JPS6367090B2 - - Google Patents
Info
- Publication number
- JPS6367090B2 JPS6367090B2 JP55131698A JP13169880A JPS6367090B2 JP S6367090 B2 JPS6367090 B2 JP S6367090B2 JP 55131698 A JP55131698 A JP 55131698A JP 13169880 A JP13169880 A JP 13169880A JP S6367090 B2 JPS6367090 B2 JP S6367090B2
- Authority
- JP
- Japan
- Prior art keywords
- catalytic oxidation
- oxidation reactor
- waste gas
- gas
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 65
- 230000003197 catalytic effect Effects 0.000 claims description 37
- 239000002912 waste gas Substances 0.000 claims description 37
- 238000007254 oxidation reaction Methods 0.000 claims description 36
- 230000003647 oxidation Effects 0.000 claims description 35
- 238000011084 recovery Methods 0.000 claims description 27
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 238000006555 catalytic reaction Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 23
- 239000003054 catalyst Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Incineration Of Waste (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【発明の詳細な説明】
本発明は化学品製造プロセスなどより排出され
る廃ガス中の炭化水素、一酸化炭素およびその他
の可燃性有機化合物を完全酸化処理するための廃
ガス処理装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste gas treatment apparatus for completely oxidizing hydrocarbons, carbon monoxide, and other combustible organic compounds in waste gas discharged from chemical manufacturing processes.
化学品製造工場などにおいて生ずる廃ガスはメ
タン、エタン、エチレン、プロパン、プロピレン
など炭素数1〜6の炭化水素類、一酸化炭素およ
び有機酸、アルデヒド類、エステル類、アルコー
ル類などの可燃性化合物を含有し、しかも悪臭を
有するものを多く含む。この可燃性化合物が大気
中に放散されるのは好ましくないことは明らか
で、とくに悪臭を除去することは、強く要望され
るところであり、そのためのプロセスも種々提案
されてきている。この悪臭物質を除去するためま
た他の有害物を除くために用いられる従来の排ガ
ス処理プロセスとして、例を示す第1図や第2図
に示す如きフローシートがある。第1図において
活性アルミナ上に白金などの貴金属を分散担持し
た触媒を充填してなる触媒酸化反応器1、熱交換
器2、熱回収装置3、排出装置としてのスタツク
4、空気補給フアン6および必要により供給廃ガ
ス用ブースターフアン5、供給廃ガス加熱昇温用
熱交換器7はそれぞれ有効に連結されて、廃ガス
の触媒酸化処理プロセスが完結せしめられてい
る。また第2図において触媒酸化反応器1、熱交
換器2、熱回収装置3、排出装置としてのスタツ
ク4、供給廃ガス用ブースタフアン5、触媒酸化
反応器よりの熱排ガスを供給ガス昇温のため直接
循環するためのフアン6をそれぞれ連絡して、第
1図のプロセスを改良する方策がとられている。 The waste gases generated in chemical manufacturing factories, etc. are hydrocarbons with 1 to 6 carbon atoms such as methane, ethane, ethylene, propane, and propylene, carbon monoxide, and flammable compounds such as organic acids, aldehydes, esters, and alcohols. and many of them have bad odors. It is clear that it is undesirable for these flammable compounds to be released into the atmosphere, and there is a strong desire to eliminate bad odors, and various processes have been proposed for this purpose. As a conventional exhaust gas treatment process used to remove this malodorous substance and other harmful substances, there are flow sheets as shown in FIGS. 1 and 2, which show examples. FIG. 1 shows a catalytic oxidation reactor 1 filled with a catalyst in which precious metals such as platinum are dispersed and supported on activated alumina, a heat exchanger 2, a heat recovery device 3, a stack 4 as an exhaust device, an air supply fan 6, and If necessary, the booster fan 5 for the supplied waste gas and the heat exchanger 7 for heating the supplied waste gas are effectively connected to each other, thereby completing the catalytic oxidation treatment process of the waste gas. In addition, in Fig. 2, a catalytic oxidation reactor 1, a heat exchanger 2, a heat recovery device 3, a stack 4 as a discharge device, a booster fan 5 for supplying waste gas, and a heating exhaust gas from the catalytic oxidation reactor are used to raise the temperature of the supply gas. Therefore, measures have been taken to improve the process shown in FIG. 1 by connecting fans 6 for direct circulation.
一般に可燃性有機化合物を含有する廃ガスとく
にパラフイン系炭化水素を含む廃ガスを触媒によ
つて完全酸化処理するプロセスを採用する場合、
前提条件として考えられるものは以下の如きであ
る。 When adopting a process that completely oxidizes waste gas that generally contains flammable organic compounds, particularly paraffinic hydrocarbons, using a catalyst,
Possible preconditions are as follows.
1 触媒層出口ガス温度は、ほゞ一定とすべきで
ある。触媒の耐熱温度は700〜720℃といわれる
が、触媒層出口ガス温度を650℃以下で運転す
るのは好ましくない。パラフイン系炭化水素と
くにプロパンなどが燃焼不十分となるからであ
る。したがつて平均的には680℃のレベルで運
転されることが望まれる。1. The catalyst bed outlet gas temperature should be kept approximately constant. Although the allowable temperature limit of the catalyst is said to be 700 to 720°C, it is not preferable to operate at a catalyst layer outlet gas temperature of 650°C or lower. This is because paraffin hydrocarbons, especially propane, etc., are not sufficiently combusted. Therefore, it is desirable to operate at a level of 680°C on average.
2 触媒層入口ガス温度も触媒活性との関連で
250℃以上であるべきである。2 The gas temperature at the inlet of the catalyst layer is also related to the catalyst activity.
Should be above 250℃.
3 触媒酸化反応器入口ガスの発熱量は触媒層で
の自己上昇温度が430℃(680〜250)以下の温
度範囲内において制御されるべきであるが、そ
れにも拘らずプロセスとしては処理ガスの発熱
量が大きくその変動巾も大きいもので安定して
処理しうるものでなければならない。3. The calorific value of the gas at the inlet of the catalytic oxidation reactor should be controlled within the temperature range where the self-rise temperature in the catalyst layer is below 430℃ (680-250℃). It must be something that can be stably processed because it generates a large amount of heat and its fluctuation range is wide.
以上の前提に立ちながら当該プロセスは、次の
ごとき有効性を追求しつつ探求される。 Based on the above premise, the process will be explored while pursuing the following effectiveness.
(イ) 熱の最大限の回収:大気へ放出される処理後
の排ガスの温度をできるだけ低く維持すること
は経済性の面で限度が生じるので、廃ガス量の
増加(新鮮空気の導入などによる)は極力避け
るべきである。また供給ガス発熱量の変動に対
しても放出されるガス温度はできるだけ一定に
するプロセスにする必要がある。最大限の熱回
収ができないからである。(b) Maximum recovery of heat: There is an economic limit to keeping the temperature of the treated exhaust gas released into the atmosphere as low as possible, so increasing the amount of exhaust gas (by introducing fresh air, etc.) ) should be avoided as much as possible. Furthermore, it is necessary to create a process in which the temperature of the emitted gas is kept as constant as possible even with fluctuations in the calorific value of the supplied gas. This is because maximum heat recovery cannot be achieved.
(ロ) 処理後の排出ガスに再利用:かくしてえられ
る排出ガス中には、もはや可燃性物質もほとん
どなく、酸素濃度も低く、不活性ガスとして危
険物タンクのシール用などに再利用される。(b) Reuse as exhaust gas after treatment: The exhaust gas thus obtained contains almost no flammable substances, has a low oxygen concentration, and can be reused as an inert gas for sealing hazardous materials tanks. .
かくして本発明者らは、上記探求を精力的に行
つた結果(イ)および(ロ)の有効性をすぐれて発揮する
本発明を完成するに至つた。 As a result of the above-mentioned search, the present inventors have completed the present invention, which exhibits the effectiveness of (a) and (b).
すなわち本発明は、
炭化水素、一酸化炭素およびその他の可燃性有
機化合物を含む廃ガスを触媒反応により完全酸化
せしめる触媒酸化反応器と、該触媒酸化反応器へ
廃ガスを供給する装置と、該反応器から出る排ガ
スの熱量を回収するための熱回収装置と、熱回収
装置を出た排ガスを排出する排出装置を配置して
なる廃ガス処理装置において、廃ガスを供給する
装置と触媒酸化反応器との間に、第1の熱交換器
および第2の熱交換器とを直列に設置して供給さ
れるる廃ガスの加熱を行ない、熱源として第2の
熱交換器へは触媒酸化反応器から出る高温排ガス
の一部を供給して用い、第1の熱交換器へは熱源
として熱回収装置から出る排ガスを供給して用
い、第2の熱交換器で用いられた排ガスは一部を
触媒酸化反応器へ供給される廃ガスに混入して用
い、残りは触媒酸化反応器から出た残りの排ガス
とともに熱回収装置に供給され、そして第1の熱
交換器で用いられた排ガスは排出装置に供給され
るように操作しうる廃ガス処理装置の提供であ
る。 That is, the present invention provides a catalytic oxidation reactor that completely oxidizes waste gas containing hydrocarbons, carbon monoxide, and other combustible organic compounds through a catalytic reaction, an apparatus for supplying waste gas to the catalytic oxidation reactor, and In a waste gas treatment device that includes a heat recovery device for recovering the heat amount of the exhaust gas emitted from the reactor and an exhaust device for discharging the exhaust gas exiting the heat recovery device, a device for supplying the waste gas and a catalytic oxidation reaction are performed. A first heat exchanger and a second heat exchanger are installed in series to heat the supplied waste gas, and a catalytic oxidation reactor is connected to the second heat exchanger as a heat source. A part of the high temperature exhaust gas emitted from the heat recovery device is supplied and used as a heat source to the first heat exchanger, and a part of the exhaust gas used in the second heat exchanger is used as a heat source. The remaining exhaust gas is mixed with the exhaust gas supplied to the catalytic oxidation reactor, the remainder is supplied to the heat recovery device together with the remaining exhaust gas from the catalytic oxidation reactor, and the exhaust gas used in the first heat exchanger is discharged. The present invention provides a waste gas treatment device that can be operated to supply a waste gas to the device.
以下、本発明を詳細に説明しながら、本発明に
ついて従来プロセスより優れた点を明らかにす
る。 Hereinafter, while explaining the present invention in detail, the advantages of the present invention over conventional processes will be clarified.
第1図において、上述の前提条件を維持しかつ
(イ)および(ロ)の条件を満足せしめるためには、加熱
昇用熱交換器7を作動させる不都合さないしは空
気補給によるガス量の増大という不利益をまぬが
れない。触媒酸化反応器1の出口ガスは熱回収装
置3にてたとえばスチームを発生することにより
熱回収され、さらに供給プラント廃ガスの加熱用
に使用されて排出される。供給廃ガスの発熱量が
高い時は、反応器出口ガス温度が高くなるのでそ
れを制御するために外部空気を混合せねばなら
ず、ガス量の増大ひいてはそのガスによつて持ち
去られる熱量の増大をまぬがれない。また出口ガ
ス中の酸素濃度が一定にはならず、排出ガスの再
利用の面で不都合が生じる。逆に、供給廃ガスの
発熱量が低い時は触媒酸化反応器出口ガス温度を
定格に維持するために触媒酸化反応器入口ガス温
度を高くする必要があり、加熱昇温用熱交換器7
を作動させねばなくなる。完全酸化を行わしめる
ためには、触媒酸化反応器出口ガス温度を680℃
程度に発維持しなければならず、したがつて触媒
酸化反応器入口ガス温度を上げねばならないこと
になり、それだけ加熱源の高温化が要求される。
たとえばガスの発熱量が自己上昇温度として370
℃の場合には、触媒酸化反応器入口温度を310℃
にしなければ出口温度を680℃に維持できないの
で加熱源としては350℃程度のものが必要となる。
通常の化学工場では350℃といつた高温熱源は入
手が困難であり、実際には、新らたに燃料を添加
する等の方法で対処しなければなない。 In Figure 1, maintaining the above assumptions and
In order to satisfy the conditions (a) and (b), the inconvenience of operating the heating heat exchanger 7 or the disadvantage of an increase in the amount of gas due to air replenishment cannot be avoided. The outlet gas of the catalytic oxidation reactor 1 is heat recovered in a heat recovery device 3, for example by generating steam, and is further used for heating the feed plant waste gas before being discharged. When the calorific value of the feed waste gas is high, the reactor outlet gas temperature increases and external air must be mixed to control it, increasing the amount of gas and therefore increasing the amount of heat carried away by the gas. I can't escape it. Furthermore, the oxygen concentration in the outlet gas is not constant, which causes problems in terms of reusing the exhaust gas. Conversely, when the calorific value of the supplied waste gas is low, it is necessary to increase the gas temperature at the catalytic oxidation reactor inlet in order to maintain the catalytic oxidation reactor outlet gas temperature at the rated value.
You will have to activate it. In order to achieve complete oxidation, the catalytic oxidation reactor outlet gas temperature must be set at 680℃.
Therefore, it is necessary to raise the gas temperature at the inlet of the catalytic oxidation reactor, which requires the heating source to be raised to a correspondingly high temperature.
For example, the calorific value of gas is 370 as the self-rising temperature.
℃, set the catalytic oxidation reactor inlet temperature to 310℃
Otherwise, the outlet temperature cannot be maintained at 680℃, so a heating source of about 350℃ is required.
It is difficult to obtain high-temperature heat sources such as 350 degrees Celsius in ordinary chemical factories, and in reality, they have to deal with it by adding new fuel or other methods.
第2図において上述の前提条件を維持しかつ(イ)
および(ロ)の条件を満足せしめるためには、廃ガス
処理装置は供給廃ガスの最高発熱量時を基準に設
計される。すなわち触媒酸化反応器出口ガス温度
を680℃にするために、熱交換器2の出口温度が
680―(最高発熱量時の自己上昇温度)になるよ
うに計画され、この温度が250℃以下であれば触
媒反応器出口ガスの一部を循環使用して触媒酸化
反応器入口温度を上げるとになる。 In Figure 2, the above preconditions are maintained and (a)
In order to satisfy the conditions (b) and (b), the waste gas treatment equipment is designed based on the maximum calorific value of the supplied waste gas. In other words, in order to make the catalytic oxidation reactor outlet gas temperature 680°C, the outlet temperature of heat exchanger 2 is
680 - (self-rising temperature at maximum calorific value), and if this temperature is below 250℃, part of the catalytic reactor outlet gas is recycled to raise the catalytic oxidation reactor inlet temperature. become.
循環ガスの作用効果は触媒酸化反応器入口ガス
温度を上昇させるのみであつて、触媒酸化反応器
出口ガス温度の上昇には役立たない。したがつて
廃ガスの発熱量が低くなつたときには、循環ガス
量の増減では触媒酸化反応器出口ガス温度680℃
を維持できず熱交換器2の出口温度を上げてやる
必要がある。そのために熱回収装置3をバイパス
させて熱交換器2に触媒酸化反応器1の出口ガス
の一部を供給して原料ガスを昇温させねばなら
ず、必然的にスタツク4に流れる排気ガスの温度
が上昇し熱回収率の大巾な低下を招く。 The effect of the circulating gas is only to increase the gas temperature at the inlet of the catalytic oxidation reactor, but is not useful for increasing the gas temperature at the outlet of the catalytic oxidation reactor. Therefore, when the calorific value of the waste gas decreases, the catalytic oxidation reactor outlet gas temperature will decrease to 680°C by increasing or decreasing the amount of circulating gas.
cannot be maintained, and it is necessary to raise the outlet temperature of heat exchanger 2. For this purpose, it is necessary to bypass the heat recovery device 3 and supply part of the outlet gas of the catalytic oxidation reactor 1 to the heat exchanger 2 to raise the temperature of the raw material gas. The temperature rises, leading to a significant drop in heat recovery rate.
これに対し本発明方法にかかる第3図のプロセ
スに従えば、第2の熱交換器3を通過した循環ガ
スは供給される廃ガスの発熱量が高いときには全
量が触媒酸化反応器1入口にもどされるので、実
質的に第2図と同一であり、廃ガスの発熱量が低
くなるにつれてそのガスの一部が熱回収装置4へ
返される。これは触媒酸化反応器出口ガスと第1
の熱交換器2の出口ガスとで熱交換を行わしめた
こととほゞ同等であり、熱交換量は熱回収装置4
へそのまま流れるガス量でコントロールすること
ができる。すなわち第2図において熱交換器2の
出口温度を上げたのと実質的に同じ効果を呈す
る。しかも第3図の方法に従えばこのガス量にか
かわらずスタツク5に流れる排ガスの温度はほゞ
一定であり、排気ガス量の増減もないため広い発
熱量の範囲にわたつて高い熱回収率を維持しうる
ことになる。 On the other hand, if the process of the present invention shown in FIG. This is substantially the same as in FIG. 2, and as the calorific value of the waste gas decreases, a portion of the gas is returned to the heat recovery device 4. This is the catalytic oxidation reactor outlet gas and the first
This is almost equivalent to performing heat exchange with the outlet gas of the heat exchanger 2, and the amount of heat exchanged is the same as that of the heat recovery device 4.
It can be controlled by the amount of gas that flows directly to the That is, the effect is substantially the same as that of raising the outlet temperature of the heat exchanger 2 in FIG. 2. Furthermore, if the method shown in Fig. 3 is followed, the temperature of the exhaust gas flowing into the stack 5 is almost constant regardless of the amount of gas, and there is no increase or decrease in the amount of exhaust gas, so a high heat recovery rate can be achieved over a wide range of calorific value. This means that it can be maintained.
以上の説明をより具体的にするため、第1〜3
について、それぞれのプロセスの熱回収の割合を
第4図に示す。運転条件設定は以下の如くであ
る。 In order to make the above explanation more concrete,
Figure 4 shows the heat recovery rate for each process. The operating conditions are set as follows.
供給廃ガスの発熱量(ほゞ560℃〜310℃に相
当) 180Kcal/m3〜100Kcal/m2
供給廃ガス温度 50℃
触媒層入口ガス温度 250℃
触媒層出口ガス温度 680℃
外部からの供給空気温度 20℃
また、第1図および第3図の場合、熱交換器か
ら外部へ排出されるガス温度はほゞ100℃〜101℃
に維持しつつ行ないうるが、第2図プロセスで
は、発熱量が小さくなるに従い排出ガス温度は
270〜290℃にまで高くせざるをえなくなり、実際
上大いに不都合となることがわかつた。Calorific value of supplied waste gas (approximately equivalent to 560℃ to 310℃) 180Kcal/m 3 to 100Kcal/ m 2Supplied waste gas temperature 50℃ Catalyst layer inlet gas temperature 250℃ Catalyst layer outlet gas temperature 680℃ Supply from outside Air temperature: 20°C In the case of Figures 1 and 3, the temperature of the gas discharged from the heat exchanger to the outside is approximately 100°C to 101°C.
However, in the process shown in Figure 2, as the calorific value decreases, the exhaust gas temperature decreases.
The temperature had to be raised to 270-290°C, which turned out to be very inconvenient in practice.
以上の記述は、廃ガスの発熱量が自己上昇温度
として(680―供給廃ガス温度)℃以下の場合に
ついての説明であつたが、この発熱量を越える場
合についてみても、本発明の優位性が認められ
る。 The above description was for the case where the calorific value of the waste gas is less than (680 - supplied exhaust gas temperature) as a self-rise temperature, but the superiority of the present invention can also be seen in the case where the calorific value exceeds this temperature. is recognized.
第1図のプロセスでは外部空気の追加を大きく
すれば対処できるが熱回収率の低下は避けられな
いことは第4図の傾向から明らかである。 Although the process shown in FIG. 1 can be overcome by increasing the amount of outside air, it is clear from the trend shown in FIG. 4 that a decrease in the heat recovery rate is unavoidable.
第2図および第3図のプロセスでは循環使用さ
れる触媒反応器出口ガスの一部に熱回収装置出口
ガスを混使用することにより対処可能となる。
(第2図および第3図で点線にて図示)。この場合
第3図のプロセスにおいて第2の熱交換器3から
熱回収装置4へのラインにはガスは全く流れない
ので第2図と第3図とは実質的に同じプロセスと
見ることができる。したがつて熱回収率は同じと
なる。すなわち、第4図において高発熱量側に移
行させれば熱回収率は第2図および第3図のプロ
セスは同じ曲線を示すことになるし、第1図のプ
ロセスのみ単調に減少していく傾向を示す。 In the processes shown in FIGS. 2 and 3, this problem can be solved by mixing the heat recovery device outlet gas with a part of the catalytic reactor outlet gas that is recycled.
(Illustrated by dotted lines in Figures 2 and 3). In this case, in the process shown in Figure 3, no gas flows in the line from the second heat exchanger 3 to the heat recovery device 4, so Figures 2 and 3 can be seen as substantially the same process. . Therefore, the heat recovery rate will be the same. In other words, if you shift to the high calorific value side in Figure 4, the heat recovery rate will show the same curve for the processes in Figures 2 and 3, and only the process in Figure 1 will decrease monotonically. Show trends.
以上、結局第3図で示したプロセスの広い範囲
での発熱量変動対処可能性が示され、すぐれた熱
回収率の水準を有することが明らかにされたので
ある。 As described above, it has been shown that the process shown in FIG. 3 can cope with fluctuations in calorific value over a wide range, and it has been revealed that the process shown in FIG. 3 has an excellent level of heat recovery rate.
第1図および第2図は、公知の廃ガス処理プロ
セスのフローシートであり、第3図は本発明にか
かるフローシートの1例である。第4図は第1〜
3図の各プロセスの熱回収率の傾向を示すグラフ
である。第4図において、横軸は発熱量
(Kcal/Nm3)たて軸としては熱回収率(%)を
示す。
1 and 2 are flow sheets of a known waste gas treatment process, and FIG. 3 is an example of a flow sheet according to the present invention. Figure 4 shows numbers 1-
FIG. 3 is a graph showing trends in heat recovery rates for each process in FIG. 3. FIG. In FIG. 4, the horizontal axis shows the calorific value (Kcal/Nm 3 ), and the vertical axis shows the heat recovery rate (%).
Claims (1)
有機化合物を含む廃ガスを触媒反応により完全酸
化せしめる触媒酸化反応器と、該触媒酸化反応器
へ廃ガスを供給する装置と、該反応器から出る排
ガスの熱量を回収するための熱回収装置と、熱回
収装置を出た排ガスを排する排出装置を配置して
なる廃ガス処理装置において、廃ガスを供給する
装置と触媒酸化反応器との間に、第1の熱交換器
および第2の熱交換器とを直列に設置して供給さ
れる廃ガスの加熱を行ない、熱源として第2の熱
交換器へは触媒酸化反応器から出る高温排ガスの
一部を供給して用い、第1の熱交換器へは熱源と
して熱回収装置から出る排ガスを供給して用い、
第2の熱交換器で用いられた排ガスは一部を触媒
酸化反応器へ供給される廃ガスに混入して用い、
残りは触媒酸化反応器から出た残りの廃ガスとと
もに熱回収装置に供給され、そして第1の熱交換
器で用いられた排ガスは排出装置に供給されるよ
うに操作しうる廃ガス処理装置。1. A catalytic oxidation reactor that completely oxidizes waste gas containing hydrocarbons, carbon monoxide, and other combustible organic compounds through a catalytic reaction, a device for supplying waste gas to the catalytic oxidation reactor, and a device for supplying waste gas to the catalytic oxidation reactor, and a device for supplying waste gas to the catalytic oxidation reactor, and a device for supplying waste gas to the catalytic oxidation reactor, and a device for supplying waste gas to the catalytic oxidation reactor, and a device for supplying waste gas to the catalytic oxidation reactor. In a waste gas treatment device comprising a heat recovery device for recovering the calorific value of exhaust gas and an exhaust device for discharging the exhaust gas exiting the heat recovery device, between the device for supplying the waste gas and the catalytic oxidation reactor. A first heat exchanger and a second heat exchanger are installed in series to heat the supplied exhaust gas, and the second heat exchanger is supplied with high-temperature exhaust gas discharged from the catalytic oxidation reactor as a heat source. The first heat exchanger is supplied with exhaust gas from the heat recovery device as a heat source, and used as a heat source.
A part of the exhaust gas used in the second heat exchanger is used by mixing it with the exhaust gas supplied to the catalytic oxidation reactor,
A waste gas treatment device operable such that the remainder is fed to a heat recovery device along with the remaining waste gas from the catalytic oxidation reactor, and the waste gas used in the first heat exchanger is fed to a discharge device.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55131698A JPS5758012A (en) | 1980-09-24 | 1980-09-24 | Method and device for waste gas treatment |
US06/302,219 US4418045A (en) | 1980-09-19 | 1981-09-14 | Method for disposal of waste gas and apparatus therefor |
FR8117693A FR2490503A1 (en) | 1980-09-19 | 1981-09-18 | METHOD AND DEVICE FOR THE REMOVAL OF A WASTE GAS CONTAINING COMBUSTIBLE SUBSTANCES |
GB8128253A GB2085318B (en) | 1980-09-19 | 1981-09-18 | Disposal of waste gas |
MX189222A MX158361A (en) | 1980-09-19 | 1981-09-18 | METHOD FOR THE DISPOSAL OF WASTE GAS AND APPARATUS FOR THIS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55131698A JPS5758012A (en) | 1980-09-24 | 1980-09-24 | Method and device for waste gas treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5758012A JPS5758012A (en) | 1982-04-07 |
JPS6367090B2 true JPS6367090B2 (en) | 1988-12-23 |
Family
ID=15064102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55131698A Granted JPS5758012A (en) | 1980-09-19 | 1980-09-24 | Method and device for waste gas treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5758012A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02104990U (en) * | 1989-02-07 | 1990-08-21 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62254826A (en) * | 1986-04-30 | 1987-11-06 | Trinity Ind Corp | Catalytic combustion type exhaust gas treatment apparatus |
JPS62254827A (en) * | 1986-04-30 | 1987-11-06 | Trinity Ind Corp | Apparatus for recovering waste heat obtained from exhaust gas treatment apparatus |
DE3823575A1 (en) * | 1988-07-12 | 1990-01-18 | Rothemuehle Brandt Kritzler | METHOD FOR REDUCING NITROGEN OXIDES (NO (DOWN ARROW) X (DOWN ARROW)) FROM FIRE EXHAUST GASES |
JP4428818B2 (en) | 2000-06-05 | 2010-03-10 | 株式会社日本触媒 | Waste gas treatment equipment |
JP4930887B2 (en) * | 2007-09-14 | 2012-05-16 | 日本トーカンパッケージ株式会社 | Packing equipment |
JP2011098306A (en) * | 2009-11-06 | 2011-05-19 | Gifu Univ | Volatile organic compound treatment apparatus |
JPWO2013058210A1 (en) * | 2011-10-17 | 2015-04-02 | 川崎重工業株式会社 | Low concentration methane gas oxidation system using exhaust heat of gas turbine engine |
CN103776040B (en) * | 2012-10-24 | 2015-11-18 | 中国石油化工股份有限公司 | A kind for the treatment of by catalytic oxidation of oil refinery dry gas |
TWI519746B (en) * | 2013-09-30 | 2016-02-01 | 台橡股份有限公司 | Ecosystem and plant using the same |
CN106369617B (en) * | 2016-11-07 | 2018-10-02 | 中国石油大学(华东) | A kind of efficient VOC processing systems and its process flow using new type heat exchanger |
-
1980
- 1980-09-24 JP JP55131698A patent/JPS5758012A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02104990U (en) * | 1989-02-07 | 1990-08-21 |
Also Published As
Publication number | Publication date |
---|---|
JPS5758012A (en) | 1982-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4418045A (en) | Method for disposal of waste gas and apparatus therefor | |
JPS6367090B2 (en) | ||
KR20050083722A (en) | Safe removal of volatile, oxidizable compounds from particles, in particular polymer particles | |
US4482637A (en) | In situ hydrocarbon conversion catalyst regeneration and sulfur decontamination of vessels communicating with catalyst reactor | |
ZA200208042B (en) | Precious metal recovery from organics-precious metal compositions with supercritical water reactant. | |
SK182789A3 (en) | Apparatus for catalytic combustion of organic compounds | |
EP1161980B1 (en) | Apparatus for treatment of waste gas by catalytic combustion with heat recovery | |
US3486841A (en) | Heat recovery system for drying ovens | |
KR101617112B1 (en) | Improved robustness of coke burning from catalyst for light paraffin dehydrogenation process | |
JPS6393B2 (en) | ||
JPH0833828A (en) | Method of refining waste gas under pressure | |
JPH10328699A (en) | Supercritical hydroxylation reactor | |
JPS58115216A (en) | Disposal of waste gas | |
JPS62268066A (en) | Starting method for fuel cell | |
JP4283949B2 (en) | Method for treating waste water containing ammonia, hydrazine and methyl ethyl ketone | |
KR101767157B1 (en) | Co and polluted material removal device with regenerating means of polluted catalyst and co and polluted material removal method with regenerating of polluted catalyst | |
JP2003342709A (en) | Device and method for generating carburizing atmospheric gas | |
CN111715206A (en) | Catalyst and method for catalytic oxidation of Fischer-Tropsch synthesis reaction decarbonized tail gas VOCs by using same | |
KR101652599B1 (en) | Catalyst regeneration method | |
DK156814B (en) | PLANT FOR THE REMOVAL OF OXIDIZABLE INGREDIENTS FROM POLLUTANEOUS GASES, AS FROM POLLUTANEOUS AIR | |
EP0803279B1 (en) | Autothermic catalytic process for deodorizing and denitrating polluting waste | |
CA2466495C (en) | Process and apparatus for treating a fine particulate, in particular metal-containing, charge material | |
KR20030097623A (en) | Method and installation for regenerating absorbents used for capturing sulphur dioxide in combustion fumes | |
KR200433587Y1 (en) | An apparatus for regenerating catalysts | |
KR950007580B1 (en) | Reconditioning method for a non-acidic catalyst used in a high severity process for dehydrogenation of light hydrocarbons |