 1988-09-02 | 2003-10-21 | Yamaha Corporation | Tone generating apparatus for sound imaging |
JP2018508770A (en) * | 2015-03-18 | 2018-03-29 | ニュースケール パワー エルエルシー | Reactor module support structure |
WO2019155720A1 (en) * | 2018-02-08 | 2019-08-15 | 日立Geニュークリア・エナジー株式会社 | Nuclear reactor building |
-
1986
- 1986-10-15 JP JP61242946A patent/JPH0795108B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE38276E1 (en) | 1988-09-02 | 2003-10-21 | Yamaha Corporation | Tone generating apparatus for sound imaging |
JP2018508770A (en) * | 2015-03-18 | 2018-03-29 | ニュースケール パワー エルエルシー | Reactor module support structure |
WO2019155720A1 (en) * | 2018-02-08 | 2019-08-15 | 日立Geニュークリア・エナジー株式会社 | Nuclear reactor building |
JP2019138724A (en) * | 2018-02-08 | 2019-08-22 | 日立Geニュークリア・エナジー株式会社 | Nuclear reactor building |
Also Published As
Publication number | Publication date |
---|---|
JPH0795108B2 (en) | 1995-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61192941A (en) | Vibration avoiding device for structure | |
JPS6398593A (en) | Earthquakeproof supporter for large-sized vessel | |
JP2978732B2 (en) | Common floor type vertical seismic isolation structure for reactor equipment | |
US6986412B2 (en) | Tuned cradle type damping device | |
KR101880496B1 (en) | Brace having viscoplastic hybrid damper | |
JP2888807B2 (en) | Vertical shock absorbing laminated rubber bearing | |
JPS62194049A (en) | Vibration absorbing device | |
US5125870A (en) | Flue insulation assembly | |
JPS62197798A (en) | Nuclear reactor fuel storage devcie | |
JPH02271137A (en) | Earthquakeproof supporting device | |
JP2802759B2 (en) | Structure support structure | |
JPH10292671A (en) | Rolling, sliding bearing structure for base isolating device | |
SU1041650A1 (en) | Resilient friction support | |
JP2025007322A (en) | Seismic isolation dampers and seismic isolation structures | |
JP3192068B2 (en) | Seismic isolation floor device | |
JPS627794Y2 (en) | ||
JPS59174482A (en) | Lining structure | |
JP2025013131A (en) | Suspended seismic isolation device with displacement suppression mechanism | |
JPH1162310A (en) | Base-isolated building | |
JP2002038766A (en) | Vibration damping device | |
JPH04166Y2 (en) | ||
JPS62133259A (en) | Deformation limiter of isolator for earthquakeproof structure | |
JP2000291732A (en) | Composite seismic isolation unit and seismic isolation structure | |
JPH0230831A (en) | Vibration-proof device for structure | |
JPH05164876A (en) | Vibration control building construction for inner concrete structure body in nuclear reactor building |