JPS6367846B2 - - Google Patents
Info
- Publication number
- JPS6367846B2 JPS6367846B2 JP9102382A JP9102382A JPS6367846B2 JP S6367846 B2 JPS6367846 B2 JP S6367846B2 JP 9102382 A JP9102382 A JP 9102382A JP 9102382 A JP9102382 A JP 9102382A JP S6367846 B2 JPS6367846 B2 JP S6367846B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- detection element
- data
- sensing signal
- vibration detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 description 5
- 238000005314 correlation function Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
- G01M3/243—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Description
【発明の詳細な説明】
本発明は、水その他油、ガス等が配管の特定位
置から漏れている個所を、相関方式を利用して感
知し検出する漏水等配管からの漏れ位置検出装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting the location of leaks from piping, such as water leaks, etc., which uses a correlation method to sense and detect locations where water, oil, gas, etc. are leaking from specific positions of piping. It is.
現在漏水等発見作業は地中に突き刺した聴音棒
および増幅器等により地中に伝播する例えば漏水
音を直接耳で聞き、その音量、音色等により漏水
位置の予測を行つている。しかしこの方法はかな
り高度な熟練度を要し、かつ雑音の少ない夜間計
測が行われる。なお、建物、川、アスフアルト道
路等の障害物の下に配管されているものの漏水位
置発見は実際上不可能とされている。これらの困
難さを改良すべく相関関数の理論に基づく例えば
漏水点の位置計測が行われるようになつた。しか
し現在使用されている装置は、漏水音の管内伝播
速度および管路長が正確に分つているものに対し
て正確な漏水位置計測が可能であり、配管図不備
による管路長の不明確、管の腐蝕劣化による伝播
速度の経年変化等が考えられる場合は測定位置の
誤差が大きくなる欠点があつた。また相関関数を
計測した後相関値のピーク点を目で読取り、電卓
等による手計算で漏水位置の結果を得ていたた
め、現場での計測が煩雑で間違つた結果を算出す
る欠点があつた。 Currently, work to detect water leaks, etc. involves listening directly to the sound of water leaks propagating underground using listening rods and amplifiers inserted into the ground, and predicting the location of water leaks based on the sound volume, tone, etc. However, this method requires a high level of skill and requires nighttime measurements with little noise. Note that it is practically impossible to locate water leaks in pipes installed under obstacles such as buildings, rivers, asphalt roads, etc. In order to overcome these difficulties, measurements of the location of water leakage points, for example, have come to be carried out based on the theory of correlation functions. However, the devices currently in use are capable of accurately measuring the location of water leaks when the propagation velocity of water leak sound in the pipe and the length of the pipe are accurately known. If the propagation velocity changes over time due to corrosion and deterioration of the pipe, the error in the measurement position increases. In addition, after measuring the correlation function, the peak point of the correlation value was read visually and the leak position was obtained by hand calculation using a calculator, etc., which had the drawback of making on-site measurements complicated and resulting in incorrect results. .
本発明はこれらの欠点を解決するために、計測
しようとする配管の振動伝播速度及び管路長のい
づれか一方の値を既知として、他方の値の実測を
行い管路長又は振動伝播速度の校正値を使用して
精度の良い漏水位置の計測を行わせることを目的
とする漏水等配管からの漏れ位置検出装置を提供
するもので、以下図面に基づきこれを詳細に説明
する。 In order to solve these drawbacks, the present invention calibrates the pipe length or vibration propagation velocity by assuming that one of the values of the vibration propagation velocity and the pipe length of the piping to be measured is known, and actually measuring the other value. The purpose of this invention is to provide an apparatus for detecting the position of water leakage from piping, which aims to accurately measure the position of water leakage using the measured values, and will be described in detail below with reference to the drawings.
図面は本発明の一実施例を示す構成概略図であ
る。先ず、同図のように、消火栓、止水栓、量水
器等の場所を利用して漏水等を検出しようとする
被測定管1に適当な距離を隔ててその長手軸方向
に振動検出センサ2およびセンサ3をそれぞれ固
定装着する。2及び3は、第1及び第2の感知信
号を検知する第1及び第2の振動検出素子に相当
する。この状態でセンサ2の取付個所の管にハン
マーで衝撃を与える。そうすればセンサ2へは時
間遅れなしで振動が伝達され、センサ3にはある
時間遅れをもつて振動が伝達される。各センサか
らの感知信号出力はそれぞれに対応した増幅器
4、増幅器5に入力され増幅される。増幅器4か
らの第1の感知信号はコンパレータ8に入力さ
れ、あらかじめ設定されている基準電圧以上にな
つたときトリガ信号としてパルスが出力される。
一方増幅器5からの第2の感知信号はA/D変換
器7に入力され一定時間毎のサンプリングパルス
周期によりデジタルに変換され出力される。制御
回路9により相関・ウエーブメモリ10をウエー
ブメモリ動作に設定しておけばコンパレータ8か
らのトリガパルスによりA/D変換器7からのデ
ジタルデータが順次メモリに記録される。指定さ
れたデータ数の記録つまり前記トリガ信号を基点
とする第1番目のデータから第2の感知信号の最
大振幅値に至る第n番目のデータの記録が完了す
ると、ROM11に格納されているプログラムに
従いCPU12により前記記録データのスタート
からピーク位置までの点数Nが検出され、センサ
2からセンサ3までの遅れ時間TDはサンプリン
グ周期TSよりTD=TS×Nとして決定される。具
体的にはCRT13にTDが表示される。したがつ
て管路伝播速度Vが既知であれば管路長LはL=
TD×Vとして決定され、管路長Lが既知であれ
ば管路伝播速度VはV=L/TDとして決定され
漏水漏れ位置の計算に必要なパラメータの校正値
としてCRT13に表示される。次に制御回路9
により相関・ウエーブメモリ10を相関演算動作
(つまり時間遅れをパラメータとする乗算・積分
を行う動作)に設定すればセンサ2およびセンサ
3より検出された例えば漏水音はA/D変換器
6、A/D変換器7を介して相関・ウエーブメモ
リ10により相関関数が演算される。演算が完了
すればROM11のプログラムに従いCPU12に
より自動的に相関値のピーク点が検出され漏水点
より発生する振動信号のセンサ2とセンサ3への
到達時間差が決定されCRT13に表示される。
次にあらかじめROM11に設定されている管
種、管径、管長、配管構造等のパラメータと
ROM11に格納されている演算プログラムに従
いCPU12により基準点(例えばセンサ2)よ
り漏水発生点までの距離がCRT13に表示され
る。この場合プリンタ14に出力してもよい。 The drawing is a schematic diagram showing an embodiment of the present invention. First, as shown in the figure, a vibration detection sensor is installed at an appropriate distance in the longitudinal axis direction of the pipe to be measured 1, where water leakage, etc., is to be detected using the locations of fire hydrants, water stop valves, water meters, etc. 2 and sensor 3 are each fixedly attached. 2 and 3 correspond to first and second vibration detection elements that detect the first and second sensing signals. In this state, impact is applied to the pipe where sensor 2 is installed with a hammer. Then, vibrations are transmitted to sensor 2 without any time delay, and vibrations are transmitted to sensor 3 with a certain time delay. Sensing signal outputs from each sensor are input to the corresponding amplifiers 4 and 5 and amplified. The first sensing signal from the amplifier 4 is input to a comparator 8, and when it exceeds a preset reference voltage, a pulse is output as a trigger signal.
On the other hand, the second sensing signal from the amplifier 5 is input to the A/D converter 7, converted into a digital signal by a sampling pulse cycle at fixed time intervals, and outputted. If the correlation/wave memory 10 is set to wave memory operation by the control circuit 9, digital data from the A/D converter 7 is sequentially recorded in the memory by a trigger pulse from the comparator 8. When the recording of the specified number of data, that is, the recording of the n-th data from the first data based on the trigger signal to the maximum amplitude value of the second sensing signal is completed, the program stored in the ROM 11 Accordingly, the CPU 12 detects the number N of points from the start to the peak position of the recording data, and the delay time T D from sensor 2 to sensor 3 is determined from the sampling period T S as T D =T S ×N. Specifically, T D is displayed on the CRT 13. Therefore, if the pipe propagation velocity V is known, the pipe length L is L=
If the pipe length L is known, the pipe propagation velocity V is determined as V=L/T D , and is displayed on the CRT 13 as the calibration value of the parameter necessary for calculating the leak location. . Next, the control circuit 9
If the correlation/wave memory 10 is set to a correlation calculation operation (that is, an operation that performs multiplication and integration using time delay as a parameter), for example, water leakage sound detected by the sensors 2 and 3 will be detected by the A/D converter 6, A A correlation function is calculated by a correlation/wave memory 10 via a /D converter 7. When the calculation is completed, the peak point of the correlation value is automatically detected by the CPU 12 according to the program in the ROM 11, and the difference in arrival time of the vibration signal generated from the water leak point to the sensors 2 and 3 is determined and displayed on the CRT 13.
Next, set the parameters such as pipe type, pipe diameter, pipe length, and pipe structure that are set in ROM11 in advance.
According to the calculation program stored in the ROM 11, the CPU 12 displays the distance from the reference point (for example, the sensor 2) to the water leakage point on the CRT 13. In this case, it may be output to the printer 14.
以上説明したように漏水位置計算に必要な重要
パラメータである管路長または管路伝播速度を実
測値で校正し、この校正値をもとにすれば測定時
の配管の実状に合うから精度の良い位置計算がで
きる利点がある。また相関演算スタートから漏水
位置決定まで自動的に計測ができるため間違のな
い結果を容易に得ることができる。 As explained above, the pipe length or pipe propagation velocity, which are important parameters necessary for calculating the leak location, are calibrated using actual measured values, and based on these calibration values, the accuracy can be improved because they match the actual condition of the pipe at the time of measurement. It has the advantage of being able to perform good position calculations. In addition, since measurements can be performed automatically from the start of correlation calculation to the determination of the water leak location, accurate results can be easily obtained.
図は本発明の一実施例を示す構成概略図であ
る。
1…被測定管、2…センサ、3…センサ、4…
増幅器、5…増幅器、6…A/D変換器、7…
A/D変換器、8…コンパレータ、9…制御回
路、10…相関・ウエーブメモリ回路、11…
ROM、12…CPU、13…CRT、14…プリン
タ。
The figure is a schematic diagram showing an embodiment of the present invention. 1...Pipe to be measured, 2...Sensor, 3...Sensor, 4...
Amplifier, 5...Amplifier, 6...A/D converter, 7...
A/D converter, 8... Comparator, 9... Control circuit, 10... Correlation/wave memory circuit, 11...
ROM, 12...CPU, 13...CRT, 14...Printer.
Claims (1)
て生ずる振動に対応した第1の感知信号を検知す
る第1の振動検出素子と、前記打撃によつて生ず
る振動の発生時点から一定の遅れ時間後の時点に
生ずる該被測定管長手軸方向の特定位置の振動に
対応した第2の感知信号を検知する第2の振動検
出素子とをそれぞれ被測定管の長手軸方向に配設
し、第1の感知信号と予め設定された基準電圧と
が加えられて該基準電圧を越える第1の感知信号
の到来時のみトリガ信号を出力するコンパレータ
と、第2の振動検出素子から得られる最大振幅値
の第2の感知信号が加えられて一定時間毎のサン
プリングパルス周期により順次デジタル信号化さ
れたデジタルデータを出力するA/D変換器と、
該トリガ信号によつて該デジタルデータの各デジ
タル信号が逐次蓄積されて該トリガ信号を基点と
する第1番目のデータから前記最大振幅値に対応
の第n番目のデータを記録する相関・ウエーブメ
モリとを具備し、第1番目から第n番目までの記
録データの点数NをCPUにより検出し、第1の
振動検出素子から第2の振動検出素子までの振幅
遅れ時間TDと該サンプリングパルス周期TSとが
TD=TS×Nとなる関係をもち、振動伝播速度及
び管路長のいずれか既知の値から測定時点の実状
にそくした校正値を有する管路長又は振動伝播速
度をもとにしてなることを特徴とする漏水等配管
からの漏れ位置検出装置。1. A first vibration detection element that detects a first sensing signal corresponding to the vibration caused by a blow applied to a specific position of the tube to be measured, and a certain delay time from the point of occurrence of the vibration caused by the blow. and a second vibration detection element for detecting a second sensing signal corresponding to vibration at a specific position in the longitudinal axis direction of the pipe to be measured that occurs at a later point in time, respectively, and a comparator that outputs a trigger signal only when the first sensing signal exceeds the reference voltage by adding the first sensing signal and a preset reference voltage; and a maximum amplitude value obtained from the second vibration detection element. an A/D converter that outputs digital data that is sequentially converted into a digital signal by a sampling pulse cycle at fixed time intervals to which a second sensing signal is added;
a correlation/wave memory in which each digital signal of the digital data is sequentially accumulated by the trigger signal and records data from the first data to the n-th data corresponding to the maximum amplitude value based on the trigger signal; The CPU detects the number N of recorded data from the first to the nth, and detects the amplitude delay time T D from the first vibration detection element to the second vibration detection element and the sampling pulse period. T S and ga
Based on the pipe length or vibration propagation velocity, which has the relationship T D = T S ×N, and has a calibration value based on the known value of vibration propagation velocity or pipe length, based on the actual situation at the time of measurement. A device for detecting the position of leakage from piping, such as water leakage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9102382A JPS58208636A (en) | 1982-05-28 | 1982-05-28 | Leak location detection device for water leakage etc. from piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9102382A JPS58208636A (en) | 1982-05-28 | 1982-05-28 | Leak location detection device for water leakage etc. from piping |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58208636A JPS58208636A (en) | 1983-12-05 |
JPS6367846B2 true JPS6367846B2 (en) | 1988-12-27 |
Family
ID=14014936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9102382A Granted JPS58208636A (en) | 1982-05-28 | 1982-05-28 | Leak location detection device for water leakage etc. from piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58208636A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3430717A1 (en) * | 1984-08-21 | 1986-03-06 | Battelle-Institut E.V., 6000 Frankfurt | CONTAINER FOR SCHUETTGUETER |
FR2626974B1 (en) * | 1988-02-09 | 1990-12-07 | Eaux Cie Gle | METHOD AND DEVICE FOR DETECTING LEAKS ON FLUID PIPES |
US5231866A (en) * | 1991-05-28 | 1993-08-03 | Dnv Industrial Services, Inc. | Acoustic leak detection system |
DE69305190T2 (en) * | 1992-01-16 | 1997-03-13 | Toshiba Kawasaki Kk | Method and device for detecting the position of an abnormal location in an underground pipeline |
JP7131887B2 (en) * | 2017-03-15 | 2022-09-06 | 日本電気株式会社 | Analysis device, analysis system, analysis method and program |
-
1982
- 1982-05-28 JP JP9102382A patent/JPS58208636A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58208636A (en) | 1983-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6561032B1 (en) | Non-destructive measurement of pipe wall thickness | |
EP1896842B1 (en) | Non-destructive testing of pipes | |
KR20200069688A (en) | Fuel leakage monitoring apparatus and method in pipe line | |
CN102630302B (en) | High precision ultrasonic corrosion rate monitoring | |
AU2009261918B2 (en) | Apparatus and method to locate an object in a pipeline | |
US5691914A (en) | Fluid flow measurement correcting system, and methods of constructing and utilizing same | |
JP6296245B2 (en) | Leakage determination method, leak determination system, and program | |
CN105351756A (en) | Pipeline leakage recognizing and positioning system and method based on sound wave imaging | |
US4958296A (en) | Water-leakage detecting apparatus and method which are little influenced by noise | |
CN110953486A (en) | System and method for positioning leakage of pressurized pipeline | |
US4419892A (en) | Method for determination of internal pipeline or tubing corrosion | |
JPS6367846B2 (en) | ||
CN110470254B (en) | Pipeline creep measurement system and method | |
KR100374428B1 (en) | Sonic Level Metering Method | |
SK86093A3 (en) | Method and device for location of leaky point by ultrasound | |
JPH11201812A (en) | Method for measuring sound velocity in fluid piping | |
RU2620023C1 (en) | Method of determining the place of the flow in the pipeline and the device for its implementation | |
JP3048284B2 (en) | Sound velocity calibration device for acoustic pipe length measurement system | |
JP3384197B2 (en) | Pipe shape estimation method | |
JPS637335B2 (en) | ||
GB2071849A (en) | Improvements in ultrasonic testing | |
JP3023199B2 (en) | Acoustic pipe length measuring instrument | |
JPS61215908A (en) | Piping inspecting instrument | |
SU885850A1 (en) | Stand for calibrating pressure pickups | |
JP3144971B2 (en) | Water leak detection device |