Nothing Special   »   [go: up one dir, main page]

JPS637140A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPS637140A
JPS637140A JP61148615A JP14861586A JPS637140A JP S637140 A JPS637140 A JP S637140A JP 61148615 A JP61148615 A JP 61148615A JP 14861586 A JP14861586 A JP 14861586A JP S637140 A JPS637140 A JP S637140A
Authority
JP
Japan
Prior art keywords
voltage
reactive power
circuit
power
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61148615A
Other languages
Japanese (ja)
Inventor
公弘 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61148615A priority Critical patent/JPS637140A/en
Publication of JPS637140A publication Critical patent/JPS637140A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は無効電力補償装置に関するものである。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a reactive power compensator.

(従来の技術〉 無効電力補償装置(以下SVCと記す)のもつ機能の一
つに電力系統の系統電圧を安定化させることがある。
(Prior Art) One of the functions of a reactive power compensator (hereinafter referred to as SVC) is to stabilize the system voltage of a power system.

第5図は電力系統に設置されたSVCの一例を示すもの
である。1は電力系統の送電端、2は送N線、3は受電
端、4は負荷を示す。5はリアクトル、6はサイリスタ
を示し、リアクトル5とサイリスタ6でサリスタ制御リ
アクトルというSVCの一構成例である。破mAで囲ま
れた部分がSvCである。7aは補助変圧器(以下PT
と記す)、8はSVCの制御回路である。
FIG. 5 shows an example of an SVC installed in a power system. 1 indicates the power transmission end of the power system, 2 indicates the transmission N line, 3 indicates the power reception end, and 4 indicates the load. 5 is a reactor, 6 is a thyristor, and the reactor 5 and thyristor 6 are an example of a configuration of an SVC called a thyristor-controlled reactor. The part surrounded by broken mA is SvC. 7a is an auxiliary transformer (hereinafter referred to as PT)
8 is an SVC control circuit.

第6図は第5図の制御回路8の構成を示すブロツク図で
あり、その構成と作用を簡単に説明する。
FIG. 6 is a block diagram showing the configuration of the control circuit 8 of FIG. 5, and its configuration and operation will be briefly explained.

9は電圧検出回路、10は基準電圧Vrerを示す設定
器、11aは減圧器である。12は受電端の系統電圧V
Rが基準電圧Vrerに維持されるようSVCの発生す
べき無効電力Qを決定する無効電力決定回路で通常比例
積分回路などが用いられる。
9 is a voltage detection circuit, 10 is a setting device that indicates the reference voltage Vrer, and 11a is a pressure reducer. 12 is the system voltage V at the receiving end
A proportional-integral circuit or the like is normally used as a reactive power determining circuit that determines the reactive power Q to be generated by the SVC so that R is maintained at the reference voltage Vrer.

13はSVCが無効電力Qを発生させるようなサイリス
タ6の点弧角αを決定する点弧角決定回路である。14
は点弧角がαとなるサイリスタ6へのゲートパルスを発
生するゲートパルス発生回路(PG)である。
Reference numeral 13 denotes a firing angle determination circuit that determines the firing angle α of the thyristor 6 such that the SVC generates the reactive power Q. 14
is a gate pulse generation circuit (PG) that generates a gate pulse to the thyristor 6 whose firing angle is α.

これらの作用を簡単に説明すると、PT7aからの信号
と電圧検出回路9により受電端の系統電圧VRが検出さ
れ、設定器10で示された基準電圧Vrefとの差であ
る誤差電圧ΔVRが減算器11aにより検出される。
Briefly explaining these functions, the system voltage VR at the receiving end is detected by the signal from the PT 7a and the voltage detection circuit 9, and the error voltage ΔVR, which is the difference from the reference voltage Vref indicated by the setting device 10, is detected by the subtracter. 11a.

次に無効電力決定回路12により系統電圧VRが基準電
圧Vrefに維持されるようなSVCの出力無効電力Q
が誤差電圧ΔVRから決定される。
Next, the reactive power determining circuit 12 outputs reactive power Q of the SVC such that the grid voltage VR is maintained at the reference voltage Vref.
is determined from the error voltage ΔVR.

次に点弧角決定回路13において、SvCが無効電力Q
を出力するためのサイリスタ6の点弧角αが決定される
。次にPGI1での点弧角決定回路13の出力である点
弧角αを使用し、同期信号などを考慮に入れたゲートパ
ルスが形成される。
Next, in the firing angle determination circuit 13, SvC is the reactive power Q
The firing angle α of the thyristor 6 for outputting is determined. Next, using the firing angle α which is the output of the firing angle determination circuit 13 in PGI 1, a gate pulse is formed taking into account the synchronization signal and the like.

このゲートパルスによりサイリスタ6は点弧され、Sv
Cは無効電力Qを発生し、受電端系統電圧VRは基準電
圧V refに維持される。以上説明したようにこの制
御ループは系統電圧VRを基準電圧Vrefに維持しよ
うとするところから自動電圧制御回路とも呼べる。
The thyristor 6 is fired by this gate pulse, and Sv
C generates reactive power Q, and the receiving end system voltage VR is maintained at the reference voltage V ref. As explained above, this control loop can also be called an automatic voltage control circuit since it attempts to maintain the system voltage VR at the reference voltage Vref.

(発明が解決しようとする問題点) しかしながら、SVCの使用者にとって系統電圧VRを
基準電圧yrerに維持することだけが最優先の目的で
あるとは限らない。例えば系統電圧VRが基準電圧V 
refからあまりはずれなければ送電の効率を高める方
が優先される場合もある。
(Problems to be Solved by the Invention) However, maintaining the grid voltage VR at the reference voltage yrer is not necessarily the highest priority objective for SVC users. For example, the grid voltage VR is the reference voltage V
In some cases, priority is given to improving power transmission efficiency as long as it does not deviate too much from ref.

しかも応答時間の観点からすれば前記自動電圧制御回路
に比較して送電効率を高める制御回路の方は非常にゆっ
くりした応答で良いので両者が干渉することがないよう
にできる。
Moreover, from the viewpoint of response time, the control circuit that increases power transmission efficiency requires a much slower response than the automatic voltage control circuit, so it is possible to prevent the two from interfering with each other.

本発明の目的とするところは、系統電圧を基準電圧から
大きく離れない電圧に維持しつつ、かつ送電効率を高め
るようなSVCを提供することにある。
An object of the present invention is to provide an SVC that maintains the grid voltage at a voltage that does not deviate significantly from a reference voltage and improves power transmission efficiency.

[発明の構成コ (問題点を解決するための手段) 本発明は、前記目的を達成するために、系統電圧を基準
電圧に維持するように制御する無効電力補償装置におい
て、無効電力補償装置の設置点の系統電圧と、送電線を
介した相手端の系統電圧との差電圧から得られる送電効
率改善信号を伝達関数回路とリミッタ回路との直列回路
を介して前記基準電圧に加算するようにしたものである
[Configuration of the Invention (Means for Solving Problems)] In order to achieve the above object, the present invention provides a reactive power compensator that controls the system voltage to maintain it at a reference voltage. A power transmission efficiency improvement signal obtained from the difference voltage between the grid voltage at the installation point and the grid voltage at the other end via the transmission line is added to the reference voltage via a series circuit of a transfer function circuit and a limiter circuit. This is what I did.

(作 用) 第1図に示すように、本発明は、送電効率改善信号Bは
伝達関数回路Cを通過することによりゆっ(つとリミッ
タ回路りに伝達され、次にリミッタ回路りにより送電効
率改善信号Bにはある制限値が課されてから基準電圧E
に加算されて、新しい基準電圧が形成される。この新し
い基準電圧を目標に自動電圧制御回路GはSVCを制御
するようにしたものである。
(Function) As shown in FIG. 1, in the present invention, the power transmission efficiency improvement signal B is slowly transmitted to the limiter circuit by passing through the transfer function circuit C, and then the power transmission efficiency is improved by the limiter circuit. A certain limit value is imposed on the signal B, and then the reference voltage E
is added to form a new reference voltage. The automatic voltage control circuit G controls the SVC with this new reference voltage as a target.

(発明の実施例) 送電効率の改善が目的であるといってもSvCの使用者
により送電効率の意味するところは異なる。いま−例と
して第5図に示すように送電線を介して送電端と受電端
がある場合、送′Ii端の系統電圧と受電端の系統電圧
が等しい時、送電線の損失が最小に近くなる。よって送
電効率改善信号としてSVC設置点からみて送電線を介
した相手端(例として送電端)の系統電圧からSvC設
置点(例として受電端)の系統電圧を差し引いた差電圧
を用いた場合の実施例について第2図を用いて説明する
(Embodiments of the Invention) Although the purpose is to improve power transmission efficiency, the meaning of power transmission efficiency differs depending on the user of SvC. For example, if there is a transmission end and a power receiving end via a power transmission line as shown in Figure 5, when the grid voltage at the sending end and the grid voltage at the receiving end are equal, the loss in the transmission line is close to the minimum. Become. Therefore, when using the difference voltage obtained by subtracting the system voltage at the SVC installation point (for example, the receiving end) from the system voltage at the other end (for example, the sending end) via the transmission line from the point of view of the SVC installation point as a power transmission efficiency improvement signal, An example will be explained using FIG. 2.

従来例の説明で用いた符号と同一符号のものは同一機能
を有する。11bは減算器、15は伝達関数回路で例と
して1次遅れ回路、16はリミッタ回路、17は加算器
である。破線Hで囲まれた部分が本発明に相当する。
Components having the same symbols as those used in the description of the conventional example have the same functions. 11b is a subtracter, 15 is a transfer function circuit such as a first-order delay circuit, 16 is a limiter circuit, and 17 is an adder. The portion surrounded by the broken line H corresponds to the present invention.

第2図において、Vsは送電端の系統電圧を示し、各相
似則の電圧値でも良いが、平均値のような代表値が好ま
しい。まず、減算器11bで送電端電圧VSと基準電圧
V refとの差電圧Δv5が検出される。基本的には
このΔ■5が基準電圧yrerに加算され新しい基準電
圧■8が形成される。新しい基準電圧vNは送電端電圧
■5と等しいので、受’l@II’圧VRは送N端電圧
Vsと等しくなろうとする。しかし送電効率改善制御ル
ープが自動電圧制御ループと干渉するのは好ましくなく
、また送電効率の改善は自動電圧制御回路と比較して非
常にゆっくり作用して良いので、差電圧ΔVsは直接基
準電圧Vrerに加算されず、1次遅れ回路15を通し
てゆっくりと伝えられる。また送電端電圧v5が基準電
圧vrerから大きくずれた場合、つまりΔVsが非常
に大きくなった場合、SVCは受電端電圧VRを基準電
圧y rerから大きくはずれた電圧に維持しようとし
て好ましくないので、リミッタ回路16により基準電圧
vrefに加算されるΔVsの値には制限が課される。
In FIG. 2, Vs indicates the system voltage at the power transmission end, and although it may be a voltage value of each similarity law, a representative value such as an average value is preferable. First, the subtracter 11b detects the difference voltage Δv5 between the power transmission end voltage VS and the reference voltage V ref. Basically, this Δ■5 is added to the reference voltage yrer to form a new reference voltage ■8. Since the new reference voltage vN is equal to the sending end voltage 5, the receiving 'l@II' voltage VR tends to become equal to the sending N end voltage Vs. However, it is undesirable for the power transmission efficiency improvement control loop to interfere with the automatic voltage control loop, and since the power transmission efficiency improvement may work very slowly compared to the automatic voltage control circuit, the differential voltage ΔVs is directly connected to the reference voltage Vrer. The signal is not added to the signal, but is transmitted slowly through the first-order delay circuit 15. Furthermore, if the sending end voltage v5 deviates greatly from the reference voltage vrer, that is, if ΔVs becomes very large, the SVC tries to maintain the receiving end voltage VR at a voltage that deviates greatly from the reference voltage y rer, which is not desirable, so the limiter A limit is imposed on the value of ΔVs that is added to the reference voltage vref by the circuit 16.

以上説明したように送電端電圧■5と基準電圧■ref
との差電圧ΔVsがリミッタ回路16の制限以内であれ
ば、新しい基準電圧v2は一次遅れ回路15の時定数に
基づいた時間後、送電mN圧Vsと等しくなる。また差
電圧ΔVsがリミッタ回路16の制限値以上であればそ
の制限値で許された範囲で新しいM準電圧vNは送電端
電圧Vsに近づこうとする。そして新しい基準電圧vN
が決定された後は従来例で説明した同一作用でもって送
電端電圧VRは新しい基準電圧■、に維持される。
As explained above, the sending end voltage ■5 and the reference voltage ■ref
If the differential voltage ΔVs is within the limit of the limiter circuit 16, the new reference voltage v2 becomes equal to the power transmission mN pressure Vs after a time based on the time constant of the first-order lag circuit 15. Further, if the differential voltage ΔVs is greater than or equal to the limit value of the limiter circuit 16, the new M quasi-voltage vN tends to approach the power transmission end voltage Vs within the range allowed by the limit value. and a new reference voltage vN
After the voltage is determined, the sending end voltage VR is maintained at the new reference voltage V by the same effect as explained in the conventional example.

以上説明したようにSVC設置点(受電端)の系統電圧
は基準電圧refから大きくはずれない範囲で送電端と
等しいかまたはそれに近い電圧に維持され、送電効率を
改善することができる。特に自動電圧制御回路が各相似
則に制御されており、かつ第2図のVsが平均値などの
代表値であるなら、本発明の送電効率改善制御回路を追
加しても各相電圧の不平衡を改善する自動電圧制御ルー
プの作用にほとんど悪影響を与えない。
As described above, the system voltage at the SVC installation point (power receiving end) is maintained at a voltage equal to or close to that at the power transmitting end within a range that does not deviate significantly from the reference voltage ref, and power transmission efficiency can be improved. In particular, if the automatic voltage control circuit is controlled according to the law of similarity, and Vs in Fig. 2 is a representative value such as an average value, even if the power transmission efficiency improvement control circuit of the present invention is added, there will be no difference in the voltage of each phase. It has little negative effect on the operation of the automatic voltage control loop which improves the balance.

以上は送電効率改善の意味を送電損失の低減と解釈した
場合について説明したが、SvCを使用する場合にはS
VC設置点での力率を基準力率、例えば力率=1に維持
することを望む場合や、またSVC設置点での送電線へ
流出する無効電力を基準無効電力に維持することを望む
場合もある。
The above explained the case where the meaning of improving power transmission efficiency is interpreted as reducing power transmission loss, but when using SvC,
When it is desired to maintain the power factor at the VC installation point to the reference power factor, for example power factor = 1, or when it is desired to maintain the reactive power flowing out to the transmission line at the SVC installation point to the reference reactive power There is also.

第3図は前者要望を満すための構成例である。FIG. 3 shows an example of a configuration to satisfy the former requirement.

図において、18は力率検出回路、1つは基準力率pF
rerを示す設定器である。破線1で囲まれた部分が本
発明の要部に相当する。
In the figure, 18 is a power factor detection circuit, 1 is a reference power factor pF
This is a setting device that indicates rer. The part surrounded by broken line 1 corresponds to the main part of the present invention.

第3図において、PT7aとCT7bの信号からSvC
設置点での力率PFを力率検出回路1日で検出し、設定
器19が示す基準力率P F refと力率PFとの差
力率ΔPFが減算器11bで検出される。このΔPFが
一次遅れ回路15を通過することによって△PFの変化
はゆっくりと伝えられ、リミッタ回路16の制限が許す
範囲でΔPFが基準電圧V refに加算され、新しい
基準電圧■Nが形成される。自動電圧制御回路の作用は
従来例で説明したと同様でSVC設置点の電圧は新しい
基準電圧■8に維持される。
In Figure 3, from the signals of PT7a and CT7b, SvC
The power factor PF at the installation point is detected by the power factor detection circuit for one day, and the difference power factor ΔPF between the reference power factor PF ref indicated by the setting device 19 and the power factor PF is detected by the subtractor 11b. By passing this ΔPF through the first-order delay circuit 15, the change in ΔPF is transmitted slowly, and ΔPF is added to the reference voltage V ref within the limit allowed by the limiter circuit 16, forming a new reference voltage ■N. . The operation of the automatic voltage control circuit is the same as that described in the conventional example, and the voltage at the SVC installation point is maintained at the new reference voltage (8).

以上説明したようにSvC設置点の系M電圧は基準電圧
から大きくずれることなく電圧は維持され、かつ力率も
改善される。
As explained above, the system M voltage at the SvC installation point is maintained without greatly deviating from the reference voltage, and the power factor is also improved.

第4図は前述した後者の要望を満すための一構成例であ
る。図において、2oは無効電力検出回路、2)は基準
無効電力V A Rrefを示す設定器である。破線J
で囲まれた部分が本発明の変形例2に相当する。
FIG. 4 shows an example of a configuration for satisfying the latter requirement mentioned above. In the figure, 2o is a reactive power detection circuit, and 2) is a setting device that indicates the reference reactive power V A Rref. Broken line J
The portion surrounded by corresponds to Modification 2 of the present invention.

第4図において、PT7aとCT7bの信号からSVC
設置点での送電線への無効電力VARを無効電力検出回
路20で検出し、設定器2)が示す基準無効電力M A
 Rverと無効電力VARとの差△VARが減算器1
1bで検出される。このΔVARが一次遅れ回路15を
通過することによってΔVARの変化はゆっくり伝えら
れ、リミッタ回路16の制限が許す範囲でΔVARが基
!#雷電圧 A Rrerに加算され新しい基準電圧V
Nが形成される。自動電圧制御回路の作用は従来例で説
明したと同様でSVC設置点の電圧は新しい基準電圧V
Nに維持される。
In Fig. 4, from the signals of PT7a and CT7b, the SVC
The reactive power VAR to the transmission line at the installation point is detected by the reactive power detection circuit 20, and the reference reactive power M A indicated by the setting device 2) is detected.
The difference △VAR between Rver and reactive power VAR is the subtracter 1
1b. By passing this ΔVAR through the first-order delay circuit 15, the change in ΔVAR is transmitted slowly, and within the range allowed by the limits of the limiter circuit 16, ΔVAR is changed based on the value of ΔVAR! #Lightning voltage A New reference voltage V added to Rrer
N is formed. The operation of the automatic voltage control circuit is the same as that explained in the conventional example, and the voltage at the SVC installation point is the new reference voltage V.
maintained at N.

以上説明したようにSvC設置点の系統電圧は基準電圧
から大きくずれることのない電圧に維持され、かつ送電
線への無効電力も制御できる。
As explained above, the system voltage at the SvC installation point is maintained at a voltage that does not deviate significantly from the reference voltage, and reactive power to the power transmission line can also be controlled.

[発明の効果] 以上説明したように本発明によれば、系統電圧を基準電
圧から大きくはずれることなく維持でき、かつ送電損失
、力率の改善あるいは送電線へ流出する無効電力を制御
することができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to maintain the grid voltage without significantly deviating from the reference voltage, and to improve transmission loss, power factor, or control reactive power flowing into the transmission line. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す主要部のブロック図、
第2図乃至第4図は本発明のそれぞれ異る伯の実施例を
示すブロック図、第5図は無効電力補償装置の単結線図
、第6図は従来の無効電力補償装置を制御する回路のブ
ロック図である。 1・・・送電端、2・・・送電線、3・・・受電端、4
・・・負荷、5・・・リアクトル、6・・・サイリスタ
、7a・・・補助変圧器、7b・・・補助変流器、8・
・・制御回路、9・・・電圧検出回路、10・・・設定
器、11a・・・減算器、12・・・無効電力決定回路
、13・・・点弧角決定回路、14・・・ゲートパルス
発生回路、15・・・伝達関数回路、16・・・リミッ
タ回路、17・・・加算器、18・・・力率検出回路、
19・・・設定器、2o・・・無効電力検出回路、2)
・・・設定器。 出願人代理人 弁理士 鈴江武彦 第1図 8′ 第5図 1゜ 第6図
FIG. 1 is a block diagram of the main parts showing one embodiment of the present invention,
2 to 4 are block diagrams showing different embodiments of the present invention, FIG. 5 is a single line diagram of a reactive power compensator, and FIG. 6 is a circuit for controlling a conventional reactive power compensator. FIG. 1...Power transmission end, 2...Power transmission line, 3...Power receiving end, 4
Load, 5 Reactor, 6 Thyristor, 7a Auxiliary transformer, 7b Auxiliary current transformer, 8
... Control circuit, 9... Voltage detection circuit, 10... Setting device, 11a... Subtractor, 12... Reactive power determining circuit, 13... Firing angle determining circuit, 14... Gate pulse generation circuit, 15... Transfer function circuit, 16... Limiter circuit, 17... Adder, 18... Power factor detection circuit,
19... Setting device, 2o... Reactive power detection circuit, 2)
...Setting device. Applicant's representative Patent attorney Takehiko Suzue Figure 1 8' Figure 5 1゜Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)系統電圧を基準電圧に維持するように制御する無
効電力補償装置において、前記無効電力補償装置設置点
の系統電圧と送電線を介した相手端の系統電圧との差電
圧から得られる送電効率改善信号を伝達関数回路とリミ
ッタ回路との直列回路を介して前記基準電圧に加算する
ことを特徴とする無効電力補償装置。
(1) In a reactive power compensator that controls the grid voltage to maintain it at a reference voltage, power is transmitted obtained from the difference voltage between the grid voltage at the installation point of the reactive power compensator and the grid voltage at the other end via the transmission line. A reactive power compensator characterized in that an efficiency improvement signal is added to the reference voltage via a series circuit including a transfer function circuit and a limiter circuit.
(2)伝達関数回路が進み回路と遅れ回路の組み合せか
ら成ることを特徴とする特許請求の範囲第1項記載の無
効電力補償装置。
(2) The reactive power compensator according to claim 1, wherein the transfer function circuit comprises a combination of a lead circuit and a delay circuit.
(3)送電効率改善信号が前記無効電力補償装置設置点
での力率と基準力率との差をとった信号であることを特
徴とする特許請求の範囲第1項記載の無効電力補償装置
(3) The reactive power compensator according to claim 1, wherein the power transmission efficiency improvement signal is a signal obtained by taking the difference between the power factor at the installation point of the reactive power compensator and a reference power factor. .
(4)送電効率改善信号が前記無効電力補償装置設置点
での無効電力と基準無効電力との差をとった信号である
ことを特徴とする特許請求の範囲第1項記載の無効電力
補償装置。
(4) The reactive power compensator according to claim 1, wherein the power transmission efficiency improvement signal is a signal obtained by taking the difference between the reactive power at the installation point of the reactive power compensator and the reference reactive power. .
JP61148615A 1986-06-25 1986-06-25 Reactive power compensator Pending JPS637140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148615A JPS637140A (en) 1986-06-25 1986-06-25 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148615A JPS637140A (en) 1986-06-25 1986-06-25 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPS637140A true JPS637140A (en) 1988-01-13

Family

ID=15456744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148615A Pending JPS637140A (en) 1986-06-25 1986-06-25 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPS637140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270234A (en) * 1988-09-06 1990-03-09 Toshiba Corp Reactive power compensator
WO2023234783A1 (en) * 2022-05-31 2023-12-07 Wei Hua The maximum transmission efficiency method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270234A (en) * 1988-09-06 1990-03-09 Toshiba Corp Reactive power compensator
WO2023234783A1 (en) * 2022-05-31 2023-12-07 Wei Hua The maximum transmission efficiency method

Similar Documents

Publication Publication Date Title
US4264951A (en) DC Power transmission control
US4353024A (en) Control for VAR generator with deadband
US4344025A (en) Motor control system
US4263517A (en) Control method and system for an high voltage direct current system
EP0129250B1 (en) Converter control system
JPS5857078B2 (en) Duplex converter device
JPS637140A (en) Reactive power compensator
US3686552A (en) Synchronous motor field regulator control
US4250542A (en) Method for controlling operating conditions of D.C. transmission line and control device for effecting same
US3984741A (en) Method and apparatus for current regulation of a circulating-currentfree rectifier circuit arrangement
US3767999A (en) Control means for static converters
JPS61156320A (en) Static reactive power compensator
SU1239801A1 (en) Method of controlling thyristor frequency converter
SU736268A1 (en) Regulator of converter substation of dc transmission line
JPS62277028A (en) Svc controller
JPS5851740A (en) Controller for dc transmission system
JPH05207650A (en) Controller for dc transmission system
JP3053882B2 (en) Reactive power compensator
JPS5725014A (en) Control system of reactive power compensating device
SU598048A1 (en) Method of stabilization of controlled voltage converter output current with output smoothing reactor
JPH04178117A (en) Control system for voltage fluctuation suppressor
JPH061988B2 (en) Current control method for current source thyristor inverter
JPS60106334A (en) Method of controlling field current of non-utility generator
JPS63136915A (en) Controller of reactive power compensator
JPH06230839A (en) Reactive power compensating device