JPS6374952A - Manufacture of ceramic products - Google Patents
Manufacture of ceramic productsInfo
- Publication number
- JPS6374952A JPS6374952A JP61217836A JP21783686A JPS6374952A JP S6374952 A JPS6374952 A JP S6374952A JP 61217836 A JP61217836 A JP 61217836A JP 21783686 A JP21783686 A JP 21783686A JP S6374952 A JPS6374952 A JP S6374952A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- powder
- ceramic
- sintered body
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims description 53
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000005245 sintering Methods 0.000 claims description 56
- 239000000843 powder Substances 0.000 claims description 52
- 239000000047 product Substances 0.000 claims description 30
- 239000013067 intermediate product Substances 0.000 claims description 24
- 150000004820 halides Chemical class 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 13
- 239000011812 mixed powder Substances 0.000 claims description 12
- 238000003754 machining Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 description 18
- 238000005452 bending Methods 0.000 description 16
- 238000002156 mixing Methods 0.000 description 10
- 238000000465 moulding Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000007730 finishing process Methods 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000007569 slipcasting Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910009523 YCl3 Inorganic materials 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 A0発明の目的 (1) 産業上の利用分野 本発明はセラミック製品の製造方法に関する。[Detailed description of the invention] A0 Purpose of invention (1) Industrial application field The present invention relates to a method for manufacturing ceramic products.
(2) 従来の技術
従来、この種製品を製造する場合は、セラミック粉末に
焼結助剤粉末等を分散させた混合粉末を用いて成形体を
得、次いでその成形体を常圧または高圧下で焼結して焼
結体を得、その後焼結体に機械加工を施すといった手法
が採用されている。(2) Conventional technology Conventionally, when manufacturing this type of product, a molded body is obtained using a mixed powder in which sintering aid powder, etc. is dispersed in ceramic powder, and then the molded body is heated under normal pressure or high pressure. A method has been adopted in which a sintered body is obtained by sintering, and then the sintered body is machined.
(3)発明が解決しようとする問題点
しかしながら、前記工程を経て得られた焼結体は大きな
硬さを有するため、ダイヤモンド工具以外のものでは加
工が困難である上、そのダイヤモンド工具を用いても多
くの加工時間を要し、セラミック製品の生産性が悪いと
いう問題がある。(3) Problems to be solved by the invention However, since the sintered body obtained through the above process has a large hardness, it is difficult to process it with anything other than a diamond tool, and it is difficult to process it using a diamond tool. However, there is a problem in that it requires a lot of processing time and the productivity of ceramic products is poor.
本発明は上記に鑑み、所定の強度を有する仮焼粘体を得
、その仮焼結体に機械加工を施すことによってその加工
作業の能率化を図り、延いてはセラミック製品の生産性
を向上させることのできる前記製造方法を提供すること
を目的とする。In view of the above, the present invention aims at streamlining the processing work by obtaining a calcined viscous body having a predetermined strength and performing machining on the calcined body, thereby improving the productivity of ceramic products. It is an object of the present invention to provide the above-mentioned manufacturing method.
B0発明の構成
(1)問題点を解決するための手段
本発明は、セラミック粉末に、該セラミック粉末の焼結
温度よりも低い温度にて該セラミック粉末に対し仮焼結
作用を発揮するハロゲン化物粉末を分散させた混合粉末
を用いて成形体を得、次いで該成形体を前記焼結温度よ
りも低い前記温度にて仮焼結して仮焼結体を得る工程;
前記仮焼結体に機械加工を施して中間製品を得る工程;
および前記中間製品を前記焼結温度にて焼結する工程:
を用いることを特徴とする。B0 Structure of the Invention (1) Means for Solving the Problems The present invention provides a method for adding a halide to ceramic powder that exhibits a pre-sintering effect on the ceramic powder at a temperature lower than the sintering temperature of the ceramic powder. A step of obtaining a compact using a mixed powder in which powder is dispersed, and then pre-sintering the compact at the temperature lower than the sintering temperature to obtain a pre-sintered compact;
a step of performing machining on the temporary sintered body to obtain an intermediate product;
and a step of sintering the intermediate product at the sintering temperature:
It is characterized by using
(2)作 用
前記ハロゲン化物の仮焼結作用によって、機械加工に耐
え得る強度および通常の超硬合金工具による機械加工が
可能な硬さを備えた仮焼結体を得ることができる。(2) Effect Due to the pre-sintering effect of the halide, it is possible to obtain a pre-sintered body having strength that can withstand machining and hardness that allows machining with ordinary cemented carbide tools.
したがって、この仮焼結体に対する機械加工を能率良く
行って、セラミック製品の生産性を向上させることがで
きる。Therefore, machining of this pre-sintered body can be performed efficiently, and productivity of ceramic products can be improved.
前記機械加工により得られた中間製品は、最終的に焼結
処理を施されるので、高強度および大きな硬さを有し、
また寸法精度の良いセラミック製品を得ることができる
。The intermediate product obtained by the machining process is finally subjected to sintering treatment, so it has high strength and large hardness,
Furthermore, ceramic products with good dimensional accuracy can be obtained.
(3)実施例
セラミック粉末はセラミック製品の主体をなすもので、
この種粉末としては、直径0.1〜1μmのSis N
4 、SiC,、Zr0t % Tics TiN等の
単独粉末およびこれらの混合粉末が該当する。(3) Example Ceramic powder forms the main body of a ceramic product,
As this kind of powder, Sis N with a diameter of 0.1 to 1 μm is used.
4, SiC, Zr0t% TiN, and mixed powders thereof are applicable.
セラミック粉末に対し、それの焼結温度よりも低い温度
にて仮焼結作用を発揮するハロゲン化物粉末としては、
直径0.1〜0.5 p mの、MgF。Halide powders that exhibit a pre-sintering effect on ceramic powders at temperatures lower than their sintering temperatures include:
MgF, with a diameter of 0.1-0.5 pm.
CaF、BaF等のフッ化物粉末、Mg(1,、CaC
4’z 、BaC1z 、AJClls 、YCIs等
の塩化物粉末等から選択される少なくとも一種が該当す
る。この場合、AlCl3にはAlIC11!+3−X
)(OH)xが、またYCl3にはY C7! +3−
Xl(OH)xが包含される。前記仮焼結作用は、前記
ハロゲン化物によりセラミック粉末が活性化されること
に起因するものと思われる。Fluoride powder such as CaF, BaF, Mg(1, CaC
At least one selected from chloride powders such as 4'z, BaC1z, AJClls, YCIs, etc. is applicable. In this case, AlCl3 has AlIC11! +3-X
)(OH)x, and YCl3 has Y C7! +3-
Xl(OH)x is included. It is believed that the preliminary sintering effect is caused by activation of the ceramic powder by the halide.
ハロゲン化物は、前記仮焼結作用の外に、セラミック粉
末の結晶粒の粗大化を防止して強度のばらつきを抑制す
る作用も有するもので、これは次のような理由に基づく
ものと思われる。即ち、セラミック粉末の結晶粒の粗大
化は、焼結中に一部のセラミック粉末がその周囲のマト
リックスを併合して1つの大きな結晶粒に成長すること
に起因するものであり、したがってセラミック粉末の結
晶粒内に取込まれない物性を持つハロゲン化物がセラミ
ック粉末の結晶粒界に存すると、前記マトリックスの併
合が抑制されることになる。In addition to the above-mentioned preliminary sintering effect, halides also have the effect of preventing coarsening of the crystal grains of ceramic powder and suppressing variations in strength. This is thought to be based on the following reasons. . That is, the coarsening of the grains of ceramic powder is due to the fact that some of the ceramic powder merges with its surrounding matrix and grows into one large grain during sintering, and therefore the coarsening of the ceramic powder If a halide having physical properties that is not incorporated into the crystal grains exists at the grain boundaries of the ceramic powder, the merging of the matrix will be suppressed.
必要に応じ、セラミック粉末の焼結温度にて焼結作用を
発揮する焼結助剤粉末が用いられる。この種粉末として
は、直径0.1〜1μmのAIt、 03 、Yi O
s 、Mg0SS i Ot等の単独粉末およびこれら
の混合粉末が該当する。If necessary, a sintering aid powder that exhibits a sintering effect at the sintering temperature of the ceramic powder is used. This kind of powder includes AIt, 03, YiO with a diameter of 0.1 to 1 μm.
This includes individual powders such as s, Mg0SS i Ot, and mixed powders thereof.
前記セラミック粉末、ハロゲン化物粉末および焼結助剤
粉末の配合量は、
セラミック粉末 85〜97重量%ハロゲン化物粉
末 0.1〜2.5重量%焼結助剤粉末 15
重量%以下
である。The blending amounts of the ceramic powder, halide powder, and sintering aid powder are as follows: Ceramic powder: 85 to 97% by weight Halide powder: 0.1 to 2.5% by weight Sintering aid powder: 15
% by weight or less.
上記のように各粉末の配合量を限定する理由は、次の通
りである。ハロゲン化物粉末の場合、その配合量が0.
1重量%を下回ると、ハロゲン化物の有する仮焼結効果
を十分に得ることができないので、仮焼結体の強度が低
くなって機械加工中に仮焼結体が崩壊するおそれがある
。一方、2.5重量%を上回ると、ハロゲン化物が過剰
となり、それに起因して仮焼結体の強度が低下する。ま
たハロゲン化物は中間製品の焼結時、その焼結温度に達
する直前で昇華するが、ハロゲン化物粉末が過剰の場合
にはそれが焼結後のセラミック製品に残留してその強度
を低下させる原因となる。The reason for limiting the blending amount of each powder as described above is as follows. In the case of halide powder, the blending amount is 0.
If the content is less than 1% by weight, the temporary sintering effect of the halide cannot be sufficiently obtained, so the strength of the temporary sintered body decreases, and there is a risk that the temporary sintered body will collapse during machining. On the other hand, if it exceeds 2.5% by weight, the halide becomes excessive and the strength of the pre-sintered body decreases due to this. Furthermore, when sintering an intermediate product, halide sublimes just before reaching the sintering temperature, but if there is an excess of halide powder, it remains in the ceramic product after sintering and causes a decrease in its strength. becomes.
焼結助剤粉末の場合は、その配合量が15重量%を上回
ってもセラミック粉末の焼結性にはそれ程度化が現れな
いからである。This is because, in the case of the sintering aid powder, even if the blending amount exceeds 15% by weight, the sinterability of the ceramic powder will not change to that extent.
前記セラミック粉末、ハロゲン化物粉末および必要に応
じて焼結助剤粉末よりなる混合粉末を用いて成形体を得
る場合は、スリップキャスティング法、加圧成形法、射
出成形法等の各種成形法が用いられる。成形圧力は25
〜150MPaが適当である。When obtaining a molded body using a mixed powder consisting of the ceramic powder, halide powder and, if necessary, sintering aid powder, various molding methods such as slip casting, pressure molding, and injection molding can be used. It will be done. Molding pressure is 25
~150 MPa is appropriate.
また前記成形体より仮焼結体を得る場合の仮焼結条件は
1200〜1500℃で、0.5〜5時間である。この
仮焼結処理により成形体は1〜5%の線収縮率を示す。Further, the pre-sintering conditions for obtaining a pre-sintered body from the molded body are 1200-1500°C and 0.5-5 hours. Due to this preliminary sintering treatment, the molded body exhibits a linear shrinkage rate of 1 to 5%.
仮焼結体の曲げ強さは3〜30 M P a %ビッカ
ース硬さHm vは200〜600、密度は1.8〜2
.18/am’ 、気孔率は25〜40%である。The bending strength of the temporary sintered body is 3 to 30 MPa, the Vickers hardness Hm is 200 to 600, and the density is 1.8 to 2.
.. 18/am', and the porosity is 25-40%.
このように仮焼結体は多孔質体であり、しかもセラミッ
ク粉末等の結晶粒の成長は焼結の極初期段階にあって、
比較的硬さが低く、また所定の強度を有するので、レー
ス加工、ドリル加工等の機械加工性が良好で、例えばレ
ース加工において通常の超硬合金製バイトを用いて10
0 m/winの切削速度を得ることができ、また加工
中に崩壊することもない、この機械加工性を最良にする
ためには仮焼結体のビッカース硬さHmvを300〜5
00に設定するとよい。In this way, the pre-sintered body is a porous body, and the growth of crystal grains such as ceramic powder is in the very early stage of sintering.
Because it has relatively low hardness and a certain level of strength, it has good machinability in lace processing, drilling, etc.
In order to obtain the cutting speed of 0 m/win and to achieve the best machinability without collapsing during machining, the Vickers hardness Hmv of the pre-sintered body should be set to 300 to 5.
It is recommended to set it to 00.
機械加工により得られた中間製品の焼結法としては、常
圧焼結法、ホットプレス法、カプセル法によるHIP処
理(熱間静水圧プレス処理)等が採用される。As a sintering method for the intermediate product obtained by machining, a pressureless sintering method, a hot press method, a HIP treatment (hot isostatic pressing treatment) using a capsule method, etc. are adopted.
焼結条件はセラミック粉末によって異なり、例えば3
t 3 Naを主体とする場合は1500〜1750℃
で、30分間以上、SiCを主体とする場合は1600
〜2200℃で、30分間以上、ZrO2を主体とする
場合は1400〜1600℃で、30分間以上である。Sintering conditions vary depending on the ceramic powder, for example 3
1500-1750°C when mainly composed of t3Na
1600 for more than 30 minutes when using SiC as the main component.
~2200°C for 30 minutes or more, and in the case of ZrO2 as the main ingredient, 1400~1600°C for 30 minutes or more.
直径0.1−1μmのセラミック粉末
5f3N4 91.5重量%
T i N 5.0重量%直径0.1
〜0.5μmのハロゲン化物粉末Ca Cl z
0.5重量%直径0.1〜1μmの焼結助剤粉
末
y、o、 2.0重量%Aβ冨Os
1.0重量%を混合して混合粉末を得、この
混合粉末を用いて加圧成形法を適用し、成形圧力100
MPaにて第1図に示す直径40鰭、長さ40鶴の円柱
状成形体1を得る。Ceramic powder 5f3N4 with diameter 0.1-1 μm 91.5% by weight T i N 5.0% by weight Diameter 0.1
~0.5μm halide powder CaClz
0.5% by weight sintering aid powder y, o with a diameter of 0.1-1 μm, 2.0% by weight Aβ-rich Os
A mixed powder was obtained by mixing 1.0% by weight, and a pressure molding method was applied using this mixed powder to a molding pressure of 100%.
At MPa, a cylindrical molded body 1 having a diameter of 40 fins and a length of 40 fins shown in FIG. 1 is obtained.
乾燥後の成形体1を焼結炉に設置し、炉内にN3ガスを
30 m l /a+inの条件で流通させ、炉内温度
を650℃まで15℃/winの条件で昇温してその温
度に45分間保持し、その後1200’Cまで20℃/
sinの条件で昇温して1200℃で2時間の仮焼結処
理を行う。The dried compact 1 was placed in a sintering furnace, N3 gas was passed through the furnace at a rate of 30 ml/a+in, and the temperature inside the furnace was raised to 650°C at a rate of 15°C/win. Hold at temperature for 45 minutes, then increase to 1200'C at 20°C/
Preliminary sintering treatment is performed at 1200° C. for 2 hours by raising the temperature under sin condition.
仮焼結体の曲げ強さは200 M P a、ビッカース
硬さHmvは300である。The bending strength of the temporary sintered body is 200 MPa, and the Vickers hardness Hmv is 300.
前記仮焼結体に、通常の超硬合金製ドリルを用いてドリ
ル加工を施し、第2図に示すように中心に直径23mの
貫通孔2を形成された中間製品3を得る。The preliminary sintered body is drilled using an ordinary cemented carbide drill to obtain an intermediate product 3 in which a through hole 2 with a diameter of 23 m is formed in the center as shown in FIG.
この中間製品3には加工時においてチッピング、クラン
ク等の欠陥は生じておらず、また加工速度もアルミニウ
ム合金、チルド鋳鉄等と略同等であることが確認されて
いる。It has been confirmed that this intermediate product 3 has no defects such as chipping or cranking during processing, and the processing speed is approximately the same as that of aluminum alloy, chilled cast iron, etc.
中間製品に、HIP処理の適用下で1650℃にて90
分間の焼結処理を施してセラミック製品を得る。The intermediate product was heated to 90°C at 1650°C under the application of HIP treatment.
A ceramic product is obtained by a sintering process for 1 minute.
この場合、中間製品は8%の線収縮率を示し、したがっ
てセラミック製品の寸法精度が良好である。またセラミ
ック製品の曲げ強さは0.7 G P a(IGPa−
IXIO3MPa) 、ビッカース硬さHm vは16
50であり、セラミック製品は高強度で、且つ大きな硬
さを有することが確認されている。In this case, the intermediate product exhibits a linear shrinkage rate of 8%, and therefore the dimensional accuracy of the ceramic product is good. The bending strength of ceramic products is 0.7 GPa (IGPa-
IXIO3MPa), Vickers hardness Hm v is 16
50, and it has been confirmed that ceramic products have high strength and great hardness.
必要に応じて、前記セラミック製品にはポリシング加工
、研磨加工等の仕上げ加工が施されるが、このような仕
上げ加工は焼結後であっても容易に行われる。If necessary, the ceramic product is subjected to finishing processes such as polishing and polishing, but such finishing processes can be easily performed even after sintering.
直径0.1〜1μmのセラミック粉末
5isNa 86.5重量%TiN
10.0重量%直径0.1〜0.5μmのハロ
ゲン化物粉末Ca C1,0,5重量%
直径0.1〜1μmの焼結助剤粉末
YtOs 2.0重量%AIl*Os
1.0重量%を混合して混合粉末を得、
この混合粉末を用いてスリップキャスティング法を適用
し、第3図に示す縦200鶴、横60龍、厚さ10mの
板状成形体4を得る。Ceramic powder with a diameter of 0.1-1 μm 5isNa 86.5% by weight TiN
10.0% by weight Halide powder Ca C1,0.5% by weight with a diameter of 0.1-0.5 μm Sintering aid powder YtOs with a diameter of 0.1-1 μm 2.0% by weight AIl*Os
1.0% by weight to obtain a mixed powder,
Using this mixed powder, a slip casting method is applied to obtain a plate-shaped molded body 4 having a length of 200 mm, a width of 60 mm, and a thickness of 10 m as shown in FIG.
乾燥後の成形体4を焼結炉に設置し、炉内にNよガスを
30 m lt /winの条件で流通させ、炉内温度
を650℃まで15℃/+minの条件で昇温しでその
温度に45分間保持し、その後1200℃まで20℃/
s+inの条件で昇温しで1200℃で2時間の仮焼結
処理を行う。The dried compact 4 was placed in a sintering furnace, N gas was passed through the furnace at a rate of 30 ml/win, and the temperature inside the furnace was raised to 650°C at a rate of 15°C/+min. Hold at that temperature for 45 minutes, then 20°C/20°C up to 1200°C.
Preliminary sintering treatment is performed at 1200° C. for 2 hours under the conditions of s+in.
仮焼結体の曲げ強さは350MPa、ビッカース硬さH
mvは350である。The bending strength of the temporary sintered body is 350 MPa, and the Vickers hardness is H.
mv is 350.
前記仮焼結体を、通常の超硬合金製カッタを用いて第3
図鎖線示のように切断して縦60m、横40++n、厚
さ10mmの素材を得る。第4図に示すように前記力フ
タを用いて素材5に開口部の幅51−1深さ20鶴のV
形切欠き6を3本形成して中間製品7を得る。The pre-sintered body is cut into a third sintered body using an ordinary cemented carbide cutter.
Cut as shown by the chain line in the figure to obtain a material 60 m long, 40 ++ n wide, and 10 mm thick. As shown in FIG. 4, using the force lid, open the material 5 in a V shape with a width of 51-1 and a depth of 20 mm.
Three shaped notches 6 are formed to obtain an intermediate product 7.
この中間製品7には加工時においてチッピング、クラン
ク等の欠陥は生じておらず、また加工速度もアルミニウ
ム合金、チルド鋳鉄等と略同等であることが確認されて
いる。It has been confirmed that this intermediate product 7 has no defects such as chipping or cranking during processing, and the processing speed is approximately the same as that of aluminum alloy, chilled cast iron, etc.
中間製品に、HIP処理の適用下で1650℃にて90
分間の焼結処理を施してセラミック製品を得る。The intermediate product was heated to 90°C at 1650°C under the application of HIP treatment.
A ceramic product is obtained by a sintering process for 1 minute.
この場合、中間製品は10%の収縮率を示し、したがっ
てセラミック製品の寸法精度が良好である。またセラミ
ック製品の曲げ強さは0.80 P a(IGPa−I
XIO3MPa) 、ピンカース硬さHm vは180
0であり、セラミック製品は高強度で、且つ大きな硬さ
を有することが確認されている。In this case, the intermediate product exhibits a shrinkage rate of 10%, and therefore the dimensional accuracy of the ceramic product is good. The bending strength of ceramic products is 0.80 Pa (IGPa-I
XIO3MPa), Pinkers hardness Hmv is 180
0, and it has been confirmed that ceramic products have high strength and large hardness.
前記実施例■同様に、必要に応じて前記セラミック製品
にはポリシング加工等の仕上げ加工が施されるが、この
ような仕上げ加工は焼結後であっても容易に行われる。Similar to Example 2 above, the ceramic product is subjected to finishing processing such as polishing if necessary, but such finishing processing can be easily performed even after sintering.
直径0.1〜1μmのセラミック粉末
5tsNa 80〜95重量%T i C5
,O〜15.0重量%
直径0.1〜0.5μmのハロゲン化物粉末M g F
t 0.1〜2.5重量%直径0.1〜
1μmの焼結助剤粉末
YzOs 4.0重量%以下M g O
2,0重量%以下
の範囲で配合量を変えた多種類の混合粉末を得、これら
混合粉末を用いて加圧成形法を適用し、成形圧力100
MPaにて、′#170fi、横20n、厚さ5Mの多
数の成形体を得る。Ceramic powder 5tsNa 80-95% by weight TiC5 with a diameter of 0.1-1 μm
, O ~ 15.0% by weight Halide powder with a diameter of 0.1 ~ 0.5 μm M g F
t 0.1~2.5% by weight Diameter 0.1~
1 μm sintering aid powder YzOs 4.0% by weight or less M g O
A wide variety of mixed powders were obtained with varying blending amounts within the range of 2.0% by weight or less, and a pressure molding method was applied using these mixed powders to obtain a molding pressure of 100% by weight.
At MPa, a large number of molded bodies of #170fi, width 20n, and thickness 5M were obtained.
乾燥後の各成形体を焼結炉に設置し、炉内にN2ガスを
25 m l 、/winの条件で流通させ、炉内温度
を650℃まで15℃/winの条件で昇温してその温
度に45分間保持し、その後1200℃まで20℃/+
sinの条件で昇温しで1200℃で2時間の仮焼結処
理を行う、この仮焼結処理により各成形体は1〜2%の
線収縮率を示しており、また各仮焼結体の密度は2.0
〜2.2g/am3である。Each dried compact was placed in a sintering furnace, N2 gas was passed through the furnace at a rate of 25 ml/win, and the temperature inside the furnace was raised to 650°C at a rate of 15°C/win. Hold at that temperature for 45 minutes, then 20°C/+ up to 1200°C
A temporary sintering process is performed at 1200°C for 2 hours under sin conditions. Through this temporary sintering process, each compact exhibits a linear shrinkage rate of 1 to 2%, and each temporary sintered body The density of is 2.0
~2.2 g/am3.
第5図は各仮焼結体におけるMgFtおよびTicの配
合量と、各仮焼結体の曲げ強さとの関係を示し、線a、
”−c、はTicの配合量が5.0゜10.0.15.
0重量%の場合にそれぞれ該当する。Figure 5 shows the relationship between the blending amounts of MgFt and Tic in each pre-sintered body and the bending strength of each pre-sintered body, with lines a,
”-c, the amount of Tic added is 5.0°10.0.15.
This applies to each case of 0% by weight.
第5図から、Ticの配合量の増加に伴い仮焼結体の曲
げ強さが向上することが明らかである。It is clear from FIG. 5 that the bending strength of the pre-sintered body improves as the amount of Tic added increases.
また線alxc、に該当する各仮焼結体のビッカース硬
さHmvはそれぞれ300〜500.400〜700.
700〜1000である。The Vickers hardness Hmv of each pre-sintered body corresponding to the line alxc is 300-500.400-700.
It is 700-1000.
各仮焼結体に、レース加工、ドリル加工等の機械加工を
施して中間製品を製作したところ、仮焼結体が、50
M P a以上の曲げ強さおよび300以上のビッカー
ス硬さ)(m vを持っていれば機械加工性が良好で、
またクラック等の発生のない正常な中間製品が得られる
ことが確認されている。When each pre-sintered body was subjected to mechanical processing such as lace processing and drilling to produce an intermediate product, the pre-sintered body had a
Bending strength of M P a or higher and Vickers hardness of 300 or higher) (m V indicates good machinability;
It has also been confirmed that a normal intermediate product without cracks etc. can be obtained.
第5図において、T i Cの配合量の増加に伴い仮焼
結体の曲げ強さが向上する理由は、TiC中の不純物で
ある酸素がM g F tと充分反応してMg T j
O3等を生成し、それらがみかけ上の焼結能向上に寄
与していること、チタンは酸化、還元されやすく、Ti
C−=TiNといった置換反応が仮焼語中進行すること
等に起因するものと思われる。In FIG. 5, the reason why the bending strength of the pre-sintered body improves as the blending amount of TiC increases is that oxygen, which is an impurity in TiC, sufficiently reacts with MgFt to form MgTj
Titanium is easily oxidized and reduced, and Ti
This is thought to be due to the fact that a substitution reaction such as C-=TiN progresses during calcination.
またMgFz(その他のハロゲン化物も同様であるが)
は前記仮焼結温度にて焼結助剤粉末としての酸化物(Y
z Os 、M g O) 、T i C等と反応して
それらを活性化する作用をなし、これにより高強度な仮
焼結体が得られるものであるが、MgFtの配合量が少
ない場合には、M g F zの陰イオン効果が不足し
、一方、MgF、の配合量が多い場合にはM g F
を量が再結晶化するTtClを越えるためそれぞれ仮焼
結体の曲げ強さが低下する傾向にあるものと思われる。Also, MgFz (the same applies to other halides)
is an oxide (Y) as a sintering aid powder at the pre-sintering temperature.
It has the effect of reacting with zOs, MgO), TiC, etc. and activating them, thereby obtaining a high-strength pre-sintered body, but when the amount of MgFt blended is small, The anionic effect of MgFz is insufficient, while when the amount of MgF is large, MgFz
Since the amount of TtCl exceeds the recrystallized TtCl, it is thought that the bending strength of the pre-sintered body tends to decrease.
第5図の線al+ b+に該当するTiC5,011
0,0重量%の各中間製品に、HIP処理の適用下で1
700℃、90分間の焼結処理を施してセラミック製品
を得る。TiC5,011 corresponding to line al+ b+ in Figure 5
0,0% by weight of each intermediate product under the application of HIP treatment.
A ceramic product is obtained by sintering at 700° C. for 90 minutes.
この場合、各中間製品は10〜12%の線収縮率を示し
、したがって各セラミック製品の寸法精度が良好である
。また各セラミック製品の密度は3.1〜3.2g/c
+a’であり、これは理論密度の93%以上であること
が確認されている。In this case, each intermediate product exhibits a linear shrinkage rate of 10-12%, and therefore the dimensional accuracy of each ceramic product is good. In addition, the density of each ceramic product is 3.1 to 3.2 g/c
+a', which is confirmed to be 93% or more of the theoretical density.
第6図はセラミック製品におけるM g F tおよび
TiCの配合量と、各セラミック製品の曲げ強さとの関
係を示し、線a@+btはTiCの配合量が5.0.1
0.0重量%の場合にそれぞれ該当する。Figure 6 shows the relationship between the blending amount of M g F t and TiC in ceramic products and the bending strength of each ceramic product, and the line a@+bt indicates that the blending amount of TiC is 5.0.1
This applies to each case of 0.0% by weight.
第6図からT i Cの配合量の増加に伴いセラミツク
製品の曲げ強さが向上するが、Ticの配合量を一定に
した場合、例えば線a、についてはMgl”2の配合量
を0.1〜2.0重量%に設定すると曲げ強さ0.7〜
1. I G P aが得られ、実用上十分な強度を確
保することができる。またセラミック製品の曲げ強さは
仮焼結体のそれと似たような傾向を示すことが分かる。As shown in FIG. 6, the bending strength of the ceramic product improves as the amount of T i C added increases; however, when the amount of Tic is kept constant, for example, for line a, the amount of Mgl''2 added is 0. When set to 1-2.0% by weight, the bending strength is 0.7-
1. IGP a can be obtained, and practically sufficient strength can be ensured. It can also be seen that the bending strength of ceramic products shows a similar tendency to that of pre-sintered bodies.
さらに線at+ b!に該当する各セラミック製品の
ビッカース硬さ)l m vはそれぞれ1500.17
00である。Further line at+b! The Vickers hardness of each ceramic product corresponding to ) l m v is 1500.17 respectively.
It is 00.
C0発明の効果
本発明によれば、ハロゲン化物の仮焼結作用に基づいて
得られる仮焼結体に機械加工を施して中間製品を得、そ
の中間製品に焼結処理を施すので、高強度で大きな硬さ
を有し、また寸法精度の良いセラミック製品を能率よく
生産することができる。C0 Effects of the Invention According to the present invention, a pre-sintered body obtained based on the pre-sintering action of a halide is machined to obtain an intermediate product, and the intermediate product is subjected to a sintering treatment, so that it has high strength. It is possible to efficiently produce ceramic products with high hardness and good dimensional accuracy.
第1図は成形体の一例を示す斜視図、第2図は中間製品
の一例を示す斜視図、第3図は成形体の他の例を示す斜
視図、第4図は中間製品の他の例を示す正面図、第5図
は仮焼結体におけるMgF2の配合量と曲げ強さとの関
係を示すグラフ、第6図はセラミック製品におけるM
g F tの配合量と曲げ強さとの関係を示すグラフで
ある。
1.4・・・成形体、3.7・・・中間製品持 許 出
願 人 本田技研工業株式会社代理人 弁理士
落 合 鍵箱1図 第2図
第3図
第5図
MgF2ノ配合量(重量’/、 )
第6図Fig. 1 is a perspective view showing an example of a molded product, Fig. 2 is a perspective view showing an example of an intermediate product, Fig. 3 is a perspective view showing another example of a molded product, and Fig. 4 is a perspective view showing another example of an intermediate product. A front view showing an example, FIG. 5 is a graph showing the relationship between the amount of MgF2 mixed in a pre-sintered body and bending strength, and FIG.
It is a graph which shows the relationship between the compounding quantity of gFt and bending strength. 1.4...Molded object, 3.7...Intermediate product license application Person: Honda Motor Co., Ltd. Agent Patent attorney: Ochiai Key box 1 Figure 2 Figure 3 Figure 5 Content of MgF2 (Weight'/, ) Figure 6
Claims (1)
も低い温度にて該セラミック粉末に対し仮焼結作用を発
揮するハロゲン化物粉末を分散させた混合粉末を用いて
成形体を得、次いで該成形体を前記焼結温度よりも低い
前記温度にて仮焼結して仮焼結体を得る工程;前記仮焼
結体に機械加工を施して中間製品を得る工程;および前
記中間製品を前記焼結温度にて焼結する工程;を用いる
ことを特徴とするセラミック製品の製造方法。A molded body is obtained using a mixed powder in which a halide powder that exhibits a pre-sintering effect on the ceramic powder is dispersed in a ceramic powder at a temperature lower than the sintering temperature of the ceramic powder, and then the molded body is obtained. a step of pre-sintering at the temperature lower than the sintering temperature to obtain a pre-sintered body; a step of machining the pre-sintered body to obtain an intermediate product; and a step of sintering the intermediate product. A method for producing a ceramic product, characterized by using a step of sintering at a high temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61217836A JPH0639344B2 (en) | 1986-09-16 | 1986-09-16 | Manufacturing method of ceramic products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61217836A JPH0639344B2 (en) | 1986-09-16 | 1986-09-16 | Manufacturing method of ceramic products |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6374952A true JPS6374952A (en) | 1988-04-05 |
JPH0639344B2 JPH0639344B2 (en) | 1994-05-25 |
Family
ID=16710512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61217836A Expired - Lifetime JPH0639344B2 (en) | 1986-09-16 | 1986-09-16 | Manufacturing method of ceramic products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0639344B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011098856A (en) * | 2009-11-05 | 2011-05-19 | Daiko Seisakusho:Kk | Caf2-mgf2 binary sintered compact and method for manufacturing plasma-proof fluoride sintered compact |
JP2012121776A (en) * | 2010-12-09 | 2012-06-28 | Daiko Seisakusho:Kk | Caf2-mgf2 binary sintered compact and method for producing plasma-proof fluoride sintered compact |
CN110734290A (en) * | 2018-07-18 | 2020-01-31 | 常德科锐新材料科技有限公司 | silicon nitride ceramic materials and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142707A (en) * | 1976-05-24 | 1977-11-28 | Asahi Chemical Co | Hydro oxy apatite sintered articles |
-
1986
- 1986-09-16 JP JP61217836A patent/JPH0639344B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142707A (en) * | 1976-05-24 | 1977-11-28 | Asahi Chemical Co | Hydro oxy apatite sintered articles |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011098856A (en) * | 2009-11-05 | 2011-05-19 | Daiko Seisakusho:Kk | Caf2-mgf2 binary sintered compact and method for manufacturing plasma-proof fluoride sintered compact |
JP2012121776A (en) * | 2010-12-09 | 2012-06-28 | Daiko Seisakusho:Kk | Caf2-mgf2 binary sintered compact and method for producing plasma-proof fluoride sintered compact |
CN110734290A (en) * | 2018-07-18 | 2020-01-31 | 常德科锐新材料科技有限公司 | silicon nitride ceramic materials and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0639344B2 (en) | 1994-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60502244A (en) | Coated silicon nitride cutting tools | |
CN1016164B (en) | Whisker reinforced ceramics and method of clad/hot isostatic pressing same | |
JPS58213679A (en) | Composite ceramic cutting tool and manufacture | |
US4526875A (en) | Ceramic material for cutting tools and process for the production thereof | |
JPS6374952A (en) | Manufacture of ceramic products | |
JP2546709B2 (en) | High strength cubic boron nitride containing sintered body | |
JPH085720B2 (en) | Whisker-reinforced composite sintered body | |
JP3588162B2 (en) | Silicon nitride cutting tool and method of manufacturing the same | |
JP2863829B2 (en) | High toughness, high strength, high hardness alumina-based composite material | |
JPS63100055A (en) | Alumina base ceramic for cutting tool and manufacture | |
JPH0372031B2 (en) | ||
JPS6259568A (en) | Ceramic material excellent in precise processability | |
JPH0625037B2 (en) | Manufacturing method of ceramic products | |
JPH03126659A (en) | Superhard ceramics | |
JPH01215754A (en) | Sintered material based on aluminum oxide and its production | |
JPH11217274A (en) | Whisker-reinforced ceramic and its production | |
JPH0710751B2 (en) | Surface-modified ceramic sintered body and method for producing the same | |
JPH0616468A (en) | Alumina sintered body for tool and its production | |
JPH0411503B2 (en) | ||
JPS62158168A (en) | Silicon nitride base sintered body | |
JPH07172906A (en) | Ceramic sintered compact | |
JPS59213676A (en) | High strength silicon nitride sintered body and manufacture | |
JPS6360164A (en) | Silicon nitride sintered body for cutting tool and manufacture | |
JP2000007441A (en) | High toughness ceramic sintered compact | |
JPS63129066A (en) | High hardness high strength ceramic sintered body and manufacture |