Nothing Special   »   [go: up one dir, main page]

JPS6384070A - Field-effect semiconductor device - Google Patents

Field-effect semiconductor device

Info

Publication number
JPS6384070A
JPS6384070A JP61228921A JP22892186A JPS6384070A JP S6384070 A JPS6384070 A JP S6384070A JP 61228921 A JP61228921 A JP 61228921A JP 22892186 A JP22892186 A JP 22892186A JP S6384070 A JPS6384070 A JP S6384070A
Authority
JP
Japan
Prior art keywords
region
gate
electrode
conductivity type
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61228921A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61228921A priority Critical patent/JPS6384070A/en
Publication of JPS6384070A publication Critical patent/JPS6384070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the forward voltage drop of a diode, and to shorten the reverse recovery time by short-circuiting a second conductivity type semiconductor region in a gate wiring electrode section and a source electrode by a partially hole-shaped contact region. CONSTITUTION:A second conductivity type semiconductor region 2, a first conductivity type source region 3, a second conductivity type channel forming region 4 and a gate insulating film 5 are formed to the surface of a first conductivity type drain substrate 1a. A gate electrode 6 shaped onto the gate insulating film 5, a source electrode 7, a layer insulating film 8 and a drain electrode 9 are formed. The contact region 14 of a p-type semiconductor region 11 and the source electrode 7 is shaped partially so as not to increase gate wiring resistance. Accordingly, the contact region 14 with the source electrode 7 is formed to the p-type semiconductor region 11 under a gate bonding pad 13 and under a gate wiring electrode section 15 at the central section of a chip, thus increasing the effective area of a reverse parallel-connection diode incorporated into a power MOSFET, then reducing forward current density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦形電界効果型半導体装置に関し、特に、内蔵
された逆方向並列接続のダイオードの特性に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vertical field effect semiconductor device, and in particular to the characteristics of built-in diodes connected in reverse parallel.

〔従来の技術〕[Conventional technology]

第3図は従来の電界効果型半導体装置としてのパワーM
OS電界効果トランジスタ(以下「パワーMO3FET
Jという)を示す断面図である。
Figure 3 shows the power M as a conventional field effect semiconductor device.
OS field effect transistor (hereinafter referred to as “power MO3FET”)
FIG.

この例においては、nチャネル形パワーMO3FETに
ついて説明する。第3図において、1aはn0ドレイン
領域、1bはn9ドレイン領域1aの表面に形成された
n−ドレイン領域、2はn−ドレイン領域1bの表面に
形成された複数のp形半導体領域、3は各p形半導体領
域2内に中央部をあけて形成されたn゛ソース領域4は
n−ドレイン領域1bとn゛ソース領域3との間のチャ
ネル形成領域、5はチャネル形成領域4をおおうゲート
絶縁膜、6はゲート絶縁膜5上に形成されたゲート電極
、7は各n゛ソース領域の表面の一部およびn゛ソース
領域3の中央部のp形半導体領域2とを短絡して接続し
たソース電極、8はソース電極7とゲート電極6とを絶
縁する層間絶縁膜、9はn゛ドレイン領域1aの裏面に
形成されたドレイン電極、2aは各p形半導体領域2内
のp゛半導体領域凸部である。
In this example, an n-channel type power MO3FET will be explained. In FIG. 3, 1a is an n0 drain region, 1b is an n-drain region formed on the surface of the n9 drain region 1a, 2 is a plurality of p-type semiconductor regions formed on the surface of the n-drain region 1b, and 3 is a n-type semiconductor region formed on the surface of the n-drain region 1b. An n' source region 4 formed in each p-type semiconductor region 2 with an opening in the center is a channel forming region between the n- drain region 1b and the n' source region 3, and 5 is a gate covering the channel forming region 4. An insulating film, 6 a gate electrode formed on the gate insulating film 5, 7 a part of the surface of each n' source region and the p-type semiconductor region 2 in the center of the n' source region 3 are short-circuited and connected. 8 is an interlayer insulating film that insulates the source electrode 7 and gate electrode 6, 9 is a drain electrode formed on the back surface of the n' drain region 1a, and 2a is a p' semiconductor in each p-type semiconductor region 2. This is a convex area.

パワーMOS F ETは上記構成の基本ユニットが多
数並列接続されている。
A power MOS FET has a large number of basic units having the above configuration connected in parallel.

第4図にパワーMO3FETのチップパターンの概略図
を示す。第4図において、10は第3図のパワーMOS
 F ET基本ユニットが多数並列接続されたパワーM
OS F ET基本ユニットセル領域、11はパワーM
O3FET基本ユニットセル領域10を囲むように形成
されソース電極7と接続されているp形半導体領域(斜
線部)、12はソースポンディングパッド領域、13は
ゲートボンディングバソド領域、14はp形半導体領域
11とソース電極7との接触領域、15はゲートボンデ
ィングパッド13からチップ中央部に伸びたp形半導体
領域11としてのゲート配線電極部である。ゲート配線
電極部15はゲート電極の配線抵抗をより小さくするた
めに設けられたものである。
FIG. 4 shows a schematic diagram of the chip pattern of the power MO3FET. In Fig. 4, 10 is the power MOS shown in Fig. 3.
Power M with many FET basic units connected in parallel
OS FET basic unit cell area, 11 is power M
A p-type semiconductor region (shaded area) formed to surround the O3FET basic unit cell region 10 and connected to the source electrode 7, 12 a source bonding pad region, 13 a gate bonding bathode region, 14 a p-type semiconductor region 11 is a contact region with the source electrode 7, and 15 is a gate wiring electrode portion as a p-type semiconductor region 11 extending from the gate bonding pad 13 to the center of the chip. The gate wiring electrode section 15 is provided to further reduce the wiring resistance of the gate electrode.

ゲート配線電極部15の断面(V−V線断面)を第5図
に示す。このゲート配線電極部15はチップ中央部のみ
だけでなく、パワーM OS F E T基本ユニット
セル領域10を囲むように外周部にも形成され、多数並
列接続されたパワーMO3FET基本ユニットを均一動
作させるように配置されている。第6図に外周のゲート
配線電極部15の断面(VI−VI線断面)を示す。第
5図、第6図において、6aはゲート配線電極である。
A cross section (cross section taken along the line V-V) of the gate wiring electrode section 15 is shown in FIG. This gate wiring electrode section 15 is formed not only at the center of the chip but also at the outer periphery so as to surround the power MOSFET basic unit cell region 10, so that a large number of power MO3FET basic units connected in parallel can operate uniformly. It is arranged like this. FIG. 6 shows a cross section (VI-VI line cross section) of the gate wiring electrode portion 15 on the outer periphery. In FIGS. 5 and 6, 6a is a gate wiring electrode.

次に動作について第4図〜第6図を用いて説明する。ド
レイン電極9とソース電極7間にドレイン電圧を印加し
た状態でゲート電極6とソース電極7間にゲート電圧を
印加すると、チャネル形成領域4にチャネルが形成され
、ドレイン電極9とソース電極7間にドレイン電流が流
れる。このとき、ゲート電極6とソース電極7間に印加
するゲート電圧を制御することによって、ドレイン電極
9とソース電極7間を流れるドレイン電流を制御するこ
とができる。ソース電極7によるp形半導体領域2とn
゛ソース領域3との短絡は、チャネル形成領域4の電位
を固定させるために不可欠である。
Next, the operation will be explained using FIGS. 4 to 6. When a gate voltage is applied between the gate electrode 6 and the source electrode 7 while a drain voltage is applied between the drain electrode 9 and the source electrode 7, a channel is formed in the channel formation region 4, and a channel is formed between the drain electrode 9 and the source electrode 7. Drain current flows. At this time, by controlling the gate voltage applied between the gate electrode 6 and the source electrode 7, the drain current flowing between the drain electrode 9 and the source electrode 7 can be controlled. p-type semiconductor region 2 and n by source electrode 7
A short circuit with the source region 3 is essential for fixing the potential of the channel forming region 4.

このような動作を行なうパワーMO3FET基本ユニッ
トにおけるドレイン・ソース間の耐圧は、ゲート電極6
とソース電極7とを短絡してn−ドレイン領域1bとp
形半導体領域2とで形成されるダイオードの耐圧に等し
く、このダイオードはパワーMOS F ETに対して
逆並列接続されて内蔵される。このダイオードの領域に
ライフタイムキラーとして重金属を拡散したり、電子線
等を照射したりすることにより、逆回復時間の短いダイ
オードを形成し、フリーホイールダイオードとして用い
ることができる。
The withstand voltage between the drain and source in the power MO3FET basic unit that performs such an operation is the gate electrode 6.
and source electrode 7 are short-circuited to form n-drain region 1b and p
This diode is connected anti-parallel to the power MOS FET and is built in. By diffusing heavy metals as a lifetime killer into the diode region or irradiating it with an electron beam or the like, a diode with a short reverse recovery time can be formed and used as a freewheeling diode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電界効果型半導体装置に内蔵される逆方向並列接
続ダイオードをフリーホイールダイオードとして用いる
場合、短い逆回復時間を得るためにライフタイムキラー
を入れているので、相反関係にある順方向電圧降下が大
きくなるという問題があった。
When using reverse parallel connected diodes built into conventional field-effect semiconductor devices as freewheeling diodes, a lifetime killer is included to obtain a short reverse recovery time, so the forward voltage drop, which is in a reciprocal relationship, is reduced. There was a problem with getting bigger.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、内蔵ダイオードの順方向電圧降
下を小さくすることのできる電界効果型半導体装置を得
ることにある。
The present invention has been made in view of these points, and an object of the present invention is to obtain a field effect semiconductor device that can reduce the forward voltage drop of a built-in diode.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために本発明は、第1導電形
のドレイン基板と、このドレイン基板の表面に形成され
た第2導電形の半導体領域と、この第2導電形の半導体
領域内のその表面に中央部をあけて形成された第1導電
形のソース領域と、ドレイン基板とソース領域との間の
第21電形のチャネル形成領域と、このチャネル形成領
域の表面に形成されたゲート絶縁膜と、このゲート絶縁
膜上に形成されたゲート電極と、ソース領域と半導体領
域を短絡するように形成されたソース電極と、このソー
ス電極とゲート電極との間を絶縁する層間絶縁膜と、ド
レイン基板の裏面に形成されたドレイン電極とを有し縦
方向の経路で主電流が流れる電界効果型半導体装置にお
いて、ゲートボンディングパッドおよびチップ中央部へ
伸びたゲート配線電極部の部分に位置する第2導電形の
半導体領域とソース電極とを部分的に孔状の接触領域で
短絡するようにしたものである。
In order to achieve such an object, the present invention includes a drain substrate of a first conductivity type, a semiconductor region of a second conductivity type formed on the surface of the drain substrate, and a semiconductor region of the second conductivity type formed in the semiconductor region of the second conductivity type. A source region of the first conductivity type formed on the surface with a central part open, a channel formation region of the 21st conductivity type between the drain substrate and the source region, and a gate formed on the surface of the channel formation region. an insulating film, a gate electrode formed on the gate insulating film, a source electrode formed to short-circuit the source region and the semiconductor region, and an interlayer insulating film insulating between the source electrode and the gate electrode. In a field effect semiconductor device having a drain electrode formed on the back surface of a drain substrate and in which the main current flows in a vertical path, the drain electrode is located at the gate bonding pad and the gate wiring electrode portion extending toward the center of the chip. The semiconductor region of the second conductivity type and the source electrode are short-circuited through a partially hole-shaped contact region.

〔作用〕[Effect]

本発明においては、ダイオードの順方向電流密度が減少
し、順方向電圧降下が小さくなり、逆回復時間が短くな
る。
In the present invention, the forward current density of the diode is reduced, the forward voltage drop is reduced, and the reverse recovery time is shortened.

〔実施例〕〔Example〕

本発明に係わる電界効果型半導体装置の一実施例を第1
図に示す。第1図はチップパターン図であり、第2図は
第1図のゲート配線電極部15における■−■線断面図
である。第1図および第2図において第3図〜第6図と
同一部分又は相当部分には同一符号が付しである。本装
置は、第1図に示すように、ゲート配線抵抗が大きくな
らないように部分的にp形半導体領域11とソース電極
7との接触領域14を設けている。
A first embodiment of a field effect semiconductor device according to the present invention will be described below.
As shown in the figure. FIG. 1 is a chip pattern diagram, and FIG. 2 is a sectional view taken along the line ■--■ in the gate wiring electrode portion 15 of FIG. In FIGS. 1 and 2, the same or equivalent parts as in FIGS. 3 to 6 are given the same reference numerals. In this device, as shown in FIG. 1, a contact region 14 between the p-type semiconductor region 11 and the source electrode 7 is partially provided so that the gate wiring resistance does not become large.

このように、本装置においては、ゲートボンディングパ
ッド13下およびチップ中央部のゲート配線電極部15
下のp形半導体領域11にソース電極7との接触領域1
4を設けているので、パワーMOS F ETに内蔵さ
れた逆方向並列接続ダイオードの有効面積が増大し、順
方向電流密度を小さくすることができる。
In this way, in this device, the gate wiring electrode portion 15 under the gate bonding pad 13 and in the center of the chip is
A contact region 1 with the source electrode 7 is formed in the lower p-type semiconductor region 11.
4, the effective area of the backward parallel connected diodes built into the power MOS FET increases, and the forward current density can be reduced.

上記実施例では、nチャネル形パワーMO3FETにつ
いて説明したが、pチャネル形パワーMO3FETであ
ってもよ(、上記実施例と同様の効果を奏する。
In the above embodiments, an n-channel type power MO3FET has been described, but a p-channel type power MO3FET may also be used (the same effects as in the above embodiments can be achieved).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲートボンディングパッ
ドおよびチップ中央部へ伸びたゲート配線電極部の第2
導電形の半導体領域とソース電極とを部分的に孔状の接
触領域で短絡したことにより、内蔵された逆方向並列接
続ダイオードの有効面積を増大できるので、このダイオ
ードの順方向電圧降下を小さくし、逆回復時間を短くす
るという効果がある。
As explained above, the present invention provides the gate bonding pad and the second gate wiring electrode portion extending toward the center of the chip.
By short-circuiting the conductive semiconductor region and the source electrode through a partially hole-shaped contact region, the effective area of the built-in reverse parallel-connected diode can be increased, and the forward voltage drop of this diode can be reduced. , which has the effect of shortening the reverse recovery time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる電界効果型半導体装置の一実施
例を示すパターン図、第2図は第1図のn −n線断面
図、第3図は従来の電界効果型半導体装置のパワーMO
S F ET基本ユニットの断面図、第4図は従来の電
界効果型半導体装置を示すパターン図、第5図は第4図
のV−V線断面図、第6図は第4図のVl −VI線断
面図である。 1a・・・n+ドレイン領域、lb−・n−ドレイン領
域、2・・・p形半導体領域、2a・・・p゛形半導体
領域凸部、3・・・n゛ソース領域4・・・チャネル形
成領域、5・・・ゲート絶縁膜、6・・・ゲート電極、
7・・・ソース電極、8・・・層間絶縁膜、9・・・ド
レイン電極、10・・・パワーMOS F ET基本ユ
ニットセル領域、11・・・p形半導体領域、12・・
・ソースポンディングパッド、13・・・ゲートボンデ
ィングパッド、14・・・接触領域、15・・・ゲート
配線電極部。
FIG. 1 is a pattern diagram showing an embodiment of a field-effect semiconductor device according to the present invention, FIG. 2 is a cross-sectional view taken along the line n--n of FIG. 1, and FIG. 3 is a power diagram of a conventional field-effect semiconductor device. M.O.
4 is a pattern diagram showing a conventional field effect semiconductor device, FIG. 5 is a sectional view taken along the line VV in FIG. 4, and FIG. 6 is a sectional view taken along the line V-V in FIG. It is a sectional view taken along VI line. 1a...n+ drain region, lb-/n- drain region, 2...p-type semiconductor region, 2a...p'-type semiconductor region convex portion, 3...n' source region 4...channel formation region, 5... gate insulating film, 6... gate electrode,
7... Source electrode, 8... Interlayer insulating film, 9... Drain electrode, 10... Power MOS FET basic unit cell region, 11... P-type semiconductor region, 12...
- Source bonding pad, 13... Gate bonding pad, 14... Contact area, 15... Gate wiring electrode portion.

Claims (1)

【特許請求の範囲】[Claims] 第1導電形のドレイン基板と、このドレイン基板の表面
に形成された第2導電形の半導体領域と、この第2導電
形の半導体領域内のその表面に中央部をあけて形成され
た第1導電形のソース領域と、前記ドレイン基板と前記
ソース領域との間の第2導電形のチャネル形成領域と、
このチャネル形成領域の表面に形成されたゲート絶縁膜
と、このゲート絶縁膜上に形成されたゲート電極と、前
記ソース領域と半導体領域を短絡するように形成された
ソース電極と、このソース電極とゲート電極との間を絶
縁する層間絶縁膜と、前記ドレイン基板の裏面に形成さ
れたドレイン電極とを有し縦方向の経路で主電流が流れ
る電界効果型半導体装置において、ゲートボンディング
パッドおよびチップ中央部へ伸びたゲート配線電極部の
部分に位置する前記第2導電形の半導体領域と前記ソー
ス電極とを部分的に孔状の接触領域で短絡したことを特
徴とする電界効果型半導体装置。
a drain substrate of a first conductivity type; a semiconductor region of a second conductivity type formed on the surface of the drain substrate; a conductivity type source region; a second conductivity type channel forming region between the drain substrate and the source region;
A gate insulating film formed on the surface of this channel forming region, a gate electrode formed on this gate insulating film, a source electrode formed to short-circuit the source region and the semiconductor region, and this source electrode. In a field effect semiconductor device, which has an interlayer insulating film that insulates between the gate electrode and the drain electrode formed on the back surface of the drain substrate, and in which the main current flows in a vertical path, the gate bonding pad and the chip center 1. A field-effect semiconductor device, characterized in that the second conductivity type semiconductor region located in a portion of a gate wiring electrode portion extending to a portion thereof and the source electrode are short-circuited through a partially hole-shaped contact region.
JP61228921A 1986-09-26 1986-09-26 Field-effect semiconductor device Pending JPS6384070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228921A JPS6384070A (en) 1986-09-26 1986-09-26 Field-effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228921A JPS6384070A (en) 1986-09-26 1986-09-26 Field-effect semiconductor device

Publications (1)

Publication Number Publication Date
JPS6384070A true JPS6384070A (en) 1988-04-14

Family

ID=16883941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228921A Pending JPS6384070A (en) 1986-09-26 1986-09-26 Field-effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS6384070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239179A (en) * 1991-01-11 1992-08-27 Nec Corp Vertical type mos field-effect transistor
EP0567341A1 (en) * 1992-04-23 1993-10-27 Siliconix Incorporated Power device with isolated gate pad region
US5420450A (en) * 1992-09-10 1995-05-30 Kabushiki Kaisha Toshiba Semiconductor device having stable breakdown voltage in wiring area
JP2011061064A (en) * 2009-09-11 2011-03-24 Mitsubishi Electric Corp Semiconductor device for electric power

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102068A (en) * 1984-10-23 1986-05-20 ア−ルシ−エ− コ−ポレ−ション Vertical type double diffusion mos device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102068A (en) * 1984-10-23 1986-05-20 ア−ルシ−エ− コ−ポレ−ション Vertical type double diffusion mos device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239179A (en) * 1991-01-11 1992-08-27 Nec Corp Vertical type mos field-effect transistor
EP0567341A1 (en) * 1992-04-23 1993-10-27 Siliconix Incorporated Power device with isolated gate pad region
US5430314A (en) * 1992-04-23 1995-07-04 Siliconix Incorporated Power device with buffered gate shield region
US5445978A (en) * 1992-04-23 1995-08-29 Siliconix Incorporated Method of making power device with buffered gate shield region
US5420450A (en) * 1992-09-10 1995-05-30 Kabushiki Kaisha Toshiba Semiconductor device having stable breakdown voltage in wiring area
JP2011061064A (en) * 2009-09-11 2011-03-24 Mitsubishi Electric Corp Semiconductor device for electric power

Similar Documents

Publication Publication Date Title
JP2760734B2 (en) Longitudinal conductive high power MOSFET
JPH0828506B2 (en) Semiconductor device and manufacturing method thereof
JPH0575110A (en) Semiconductor device
JPS61182264A (en) Vertical type mos transistor
US4935799A (en) Composite semiconductor device
JPS6384070A (en) Field-effect semiconductor device
JPS62109365A (en) Semiconductor device
US4942444A (en) Thyristor
JPH05167070A (en) Semiconductor device
JPS6211017Y2 (en)
JP2513665B2 (en) Insulated gate type thyristor
JPS6336568A (en) Composite thyristor
US5315134A (en) Thyristor with insulated gate
JP2581233B2 (en) Horizontal conductivity modulation MOSFET
JPH0369181B2 (en)
JPH0354477B2 (en)
JPH0441501B2 (en)
JPH01238067A (en) Insulated gate type bipolar transistor
JPS58210676A (en) Semiconductor device
JPH0513767A (en) Insulating gate type bipolar transistor
JPS63222460A (en) Field effect type semiconductor device
JPH0513768A (en) Insulating gate type bipolar transistor
JPH09307103A (en) Composite type semiconductor device and its manufacture
JPS6338262A (en) Power mos field-effect transistor
JP2941347B2 (en) Semiconductor device