JPS637807A - Production of low-pressure highly-permeable semipermeable composite membrane - Google Patents
Production of low-pressure highly-permeable semipermeable composite membraneInfo
- Publication number
- JPS637807A JPS637807A JP61150473A JP15047386A JPS637807A JP S637807 A JPS637807 A JP S637807A JP 61150473 A JP61150473 A JP 61150473A JP 15047386 A JP15047386 A JP 15047386A JP S637807 A JPS637807 A JP S637807A
- Authority
- JP
- Japan
- Prior art keywords
- composite membrane
- semipermeable composite
- water
- membrane
- crosslinking agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 52
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- -1 chlorosulfonyl groups Chemical group 0.000 claims abstract description 16
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 16
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 9
- 150000003461 sulfonyl halides Chemical class 0.000 claims abstract description 8
- 125000003277 amino group Chemical group 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 239000003513 alkali Substances 0.000 claims abstract description 4
- 238000004132 cross linking Methods 0.000 claims abstract description 4
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims abstract 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 150000001266 acyl halides Chemical class 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- 239000000908 ammonium hydroxide Substances 0.000 claims description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 239000011736 potassium bicarbonate Substances 0.000 claims description 2
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 2
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 7
- 239000004094 surface-active agent Substances 0.000 abstract description 3
- 238000011033 desalting Methods 0.000 abstract 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000001223 reverse osmosis Methods 0.000 description 7
- JPPYSPAXPNNOBC-UHFFFAOYSA-N 5-chlorosulfonylbenzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(S(Cl)(=O)=O)=C1 JPPYSPAXPNNOBC-UHFFFAOYSA-N 0.000 description 6
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 238000012696 Interfacial polycondensation Methods 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- JSYBAZQQYCNZJE-UHFFFAOYSA-N benzene-1,2,4-triamine Chemical compound NC1=CC=C(N)C(N)=C1 JSYBAZQQYCNZJE-UHFFFAOYSA-N 0.000 description 1
- RPHKINMPYFJSCF-UHFFFAOYSA-N benzene-1,3,5-triamine Chemical compound NC1=CC(N)=CC(N)=C1 RPHKINMPYFJSCF-UHFFFAOYSA-N 0.000 description 1
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、液状混合物の成分を選択透過分離するだめの
半透膜に関するものであり、特にカン水を脱塩して淡水
化することができ、また染色廃水や、電着塗料廃水等の
公害発生原因である汚水等から、その中に含まれる汚染
おるいは有効物質を選択的に除去又は回収し、ひいては
、廃水のクローズド化に奇与し、ざらには、半導体の製
造に用いられる超純水の製造、硬水の軟水化、食品分野
にも用いることができる、高性能半透性複合膜に関する
ものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semipermeable membrane for selectively permeating and separating components of a liquid mixture. In addition, it is possible to selectively remove or recover pollutants or effective substances contained in wastewater that causes pollution, such as dyeing wastewater and electrocoating paint wastewater. In particular, the present invention relates to a high-performance semipermeable composite membrane that can be used in the production of ultrapure water used in the production of semiconductors, the softening of hard water, and the food field.
(従来の技術)
従来工業的に利用されている半透膜には、酢酸セルロー
ズから作った非対称膜として、例えば米国特許箱3.1
33.132号明細書及び同第3.133.137号明
細書等に記載されたロブ型の膜がある。しかし、この膜
は耐加水分解性、耐微生物性、耐薬品性などに問題があ
り、特に透過性を向上しようとすると耐圧性、耐久性を
兼ねそなえた膜が製造できず、−部使用されているが広
範囲の用途に実用化されるに至っていない。これらの酢
酸ローズ非対称膜の欠点をなくした新しい素材に対する
研究は米国、日本を中心に盛んに行なわれているが、芳
香族ポリアミド、ポリアミドヒドラジド(米国特許箱3
.567、632号明細書)、ポリアミド酸く特公昭5
0−121168号公報)、架橋ポリアミド酸く特公昭
52−152879号公報〉、ポリイミダゾピロロン、
ポリベンズイミダゾール、ポリベンズイミダシロン、ポ
リアリーレンオキシドなど、その−部の欠点を改良する
素材は得られているものの、選択分離性あるいは透過性
の面では酢酸セルローズ膜より劣っている。(Prior art) Semipermeable membranes conventionally used industrially include asymmetric membranes made from cellulose acetate, such as those described in US Patent Box 3.1.
There are lob-type membranes described in Patent No. 33.132 and Patent No. 3.133.137. However, this membrane has problems with hydrolysis resistance, microbial resistance, chemical resistance, etc., and in particular, when trying to improve permeability, it is not possible to manufacture a membrane that has both pressure resistance and durability. However, it has not yet been put to practical use in a wide range of applications. Research into new materials that eliminate the drawbacks of these rose acetate asymmetric membranes is being actively conducted mainly in the United States and Japan, but aromatic polyamides, polyamide hydrazides (U.S. Patent Box 3)
.. 567, 632 specification), Polyamide Acid Special Publication 1977
0-121168), cross-linked polyamide acid (Japanese Patent Publication No. 152879/1987), polyimidazopyrrolone,
Although materials such as polybenzimidazole, polybenzimidacylon, and polyarylene oxide that improve the disadvantages of these materials have been obtained, they are inferior to cellulose acetate membranes in terms of selective separation or permeability.
−方、ロブ型とは型を責にする半透膜として多孔性支持
膜上に実質的に膜性能を有する活性層を被覆した複合膜
が開発されている。複合膜においては、活性層と多孔性
支持膜を各々の用途に最適な素材を選ぶことが可能とな
り、製膜技術の自由度が増す。また常時湿潤状態で保存
しなければならないロブ型膜とき異なり乾燥状態での保
存が可能であるなどの利点がある。- On the other hand, a composite membrane has been developed in which a lobe-type semipermeable membrane is formed by coating a porous support membrane with an active layer having substantially membrane performance as a semipermeable membrane. In composite membranes, it becomes possible to select the most suitable materials for the active layer and porous support membrane for each application, increasing the degree of freedom in membrane manufacturing technology. It also has the advantage of being able to be stored in a dry state, unlike a lobe-type membrane, which must be constantly stored in a wet state.
これらの複合膜には多孔性支持体上に中間層を介して活
性層を被覆した型のものと、多孔性支持膜上に直接活性
層を被覆した型のものとの2種類がある。前者の具体例
は、特開昭49−133282号公報、特公昭55−3
8164号公報、PBレポート80−182090、特
公昭59−27202号公報、特開昭56−40403
号公報などがあり、この型の膜は工業生産時の製膜は後
者の膜より容易と言われるものの、盛んに研究されては
いるが、未だ低圧下で逆浸透処理に供する場合に水の透
過性が低くなり、満足すべき膜性能が得られていない。There are two types of these composite membranes: one in which the active layer is coated on a porous support via an intermediate layer, and one in which the active layer is coated directly on the porous support membrane. Specific examples of the former are JP-A-49-133282 and JP-A-55-3.
Publication No. 8164, PB Report 80-182090, Japanese Patent Publication No. 59-27202, Japanese Patent Publication No. 56-40403
Although this type of membrane is said to be easier to form during industrial production than the latter type of membrane, although it has been actively researched, it is still difficult to process water when subjected to reverse osmosis treatment under low pressure. Permeability is low and satisfactory membrane performance is not obtained.
一方高透過性半透性膜は市場ニーズの要求から、脱塩率
は低くとも、高造水量の膜が要求されており、そういう
技術が求められている。On the other hand, market needs for highly permeable semipermeable membranes require membranes that can produce a high amount of water even though they have a low desalination rate, and such technology is in demand.
本発明者らは、低圧操作下でも、高透過性で脱塩性能を
多様化できる半透性複合膜を得ることを目的として鋭意
努力した結果、2個以上のアミノ基を有する多官能アミ
ノと、2個以上のアシルハライド、スルホニルハライド
などを含む多官能酸塩化物を反応させることにおいて生
成される複合半透膜をアルカリ水溶液で処理することに
より、その造水量が著しく向上することが見出され本発
明に到達したものである。As a result of our earnest efforts to obtain a semipermeable composite membrane that has high permeability and can diversify desalination performance even under low-pressure operation, we discovered that a polyfunctional amino membrane having two or more amino groups It was discovered that by treating a composite semipermeable membrane produced by reacting a polyfunctional acid chloride containing two or more acyl halides, sulfonyl halides, etc. with an alkaline aqueous solution, the amount of water produced can be significantly improved. This is what led to the present invention.
上記目的を達成するため本発明は下記の構成からなる。 In order to achieve the above object, the present invention consists of the following configuration.
「 下記A、B、Cの製造工程により半透性複合膜食得
ることを特徴とする高透過性半透性複合膜の製造方法。``A method for producing a highly permeable semipermeable composite membrane, characterized in that a semipermeable composite membrane is obtained by the following production steps A, B, and C.
A、多孔性支持体上に、分子内に1又は2@アミノ基を
少なくとも2個以上有する水溶性アミノ化合物を主成分
として含有する水溶液を塗イ5する工程。A. A step of coating a porous support with an aqueous solution containing as a main component a water-soluble amino compound having at least two 1 or 2@amino groups in the molecule.
B、水と非混和性で、多孔性支持体を溶解することのな
い溶媒に溶解したアミノ基と反応する基を少なくとも2
個以上有し、かつクロロスルホニル基を1個以上含む多
官能アミノを含有した溶液を塗布し、架橋反応を行なわ
せて半透性複合膜を(qる工程。B, at least two groups that are immiscible with water and that react with amino groups dissolved in a solvent that does not dissolve the porous support;
A semipermeable composite membrane is formed by applying a solution containing a polyfunctional amino having at least one chlorosulfonyl group and carrying out a crosslinking reaction.
C8該半透性複合膜をアルカリ水溶液で処理する工程。C8 A step of treating the semipermeable composite membrane with an alkaline aqueous solution.
」
本発明において、水溶性アミノ化合物は具体的には、例
えばアミノ変性ポリヨードヒドリン、アミノ変性ポリク
ロルヒドリン、ポリエチレンイミン、m−フェニレンジ
アミノ、p−フェニレンジアミノ、1,3.5−トリア
ミノベンゼン、1,2.4−トリアミノベンゼン、2,
5−ジメヂルビペラジン、ピペラジン等を上げることが
できる。In the present invention, the water-soluble amino compounds are specifically, for example, amino-modified polyiodohydrin, amino-modified polychlorohydrin, polyethyleneimine, m-phenylene diamino, p-phenylene diamino, 1,3.5-tri- Aminobenzene, 1,2.4-triaminobenzene, 2,
Examples include 5-dimedylbiperazine and piperazine.
本発明の高透過性半透性複合膜は前記水溶性アミノ化合
物水溶液を多孔性支持体の少なくとも片面に被覆し、次
いで風乾及び/又は加熱処理により、水の一部又は全部
を蒸発させた後、水と非混和性で、多孔性支持体を溶解
することのない溶媒に溶解した多官能酸塩化物を主成分
とした溶液を塗布し、架橋反応を行なわせた後、乾燥す
ることによって得られる。The highly permeable semipermeable composite membrane of the present invention is obtained by coating at least one side of a porous support with the water-soluble amino compound aqueous solution, and then evaporating some or all of the water by air drying and/or heat treatment. , by applying a solution mainly consisting of a polyfunctional acid chloride dissolved in a solvent that is immiscible with water and does not dissolve the porous support, allowing a crosslinking reaction to occur, and then drying. It will be done.
本発明の高透過性半透性複合膜を得る組成物の成分濃度
は該水溶性アミノ化合物については、0゜1〜10重量
%、好ましくは0.5〜5重量%であり更に組成物が多
孔性支持体表面に濡れ性を向上させ、均一に付着させる
ために界面活性剤を加えると効果があり、中でもアニオ
ン系の界面活性剤が好ましい。その界面活性剤としては
一般に0゜01〜2重量%程度用いると良い。The component concentration of the composition for obtaining the highly permeable semipermeable composite membrane of the present invention is from 0.1 to 10% by weight, preferably from 0.5 to 5% by weight, and furthermore, the water-soluble amino compound is 0.5 to 5% by weight. It is effective to add a surfactant to the surface of the porous support to improve wettability and ensure uniform adhesion, and anionic surfactants are particularly preferred. The surfactant is generally used in an amount of about 0.01 to 2% by weight.
本発明において、多孔性支持体とは実質的には分離性能
を有ざない層で、実質的に分離性能を有する薄膜に強度
を与えるために用いられるものであり、均一な微細な孔
あるいは片面からもう一方の面まで徐々に大きな微細な
孔をもっていて、その微細孔の大きさはその片面の表面
が約100〜1000人であるような構造の支持体が好
ましい。In the present invention, a porous support is a layer that does not substantially have separation performance, and is used to give strength to a thin film that does have separation performance, and is a layer that has uniform fine pores or one side. A support having a structure having fine pores that gradually become larger from one side to the other side, and the size of the fine pores on one side is about 100 to 1000 pores, is preferable.
上記の多孔性支持体は、ミリポアフィルタ(VSMP)
や東洋ろ紙(tJKlo)のような各種市販材料から選
択することもできるが、通常は、“オフィス・オン・セ
イリーン・ウォーター・リサーチ・アンド・ディベロッ
プメント・プログレス・レポート”N、 359(1
968)に記載された方法に従って、製造できる。その
素材にはポリスルホンヤ酢酸セルローズ、硝酸セルロー
ズやポリ塩化ビニル等のホモポリマあるいはブレンドし
たものが通常使用され、例えば、ポリスルホンのジメチ
ルホルムアミド(DMF)溶液を密に織ったポリエステ
ル布あるいは不織布の上に一定の厚さに注型し、それを
ドデシル硫酸ソーダ0.5重量%及びDMF2重量%含
む水溶液中で湿式凝固させることによって、表面の大部
分が直径数百Å以下の微細な孔を有した多孔性支持体が
得られる。The above porous support is a Millipore filter (VSMP)
You can choose from a variety of commercially available materials, such as tJKlo and Toyo Filter Paper (tJKlo);
968). The material is usually a homopolymer or a blend of polysulfone, cellulose acetate, cellulose nitrate, and polyvinyl chloride. By casting the mold to a thickness of 100 Å and wet coagulating it in an aqueous solution containing 0.5% by weight of sodium dodecyl sulfate and 2% by weight of DMF, the majority of the surface has micropores with a diameter of several hundred angstroms or less. A sexual support is obtained.
本発明で水と非混和性で、多孔性支持体を溶解すること
のない溶媒とは多孔性支持体の素材に応じて選択するこ
とができる。例えば多孔性支持体にポリスルホンを用い
る場合には脂肪族炭化水素や限られたハロゲン化炭化水
素などを挙げることができ、n−ヘキサン、四塩化炭素
、トリクロロトリフルオロエタン等を例示するとかでき
る。特に好ましいのは上記の毒性、安全性等を考慮する
と、トリクロロトリフルオロエタンが好適に用いられる
。In the present invention, the solvent that is immiscible with water and does not dissolve the porous support can be selected depending on the material of the porous support. For example, when polysulfone is used as the porous support, aliphatic hydrocarbons and limited halogenated hydrocarbons can be used, such as n-hexane, carbon tetrachloride, trichlorotrifluoroethane, etc. Particularly preferred is trichlorotrifluoroethane, considering the above-mentioned toxicity and safety.
多官能性架橋剤の溶解時における濃度は0.01〜1.
0重量%、好ましくは0.05〜0.5重■%の範囲で
おる。またアミノと多官能架橋剤の反応を促進する上で
アルカリ性金屈塩、例えばリン酸ナトリウム、水酸化ナ
トリ「クム等の塩酸捕捉剤を加えることも効果があり、
さらには相関移動触媒やアシル化触媒を併用することも
よい効果をもたらすことがある。The concentration of the polyfunctional crosslinking agent when dissolved is 0.01 to 1.
0% by weight, preferably in the range of 0.05 to 0.5% by weight. It is also effective to add hydrochloric acid scavengers such as alkaline gold salts, such as sodium phosphate and sodium hydroxide, to promote the reaction between amino and polyfunctional crosslinking agents.
Furthermore, the combined use of a phase transfer catalyst or an acylation catalyst may also bring about good effects.
本発明において、多官能架橋剤とはアミノ基と反応する
基を少なくとも2個以上有するもので、具体的には以下
のものが挙げられる。In the present invention, the polyfunctional crosslinking agent is one having at least two or more groups that react with amino groups, and specifically includes the following.
上記した芳香族多官能性架橋剤は、Aは不可欠であり、
A単独でも使用する方が好ましいが、A+B、A+Cの
組合せでも良い。In the above-mentioned aromatic polyfunctional crosslinking agent, A is essential,
Although it is preferable to use A alone, a combination of A+B or A+C may also be used.
これらの多官能架橋剤溶液を用いて、界面重縮合を利用
して超薄膜を形成させる場合、m−フェニレンジアミノ
で代表されるアミノ化合物中のアミノ基と、5−クロロ
スルホニルイソフタル酸クロライドで代表されるスルホ
ニルハライドの反応は遅く、アシルハライドが優先的に
反応することが予想され、超薄膜に未反応スルホニルハ
ライドが一部残存する。これらのスルホニルハライドは
アルカリ水溶液で簡単に加水分解することができ、超薄
膜にスルホン!基の導入が可能となり、この結果造水量
が飛躍的に向上することが期待できる。When forming an ultra-thin film using interfacial polycondensation using these multifunctional crosslinking agent solutions, the amino group in the amino compound represented by m-phenylene diamino and the amino group represented by 5-chlorosulfonylisophthalic acid chloride are combined. The reaction of the sulfonyl halide is slow, and it is expected that the acyl halide will react preferentially, leaving some unreacted sulfonyl halide in the ultra-thin film. These sulfonyl halides can be easily hydrolyzed in an alkaline aqueous solution, forming an ultra-thin film of sulfone! As a result, it is expected that the amount of water produced will be dramatically improved.
また逆にアミノ化合物にスルホンrli基を含むものを
用いても高造水但化が期待できる。例えば、4.4−ジ
アミノジフェニルエーテル−2,2−ジスルホン酸、3
,3−ジメチル−4,4−ジアミノジフエニル−6,6
−ジスルホン酸等が挙げられる。Conversely, even if an amino compound containing a sulfone rli group is used, high water formation can be expected. For example, 4,4-diaminodiphenyl ether-2,2-disulfonic acid, 3
,3-dimethyl-4,4-diaminodiphenyl-6,6
-disulfonic acid and the like.
本発明によるアルカリ加水分解とは、アルカリ水溶液に
複合半透膜を浸漬する方法が挙げられる。The alkaline hydrolysis according to the present invention includes a method of immersing a composite semipermeable membrane in an alkaline aqueous solution.
アルカリとしては、水酸化ナトリウム、水酸化カリウム
、水酸化アンモニウム、重炭酸ナトリウム、重炭酸カリ
ウムの単独あるいは2種以上の混合物が用いられるが、
特に好ましくは水酸化ナトリウムである。浸漬温度は通
常室温が好ましく、濃度は0.1〜10重−%、浸漬時
間は数分から数時間が必要であるが、好ましくは0.5
〜10時間が良い。As the alkali, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium bicarbonate, and potassium bicarbonate may be used alone or in a mixture of two or more.
Particularly preferred is sodium hydroxide. The immersion temperature is usually room temperature, the concentration is 0.1 to 10% by weight, and the immersion time is several minutes to several hours, preferably 0.5%.
~10 hours is good.
以下の実施例によって本発明を更に詳細に説明する。尚
、実施例において、選択分離性能として、食塩の排除率
は電気伝導度の測定による通常の手段によって決定され
た。また、透過性能として、水透過速度は単位面積、単
位時間当たりの水の透過量で決定した。The invention will be explained in more detail by the following examples. In the examples, the rejection rate of common salt as selective separation performance was determined by conventional means by measuring electrical conductivity. In addition, as permeation performance, water permeation rate was determined by the amount of water permeation per unit area and unit time.
参考例
タテ3Qcm、ヨ:=+20cmの大ぎざのポリエステ
ル繊維からなるタフタ(タテ糸、ヨコ糸とも150デニ
ールのマルチフィラメント糸、織密度タテ90本/イン
チ、ヨコ67本/インチ、厚さ160μ)をガラス板上
に固定し、その上にポリスルホン(ユニオン・カーバイ
ト社製の商品名Udel P−3500>の15重1%
ジメチルホルムアミド(DMF>溶液を200μの厚み
で室温(20℃)でキャストし、ただちに純水中に浸漬
して5分間放置することによって繊維補強ポリスルホン
支持膜(以下FR−PS支持膜と略す)を作製する。こ
のようにして得られたFR−PS支持膜(厚さ210〜
215μ)の純水透過係数は、圧力1に9/−1温度2
5°Cで測定して0.005〜0.01Q /c4−
sec −atmであった。Reference example: Taffeta made of polyester fibers with large serrations of 3Qcm in length and +20cm in width (multifilament yarn of 150 denier in warp and weft, weaving density 90 pieces/inch in length, 67 pieces/inch in width, thickness 160μ) was fixed on a glass plate, and 15% of polysulfone (trade name: Udel P-3500, manufactured by Union Carbide Co., Ltd.) was placed on top of it.
A fiber-reinforced polysulfone support membrane (hereinafter abbreviated as FR-PS support membrane) was formed by casting a dimethylformamide (DMF) solution to a thickness of 200μ at room temperature (20°C), immediately immersing it in pure water, and leaving it for 5 minutes. The FR-PS support film thus obtained (thickness 210~
The pure water permeability coefficient of 215 μ) is 9/-1 temperature 2 for pressure 1
0.005-0.01Q/c4- measured at 5°C
It was sec-atm.
実施例1
参考例によって得られるFR−PS支持膜にm−フェニ
レンジアミノ2fflffi%含/νだ水溶液を1分間
浸漬した。ついでこの支持膜を取り出し、室温にて1分
間風乾したのちフレオンにトリナシン酸クロライドおよ
び5−クロロスルホニルイソフタル酸クロライドの混合
物(重量比9:1)を0.06重足%を溶解した溶液を
塗布反応させる。その後風乾した。ついでN/100−
NaOH水溶液に1時間浸漬した。このようにして1q
られた複合膜を圧力15kq10yf、原水0.15%
NaCl2水溶液25℃の条件下で逆浸透テストした結
果、15時間後脱塩率97.5%、水分透過ff11.
5Trll/、2・日の性能を示した。Example 1 The FR-PS support film obtained in Reference Example was immersed in an aqueous solution containing m-phenylenediamino 2fflffi%/v for 1 minute. Next, this support film was taken out and air-dried for 1 minute at room temperature, and then a solution containing 0.06% by weight of a mixture of trinasic acid chloride and 5-chlorosulfonylisophthalic acid chloride (weight ratio 9:1) was applied to Freon. Make it react. It was then air-dried. Then N/100-
It was immersed in NaOH aqueous solution for 1 hour. In this way 1q
The composite membrane was heated at a pressure of 15kq10yf and raw water at 0.15%.
As a result of a reverse osmosis test with an aqueous NaCl2 solution at 25°C, the salt removal rate was 97.5% after 15 hours, and the water permeation ff11.
It showed a performance of 5 Trll/2·day.
実施例2
架橋剤溶液としてトリナシン酸クロライドおよび5−ク
ロロスルホニルイソフタル酸クロライドの混合物(重量
比1:1)を0.5重足%を用い、m−フェニレンジア
ミノの代わりにピペラジン1重回%溶液を用いた以外実
施例1と同様に製膜、逆浸透テストを行なった。その結
果脱塩率50.9%、水分透過ω4.4Tn!/Tn2
・日の性能を示した。Example 2 A mixture of trinasic acid chloride and 5-chlorosulfonylisophthalic acid chloride (weight ratio 1:1) was used at 0.5 weight percent as a crosslinking agent solution, and 1 weight percent solution of piperazine was used instead of m-phenylene diamino. Film formation and reverse osmosis test were conducted in the same manner as in Example 1 except that . As a result, the salt removal rate was 50.9%, and the water permeation was ω4.4Tn! /Tn2
・Showed the performance of the day.
実施例3
架橋剤溶液としてトリナシン酸クロライドおよび5−ク
ロロスルホニルイソフタル酸クロライドの混合物(重量
比9:1)を1.0重重%を用い、アミノ化合物として
ポリエチレンイミン1重但%溶液を用いて実施例1と同
様に製膜した。逆浸透テストは操作圧力40kq/ar
t、原水0.5%Na(4水溶液の条件下で行なった結
果、15時間後説塩率97.1%、水分透過m2.2m
+”/mzs日の性能を示した。Example 3 A mixture of trinasic acid chloride and 5-chlorosulfonylisophthalic acid chloride (weight ratio 9:1) was used at 1.0% by weight as the crosslinking agent solution, and a 1% by weight solution of polyethyleneimine was used as the amino compound. A film was formed in the same manner as in Example 1. Reverse osmosis test requires operating pressure of 40kq/ar
t, raw water 0.5% Na (4) Result of conducting under aqueous solution conditions, 15 hours salt rate 97.1%, water permeation m2.2m
+”/mzs day performance.
実施例4
架橋剤溶液としてトリメシン酸クロライド、イソフタル
酸クロライド、および5−クロロスルホニルイソフタル
酸クロライドの混合物(重量比2ニア:1)を0.06
重量%を用い、アミノ化合物としてm−フェニレンジア
ミノと1.3.5−トリアミノベンゼン(重量比3:1
)を2重量%溶液を用いた以外実施例1と同様に製膜、
逆浸透テストを行なった。その結果脱塩率99.5%、
水分透過量1.1TIN3/Tr12・日の性能を示し
た。Example 4 A mixture of trimesic acid chloride, isophthalic acid chloride, and 5-chlorosulfonylisophthalic acid chloride (weight ratio 2:1) was used as a crosslinking agent solution at 0.06
Using weight%, m-phenylenediamino and 1,3,5-triaminobenzene (weight ratio 3:1) were used as amino compounds.
) was formed into a film in the same manner as in Example 1 except that a 2% by weight solution was used.
A reverse osmosis test was performed. As a result, desalination rate was 99.5%.
It showed performance of water permeation amount of 1.1TIN3/Tr12·day.
比較例1
実施例1に対して、架橋剤成分の5−クロロスルホニル
イソフタル酸クロライドをO重重%とし、他は実施例1
と同様に製膜、逆浸透テストを行なった。その結果脱塩
率98.O%、水分透過量1゜0Tn!/Tr12・日
の性能を示した。Comparative Example 1 In contrast to Example 1, 5-chlorosulfonylisophthalic acid chloride as a crosslinking agent component was changed to O wt %, and the others were as in Example 1.
Film formation and reverse osmosis tests were conducted in the same manner as above. As a result, the desalination rate was 98. O%, water permeation amount 1゜0Tn! /Tr12·day.
比較例2
実施例2に対して、架橋剤成分の5−クロロスルホニル
クロライドを0重量%とし、他は実施例2と同様に製膜
、逆浸透テス1〜を行なった。その結果脱塩率62.2
%、水分透過m 1 、3m”/m2・日の性能を示し
た。Comparative Example 2 With respect to Example 2, 5-chlorosulfonyl chloride as a crosslinking agent component was changed to 0% by weight, and membrane formation and reverse osmosis tests 1 to 1 were conducted in the same manner as in Example 2, except that the content was 0% by weight. As a result, the desalination rate was 62.2.
%, water permeation m 1 , and performance of 3 m”/m 2 ·day.
本発明の複合膜は、液状混合物を選択透過分離するため
のものであり、特に用途としては、カン水および半導体
の製造に用いられる超純水の製造に用いることができ、
同時に従来達成の困難であった高説塩性、高透過性を有
する膜を提供できるようになった。The composite membrane of the present invention is for permselective separation of liquid mixtures, and in particular can be used for the production of kansui and ultrapure water used in the production of semiconductors.
At the same time, it has become possible to provide a membrane with high salinity and high permeability, which was previously difficult to achieve.
Claims (5)
得ることを特徴とする高透過性半透性複合膜の製造方法
。 A、多孔性支持体上に、分子内に1又は2級アミノ基を
少なくとも2個以上有する水溶性アミノ化合物を主成分
として含有する水溶液を塗布する工程。 B、水と非混和性で、多孔性支持体を溶解することのな
い溶媒に溶解したアミノ基と反応する基を少なくとも2
個以上有し、かつクロロスルホニル基を1個以上含む多
官能架橋剤を含有した溶液を塗布し、架橋反応を行なわ
せて半透性複合膜を得る工程。 C、該半透性複合膜をアルカリ水溶液で処理する工程。(1) A method for producing a highly permeable semipermeable composite membrane, which comprises obtaining a semipermeable composite membrane by the following production steps A, B, and C. A. A step of coating a porous support with an aqueous solution containing as a main component a water-soluble amino compound having at least two primary or secondary amino groups in the molecule. B, at least two groups that are immiscible with water and that react with amino groups dissolved in a solvent that does not dissolve the porous support;
A step of applying a solution containing a polyfunctional crosslinking agent having one or more chlorosulfonyl groups and causing a crosslinking reaction to obtain a semipermeable composite membrane. C. Treating the semipermeable composite membrane with an alkaline aqueous solution.
スルホニルハライドからなる官能基を2個以上有するこ
とを特徴とする特許請求の範囲第(1)項記載の高透過
性半透性複合膜の製造方法。(2) The highly permeable semipermeable composite according to claim (1), wherein the multifunctional crosslinking agent has two or more functional groups consisting of an acyl halide and a sulfonyl halide in one molecule. Membrane manufacturing method.
びスルホニルハライドからなる官能基を2個以上有する
ことを特徴とする特許請求の範囲第(1)項記載の高透
過性半透性複合膜の製造方法。(3) The highly permeable semipermeable composite according to claim (1), wherein the multifunctional crosslinking agent has two or more functional groups consisting of an isocyanate group and a sulfonyl halide in one molecule. Membrane manufacturing method.
分子中にスルホニルハライドからなる官能基を2個以上
有することを特徴とする特許請求の範囲第(1)項記載
の高透過性半透性複合膜の製造方法。(4) The polyfunctional crosslinking agent has one or more aromatic rings and two or more functional groups consisting of sulfonyl halide in one molecule, A method for producing a highly permeable semipermeable composite membrane.
水酸化アンモニウム、重炭酸ナトリウム、重炭酸カリウ
ムから選ばれる一種以上の化合物であることを特徴とす
る特許請求の範囲第(1)項記載の高透過性半透性複合
膜の製造方法。(5) The alkali is sodium hydroxide, potassium hydroxide,
The method for producing a highly permeable semipermeable composite membrane according to claim (1), wherein the compound is one or more compounds selected from ammonium hydroxide, sodium bicarbonate, and potassium bicarbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61150473A JPS637807A (en) | 1986-06-26 | 1986-06-26 | Production of low-pressure highly-permeable semipermeable composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61150473A JPS637807A (en) | 1986-06-26 | 1986-06-26 | Production of low-pressure highly-permeable semipermeable composite membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS637807A true JPS637807A (en) | 1988-01-13 |
Family
ID=15497670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61150473A Pending JPS637807A (en) | 1986-06-26 | 1986-06-26 | Production of low-pressure highly-permeable semipermeable composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS637807A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002095938A (en) * | 2000-09-21 | 2002-04-02 | Toyobo Co Ltd | Composite semipermeable membrane, its manufacturing method, and composite semipermeable membrane separation element having it built-in |
US8616380B2 (en) | 2009-08-31 | 2013-12-31 | General Electric Company | Reverse osmosis composite membranes for boron removal |
-
1986
- 1986-06-26 JP JP61150473A patent/JPS637807A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002095938A (en) * | 2000-09-21 | 2002-04-02 | Toyobo Co Ltd | Composite semipermeable membrane, its manufacturing method, and composite semipermeable membrane separation element having it built-in |
JP4543296B2 (en) * | 2000-09-21 | 2010-09-15 | 東洋紡績株式会社 | Composite semipermeable membrane, method for producing the same, and composite semipermeable membrane separation element incorporating the same |
US8616380B2 (en) | 2009-08-31 | 2013-12-31 | General Electric Company | Reverse osmosis composite membranes for boron removal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3954651B2 (en) | Method for increasing flux of polyamide membrane | |
US6833073B2 (en) | Composite nanofiltration and reverse osmosis membranes and method for producing the same | |
JPH01180208A (en) | Production of compound semipermeable membrane | |
JPS6354905A (en) | Production of semiosmosis composite membrane | |
JPH0565213B2 (en) | ||
JPH0380049B2 (en) | ||
JP4618081B2 (en) | Processing method and manufacturing method of composite semipermeable membrane | |
JP2006021094A (en) | Compound semi-permeable membrane and its manufacturing method | |
JPS637807A (en) | Production of low-pressure highly-permeable semipermeable composite membrane | |
JPH0596140A (en) | Production of composite translucent membrane | |
EP0465649B1 (en) | Composite semipermeable membrane and production thereof | |
JPH07114944B2 (en) | Method for manufacturing semipermeable composite membrane | |
JP3438278B2 (en) | Semipermeable composite membrane and method for producing the same | |
JP3829501B2 (en) | Composite semipermeable membrane and method for producing the same | |
JPH04161234A (en) | Manufacture of composite membrane | |
JPS61101203A (en) | Highly permeable composite membrane | |
KR19980068304A (en) | Performance Improvement Method of Polyamide Reverse Osmosis Composite Membrane | |
JPH10235173A (en) | Composite semipermeable membrane and its production | |
JPH04104825A (en) | Manufacture of composite membrane | |
JPH0232009B2 (en) | ||
JPH04200622A (en) | Treatment of composite semipermeable membrane | |
JPH11179175A (en) | Production of composite separation membrane | |
JPH09187631A (en) | Production of composite reverse-osmosis membrane and device therefor | |
JPS62213806A (en) | Semi-permeable composite membrane | |
JPS59179103A (en) | Composite semipermeable membrane and its manufacture |