JPS636834A - Selective epitaxial growth method - Google Patents
Selective epitaxial growth methodInfo
- Publication number
- JPS636834A JPS636834A JP14828386A JP14828386A JPS636834A JP S636834 A JPS636834 A JP S636834A JP 14828386 A JP14828386 A JP 14828386A JP 14828386 A JP14828386 A JP 14828386A JP S636834 A JPS636834 A JP S636834A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- single crystal
- substrate
- region
- grown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000013078 crystal Substances 0.000 claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000002955 isolation Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000013079 quasicrystal Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔概要〕
従来の選択エピタキシャル成長方法においては、選択用
マスク材上に成長した多結晶層が、単結晶上に成長した
単結晶層に浸透し、単結晶層領域を狭くする。これを防
止するため基板上に形成した凸部に単結晶層を成長し、
さらに、選択用マスク材を成長しようとする結晶層と同
分子の非晶tiJを用いて単結晶領域と多結晶領域の境
界の応力を低下させる。[Detailed Description of the Invention] [Summary] In the conventional selective epitaxial growth method, the polycrystalline layer grown on the selective mask material penetrates into the single crystal layer grown on the single crystal, narrowing the single crystal layer region. do. To prevent this, a single crystal layer is grown on the convex portion formed on the substrate.
Furthermore, the stress at the boundary between the single crystal region and the polycrystalline region is reduced by using amorphous tiJ, which has the same molecule as the crystal layer in which the selection mask material is to be grown.
本発明は選択エピタキシャル成長に関する。 The present invention relates to selective epitaxial growth.
半導体基板として、珪素(Si)等■族半導体、ガリウ
ム砒素(GaAs)等のm−v族化合物半導体等の単結
晶基板が用いられる。As the semiconductor substrate, a single crystal substrate such as a group III semiconductor such as silicon (Si) or an m-v group compound semiconductor such as gallium arsenide (GaAs) is used.
これらの基板は用途によりダメージフリー、半絶縁性、
高濃度等のものがある。These substrates can be damage-free, semi-insulating, or
There are high concentrations.
また単結晶作成法としては引き上°げ(CZ)法、フロ
ーティングゾーン(FZ)法等があり、これらの手段で
インゴットが作成され、それをスライスし、研磨してウ
エバ状態の基板が得られる。In addition, methods for producing single crystals include the pulling (CZ) method and the floating zone (FZ) method, which create an ingot, which is then sliced and polished to obtain a substrate in the form of a web. .
半導体デバイスを作成するとき、基板のまま使用される
ことは少なく、基板上にさらにエピタキシャル成長させ
た単結晶層を使用する場合の方が多い。When creating a semiconductor device, the substrate is rarely used as is, and more often a single crystal layer further epitaxially grown on the substrate is used.
さらに、半導体デバイスの進展にともない、基板上に選
択エピタキシャル成長を行い、活性領域(素子形成領域
)には単結晶層、フィールド領域(素子分離領域)には
多結晶層を成長させる手法が用いられるようになった。Furthermore, with the advancement of semiconductor devices, a method of selective epitaxial growth on the substrate, growing a single crystal layer in the active region (element formation region) and a polycrystalline layer in the field region (element isolation region), has been used. Became.
基板表面にエピタキシャル成長させる方法は、現在では
化合物半導体デバイスの作成に多く用いられている。The method of epitaxial growth on the surface of a substrate is currently widely used in the production of compound semiconductor devices.
すなわち、液相エピタキシャル成長(LPE)法を用い
る半導体レーザや受光素子のへテロエピタキシャル層や
、有機金属気相成長(MO−CVD)法や分子線エピタ
キシャル成長(旧ε)法による高電子易動度素子(HE
MT)のへテロエピタキシャル層や、超格子素子等の多
層へテロエピタキシャル層の形成に多用されている。That is, heteroepitaxial layers of semiconductor lasers and photodetectors using the liquid phase epitaxial growth (LPE) method, and high electron mobility devices using the metal organic vapor phase epitaxy (MO-CVD) method or the molecular beam epitaxial growth (formerly ε) method. (H.E.
It is frequently used to form heteroepitaxial layers of MT) and multilayer heteroepitaxial layers such as superlattice elements.
第3図は従来の選択エピタキシャル成長を説明する断面
図である。FIG. 3 is a cross-sectional view illustrating conventional selective epitaxial growth.
図において、1は単結晶基板で、この上に選択用マスク
として二酸化珪素(SiOz)層2を被着し、通常のり
ソグラフィを用いて、素子形成のための活性領域を開口
する。In the figure, reference numeral 1 denotes a single crystal substrate, on which a silicon dioxide (SiOz) layer 2 is deposited as a selection mask, and an active region for forming elements is opened using ordinary lithography.
開口部を覆って結晶層を成長すると露出した単結晶基板
1上には単結晶層3Aが選択的にエピタキシャル成長し
、SiO□層2上には多結晶層3Bが成長する。When a crystal layer is grown to cover the opening, a single crystal layer 3A is selectively epitaxially grown on the exposed single crystal substrate 1, and a polycrystalline layer 3B is grown on the SiO□ layer 2.
この場合、単結晶層3Aは開口部の底に露出された単結
晶上にのみ1方向に成長するのに対して、多結晶層3B
の成長方向は、SiOz層2の段差を覆って270°で
あるため開口部内に成長する単結晶層3Aの領域内に多
結晶層3Bが浸透し、単結晶層3Aの領域を狭くする。In this case, the single crystal layer 3A grows in one direction only on the single crystal exposed at the bottom of the opening, whereas the polycrystalline layer 3B
Since the growth direction is 270° covering the step of the SiOz layer 2, the polycrystalline layer 3B penetrates into the region of the single crystal layer 3A growing inside the opening, narrowing the region of the single crystal layer 3A.
多結晶層3Bの単結晶層3Aに接する領域は不整合領域
となり、この領域が活性領域内に浸透することになる。The region of the polycrystalline layer 3B in contact with the single crystal layer 3A becomes a mismatch region, and this region penetrates into the active region.
また、多結晶層3Bは5iOz上に成長するため、くす
んだ色となり、鏡面になり難い。Moreover, since the polycrystalline layer 3B is grown on 5 iOz, it has a dull color and is difficult to have a mirror surface.
このように、半導体デバイスの活性領域となる準結晶I
J3Aに多結晶層3Bが浸透し、また不整合領域が活性
領域内にあるため、素子解析にも不明瞭なことが生じや
すい。In this way, quasicrystal I, which becomes the active region of a semiconductor device,
Since the polycrystalline layer 3B penetrates into J3A and the mismatch region is within the active region, it is easy to have ambiguities in device analysis.
さらに、選択用マスクの素材に問題があり、ここで用い
た、容易に得られるが問題の多いSin、層の場合につ
いて説明する。Furthermore, there is a problem with the material of the selection mask, and the case of the Sin layer used here, which is easily obtained but has many problems, will be explained.
一般に、成長分子が単結晶基板分子と同じならば整合し
て基板上に単結晶が成長し、非晶質、ないし多結晶のS
iO□上には多結晶が成長する。Generally, if the growing molecules are the same as the single crystal substrate molecules, a single crystal will grow on the substrate with matching, and amorphous or polycrystalline S
Polycrystals grow on iO□.
この場合多結晶は任意の方向に成長し、大きなグレイン
となって成長してゆく。厚い層の成長の場合はこれらの
グレインは問題とならないが、エピタキシャル成長層が
数nm程度と薄い場合は、SiOz層上の多結晶層は素
子分離層としても不安定な層となる。In this case, the polycrystals grow in any direction and form large grains. These grains do not pose a problem when a thick layer is grown, but when the epitaxially grown layer is as thin as several nanometers, the polycrystalline layer on the SiOz layer becomes an unstable layer even as an element isolation layer.
さらに、マスク材と単結晶表面に飛来するエピタキシャ
ル成長分子は、異なった反応律則で成長するため、単結
晶領域と多結晶領域との界面には余分な応力を生じ、不
安定な成長層となる。Furthermore, the epitaxial growth molecules that fly to the mask material and the single crystal surface grow according to different reaction laws, which creates extra stress at the interface between the single crystal region and the polycrystalline region, resulting in an unstable growth layer. .
従来の選択エピタキシャル成長においては、フィールド
領域の多結晶N3Bは、活性領域となる単結晶13Aの
領域内に浸透して単結晶層3Aの領域を狭くし、界面は
不整合領域となり、余分な応力を生ずる。In conventional selective epitaxial growth, the polycrystalline N3B in the field region penetrates into the region of the single crystal layer 13A, which becomes the active region, narrowing the region of the single crystal layer 3A, and the interface becomes a mismatched region, which causes excess stress. arise.
上記問題点の解決は、単結晶基板上に凸部を形成する工
程と、該単結晶基板上の該凸部以外の領域に非晶質層を
被着する工程と、該単結晶基板上全面に結晶層を成長す
る工程とを含む本発明による選択エピタキシャル成長方
法によって達成される。The solution to the above problem is to form a convex portion on a single crystal substrate, to apply an amorphous layer to an area other than the convex portion on the single crystal substrate, and to cover the entire surface of the single crystal substrate. This is achieved by the selective epitaxial growth method according to the present invention, which comprises the steps of: growing a crystalline layer;
前記非晶質層が成長しようとする結晶層と同種分子の物
質よりなる場合は、−層安定な成長層が得られる。When the amorphous layer is made of a substance with the same type of molecules as the crystalline layer to be grown, a stable growth layer can be obtained.
〔作用〕
マスク材を単結晶表面より低く被着することにより、多
結晶成長領域は矯正される方向にはたらき、従って単結
晶領域は多結晶の浸透を受は難くなる。[Operation] By depositing the masking material lower than the single crystal surface, the polycrystalline growth region acts in the direction of correction, and therefore the single crystal region becomes less susceptible to penetration by the polycrystal.
さらに、マスク材を成長分子と同種分子を有する非晶質
で形成すれば、単結晶領域と多結晶領域は同じ反応律則
で成長するため、その界面に余分な応力を生じることな
く1.物理的に安定な成長層が得られる。Furthermore, if the mask material is made of an amorphous material having the same kind of molecules as the growing molecules, the single crystal region and the polycrystal region will grow according to the same reaction law, so that no extra stress will be generated at the interface. A physically stable growth layer is obtained.
第1図は本発明の選択エピタキシャル成長を説明する断
面図である。FIG. 1 is a cross-sectional view illustrating selective epitaxial growth of the present invention.
図において、11は単結晶基板で半絶縁性ガリウム砒素
(SI−GaAs)基板で、単結晶基板11の表面の活
性領域に凸部12を形成し、単結晶基板11の表面の凸
部12以外の領域に選択用マスクとして非晶質GaAs
層13Bを被着する。In the figure, reference numeral 11 denotes a single crystal substrate, which is a semi-insulating gallium arsenide (SI-GaAs) substrate, and a convex portion 12 is formed in the active region on the surface of the single crystal substrate 11, except for the convex portion 12 on the surface of the single crystal substrate 11. amorphous GaAs as a selection mask in the region of
Apply layer 13B.
基板全面に結晶層としてGaAs層14を成長すると露
出した単結晶基板11上には単結晶層14Aが選択的に
エピタキシャル成長し、非晶質GaAs層13B上には
多結晶層14Bが成長する。When the GaAs layer 14 is grown as a crystal layer over the entire surface of the substrate, a single crystal layer 14A is selectively epitaxially grown on the exposed single crystal substrate 11, and a polycrystalline layer 14B is grown on the amorphous GaAs layer 13B.
この場合、単結晶層14Aは凸部12上に露出された単
結晶上に成長するのに対して、多結晶層14Bは凸部1
2により形成された段差の下に成長する。In this case, the single crystal layer 14A grows on the single crystal exposed on the convex part 12, whereas the polycrystalline layer 14B grows on the single crystal exposed on the convex part 12.
It grows under the step formed by 2.
従って、単結晶層14Aの領域内に多結晶層14Bが浸
透して単結晶層14Aの領域を狭くすることはない。Therefore, the polycrystalline layer 14B does not penetrate into the area of the single-crystal layer 14A to narrow the area of the single-crystal layer 14A.
多結晶層14Bの単結晶層14Aに接する領域は不整合
領域となるが、本発明の場合では、この領域は活性領域
外に形成されることになる。The region of the polycrystalline layer 14B in contact with the single crystal layer 14A becomes a mismatch region, but in the case of the present invention, this region is formed outside the active region.
また、マスク材を成長分子と同一分子を有する非晶質G
aAs層13Bで形成するため、単結晶領域と多結晶領
域の界面に余分な応力を生じることなく、安定な成長層
が得られる。In addition, the mask material is made of amorphous G having the same molecules as the growing molecules.
Since the aAs layer 13B is formed, a stable growth layer can be obtained without generating extra stress at the interface between the single crystal region and the polycrystal region.
〔実施例)
第2図〔1〕〜(5)は本発明の選択エピタキシャル成
長の実施例を説明する断面図である。[Example] Figures 2 [1] to (5) are cross-sectional views illustrating an example of selective epitaxial growth of the present invention.
第2図〔1〕において、11は単結晶基板で5I−Ga
As基板で、この上に通常のりソゲラフイエ程を用いて
活性領域にレジストパターンI5を形成する。In Fig. 2 [1], 11 is a single crystal substrate made of 5I-Ga.
An As substrate is used, and a resist pattern I5 is formed in the active region thereon by using a normal adhesive coating process.
第2図〔2〕において、単結晶基板11の活性領域以外
を1100n程度、すなわち成長しようとするエピタキ
シャル層と同程度の深さにをエツチングし、基板表面の
活性領域に凸部12を形成する。In FIG. 2 [2], the area other than the active region of the single crystal substrate 11 is etched to a depth of approximately 1100 nm, that is, approximately the same depth as the epitaxial layer to be grown, to form a convex portion 12 in the active region on the substrate surface. .
第2図(3)において、スパッタ、蒸着等により、成長
分子と同種の非晶質GaAs層13を基板全面に成長す
る。In FIG. 2(3), an amorphous GaAs layer 13 of the same type as the growing molecules is grown over the entire surface of the substrate by sputtering, vapor deposition, or the like.
第2図(4)において、活性領域の非晶質GaAs層1
3Aをリフトオフし、フィールド領域に非晶質GaAs
層13Bを残し、エピタキシャル成長の選択用マスクと
する。In FIG. 2 (4), the amorphous GaAs layer 1 in the active region
3A and amorphous GaAs in the field region.
Layer 13B is left as a selective mask for epitaxial growth.
第2図(5)において、基板全面に結晶層としてGaA
s層14を成長する。In Figure 2 (5), GaA is used as a crystal layer on the entire surface of the substrate.
Grow the s-layer 14.
そうすると、露出した単結晶基板11上には単結晶層1
4Aが選択的にエピタキシャル成長し、非晶質GaA3
層13層上3B上結晶層14Bが成長する。Then, a single crystal layer 1 is formed on the exposed single crystal substrate 11.
4A selectively grows epitaxially, forming amorphous GaA3
A crystal layer 14B on the layer 13 and the upper layer 3B grows.
この場合、単結晶層14Aは凸部12上に露出された単
結晶上に成長するのに対して、多結晶層14Bは凸部1
2により形成された段差の下に成長する。In this case, the single crystal layer 14A grows on the single crystal exposed on the convex part 12, whereas the polycrystalline layer 14B grows on the single crystal exposed on the convex part 12.
It grows under the step formed by 2.
従って、単結晶7i!14A 0)?ii域内に多結晶
層14[1が浸透して単結晶層14Aの領域を狭くする
ことはない。Therefore, single crystal 7i! 14A 0)? Polycrystalline layer 14[1 does not penetrate into region ii and narrow the area of single-crystalline layer 14A.
また、多結晶N 14Bは高抵抗層となって素子間分離
が可能となる。In addition, the polycrystalline N 14B becomes a high resistance layer and enables isolation between elements.
以上詳細に説明したように本発明による選択エピタキシ
ャル成長においては、フィールド領域の多結晶層は、活
性領域となる単結晶層領域内に浸透して単結晶層領域を
狭くすることなく、単結晶層領域との界面の不整合領域
は活性層の外側にでき、また界面には余分な応力を生じ
ない。As explained in detail above, in the selective epitaxial growth according to the present invention, the polycrystalline layer in the field region is grown in the single-crystal layer region without penetrating into the single-crystal layer region that becomes the active region and narrowing the single-crystal layer region. The mismatched region at the interface with the active layer is formed outside the active layer, and no extra stress is generated at the interface.
従って、素子形成の微細化と、素子間分離に有効な成長
方法が得られる。Therefore, a growth method that is effective for miniaturization of element formation and isolation between elements can be obtained.
第1図は本発明の選択エピタキシャル成長を説明する断
面図、
第2図〔1〕〜(5)は本発明のぶ択エピタキシャル成
長の実施例を説明する断面図、
第3図は従来の選択エピタキシャル成長を説明する断面
図である。
図において、
11は単結晶基板で5r−GaAs基板、12は凸部、
13Bは選択用マスクで非晶1GaAs層、14は成長
結晶層、
14Aは単結晶層、
14Bは多結晶層、
15はレジストパターン
である。
飯塚幸三
特許出願人 工業技術院長■1藏カー4iy′手1ダ
不完BA Q fJ’fJ艮悦明B断面図矛z図FIG. 1 is a cross-sectional view explaining the selective epitaxial growth of the present invention, FIG. 2 [1] to (5) are cross-sectional views explaining an embodiment of the selective epitaxial growth of the present invention, and FIG. 3 is a cross-sectional view explaining the conventional selective epitaxial growth. FIG. In the figure, 11 is a single crystal substrate, which is a 5R-GaAs substrate, 12 is a convex portion, 13B is a selection mask, which is an amorphous 1GaAs layer, 14 is a grown crystal layer, 14A is a single crystal layer, 14B is a polycrystalline layer, and 15 is a polycrystalline layer. It is a resist pattern. Kozo Iizuka Patent applicant Director of the Agency of Industrial Science and Technology
Claims (1)
工程と、 該単結晶基板(11)上の該凸部(12)以外の領域に
非晶質層(13B)を被着する工程と、 該単結晶基板(11)上全面に結晶層(14)を成長す
る工程 とを含むことを特徴とする選択エピタキシャル成長方法
。 〔2〕前記非晶質層(13B)が成長しようとする結晶
層(14)と同種分子の物質よりなることを特徴とする
特許請求の範囲第1項記載の選択エピタキシャル成長方
法。[Scope of Claims] [1] A step of forming a convex portion (12) on a single crystal substrate (11), and forming an amorphous material in a region other than the convex portion (12) on the single crystal substrate (11). A selective epitaxial growth method comprising: depositing a layer (13B); and growing a crystal layer (14) all over the single crystal substrate (11). [2] The selective epitaxial growth method according to claim 1, wherein the amorphous layer (13B) is made of a substance having the same kind of molecules as the crystal layer (14) to be grown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14828386A JPS636834A (en) | 1986-06-26 | 1986-06-26 | Selective epitaxial growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14828386A JPS636834A (en) | 1986-06-26 | 1986-06-26 | Selective epitaxial growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS636834A true JPS636834A (en) | 1988-01-12 |
JPH0530296B2 JPH0530296B2 (en) | 1993-05-07 |
Family
ID=15449300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14828386A Granted JPS636834A (en) | 1986-06-26 | 1986-06-26 | Selective epitaxial growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS636834A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980312A (en) * | 1989-02-27 | 1990-12-25 | U.S. Philips Corporation | Method of manufacturing a semiconductor device having a mesa structure |
JP2011171639A (en) * | 2010-02-22 | 2011-09-01 | Sanken Electric Co Ltd | Semiconductor device, semiconductor wafer, method of manufacturing semiconductor device, and method of manufacturing semiconductor wafer |
-
1986
- 1986-06-26 JP JP14828386A patent/JPS636834A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980312A (en) * | 1989-02-27 | 1990-12-25 | U.S. Philips Corporation | Method of manufacturing a semiconductor device having a mesa structure |
JP2011171639A (en) * | 2010-02-22 | 2011-09-01 | Sanken Electric Co Ltd | Semiconductor device, semiconductor wafer, method of manufacturing semiconductor device, and method of manufacturing semiconductor wafer |
Also Published As
Publication number | Publication date |
---|---|
JPH0530296B2 (en) | 1993-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4790909B2 (en) | Fabrication of gallium nitride layers by lateral growth. | |
JP2691721B2 (en) | Semiconductor thin film manufacturing method | |
CA2205918A1 (en) | Epitaxial growth of silicon carbide and resulting silicon carbide structures | |
JP2002334845A (en) | Pendeoepitaxial method for manufacturing gallium nitride semiconductor layer on sapphire substrate, and gallium nitride semiconductor structure manufactured by the same | |
JPH01289108A (en) | Heteroepitaxy | |
JPH03236218A (en) | Compound semiconductor substrate and manufacture thereof | |
CN1174470C (en) | Transverse epitaxial growth process of high-quality gallium nitride film | |
US4948751A (en) | Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor | |
JPS636834A (en) | Selective epitaxial growth method | |
JPH0475649B2 (en) | ||
KR950020969A (en) | Method of manufacturing thin film of heterojunction structure using V-groove | |
JPS63182811A (en) | Epitaxial growth method for compound semiconductor | |
JP2687445B2 (en) | Heteroepitaxial growth method | |
JP2743348B2 (en) | Epitaxial growth method | |
EP0147471A1 (en) | Method of manufacturing semiconductor device | |
JP2527016B2 (en) | Method for manufacturing semiconductor film | |
JP2964547B2 (en) | Method for forming SOI substrate | |
JPH0263115A (en) | Selective growth of thin film | |
JP2508456B2 (en) | Method for forming semiconductor single crystal thin film | |
JPH0626181B2 (en) | Method for manufacturing semiconductor substrate | |
JPH01303717A (en) | Selective heteroepitaxial growth method | |
JP3167350B2 (en) | Device manufacturing method | |
JP2527015B2 (en) | Method for manufacturing semiconductor film | |
JP2658187B2 (en) | Semiconductor crystal growth method | |
JPH0682621B2 (en) | GaAs selective epitaxial growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |