JPS6384114A - X-ray mask - Google Patents
X-ray maskInfo
- Publication number
- JPS6384114A JPS6384114A JP61228376A JP22837686A JPS6384114A JP S6384114 A JPS6384114 A JP S6384114A JP 61228376 A JP61228376 A JP 61228376A JP 22837686 A JP22837686 A JP 22837686A JP S6384114 A JPS6384114 A JP S6384114A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ray
- mask
- warpage
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 75
- 239000000758 substrate Substances 0.000 claims abstract description 61
- 239000006096 absorbing agent Substances 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 33
- 238000000034 method Methods 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 abstract 1
- 238000012937 correction Methods 0.000 description 22
- 238000005530 etching Methods 0.000 description 11
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 6
- 229910052582 BN Inorganic materials 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、X線を用いて半導体基板上に集積回路パター
ンを転写するX線リソグラフィー技術におけるxmマス
クに係り、特に、マスク基板の反りを大幅に低減したX
線マスクに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an Significantly reduced X
Regarding line masks.
半導体集積回路の高密度化に伴い9回路を構成する素子
ならびに各素子を結合する配線の幅の微細化が進んでお
り、従来の紫外線露光技術に比べて、より微細なパター
ンの転写が可能なX線露光技術が研究されている。X線
露光技術は、 X、Saに対し透過性を有する薄膜上に
X線を吸収する材料。As the density of semiconductor integrated circuits increases, the width of the elements that make up the nine circuits and the wiring that connects each element are becoming smaller, making it possible to transfer finer patterns than conventional ultraviolet exposure technology. X-ray exposure technology is being researched. X-ray exposure technology uses a material that absorbs X-rays on a thin film that is transparent to X and Sa.
例えばタンタル(Ta)や金(Au)等、からなるパタ
ーンを形成したX線マスクをX線源と半導体基板間に挿
入してパターン転写を行う。For example, an X-ray mask with a pattern made of tantalum (Ta) or gold (Au) is inserted between the X-ray source and the semiconductor substrate to transfer the pattern.
第3図は如来用いられてきたX線マスクの一例であり、
シリコン(Si)で形成された枠状の支持体1の一方の
面上にX線透過性を有する材料。Figure 3 is an example of an X-ray mask used by the Tathagata.
A frame-shaped support 1 made of silicon (Si) has an X-ray transparent material on one surface.
例えば窒化シリコン(SiN)、からなる薄膜2が形成
され、この薄膜2上にX線吸収材9例えばA u 、か
らなるパラ5−ン3が形成されている構造である。しか
しながら、広く知られているように。In this structure, a thin film 2 made of, for example, silicon nitride (SiN) is formed, and on this thin film 2 an X-ray absorbing material 9 made of, for example, Au, is formed. However, as is widely known.
xg透過性を有する薄膜2は、一般に引張力を持だせる
必要があるため、このような構造では支持体を含めたマ
スク全体がたわんでマスクに反りが生じる。反りを生じ
ると、パターン3形成の工程が枠状の支持体1形成の後
でなされる場合には。Since the thin film 2 having xg permeability is generally required to exert a tensile force, in such a structure, the entire mask including the support body bends, causing the mask to warp. Warping may occur if the step of forming the pattern 3 is performed after forming the frame-shaped support 1.
パターンを描画する時点でマスクの保持法に依存してパ
ターン位置の歪みを生ずる。また、パターン3形成の工
程が支持体1形成の前後いずれになされる場合でも、転
写時におけるマスク保持法に依存して転写されるパター
ンの位置を歪ませる。At the time of drawing a pattern, distortion of the pattern position occurs depending on how the mask is held. Furthermore, even if the step of forming the pattern 3 is performed before or after forming the support 1, the position of the pattern to be transferred is distorted depending on the method of holding the mask during transfer.
このため、複数枚のマスクにより集積回路に必要なパタ
ーンを重ねて順次転写する場合、マスク間での歪み量が
反りに応じて種々に異なり、素子形成のための高精度な
重ね合わせは極めて困難となる。さらに、マスクと半導
体基板とを近接させて距離を一定に保つことも困難であ
る。For this reason, when overlapping and sequentially transferring the patterns necessary for integrated circuits using multiple masks, the amount of distortion between the masks varies depending on the warpage, making it extremely difficult to overlay them with high precision for device formation. becomes. Furthermore, it is difficult to bring the mask and the semiconductor substrate close to each other and keep the distance constant.
これらの問題を4嘉4解決するため従来は第4図に示し
たようにマスク支持体1にその縁に沿った枠4を接着し
てたわみ量を低減する。あるいは。In order to solve these problems, conventionally, as shown in FIG. 4, a frame 4 along the edge of the mask support 1 is adhered to reduce the amount of deflection. or.
第5図に示したように、X線吸収体を形成した面と反対
側の面にも格子状の薄膜5を形成するといった方法が用
いられてきた(例えば特開昭60−20514参照)。As shown in FIG. 5, a method has been used in which a lattice-shaped thin film 5 is also formed on the surface opposite to the surface on which the X-ray absorber is formed (see, for example, Japanese Patent Laid-Open No. 60-20514).
しかしながら、第4図構造では、■たわみ低減用の枠を
マスク製作工程の前の方で接着してしまうと、形状9寸
法が特殊となるので吸収体バタン形成の工程で通常のウ
ェハ用加工装置が使えなくなる。一方、マスク製作工程
の後の方で接着しようとすると、既にそれまでのプロセ
スによりマスク支持体1が反っているので反り矯正時に
バタン位置の歪が生じる。さらに、■所望のたわみ量以
下に平面度を保ちつつたわみ低減用の枠をマスク支持体
1に接着させることが困難であり、むらなく平面度を矯
正することができなかった。また。However, in the structure shown in Figure 4, if the frame for reducing deflection is glued before the mask manufacturing process, the shape and dimensions will be special, so the normal wafer processing equipment will be used in the process of forming the absorber batten. becomes unusable. On the other hand, when adhesion is attempted at a later stage in the mask manufacturing process, the mask support 1 has already been warped due to the previous process, so distortion in the position of the button occurs when the warp is corrected. Furthermore, (2) it was difficult to adhere the deflection reducing frame to the mask support 1 while keeping the flatness below the desired amount of deflection, making it impossible to uniformly correct the flatness. Also.
X線マスクに付着する塵を除去するために有機溶媒や酸
等で洗浄を行う際に、枠とマスクを接着させている接着
剤が溶出、軟化、膨潤するなどの問題があった。このた
め、平面度が変化したり、溶出した接着剤がマスクに再
付着して欠陥となるなどの問題点があった。さらに、第
5図で示したX線マスク構造は、マスク支持体1の裏面
に形成するたわみ低減用薄膜が格子状という特殊な形状
を有するため、X線通過領域に格子が入らないよう形成
する場合には、実質上十分な強度を有する薄膜を形成す
ることは困難であり、また、これを避けるため格子の間
隔を狭めれば、X線通過領域に格子部分が存在するため
転写パターン上でのX線コントラストに影響が出てしま
い得策ではない。When cleaning the X-ray mask with organic solvents, acids, etc. to remove dust adhering to it, there have been problems such as the adhesive that bonds the frame and the mask eluting, softening, and swelling. For this reason, there were problems such as the flatness changing and the eluted adhesive reattaching to the mask, resulting in defects. Furthermore, in the X-ray mask structure shown in FIG. 5, since the deflection reducing thin film formed on the back surface of the mask support 1 has a special shape of a lattice, it is formed so that the lattice does not enter the X-ray passing region. In some cases, it is difficult to form a thin film with sufficient strength, and if the spacing between the gratings is narrowed to avoid this, the grating portions will be present in the X-ray passage area, causing This is not a good idea as it will affect the X-ray contrast.
一方、第3図のマスク構造において反りのないマスク支
持体を構成するには、膜応力の極めて小さなX線透過性
を有する薄膜を形成するという自明な方法がある。しか
しながら、X線透過性を有する薄膜がたるむことなく張
られるためには適度な引張り応力としておくことが必要
である。このため、単純にX線透過性膜の応力を小さく
することによりマスクの反りをなくすことは困難である
。On the other hand, in order to construct a mask support without warping in the mask structure shown in FIG. 3, there is an obvious method of forming an X-ray transparent thin film with extremely low film stress. However, in order for the X-ray transparent thin film to be stretched without sagging, it is necessary to maintain an appropriate tensile stress. For this reason, it is difficult to eliminate mask warpage by simply reducing the stress on the X-ray transparent film.
本発明の目的は、膜の引張力により生じるマスク支持体
(以下、マスク基板と呼ぶ)の反りを低減し、平面度が
良くしたがってパターン転写に際してパターン位置の歪
みが生じないX線マスクを提供することにある。An object of the present invention is to provide an X-ray mask that reduces warping of a mask support (hereinafter referred to as a mask substrate) caused by the tensile force of a film, and has good flatness and does not cause pattern position distortion during pattern transfer. There is a particular thing.
上記目的を達成するために2本発明では、X線透過性を
有する薄膜と、この薄膜の面上に形成されたX線吸収体
からなるパターンと、上記薄膜を支持する中央部にX線
透過窓となる貫通孔があけられたマスク基板とからなる
X線マスクにおいて。In order to achieve the above object, two aspects of the present invention include a thin film that is transparent to X-rays, a pattern consisting of an X-ray absorber formed on the surface of this thin film, and a central part that supports the thin film that is transparent to X-rays. In an X-ray mask comprising a mask substrate having through holes that serve as windows.
上記X線透過性薄膜の引張力により上記マスク基板に生
じる反り量に対抗して、これとほぼ等しい量の反り量を
上記マスク基板に生じさせる少なくとも上記X線透過性
薄膜の引張力よりも大きい引張力を有する薄膜を、上記
マスク基板のX線透過性薄膜が形成された面とは反対側
の面の上記貫通孔部を除く領域に設けた構造とする。The tensile force of the X-ray transparent thin film is at least greater than the tensile force of the X-ray transparent thin film, and the tensile force of the X-ray transparent thin film is at least as strong as the tensile force of the X-ray transparent thin film. A thin film having tensile force is provided in a region of the mask substrate opposite to the surface on which the X-ray transparent thin film is formed, excluding the through-hole portion.
すなわち9本発明の特徴は、マスク基板(枠状の支持体
)の表面に形成したX線透過性薄膜の引張力により生じ
るマスク基板の反り量を、マスク基板の裏面の中央貫通
孔部を除く領域に形成する反り矯正用薄膜の引張力によ
り生じる反り量によって打消す構造とすることにある。In other words, the feature of the present invention is to reduce the amount of warpage of the mask substrate caused by the tensile force of the X-ray transparent thin film formed on the surface of the mask substrate (frame-shaped support), excluding the central through hole on the back surface of the mask substrate. The object is to have a structure in which the amount of warpage caused by the tensile force of the thin film for warp correction formed in the area is canceled out.
マスク基板の表面に形成されるX線透過性薄膜および裏
面に設けられる反り矯正用薄膜のそれぞれの応力値なら
びに膜厚を、マスク基板にあけられる貫通孔部(X線透
過窓としてエツチングされる部分)の面積、形状に応じ
て選定することにより、X線マスク完成時にマスク基板
の反りを所望値以下とすることが可能である。The stress values and film thicknesses of the X-ray transparent thin film formed on the front surface of the mask substrate and the warp correction thin film provided on the back surface of the mask substrate are calculated based on the stress values and film thicknesses of the through holes drilled in the mask substrate (portions etched as X-ray transparent windows). ), it is possible to reduce the warpage of the mask substrate to a desired value or less when the X-ray mask is completed.
第1図は本発明の詳細な説明する概略図である。1は後
にマスク基板となる厚さ380am、直径2インチのS
iウェハである。初期状態におけるSiウェハの反りは
、X線透過膜側を上にして凹状になる時を正、凸状にな
る時を負とすれば、2−であった。X線マスク基板1上
にプラズマCVD法を用いて同図(2)のごとく後にX
線透過膜となる厚さ3.54の窒化ホウ素(BN)膜2
を堆積した。この時のBN膜の応力は引張応力でその値
は2.6kg/mm”であり、BNN22堆積によりマ
スク基板の反りは、+7411となった。さらに。FIG. 1 is a schematic diagram illustrating the invention in detail. 1 is an S with a thickness of 380 am and a diameter of 2 inches, which will later become a mask substrate.
It is an i-wafer. The warpage of the Si wafer in the initial state was 2-, with the X-ray transparent film side up and concave shape as positive, and convex shape as negative. Using the plasma CVD method on the X-ray mask substrate 1, as shown in FIG.
Boron nitride (BN) film 2 with a thickness of 3.54 mm as a radiation-transmitting film
was deposited. The stress in the BN film at this time was a tensile stress of 2.6 kg/mm'', and the warpage of the mask substrate was +7411 due to the BNN22 deposition.
同図(3)のごとくマスク基板1のBNN22堆積した
面と反対の面に2反り矯正用BN薄膜6を堆積した。本
実施例の場合、このBN薄膜はマスク基板1内にX線透
過窓を形成するためのエツチングマスクとしての働きを
同時に兼ねぞいる。このBN膜の厚さは6.0声であり
、応力は引張応力8.9kg/+++m”であり、この
時マスク基板の反りは−22#11であった。引続き同
図(4)のごとく反り矯正用BN膜6を四フッ化炭素(
CF4)と酸素(02)の混合ガスを用いてシリコンウ
ェハの中央に直径32mmの円形にエツチングした。こ
の時点の反りは−5−であった、さらに同図(5)のご
とく水酸化カリウム(KOH)溶液によりマスク基板1
をエツチングしてX線透過窓7を形成した。As shown in FIG. 3(3), a BN thin film 6 for correcting warpage was deposited on the opposite surface of the mask substrate 1 to the surface on which the BNN 22 was deposited. In the case of this embodiment, this BN thin film simultaneously functions as an etching mask for forming an X-ray transparent window in the mask substrate 1. The thickness of this BN film was 6.0 mm, the stress was 8.9 kg/+++ m'' tensile stress, and the warpage of the mask substrate was -22#11. The BN film 6 for warping correction is made of carbon tetrafluoride (
A circular pattern with a diameter of 32 mm was etched in the center of the silicon wafer using a mixed gas of CF4) and oxygen (02). The warpage at this point was -5-.Furthermore, as shown in the figure (5), the mask substrate was heated with potassium hydroxide (KOH) solution.
was etched to form an X-ray transparent window 7.
第2図は第1図に示した各工程でのマスク基板の反り量
を示したものである。AはSi基板の状態。FIG. 2 shows the amount of warpage of the mask substrate in each step shown in FIG. 1. A is the state of the Si substrate.
BはX線透過膜堆積後、Cは反り矯正用薄膜堆積後、D
は反り矯正用薄膜円形エツチング後、EはX線透過窓形
成後の状態である。第2図から明らかなように、マスク
基板の反りは前記の工程を通じて途中段階で順次変化す
るが、マスク完成時のマスク基板全体の反りは+1.1
711と非常に小さな値にできる。この関係は以下のよ
うに説明することができる。B is after the X-ray transparent film is deposited, C is after the warp correction thin film is deposited, and D
E shows the state after circular etching of the warp correction thin film, and E shows the state after formation of the X-ray transparent window. As is clear from FIG. 2, the warpage of the mask substrate changes gradually during the process, but the warpage of the entire mask substrate when the mask is completed is +1.1.
The value can be as small as 711. This relationship can be explained as follows.
X線透過性薄膜および反り矯正用薄膜の応力をそれぞれ
σ2.σし、膜厚をそれぞれjay j&+マスク基板
の厚さをjstヤング率をEs、ポアソン比をシ5.半
径をbとした時、X線透過性薄膜堆積後の反りの曲率ρ
Bは
となることが、材料力学の計算(例えばジャーナル・エ
レクトロケミカル・ソサイアティ(J、 Electr
ochemical 5ociety)、 492頁、
1972年。The stresses of the X-ray transparent thin film and the warpage correction thin film are each set to σ2. σ, the film thickness is jay j & + the thickness of the mask substrate is jst, the Young's modulus is Es, and the Poisson's ratio is 5. When the radius is b, the curvature ρ of the warp after depositing the X-ray transparent thin film
B is calculated based on materials mechanics calculations (e.g. Journal of the Electrochemical Society (J, Electr)).
chemical 5ociety), 492 pages,
1972.
4月、参照〕により公知である。この時の反りをδBと
し円弧状に反ると仮定すれば
δa=b”/(2ρB)であるから
である。(以上添字Bは工程Bの状態を示す。また、ρ
B、δBの符号は、十の時マスク表面すなわちX線透過
性薄膜側が凹状態であると定義する)次に2反り矯正用
薄膜を堆積することによって生じる反りΔδacは、X
線透過性薄膜堆積後を基準として、上記計算と同様にし
て
となる。(負号は逆方向に反ることを示す)したがって
、工程Cすなわち反り矯正用薄膜堆積後の反りδCは
となる。この後、マスク裏面の反り矯正用薄膜をマスク
の中心から半径aの円形部分だけエツチングする。この
時に生じる反りは、マスクの中心から距離rの点のたわ
みをW、マスク基板の曲げ剛性をDs、C工〜C4を任
意定数とする時Ds二Es t s’/ (12(I
V 8勺)W= ((C□r”+C,) Qogr+
C3r”+CJ/Dsなる平板の曲げの公式を適用して
求められる(例えば、裳華房、鵜戸ロ英菅著:材料力学
、下巻。April, Reference]. This is because if we assume that the warp at this time is δB and that the warp is arcuate, then δa = b''/(2ρB). (The subscript B indicates the state of process B. Also, ρ
When the sign of B and δB is 10, it is defined that the mask surface, that is, the
The calculation is made in the same way as the above calculation based on the value after the radiation-transparent thin film is deposited. (A negative sign indicates warpage in the opposite direction.) Therefore, the warpage δC after step C, that is, the deposition of the warp correction thin film, is as follows. Thereafter, the warpage correcting thin film on the back surface of the mask is etched by a circular portion having a radius a from the center of the mask. The warpage that occurs at this time is calculated as follows: W is the deflection at a point at a distance r from the center of the mask, Ds is the bending rigidity of the mask substrate, and Ds2Es t s'/ (12(I)
V 8 勺)W= ((C□r”+C,) Qogr+
It is obtained by applying the formula for bending a flat plate: C3r''+CJ/Ds (for example, Shokabo, Eisuke Udoro: Mechanics of Materials, Vol. 2).
p421.1966)。p421.1966).
r≦aの領域を添字1.r≧aの領域を添字2で表わせ
ば、中心に集中荷重がないこと、中心でたわみWが有限
であることを考慮し
r≦aで W工=(C3t r2+ C41)/ Ds
r≧aで W2 = (C22Q og r + C
32r 2+C42)/ D sと表わせる。境界条件
を2Mを曲げモーメントとして
1)r=aで VA = W2 r dVA /dr=
dW2 /dr 。The region where r≦a is indicated by subscript 1. If we express the region of r≧a with subscript 2, considering that there is no concentrated load at the center and that the deflection W at the center is finite, we get W = (C3t r2+ C41)/Ds when r≦a.
With r≧a, W2 = (C22Q og r + C
It can be expressed as 32r 2 + C42)/D s. Boundary condition is 2M as bending moment 1) At r=a, VA = W2 r dVA /dr=
dW2/dr.
Ml−M2=σbtbts/2 2)r=bで M2=O2W2=O と設定すれば、任意定数は下記のごとく定まり。Ml−M2=σbtbts/2 2) With r=b, M2=O2W2=O By setting, the arbitrary constants are determined as shown below.
たわみW、、W、がσb+ ib+ js+ Ds+
νst r+a、bの関数として求まる。Deflection W,,W, is σb+ ib+ js+ Ds+
νst is determined as a function of r+a, b.
+a” (1+(1−1−vg)Qog −) 〕2a
”(1+vs)Qog )
境界条件をr=bでW、=O,すなわちマスク基板の外
縁を支持し、その点のたわみをOとしているので2反り
はマスク基板中央点のたわみより求まる。すなわち2反
りをδDとすれば、δDはr = OにおけるW1値と
して
透過性薄膜が存在し、エツチングにより半径aの部分の
マスク基板が除去されたとすると、それによるマスク基
板のたわみは、中心孔を有する円板内縁にσatats
/2の曲げモーメントが働くと考え、前記の式
%式%
に環境条件として
1) r=oで W有限
2)r=oで 集中荷重は働かない
3)r=aで M=−σ、tats/24)r=bで
W=0
を設定すれば
C工=0
となる。r=aにおけるWの値より2反りを求めδE1
とすれば
となる。+a” (1+(1-1-vg)Qog-)]2a
(1+vs)Qog) The boundary condition is r=b and W, =O, that is, the outer edge of the mask substrate is supported and the deflection at that point is O, so 2 warp is found from the deflection at the center point of the mask substrate. That is, 2 If the warpage is δD, then δD is the W1 value at r = O. If there is a transparent thin film and the mask substrate at the radius a is removed by etching, the resulting deflection of the mask substrate will cause the mask substrate to have a central hole. σatats on the inner edge of the disc
Considering that a bending moment of /2 is applied, the environmental conditions in the above formula % are 1) r=o and W is finite. 2) r=o and no concentrated load acts. 3) r=a and M=-σ, tats/24) r=b
If W=0 is set, C=0. Find 2 warps from the value of W at r=a, δE1
Then, it becomes.
反りδE1の値は応力σう、厚さtaの膜が付いた状態
で平坦なマスク基板の半径aの内側をエツチングした時
の反りの値であるから、マスク基板の両面に等しい応力
C29等しい膜厚1.の膜が付いた平坦な状態から、裏
面の膜とマスク基板を半径aの内側だけ取り除いたとき
の反り量に等しい。The value of warpage δE1 is the value of warpage when etching the inside of radius a of a flat mask substrate with stress σ and a film of thickness ta attached, so the stress C29 is equal on both sides of the mask substrate. Thickness 1. It is equal to the amount of warpage when the film on the back side and the mask substrate are removed from a flat state with a film on the inside of radius a.
反り矯正用膜として応力σ。、膜厚taの膜を付けたと
きに半径aの内側だけエツチング除去したときのたわみ
および反りは前述のW□、W2.δDの式でσbをσa
、’jbをtaで置き換えればよい。Stress σ as a film for warping correction. , when a film with a thickness ta is applied and only the inside of the radius a is etched away, the deflection and warpage will be the same as W□, W2. In the formula of δD, σb is replaced by σa
, 'jb can be replaced with ta.
その値をそれぞれWx’p 2’l δE2とすると
となる。Letting these values be Wx'p 2'l δE2, respectively.
マスク裏面の反り矯正用薄膜をエツチング除去した後、
マスク基板エツチングの工程で生じる反りは(δEニー
δI:2)で得られる。After etching and removing the warp correction thin film on the back of the mask,
The warpage caused in the mask substrate etching process is obtained by (δE knee δI: 2).
δE3=δ[、−δI:2とおけば
である。したがって、工程Eすなわちバックエッチ完了
後の反りδEは
δE=δC+δD+δb
と求まる。If we set δE3=δ[, −δI:2. Therefore, the warpage δE after completion of step E, that is, back etching, is determined as δE=δC+δD+δb.
第2図に即して計算を行うと、マスク基板SLのヤング
率E 、 == 1.6 X 10’kg/ mm”
、ポアソン比シ、=0.33.表面のX線透過性薄膜の
応力a a =2.6kg/ mm2.膜厚t a:=
0.0035mm、裏面の反り矯正用薄膜の応力σb=
8.9kg/+nm2.膜厚しb=0.006mm、マ
スク基板の半径b= 25mm、 x ッチング窓の半
径a =16 m m e厚さts=0.33mmであ
るから
δB= 5.OI!m
δc= 24.1tlra
δ0=−5.17m
δE=−0,3虜
となり、実験結果と非常に良く一致する。δEを求める
式6日=δC+δD+δE、において、負になる可能性
のある項はδCの項のみである。すなわち、マスク基板
をX線透過性薄膜側を凸に矯正し得る可能性はδCの項
にのみある。When calculated according to Fig. 2, Young's modulus E of the mask substrate SL == 1.6 x 10'kg/mm''
, Poisson's ratio =0.33. Stress a of the X-ray transparent thin film on the surface a = 2.6 kg/mm2. Film thickness ta:=
0.0035 mm, stress σb of thin film for straightening warpage on the back side =
8.9kg/+nm2. Film thickness b = 0.006 mm, mask substrate radius b = 25 mm, x etching window radius a = 16 mm e thickness ts = 0.33 mm, so δB = 5. OI! m δc = 24.1 tlra δ0 = -5.17 m δE = -0,3, which agrees very well with the experimental results. In the formula for calculating δE, 6 days=δC+δD+δE, the only term that can be negative is the term δC. That is, the possibility of correcting the mask substrate so that the X-ray transparent thin film side is convex exists only in the term δC.
したがって9本発明により効果を得るにはδc<Oが必
要条件であり
より2表面のX線透過性薄膜と裏面の反り矯正用薄膜と
の張力の間に
σ、t、<σbtb
という条件を要する。Therefore, in order to obtain the effect of the present invention, δc<O is a necessary condition, and the conditions σ, t, and <σbtb are required between the tension between the X-ray transparent thin film on the front surface and the warp correction thin film on the back surface. .
マスク基板両面への膜堆積が同時に行われるために表面
および裏面の薄膜の応力および膜厚が等しい従来のX線
マスクの場合はδc==Qである。In the case of a conventional X-ray mask in which the stress and film thickness of the thin film on the front and back surfaces are equal because the film is deposited on both sides of the mask substrate at the same time, δc==Q.
したがって、上記の条件 σa t a <σhtbを
満たせば、X線透過窓形成時に生じる凹状の反り、すな
わち(δD+δE3)に相当する反り、が従来より低減
される。ただし、X線透過窓がたるんではいけないので
σ、ta>Osすなわち引張力、でなければならない。Therefore, if the above condition σa ta <σhtb is satisfied, the concave warp that occurs when forming the X-ray transmission window, that is, the warp corresponding to (δD+δE3), is reduced compared to the conventional method. However, since the X-ray transmission window must not sag, σ, ta>Os, that is, the tensile force must be satisfied.
最適の条件は、当然のことなからδEがOに近づくよう
σa+ tat σb+ t&を変えることである。場
合によりX線透過窓の半径aに変更の自由度があればa
を含めて各種条件を選定してδE−0となるようにすれ
ば良い、δEの式を整理すると
となる。したがって、δE=Oとなる条件はσ6t6
(1−v @) (b” −a” (1+(1+
V *) Qog(b/a)) )である。The optimal condition is, of course, to change σa+ tat σb+ t& so that δE approaches O. Depending on the case, if there is a degree of freedom to change the radius a of the X-ray transmission window, a
The formula for δE can be rearranged by selecting various conditions including δE−0. Therefore, the condition for δE=O is σ6t6
(1-v @) (b"-a" (1+(1+
V*)Qog(b/a))).
次に、許容され得るマスク基板の反り量を見積ってみる
。δEf−0である場合には、露光時にX線マスクを真
空吸着などの方法により露光装置のマスクホルダに吸着
し、マスクの反りを矯正した状態で露光を行う、この場
合には、吸着によるマスク反り矯正の結果、X線透過膜
上に形成された吸収体パターンの位置が歪むことになる
二二の歪は、複数枚のマスクを重ね合わせる必要のある
X線露光の重ね合わせ精度を決定するものであり。Next, let us estimate the allowable amount of warpage of the mask substrate. If δEf-0, during exposure, the X-ray mask is adsorbed to the mask holder of the exposure device by a method such as vacuum adsorption, and exposure is performed with the mask's warpage corrected. In this case, the mask is removed by adsorption. As a result of warpage correction, the position of the absorber pattern formed on the X-ray transmissive film is distorted, and this distortion determines the overlay accuracy of X-ray exposure, which requires overlapping multiple masks. It is a thing.
極力小さな値に抑える必要がある。例えば、0.2−ル
ールの高密度集積回路をX線露光により製造する場合、
マスク上の吸収体パターンの位置精度は線幅の10分の
工程度の約0.02amが要求される。It is necessary to keep the value as small as possible. For example, when manufacturing a 0.2-rule high-density integrated circuit by X-ray exposure,
The positional accuracy of the absorber pattern on the mask is required to be approximately 0.02 am, which corresponds to a process step of 10 minutes of the line width.
マスクの反りがδ、マスク基板の厚さがt、マスク基板
の直径がDである時、吸着により生じる吸収体パターン
の位置誤差ΔPは、歪量を左右上下に振り分けると概略
2δt
Δp=−
によって評価できることが知られている。上式にΔpと
して0.02廊、 Dとして4インチウェハの100m
m、 tとして0.5mmを代入すると、許容されるマ
スク基板の反りはδ=2虜となる。必要な位置精度の最
適化やマスク基板の直径あるいは厚さの最適化などを行
えばこの値は若干緩和されるが。When the warpage of the mask is δ, the thickness of the mask substrate is t, and the diameter of the mask substrate is D, the positional error ΔP of the absorber pattern caused by adsorption is approximately 2δt Δp=- when the amount of distortion is distributed horizontally and vertically. It is known that it can be evaluated. In the above formula, Δp is 0.02 meters, and D is 100 m of 4-inch wafer.
When 0.5 mm is substituted for m and t, the allowable warpage of the mask substrate is δ=2. This value can be alleviated somewhat by optimizing the necessary positional accuracy and optimizing the diameter or thickness of the mask substrate.
その場合でも許容されるマスク基板の反り量はほぼ5−
以下とする必要がある。Even in that case, the allowable amount of warpage of the mask substrate is approximately 5-
It is necessary to do the following.
以上の説明では最も簡単な場合として、X線透過性薄膜
および反り矯正用薄膜がそれぞれ一層で構成されている
場合を考えたが9両薄膜がそれぞれm層、n層の複数の
層から構成されている場合にはσai+ taiをX線
透過性薄膜の第1層の応力および膜厚、σbun ib
Jを反り矯正用薄膜の第5層の応力および膜厚とする時
2以上の説明におけるX線透過性薄膜の張力σataを
Σ σat f;aiで置き換え9反り矯正用薄膜の張
力σbtbをΣ σbJ tbJ で置き換えれば全
く同様の効果をIIL
生じることは明らかである。In the above explanation, we have considered the simplest case where the X-ray transparent thin film and the warp correction thin film are each composed of a single layer, but the two thin films are each composed of multiple layers, m layers and n layers. If σai + tai is the stress and thickness of the first layer of the X-ray transparent thin film,
When J is the stress and film thickness of the fifth layer of the thin film for warp correction, 2. Replace the tension σata of the X-ray transparent thin film in the above explanation with Σ σat f; ai 9 The tension σbtb of the thin film for warp correction is Σ σbJ It is clear that replacing IIL with tbJ produces exactly the same effect.
また以上の説明ではX線透過性薄膜上に付けるX線吸収
体の応力を考慮していないが、X線吸収体をX線透過性
薄膜上全面に付した場合にはX線透過性薄膜側の張力Σ
σlli jai に吸収体の寄与を加え同様に考え
れば良い。吸収体が部分的にX線透過性薄膜上に存在す
る場合には、その分布やマスクの大きさに対する面積率
を考慮して張力σai iaiの値を修正して加えれば
良い。In addition, the above explanation does not take into account the stress of the X-ray absorber attached to the X-ray transparent thin film, but when the X-ray absorber is attached to the entire surface of the X-ray transparent thin film, the X-ray transparent thin film side tension Σ
The same way can be considered by adding the contribution of the absorber to σlli jai. When the absorber is partially present on the X-ray transparent thin film, the value of the tension σai iai may be modified and added in consideration of its distribution and area ratio with respect to the mask size.
さらに2以上の説明は円形のX線透過窓を設ける場合に
ついて行ったが、窓の形状が正方形、多角形等円形以外
の場合でも基本的に本発明が有効であることは明らかで
ある。これらの場合には。Furthermore, although the above explanations have been made regarding the case where a circular X-ray transmission window is provided, it is clear that the present invention is basically effective even when the shape of the window is other than circular, such as square or polygonal. In these cases.
X線透過窓の面積をSとするとき。When the area of the X-ray transmission window is S.
a = 9−として計算すれば、同様の考え方で大きな
誤差なく反りをコントロールできる。By calculating with a = 9-, the warpage can be controlled without a large error using the same concept.
また9以上の説明では反り矯正用薄膜をマスク基板の裏
面に一旦全面的につけてからX線透過窓の部分だけ除去
することとしていたが、膜付は時にX線透過窓を残して
基板の周辺部にだけ選択的に反り矯正用薄膜をつけても
良いことは言うまでもない。同様に、従来のX線マスク
のごとくX線透過性薄膜とエツチングマスク用薄膜を向
応カ。In addition, in the explanation above, the thin film for warping correction was applied to the entire back surface of the mask substrate and then only the X-ray transparent window was removed. Needless to say, it is also possible to selectively apply a warp correcting thin film only to that part. Similarly, the X-ray transparent thin film and etching mask thin film are compatible with conventional X-ray masks.
同膜厚で作成し2反り矯正のため別の膜をマスク基板表
面または裏面のX線透過窓以外の部分につけても良い。It is also possible to make the film with the same thickness and apply another film to the surface or back of the mask substrate other than the X-ray transmitting window for warpage correction.
該反り矯正用の膜を別につける場合は、X線透過性薄膜
やX線透過窓形成のためのエツチングマスク用′g1.
膜をつける前に予め付けておいても、あるいは後から付
けても効果に変わりはない。If a film for correcting the warpage is attached separately, an X-ray transparent thin film or an etching mask for forming an X-ray transparent window 'g1.
There is no difference in effectiveness whether it is applied before the film is applied or whether it is applied afterwards.
以上説明したように、X線マスクのX線透過性薄膜側(
表面)にマスク基板を反らせる程度の応力がある場合で
も、X線透過窓部の形状1面積に応じて薄膜の応力値、
膜厚を選択した反り矯正用薄膜をX線透過性薄膜を堆積
した面とは反対側の面(裏面)に堆積すれば、完成時に
おいて反りのないX線マスクを再現性良く作製すること
ができ。As explained above, the X-ray transparent thin film side of the X-ray mask (
Even if there is enough stress on the mask substrate (surface) to warp the mask substrate, the stress value of the thin film,
By depositing a warp correction thin film with a selected film thickness on the opposite side (back side) to the side on which the X-ray transparent thin film is deposited, it is possible to produce an X-ray mask with good reproducibility without warping when completed. I can do it.
したがって、転写に際してのパターンの位置歪みを極め
て小さくすることが可能である。また、マスクとウェハ
の間隙を均一かっ、小さく設定することが可能になる。Therefore, it is possible to extremely reduce the positional distortion of the pattern during transfer. Furthermore, it becomes possible to set the gap between the mask and the wafer to be uniform and small.
第1図(1)〜(5)は本発明の一実施例におけるX線
マスクの構成を薄膜形成およびエツチング工程順に示す
断面図、第2図は第1図に示した各工程でのマスク基板
の反り量の変化を示す図。
第3図は従来の基本的なX線マスクの構造を示す断面図
、第4図はたわみ矯正用枠を有する従来のX線マスクの
断面図、第5図はマスク基板裏側にたわみ矯正用格子状
薄膜を有する従来のX線マスクの切断斜視図である。
符号の説明
1・・・枠状の支持体 2・・・X線透過性の薄膜
3・・・X線吸収体からなるパターン
4・・・反り矯正用枠
5・・・反り矯正用の格子状薄膜
6・・反り矯正用薄膜 7・・・X線透過窓特許出願
人 日本電信電話株式会社
代理人弁理士 中 村 純之助
21 図
7−・・X点1観
52図;
A−−−54maA丈廼
B−x滌直ゑl辷4咲τに傾禎FIGS. 1 (1) to (5) are cross-sectional views showing the structure of an X-ray mask according to an embodiment of the present invention in the order of thin film formation and etching steps, and FIG. 2 is a mask substrate in each step shown in FIG. 1. FIG. 3 is a diagram showing changes in the amount of warpage. Figure 3 is a cross-sectional view showing the structure of a conventional basic X-ray mask, Figure 4 is a cross-sectional view of a conventional X-ray mask with a deflection correction frame, and Figure 5 is a deflection correction grid on the back side of the mask substrate 1 is a cutaway perspective view of a conventional X-ray mask having a shaped thin film; FIG. Explanation of symbols 1... Frame-shaped support 2... X-ray transparent thin film 3... Pattern made of an X-ray absorber 4... Frame for warpage correction 5... Grid for warpage correction Shaped thin film 6... Thin film for warping correction 7... X-ray transparent window patent applicant Junnosuke Nakamura, representative patent attorney for Nippon Telegraph and Telephone Corporation 21 Figure 7--X point 1 view 52 diagram; A---54maA Length B-x
Claims (1)
れたX線吸収体からなるパターンと、上記薄膜を支持す
る中央部に透過窓があけられたマスク基板とからなるX
線マスクにおいて、上記X線透過性薄膜の引張力により
上記マスク基板に生じる反り量に対抗して、これとほぼ
等しい量の反り量を上記マスク基板に生じさせる少なく
とも上記X線透過性薄膜の引張力よりも大きい引張力を
有する薄膜を、上記マスク基板のX線透過性薄膜が形成
された面とは反対側の面の上記透過窓部を除く領域に設
けたことを特徴とするX線マスク。1. An X-ray device consisting of a thin film that is transparent to X-rays, a pattern made of an X-ray absorber formed on the surface of the thin film, and a mask substrate with a transmission window in the center that supports the thin film.
In the radiation mask, at least the tensile force of the X-ray transparent thin film causes the mask substrate to produce an amount of warpage that is approximately equal to the amount of warpage that occurs in the mask substrate due to the tensile force of the X-ray transparent thin film. An X-ray mask, characterized in that a thin film having a tensile force greater than the above-mentioned force is provided in a region of the mask substrate opposite to the surface on which the X-ray transparent thin film is formed, excluding the transmission window section. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61228376A JPS6384114A (en) | 1986-09-29 | 1986-09-29 | X-ray mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61228376A JPS6384114A (en) | 1986-09-29 | 1986-09-29 | X-ray mask |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6384114A true JPS6384114A (en) | 1988-04-14 |
Family
ID=16875493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61228376A Pending JPS6384114A (en) | 1986-09-29 | 1986-09-29 | X-ray mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6384114A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373950A (en) * | 1989-08-14 | 1991-03-28 | Fujitsu Ltd | Manufacture of mask for exposing |
JPH0395554A (en) * | 1989-09-08 | 1991-04-19 | Fujitsu Ltd | reticle |
WO2001046489A1 (en) * | 1999-12-21 | 2001-06-28 | Trustees Of Boston University | Ion beam modification of residual stress gradients in thin film polycrystalline silicon membranes |
JP2007067329A (en) * | 2005-09-02 | 2007-03-15 | Dainippon Printing Co Ltd | Soi substrate, and mask and mask blanks for charged particle beam exposure |
JP2007258650A (en) * | 2006-03-27 | 2007-10-04 | Toppan Printing Co Ltd | Transfer mask blank, transfer mask and pattern exposure method |
-
1986
- 1986-09-29 JP JP61228376A patent/JPS6384114A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0373950A (en) * | 1989-08-14 | 1991-03-28 | Fujitsu Ltd | Manufacture of mask for exposing |
JPH0395554A (en) * | 1989-09-08 | 1991-04-19 | Fujitsu Ltd | reticle |
WO2001046489A1 (en) * | 1999-12-21 | 2001-06-28 | Trustees Of Boston University | Ion beam modification of residual stress gradients in thin film polycrystalline silicon membranes |
US6929721B2 (en) | 1999-12-21 | 2005-08-16 | The Trustees Of Boston University | Ion beam modification of residual stress gradients in thin film polycrystalline silicon membranes |
JP2007067329A (en) * | 2005-09-02 | 2007-03-15 | Dainippon Printing Co Ltd | Soi substrate, and mask and mask blanks for charged particle beam exposure |
JP4648134B2 (en) * | 2005-09-02 | 2011-03-09 | 大日本印刷株式会社 | SOI substrate, charged particle beam exposure mask blank, and charged particle beam exposure mask |
JP2007258650A (en) * | 2006-03-27 | 2007-10-04 | Toppan Printing Co Ltd | Transfer mask blank, transfer mask and pattern exposure method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7901846B2 (en) | Pellicle and method for manufacturing the same | |
US6737201B2 (en) | Substrate with multilayer film, reflection type mask blank for exposure, reflection type mask for exposure and production method thereof as well as production method of semiconductor device | |
JP4931717B2 (en) | Manufacturing method of pellicle for lithography | |
JP2009063740A (en) | Pellicle frame | |
JPS6384114A (en) | X-ray mask | |
JPH07102368A (en) | Formation of thin film | |
KR101792409B1 (en) | EUV pellicle structure, and method for manufacturing same | |
US5882826A (en) | Membrane and mask, and exposure apparatus using the mask, and device producing method using the mask | |
KR100211012B1 (en) | Lithographic mask structure and method of producing the same and manufacturing device | |
JP2538902B2 (en) | X-ray exposure mask | |
JPS641926B2 (en) | ||
JP3451431B2 (en) | X-ray exposure mask and method of manufacturing the same | |
JP3209638B2 (en) | X-ray exposure mask | |
JP2721586B2 (en) | X-ray mask structure manufacturing method | |
JPH09306812A (en) | Manufacture of x-ray mask | |
JPH02252229A (en) | X-ray exposure mask and its manufacture | |
JP2674180B2 (en) | Structure of X-ray exposure mask and manufacturing method | |
KR920010064B1 (en) | X-ray lithography mask | |
JP3364151B2 (en) | X-ray mask and manufacturing method thereof | |
JPS63115332A (en) | Mask for x-ray exposure | |
JPH0536590A (en) | X-ray mask and manufacture of x-ray mask | |
JPH07220992A (en) | X-ray exposure mask and x-ray exposure mask blank use for manufacturing the same | |
JPH04320320A (en) | Method for manufacturing an X-ray exposure mask and device used therefor | |
JPH05121299A (en) | X-ray mask support body, x-ray mask structure body and method for x-ray exposure | |
JPH06260397A (en) | Mask for x-ray exposure and manufacture thereof |