Nothing Special   »   [go: up one dir, main page]

JPS6364740B2 - - Google Patents

Info

Publication number
JPS6364740B2
JPS6364740B2 JP56129750A JP12975081A JPS6364740B2 JP S6364740 B2 JPS6364740 B2 JP S6364740B2 JP 56129750 A JP56129750 A JP 56129750A JP 12975081 A JP12975081 A JP 12975081A JP S6364740 B2 JPS6364740 B2 JP S6364740B2
Authority
JP
Japan
Prior art keywords
electrode
membrane
ion
polymer
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56129750A
Other languages
Japanese (ja)
Other versions
JPS5832155A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56129750A priority Critical patent/JPS5832155A/en
Priority to EP19820100198 priority patent/EP0056283B1/en
Priority to DE8282100198T priority patent/DE3264957D1/en
Publication of JPS5832155A publication Critical patent/JPS5832155A/en
Publication of JPS6364740B2 publication Critical patent/JPS6364740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 発明の背景 技術分野 この発明はイオン選択透過膜およびイオンセン
サーに係り、特に、重合体膜を導電体表面に直接
被着したイオンセンサーであつて溶液中のイオン
濃度を電極電位または電流応答で測定するものに
関する。 先行技術および問題点 従来、溶液中のイオン例えば水素イオンの濃度
を測定する電極として水素電極やキンヒドロン電
極が知られているが、今日、適用範囲の広さ、精
確さという点でガラス電極が広く用いられるよう
になつてきている。このガラス電極によるPH測定
の原理は一方を基準液とする水素イオン濃度の異
なる二つの溶液を薄いガラス膜で分離し、このガ
ラス膜の両側に生じた電位差を測定することから
なる。 すなわち、ガラス電極では基準液室を設ける必
要があり、したがつて微小化が困難である。ま
た、粘着性物質を含む溶液中ではガラス膜上に粘
着性物質が付着し、PHの測定が困難であつたり、
電極電位応答の再現性が悪くなつたりする。ま
た、ガラス電極のガラス膜の抵抗は10〜100MΩ
と大きく、PHの測定には普通の電位差計を単独で
用いることができず、高入力インピーダンスの増
幅器が必要となる。 発明の目的 したがつて、この発明の目的は溶液中のイオン
を選択的に透過させるイオン選択透過膜、並びに
溶液中のイオン濃度を測定するイオンセンサーで
あつて基準液室を設ける必要がなく、従つて微小
化を計ることのできるイオンセンサーを提供する
ことにある。 この目的を達成するために、この発明では、従
来のガラス電極の考え方とは全く異なり、導電体
表面を重合体で化学修飾するという従来ほとんど
おこなわれていなかつた技術を利用している。こ
の化学修飾の技術によつて導電体は溶存イオン種
に対し選択的な透過性を持ち、また表面の腐食や
溶解が防止され、溶液中のイオン濃度に対して電
極電位または電流変化で応答するという全く新し
い機能を発揮する。この発明は重合体で化学修飾
した導電体の機能のうちイオン濃度に対する応答
性を利用したものである。 すなわち、この発明のイオンセンサーは、導電
体の表面に窒素含有芳香族化合物すなわち、この
発明のイオン選択分離膜は、アニリン、2−アミ
ノベンゾトリフルオリド、2−アミノピリジン、
2,3−ジアミノピリジン、4,4′−ジアミノジ
フエニルエーテル、4,4′−メチレンジアニリン
およびピロールから選ばれた少なくとも1種の窒
素含有芳香族化合物から誘導された重合体膜、ま
たはビスシクロ[2,2,2]−オクト−7−エ
ン−2,3,5,6−テトラカルボン酸二無水物
を塩化チオニルと反応させて得た酸塩化物に4,
4′−ジアミノジフエニルエーテルを反応させて得
たポリアミド重合体膜からなる。 また、この発明のイオンセンサーは、導電体
と、該導電体の表面に被着された、アニリン、2
−アミノベンゾトリフルオリド、2−アミノピリ
ジン、2,3−ジアミノピリジン、4,4′−ジア
ミノジフエニルエーテル、4,4′−メチレンジア
ニリンおよびピロールから選ばれた少なくとも1
種の窒素含有芳香族化合物から誘導された重合体
膜、またはビスシクロ[2,2,2]−オクト−
7−エン−2,3,5,6−テトラカルボン酸二
無水物を塩化チオニルと反応させて得た酸塩化物
に4,4′−ジアミノジフエニルエーテルを反応さ
せて得たポリアミド重合体膜とを具備したことを
特徴とする。 前記重合体膜は低インピーダンス化され、また
窒素含有芳香族化合物から誘導された重合体膜は
電解酸化重合膜であることが好ましい。 なお、この明細書で用いられている重合体とい
う語は単独重合体および相互重合体(例えば、共
重合体、三元共重合体等)の双方を含む。 発明の具体的説明 以下、この発明を添付の図面に沿つて詳しく説
明する。 第1図に示すようにこの発明のイオンセンサー
は任意形状例えば棒状の導電体11の周囲をポリ
オレフインやポリテトラフルオロエチレン等の絶
縁体13で被覆し、先端のデイスク表面に所定の
重合体膜12を被着・固定してなるものである。
導電体11は導電性材料で構成され、白金等が好
ましい。 導電体デイスク11の表面に被着されている重
合体膜12は窒素含有芳香族化合物の重合体より
なる。この窒素含有芳香族化合物は、アニリン、
2−アミノベンゾトリフルオリド、2−アミノピ
リジン、2,3−ジアミノピリジン、4,4′−ジ
アミノジフエニルエーテル、4,4′−メチレンジ
アニリンおよびピロールから選ばれる。また、予
め重合して得た重合体としてビスシクロ[2,
2,2]−オクト−7−エン−2,3,5,6−
テトラカルボン酸二無水物を塩化チオニルと反応
させて得た酸塩化物に4,4′−ジアミノジフエニ
ルエーテルを反応させて得たポリアミド重合体
(小林他、日化(12)1929〜32(1980)参照)の膜を重
合体膜12として用いることもできる。 以上述べた窒素含有芳香族化合物重合体膜を導
電体11表面上に被着するためには、窒素含有芳
香族化合物を電解酸化重合法によつて導電体11
表面上で重合させる方法、予め合成された重合体
を溶媒に溶かし、この溶液を浸漬・塗布および乾
燥により導電体表面に固定する方法、さらには重
合体膜を化学的処理、物理的処理もしくは照射処
理によつて導電体表面に直接固定する方法を採る
ことができる。 上記被着方法のうち最も好都合な方法は電解酸
化重合法による方法である。この電解酸化重合は
適当な溶媒中で窒素含有芳香族化合物を電解酸化
重合させ、動作電極としての所望導電体の表面に
重合体膜を被着するものである。例えば、1,2
−ジアミノベンゼン、2−アミノベンゾトリフル
オリドおよび4,4′−ジアミノジフエニルメタン
の電解酸化重合はPH7のリン酸緩衝溶液中で、ア
ニリンの重合はピリジンおよび過塩素酸ナトリウ
ムを含むアセトニトリル溶液中で、4,4′−ジア
ミノジフエニルエーテルの重合は過塩素酸ナトリ
ウムを含むアセトニトリル溶液または水酸化ナト
リウムを含むメタノール溶液中で、また、ピロー
ルの重合は支持電解質としてヘキサフルオロリン
酸テトラブチルアンモニウム(Bu4N(PF6)と略
す)を含むアセトニトリル溶液中でおこなう。 電解酸化重合によつて被着した重合体膜は被着
安定性が極めてよく、また膜表面も滑らかであ
る。 重合体膜の厚さに特に制限はないが0.01μない
し1μ程度が適当である。 発明の具体的作用 以上の構成の被覆電極の機能について以下詳し
く説明する。 (1) イオンセンサーとしての応答 第1図のイオンセンサーを用いて試料溶液のPH
を測定するには、第2図に示すように、槽21中
にPHを測定すべき試料溶液22を入れ、この溶液
にこの発明のイオンセンサー23および参照電極
24としての銀−塩化銀電極、カロメル電極等を
浸漬する。そして参照電極24に対するイオンセ
ンサー23の電位差(起電力)を電位差計26で
測定する。このとき、試料溶液22を撹拌機25
で撹拌するとよい。そしてあらかじめ作製してお
いた起電力とPHとの相関図かな試料溶液のPHを読
み取る。なお、気体を吹き込む場合、気体吹き込
み管27を用いる。 この発明のイオンセンサーによる起電力とPHと
の関係は広範囲のPH領域で59mV/PHの勾配を持
つ直線関係を示し、式 E=E0+RT/Fln〔H+〕 (ここで、Eは起電力(mV)、E0は一定電位
(mV)、Rはガス定数、Tは絶対温度、Fはフア
ラデー定数、〔H+〕は水素イオン濃度)で示され
るネルンストの式を満足する。 ただし、試料溶液は開放系あるいはまた、酸素
気流中で測定を行う。また水素ガス気流中で起電
力を測定した時、その値は大きく負の電位値に変
化するが、やはり水素イオンに対してネルンスト
の式を満足する。 (2) イオン種の選択的膜透過と制御 電極被覆膜は、溶液中のイオン種の膜透過に対
して選択性を示す。その測定には、回転円板電極
を使用した、対流ボルタンメトリー法が有効であ
る。なぜなら、電極上へのイオン種の物質輸送量
は円板電極の回転数によつて制御できるので、被
覆膜を持つた電極と持たない電極で回転数に対す
るボルタモグラムの限界電流値の依存性を調べる
と、各化学種に対する膜透過能を評価できる。こ
の挙動は被覆膜の種類および溶存イオン種によつ
て異なるが、一般に被覆膜の厚さが厚い程、イオ
ン種の透過は妨げられ、また溶存イオン種の容積
が大きいほど膜透過は抑制される。 その他の機能性として、電極表面に直接被覆し
た高分子膜により、電極表面の改質が可能であ
り、電極触媒能の向上や表面の腐食と溶解の防止
などにも寄与できる可能性を持つ。また被覆膜は
導電体表面へ適切な置換基を導入するためのアン
カーとしての機能性を持つ。電極表面が有機物等
で化合物化するための適切な置換基を持たない場
合、まず電極表面をアルデヒド、アミン等の置換
基を持つた重合体で被覆する。そして被覆膜をグ
ラフト重合反応等の反応活性置換基として利用
し、目的とする化合物の固定基質として使用でき
るし、被覆膜の改質にも使用できる。被覆膜の置
換基がピリジン等の配位子であれば、膜は配位結
合能力を持ち、また置換基がスルホン酸や四級化
されたピリジン等のように荷電を持つ場合、膜は
高分子電解質の性質を持ち、反対に荷電したイオ
ン種の集積、固定の能力を持つ。よつて、これら
の被覆膜電極は微量の溶存イオン種に対して前濃
縮の作用を持ち次に、電極で酸化あるいは還元を
行ない電流によつて検知することができ、微量イ
オン種検出用電極としての可能性を持つている。
また、絶縁体となつている被覆膜に第3の化学種
を挿入することによつて電導性膜に改良改質でき
る。また、電極電位を変えることによつて膜中反
応活性種の酸化還元状態を変え、膜の色の変化、
着色脱色が可能である。 以下、この発明の実施例を示す。 実施例 1 白金線の周囲をポリテトラフルオロエチレンで
絶縁し、デイスク表面は電解前に次の方法で前処
理する。まず、シリコンカーバイト紙およびアル
ミナ粉末(0.3μm)で研磨して平滑にし、希王水
で洗滌した後蒸溜水で水洗いし0.05Mの酢酸溶液
に浸す。次にこの電極を動作電極とし、対極とし
て白金網、基準電極として飽和カロメル電極を用
いた通常の3電極式H型セルを使用して、電極へ
の印加電圧を−0.6Vから+1.0Vの間で約10回ほ
ど往復させ電極表面を活性化した後蒸溜水で洗浄
し、次にメタノールで洗浄し乾燥する。 電極被覆膜作成は、上述の前処理の済んだ動作
電極を上述と同様の電解セル中に浸漬し、白金デ
イスク表面への電解酸化重合反応を10mM4,
4′−ジアミノジフエニルエーテル、0.1M過塩素
酸ナトリウムを含むアセトニトリル溶媒中で行つ
た。電解液は電解前にアルゴンガスで十分に脱酸
素した。4,4′−ジアミノジフエニルエーテル単
量体の酸化反応が白金電極で生起していることを
確認したのち、印加電圧を+1.20ボルト(対飽和
カロメル電極)で静止、10分間定電解し電極表面
に酸化重合物を被覆させた。その後、電極表面を
蒸溜水で3回以上洗滌し高分子被覆化学修飾電極
を作製した。第3図は酸化重合反応の開始を示す
サイクリツクボルタングラムであり、第一走査酸
化波(曲線a)と第二走査波(曲線b)とのピー
ク電流の違いは、電極表面での被覆膜生成に起因
するものである。曲線cおよびdは第三および第
四走査波である。なお、電位走査速度は74mV/
秒であつた。 作製した被覆膜電極のPHセンサーとしての作用
を調べた。PH測定用溶液として全リン酸濃度
50mMを含む緩衝溶液を用い、水酸化ナトリウム
および過塩素酸で溶液のPHを2.00から10.00の範
囲に調整した。この試料溶液に被覆膜電極を浸
し、飽和カロメル電極を基準電極として起電力を
測定した。この測定起電力と市販のガラス電極で
測定したPH値とをプロツトしたものを第4図に直
線a(開放系)で示す。この直線の勾配は2.0から
11.0のPH領域でほぼネルンスト式を満足する直線
関係が得られ、その勾配は54mV/PHであつた。
この測定は試料溶液を空気中に放置した開放系の
状態で行つたものである。試料溶液に酸素ガス、
アルゴンガスを吹き込みながら測定した時、それ
ぞれ第4図の直線bおよび直線cで示す応答が得
られ、直線の勾配は、各々54mV/PHと46mV/
PHであつた。また、水素ガス気流中で、起電力の
値は2.0から9.0のPH領域で大きく負の電位値に変
化するが、59mV/PHのネルンストの関係式を満
足した(直線d)。 このことから、被覆膜電極は水素イオン濃度測
定に極めて優れた電極の特性を示す。平衡電極電
位(起電力)応答の精度と安定性は良く5〜15分
以内で電位は一定値を示し、その後数時間経ても
±2mVの範囲で一定値を保持する。また、この
電極をPH=7.0のリン酸緩衝溶液に1週間浸漬し
たのち、水素イオンに対するる起電力応答を調べ
ても、第4図の直線eで示した様にネルンスト式
を満足するので、その膜の耐久性は極めて良い。
また、試料溶液中にコバルト()イオン、ニツ
ケル()イオン、鉄()イオン、または亜鉛
()イオンを共存させた状態で同様の測定をお
こなつた。平衡電位はこれらイオン種の影響を受
けず、溶液中の水素イオン濃度変化によつてのみ
変化した。フエリシアンイオンを含む溶液(PH=
4.0)についての測定結果を第5図に示す。なお、
試料溶液中にカルシウム()のようなアルカリ
土類金属イオンを共存させた場合でも、平衡電位
はそのイオンの影響を受けなかつた。 実施例 2 アニリンの電解酸化重合反応による白金デイス
ク電極表面への被覆膜作成は、10mMアニリン、
20mMピリジン、0.1M過塩素酸ナトリウムのア
セトニトリル溶媒中で行われた。実施例1と同様
の方法、すなわち、電解酸化重合反応法により電
極被覆膜を作成した。この被覆膜電極のPHセンサ
ーとしての応答が調べられ、2.0から9.0までのPH
領域で52mV/PHの勾配を持つ直線関係が得られ
た。電極電位は5〜10分で一定値を示し、その後
数時間±2mVの範囲で安定化した。この被覆膜
の耐久性は極めて良いが、試料溶液に遷移金属イ
オンを含んだ場合、平衡電位はこのイオン種の濃
度の影響を受けた。 実施例 3 白金デイスク表面への電解重合をピロール
10mM、支持電解質Bu4N(PF6)50mMを含むア
セトニトリル溶液中で行ない実施例1と同様に被
覆膜電極を作製した。この場合のピロールの電解
酸化重合は印加電圧+0.8ボルト(対飽和カロメ
ル電極)で10分間定電圧電解しておこなわれた。
この電極を水、メタノールの順で洗滌し、乾燥し
た。作製した電極被覆膜は紫色を呈する。この被
覆電極のセンサーとしての応答が調べられ2.0か
ら9.0までのPH領域で48mV/PHの勾配をもつ直線
が得られた。電極電位は5〜30分で一定値を示
し、その後数時間±2mVの範囲で安定した試料
溶液に酸素、アルゴンガスを吹込みながら測定し
たときは、各々57mV/PH(2.0PH10)、
48mV/PH(2.0PH9.0)が得られ、電位は20
〜40分間で一定値に達し、その後数時間±2mV
の範囲で安定した。次に、この電極を5日間リン
酸緩衝液(PH=7.0)に浸漬した後、水素イオン
濃度を測定した場合でも同様の結果が得られた。
この被覆膜の耐久性は極めて良い。試料溶液に遷
移金属イオンを含んだ場合でも、平衡電位に対す
る影響はなかつた。 実施例 4 白金デイスク電極表面への2−アミノピリジン
の被覆膜形成を10mM2−アミノピリジン、、
50mMリン酸緩衝液(PH=7.00)中で実施例3と
同様の方法で電解酸化重合法によりおこなつた。
この被覆膜電極の平衡電位(起電力)とPHの間で
は直線関係が満足され、2.0から11.0までのPH領
域で48mV/PHを得た。ただし、測定は試料溶液
を空気中に放置した開放系の状態で行つた。試料
溶液に酸素、アルゴンのガスを吹込みながら測定
した時は各々48mV/PH、59mV/PH(ただし、
それぞれ2.00PH11.00、2.00PH10.5のPH範
囲)であつた。水素ガス吹込みの場合の起電力の
値は著しく負の電位値を示すが、59mV/PHのネ
ルンストの関係式をほゞ満足した。このことか
ら、被覆膜電極は水素イオン濃度測定可能な電極
特性を示す。 平衡電位は5〜20分以内で電位は一定値を示
し、その後数時間経ても±2mVの範囲で一定値
を保持する。また、この電極をPH=7.0のリン酸
緩衝液に約10日間浸漬したのち、水素イオンに対
する起電力応答を調べた結果同様のPH応答が得ら
れ本発明の膜の耐久性は極めて良い。 実施例 5,6 2,3−ジアミノピリジン、2−アミノベンゾ
トリフルオリドを実施例3と同様の方法により、
白金表面上に酸化重合させ重合体被覆電極を作製
した。そしてこれら被覆電極を用い、測定溶液の
水素イオン濃度、平衡電位応答性、気体吹込み
(酸素、アルゴン、水素等の各種ガス)の水素イ
オン濃度測定への影響を検討し、次の結果を得
た。
BACKGROUND TECHNICAL FIELD OF THE INVENTION The present invention relates to an ion selective permeable membrane and an ion sensor, and more particularly to an ion sensor in which a polymer membrane is directly attached to the surface of a conductor, and which detects the concentration of ions in a solution. Concerning what is measured by electrode potential or current response. Prior art and problems Conventionally, hydrogen electrodes and quinhydrone electrodes have been known as electrodes for measuring the concentration of ions such as hydrogen ions in solutions, but today glass electrodes are widely used in terms of their wide range of application and accuracy. It is starting to be used. The principle of PH measurement using this glass electrode consists of separating two solutions with different hydrogen ion concentrations, one of which is used as a reference solution, by a thin glass membrane, and measuring the potential difference generated on both sides of this glass membrane. That is, with a glass electrode, it is necessary to provide a reference liquid chamber, and therefore miniaturization is difficult. In addition, in solutions containing sticky substances, the sticky substances adhere to the glass membrane, making it difficult to measure the PH.
The reproducibility of electrode potential response may deteriorate. In addition, the resistance of the glass membrane of the glass electrode is 10 to 100MΩ
Therefore, an ordinary potentiometer cannot be used alone to measure PH, and an amplifier with high input impedance is required. Purpose of the Invention Therefore, the purpose of the present invention is to provide an ion selectively permeable membrane that selectively permeates ions in a solution, and an ion sensor that measures the concentration of ions in the solution, without the need to provide a reference liquid chamber. Therefore, it is an object of the present invention to provide an ion sensor that can be miniaturized. To achieve this objective, the present invention is completely different from the conventional concept of glass electrodes, and utilizes a technique that has rarely been used in the past: chemically modifying the conductor surface with a polymer. This chemical modification technique makes the conductor selectively permeable to dissolved ionic species, prevents surface corrosion and dissolution, and responds to the ion concentration in solution by changes in electrode potential or current. It offers a completely new function. This invention utilizes the responsiveness to ion concentration among the functions of a conductor chemically modified with a polymer. That is, the ion sensor of the present invention contains a nitrogen-containing aromatic compound on the surface of the conductor. In other words, the ion selective separation membrane of the present invention contains aniline, 2-aminobenzotrifluoride, 2-aminopyridine,
A polymer film derived from at least one nitrogen-containing aromatic compound selected from 2,3-diaminopyridine, 4,4'-diaminodiphenyl ether, 4,4'-methylene dianiline and pyrrole, or biscyclo The acid chloride obtained by reacting [2,2,2]-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride with thionyl chloride has 4,
It consists of a polyamide polymer membrane obtained by reacting 4'-diaminodiphenyl ether. Further, the ion sensor of the present invention includes a conductor, aniline, 2
- at least one selected from aminobenzotrifluoride, 2-aminopyridine, 2,3-diaminopyridine, 4,4'-diaminodiphenyl ether, 4,4'-methylene dianiline and pyrrole
Polymeric films derived from species of nitrogen-containing aromatic compounds, or biscyclo[2,2,2]-octo-
A polyamide polymer membrane obtained by reacting 4,4'-diaminodiphenyl ether with an acid chloride obtained by reacting 7-ene-2,3,5,6-tetracarboxylic dianhydride with thionyl chloride. It is characterized by having the following. It is preferable that the impedance of the polymer membrane is reduced, and that the polymer membrane derived from a nitrogen-containing aromatic compound is an electrolytically oxidized polymer membrane. Note that the term polymer used in this specification includes both homopolymers and interpolymers (eg, copolymers, terpolymers, etc.). DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described in detail with reference to the accompanying drawings. As shown in FIG. 1, the ion sensor of the present invention has a conductor 11 of arbitrary shape, for example, a rod, whose periphery is coated with an insulator 13 such as polyolefin or polytetrafluoroethylene, and a predetermined polymer film 12 is coated on the disk surface at the tip. It is made by attaching and fixing.
The conductor 11 is made of a conductive material, preferably platinum or the like. The polymer film 12 deposited on the surface of the conductor disk 11 is made of a polymer of a nitrogen-containing aromatic compound. This nitrogen-containing aromatic compound includes aniline,
selected from 2-aminobenzotrifluoride, 2-aminopyridine, 2,3-diaminopyridine, 4,4'-diaminodiphenyl ether, 4,4'-methylene dianiline and pyrrole. In addition, biscyclo[2,
2,2]-oct-7-ene-2,3,5,6-
A polyamide polymer obtained by reacting 4,4'-diaminodiphenyl ether with an acid chloride obtained by reacting tetracarboxylic dianhydride with thionyl chloride (Kobayashi et al., Nikka (12) 1929-32) 1980) can also be used as the polymer membrane 12. In order to deposit the nitrogen-containing aromatic compound polymer film described above on the surface of the conductor 11, the nitrogen-containing aromatic compound is applied to the conductor 11 by electrolytic oxidation polymerization.
A method of polymerizing on the surface, a method of dissolving a pre-synthesized polymer in a solvent and fixing the solution to the conductor surface by dipping/coating and drying, and a method of chemically processing, physically processing or irradiating the polymer film. A method of directly fixing it to the surface of the conductor through treatment can be adopted. The most convenient of the above deposition methods is by electrolytic oxidative polymerization. In this electrolytic oxidative polymerization, a nitrogen-containing aromatic compound is electrolytically oxidized and polymerized in a suitable solvent to deposit a polymer film on the surface of a desired conductor as a working electrode. For example, 1,2
- Electrooxidative polymerization of diaminobenzene, 2-aminobenzotrifluoride and 4,4'-diaminodiphenylmethane in a phosphate buffer solution at pH 7, and polymerization of aniline in an acetonitrile solution containing pyridine and sodium perchlorate. , 4,4'-diaminodiphenyl ether was polymerized in acetonitrile solution containing sodium perchlorate or methanol solution containing sodium hydroxide, and pyrrole was polymerized using tetrabutylammonium hexafluorophosphate (Bu 4 N (abbreviated as PF 6 )) in an acetonitrile solution. A polymer film deposited by electrolytic oxidative polymerization has extremely good adhesion stability and a smooth film surface. The thickness of the polymer film is not particularly limited, but approximately 0.01μ to 1μ is appropriate. Specific Functions of the Invention The functions of the coated electrode having the above structure will be explained in detail below. (1) Response as an ion sensor The PH of the sample solution is measured using the ion sensor shown in Figure 1.
To measure PH, as shown in FIG. 2, a sample solution 22 whose pH is to be measured is placed in a tank 21, and an ion sensor 23 of the present invention and a silver-silver chloride electrode as a reference electrode 24 are added to this solution. Immerse calomel electrodes, etc. Then, the potential difference (electromotive force) of the ion sensor 23 with respect to the reference electrode 24 is measured by the potentiometer 26. At this time, the sample solution 22 is mixed with the stirrer 25.
It is best to stir with Then, read the PH of the sample solution using the correlation diagram between electromotive force and PH prepared in advance. Note that when blowing gas, a gas blowing pipe 27 is used. The relationship between the electromotive force and PH by the ion sensor of this invention shows a linear relationship with a slope of 59 mV/PH in a wide range of PH range, and is expressed by the formula E=E 0 + RT/Fln [H + ] (where E is the electromotive force It satisfies the Nernst equation expressed by power (mV), E 0 is a constant potential (mV), R is a gas constant, T is an absolute temperature, F is a Faraday constant, and [H + ] is a hydrogen ion concentration). However, the sample solution is measured in an open system or in an oxygen stream. Furthermore, when the electromotive force is measured in a hydrogen gas stream, the value changes greatly to a negative potential value, but it still satisfies the Nernst equation for hydrogen ions. (2) Selective membrane permeation and control of ionic species The electrode-coated membrane exhibits selectivity for membrane permeation of ionic species in solution. Convective voltammetry using a rotating disk electrode is effective for this measurement. This is because the amount of mass transport of ionic species onto the electrode can be controlled by the rotational speed of the disc electrode, so the dependence of the critical current value of the voltammogram on the rotational speed can be improved for electrodes with and without a coating film. When examined, the membrane permeability ability for each chemical species can be evaluated. This behavior differs depending on the type of coating membrane and dissolved ionic species, but in general, the thicker the coating membrane, the more the ionic species permeation is inhibited, and the larger the volume of the dissolved ionic species, the more the membrane permeation is suppressed. be done. As for other functionality, it is possible to modify the electrode surface by coating the polymer membrane directly on the electrode surface, which has the potential to contribute to improving the electrode catalytic ability and preventing surface corrosion and dissolution. The coating film also functions as an anchor for introducing appropriate substituents onto the conductor surface. When the electrode surface does not have an appropriate substituent for compounding with an organic substance, etc., the electrode surface is first coated with a polymer having a substituent such as aldehyde or amine. The coated film can be used as a reactive substituent for graft polymerization reactions, etc., and can be used as a substrate for immobilizing a target compound, and can also be used to modify the coated film. If the substituent of the coating film is a ligand such as pyridine, the film has coordination bonding ability, and if the substituent has a charge such as sulfonic acid or quaternized pyridine, the film has It has the properties of a polymer electrolyte and has the ability to accumulate and fix oppositely charged ionic species. Therefore, these coated membrane electrodes have the effect of pre-concentrating trace amounts of dissolved ionic species, and then oxidize or reduce them at the electrode, which can be detected by electric current. It has potential as
Further, by inserting a third chemical species into the coating film, which is an insulator, it is possible to improve the coating film to make it conductive. In addition, by changing the electrode potential, the redox state of reactive active species in the membrane can be changed, and the color of the membrane can change.
Can be colored and bleached. Examples of this invention will be shown below. Example 1 The platinum wire was insulated around it with polytetrafluoroethylene, and the disk surface was pretreated by the following method before electrolysis. First, it is polished and smoothed with silicon carbide paper and alumina powder (0.3 μm), washed with dilute aqua regia, then washed with distilled water, and immersed in a 0.05M acetic acid solution. Next, using a normal three-electrode H-type cell with this electrode as the working electrode, a platinum mesh as the counter electrode, and a saturated calomel electrode as the reference electrode, the voltage applied to the electrode was varied from -0.6V to +1.0V. After activating the electrode surface by moving it back and forth about 10 times, it is washed with distilled water, then with methanol, and then dried. To create the electrode coating film, the working electrode that had been pretreated as described above was immersed in the same electrolytic cell as described above, and an electrolytic oxidation polymerization reaction was carried out on the surface of the platinum disk at 10mM4,
It was carried out in an acetonitrile solvent containing 4'-diaminodiphenyl ether and 0.1 M sodium perchlorate. The electrolyte was sufficiently deoxidized with argon gas before electrolysis. After confirming that the oxidation reaction of the 4,4'-diaminodiphenyl ether monomer was occurring at the platinum electrode, the applied voltage was kept at +1.20 volts (versus the saturated calomel electrode), and constant electrolysis was carried out for 10 minutes. The electrode surface was coated with an oxidized polymer. Thereafter, the electrode surface was washed three times or more with distilled water to produce a polymer-coated chemically modified electrode. Figure 3 is a cyclic voltamgram showing the start of the oxidative polymerization reaction, and the difference in peak current between the first scanning oxidation wave (curve a) and the second scanning wave (curve b) is due to the coating on the electrode surface. This is due to film formation. Curves c and d are the third and fourth scan waves. Note that the potential scanning speed is 74mV/
It was hot in seconds. The effect of the prepared coated membrane electrode as a PH sensor was investigated. Total phosphoric acid concentration as a solution for PH measurement
Using a buffer solution containing 50 mM, the pH of the solution was adjusted to a range of 2.00 to 10.00 with sodium hydroxide and perchloric acid. The coated membrane electrode was immersed in this sample solution, and the electromotive force was measured using a saturated calomel electrode as a reference electrode. A plot of this measured electromotive force and the PH value measured with a commercially available glass electrode is shown in FIG. 4 as a straight line a (open system). The slope of this straight line is from 2.0
A linear relationship that almost satisfied the Nernst equation was obtained in the PH region of 11.0, and its slope was 54 mV/PH.
This measurement was conducted in an open system where the sample solution was left in the air. Oxygen gas in the sample solution,
When measurements were taken while blowing argon gas, the responses shown by straight lines b and c in Figure 4 were obtained, and the slopes of the straight lines were 54 mV/PH and 46 mV/PH, respectively.
It was PH. In addition, in a hydrogen gas flow, the electromotive force value significantly changes to a negative potential value in the PH range from 2.0 to 9.0, but it satisfied the Nernst relation of 59 mV/PH (straight line d). From this, the coated membrane electrode exhibits extremely excellent electrode characteristics for measuring hydrogen ion concentration. The accuracy and stability of the equilibrium electrode potential (electromotive force) response is good, and the potential shows a constant value within 5 to 15 minutes, and then maintains a constant value within ±2 mV even after several hours. Furthermore, even if we examine the electromotive force response to hydrogen ions after immersing this electrode in a phosphate buffer solution with a pH of 7.0 for one week, it satisfies the Nernst equation as shown by the straight line e in Figure 4. The durability of the membrane is extremely good.
Similar measurements were also carried out in the presence of cobalt () ions, nickel () ions, iron () ions, or zinc () ions in the sample solution. The equilibrium potential was not affected by these ionic species and changed only with changes in the hydrogen ion concentration in the solution. A solution containing Felician ions (PH=
Figure 5 shows the measurement results for 4.0). In addition,
Even when alkaline earth metal ions such as calcium (2000) coexisted in the sample solution, the equilibrium potential was not affected by the ions. Example 2 A coating film was formed on the surface of a platinum disk electrode by electrolytic oxidative polymerization reaction of aniline.
Performed in acetonitrile solvent of 20mM pyridine, 0.1M sodium perchlorate. An electrode coating film was created by the same method as in Example 1, that is, the electrolytic oxidation polymerization reaction method. The response of this coated membrane electrode as a PH sensor was investigated.
A linear relationship was obtained with a slope of 52 mV/PH in the region. The electrode potential showed a constant value in 5 to 10 minutes, and then stabilized in the range of ±2 mV for several hours. Although the durability of this coating film is extremely good, when the sample solution contained transition metal ions, the equilibrium potential was affected by the concentration of these ion species. Example 3 Electrolytic polymerization of pyrrole onto the surface of a platinum disk
A coated membrane electrode was prepared in the same manner as in Example 1 in an acetonitrile solution containing 10 mM of the supporting electrolyte Bu 4 N (PF 6 ) and 50 mM of the supporting electrolyte Bu 4 N (PF 6 ). The electrolytic oxidative polymerization of pyrrole in this case was carried out by constant voltage electrolysis for 10 minutes at an applied voltage of +0.8 volts (vs. saturated calomel electrode).
This electrode was washed with water and methanol in that order, and dried. The prepared electrode coating film exhibits a purple color. The response of this coated electrode as a sensor was investigated, and a straight line with a slope of 48 mV/PH was obtained in the PH range from 2.0 to 9.0. The electrode potential showed a constant value for 5 to 30 minutes, and after that, it remained stable within the range of ±2 mV for several hours.When measuring while blowing oxygen and argon gas into the sample solution, the potential was 57 mV/PH (2.0 PH10), respectively.
48mV/PH (2.0PH9.0) was obtained, and the potential was 20
A constant value is reached in ~40 minutes, then ±2 mV for several hours
Stable within the range. Next, similar results were obtained when the hydrogen ion concentration was measured after immersing this electrode in a phosphate buffer solution (PH=7.0) for 5 days.
The durability of this coating film is extremely good. Even when the sample solution contained transition metal ions, there was no effect on the equilibrium potential. Example 4 Formation of a coating film of 2-aminopyridine on the surface of a platinum disk electrode was performed using 10mM 2-aminopyridine.
The electrolytic oxidation polymerization was carried out in the same manner as in Example 3 in 50 mM phosphate buffer (PH=7.00).
A linear relationship was satisfied between the equilibrium potential (electromotive force) of this coated membrane electrode and PH, and 48 mV/PH was obtained in the PH range from 2.0 to 11.0. However, the measurement was performed in an open system where the sample solution was left in the air. When measuring while blowing oxygen and argon gas into the sample solution, the values were 48 mV/PH and 59 mV/PH, respectively (however,
The PH range was 2.00PH11.00 and 2.00PH10.5, respectively). Although the electromotive force value in the case of hydrogen gas injection showed a significantly negative potential value, it almost satisfied the Nernst relation of 59 mV/PH. From this, the coated membrane electrode exhibits electrode characteristics that allow measurement of hydrogen ion concentration. The equilibrium potential shows a constant value within 5 to 20 minutes, and remains constant within a range of ±2 mV even after several hours. Furthermore, after immersing this electrode in a phosphate buffer solution with a pH of 7.0 for about 10 days, the electromotive force response to hydrogen ions was examined. As a result, a similar PH response was obtained, indicating that the membrane of the present invention has extremely good durability. Examples 5, 6 2,3-diaminopyridine and 2-aminobenzotrifluoride were prepared in the same manner as in Example 3.
A polymer-coated electrode was fabricated by oxidative polymerization on a platinum surface. Using these coated electrodes, we investigated the hydrogen ion concentration of the measurement solution, the equilibrium potential response, and the effects of gas injection (various gases such as oxygen, argon, hydrogen, etc.) on hydrogen ion concentration measurement, and obtained the following results. Ta.

【表】【table】

【表】 実施例 7 ビスシクロ[2,2,2]−オクト−7−エン
−2,3,5,6−テトラカルボン酸二無水物を
塩化チオニルとの反応で酸塩化物に変え、これに
4,4′−ジアミノジフエニルエーテルを反応させ
て作つたポリアミド重合体0.04重量%の濃度でジ
メチルスルホキジド(DMOS)に溶解し、これ
に白金電極の先端部を浸漬し、次に溶液から取り
出し、室温中で数時間風乾して被覆電極を作製し
た。測定液中の平衡電位(起電力)とPHの関係は
直線関係を満足し、PH2.00から10.00の範囲で
46mV/PHを得た。酸素ガスを吹込んだ場合PH
2.00から7.00の範囲で46mV/PHであるが、アル
カリ側(7.00PH10.00)で約25mV/PHであつ
た。アルゴンガスを吹込んだ場合、2.5PH
10.0の範囲で32mV/PH。水素ガス吹込みの場合
の起電力の値は著しく負の電位値を示すが、
57mV/PHのネルンストの関係式をほゞ満足した
(2.0PH9.0)。 平衡電位は10分以内で一定値を示し、その後数
時間経ても±2mVの範囲で一定値を保持する。 また、この電極をPH=7.0のリン酸緩衝液に一
昼夜浸漬したのち、水素イオン濃度変化を調べた
結果直線関係を満足し、31mV/PHの勾配を示し
勾配の値が変わり膜の経時変化が認められた。 試料溶液中に1mMの鉄()イオンを共存さ
せた時、平衡電位はこのイオン種の影響を受け
る。 実施例 8,9 以下の実施例では、電極被覆膜が溶液中のイオ
ン種に対して選択的膜透過の機能をもつことを示
す。
[Table] Example 7 Biscyclo[2,2,2]-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride was converted into acid chloride by reaction with thionyl chloride, and this A polyamide polymer prepared by reacting 4,4'-diaminodiphenyl ether is dissolved in dimethyl sulfoxide (DMOS) at a concentration of 0.04% by weight, the tip of a platinum electrode is immersed in this, and then the solution is removed. It was taken out and air-dried at room temperature for several hours to produce a coated electrode. The relationship between the equilibrium potential (electromotive force) in the measurement solution and PH satisfies a linear relationship, and within the PH range of 2.00 to 10.00.
46mV/PH was obtained. PH when oxygen gas is blown
It was 46 mV/PH in the range of 2.00 to 7.00, but it was about 25 mV/PH on the alkaline side (7.00 PH 10.00). 2.5PH when argon gas is blown
32mV/PH in the range of 10.0. The electromotive force value in the case of hydrogen gas injection shows a significantly negative potential value,
It almost satisfied the Nernst relation of 57mV/PH (2.0PH9.0). The equilibrium potential shows a constant value within 10 minutes, and then remains constant within a range of ±2 mV even after several hours. In addition, after immersing this electrode in a phosphate buffer solution with a pH of 7.0 for a day and night, we investigated the change in hydrogen ion concentration, which satisfied a linear relationship and showed a slope of 31 mV/PH. Admitted. When 1mM iron() ions coexist in the sample solution, the equilibrium potential is affected by this ion species. Examples 8 and 9 The following examples demonstrate that the electrode coating membrane has a selective membrane permeation function for ionic species in a solution.

【表】 れている。
実施例 10 ゲル状液中でのPH測定の結果を記述する。実施
例1と同様の方法で白金デイスク表面に4,4′−
ジアミノジフエニルエーテルを被着し被覆電極を
作製した。この電極を用いて、ポリアクリル酸を
ベースにした増粘剤であるCarbopol#K40(グツ
ドリツチ社製)0.1重量%を5重量%水酸化ナト
リウム溶液に溶解したゲル中の、水素イオン濃度
を測定し、電極平衡電位(起電力)約140mV対
飽和カロメル電極を得た。この値は、第4図の開
放系の起電力とPHの関係から約PH=10.5に相当す
る。 ガラス電極を用いて同様の測定を行つたけれど
も平衡電位の応答は得られずPHの測定は出来なか
つた。 実施例 11 白金デイスク電極表面への4,4′−ジアミノジ
フエニルエーテルの電解酸化重合反応を実施例1
と異なつた電解条件すなわち、10mM4,4′−ジ
アミノジフエニルエーテル、30mM水酸化ナトリ
ウムを含むメタノール溶液中でおこなつた。この
場合、金色の安定な被覆膜が得られた。この被覆
膜電極のPHセンサーとしての応答は良好であつ
た。 発明の具体的効果 以上述べたこの発明のイオンセンサーは以下に
列挙する効果を奏する。 (1) 窒素含有芳香族化合物から誘導された重合体
膜を被着してなる導電体を溶液に浸漬し、その
電極電位応答でPHを測定できる。したがつて、
基準液室を設ける必要がなく、導電体の加工限
定範囲まで微小化でき、測定試料液が少量でよ
い。また、電位応答速度も早い。さらに、この
発明のPHセンサーは体内挿入可能なように形成
することもできる。 (2) 重合体膜の導電性は極めて良く、膜抵抗は非
常に小さく、低インピーダンス化されているの
で、測定に高入力インピーダンスの増幅器を必
要としない。 (3) 多種類のイオン種特に遷移金属イオンを含む
溶液中でも短時間にPHを定量的に精度よく測定
できる。また、懸濁液やスラリー状液のような
不均一物質を含む溶液系でもPHセンサーとして
作動する。 (4) 試料液に酸素ガス、アルゴンガス、水素ガス
を吹込んだ場合にもネルンストの式を満足する
直線関係が成立し、該試料液のPH測定ができ
る。 (5) 被覆膜は水素イオンや臭素イオンを一部透過
したり、水素イオンのみを特異的に選択透過し
たり、また遷移金属イオンおよびその錯体を透
過しないという機能を有するのでイオンおよび
分子の選択透過膜として利用できる。 (6) 被覆膜は低インピーダンス化されているの
で、雨水のような電気伝導性の低い溶液中でも
PHセンサーとして作動する。
[Table]
Example 10 The results of PH measurement in a gel-like liquid will be described. 4,4'- was applied to the surface of the platinum disk in the same manner as in Example 1.
A coated electrode was prepared by depositing diaminodiphenyl ether. Using this electrode, we measured the hydrogen ion concentration in a gel prepared by dissolving 0.1% by weight of Carbopol #K40 (manufactured by Gutudoritsu), a polyacrylic acid-based thickener, in a 5% by weight sodium hydroxide solution. , an electrode equilibrium potential (electromotive force) of approximately 140 mV versus a saturated calomel electrode was obtained. This value corresponds to approximately PH=10.5 from the relationship between the electromotive force and PH of the open system shown in FIG. Similar measurements were made using a glass electrode, but no equilibrium potential response was obtained and PH could not be measured. Example 11 Electrolytic oxidation polymerization reaction of 4,4'-diaminodiphenyl ether onto the surface of a platinum disk electrode in Example 1
Electrolysis was carried out under different conditions, namely in a methanol solution containing 10 mM 4,4'-diaminodiphenyl ether and 30 mM sodium hydroxide. In this case, a stable golden coating was obtained. The response of this coated membrane electrode as a PH sensor was good. Specific Effects of the Invention The ion sensor of the invention described above has the effects listed below. (1) A conductor coated with a polymer film derived from a nitrogen-containing aromatic compound is immersed in a solution, and PH can be measured based on the electrode potential response. Therefore,
There is no need to provide a reference liquid chamber, the conductor can be miniaturized to a limited range of processing, and only a small amount of measurement sample liquid is required. Also, the potential response speed is fast. Furthermore, the PH sensor of the present invention can also be formed so that it can be inserted into the body. (2) The conductivity of the polymer membrane is extremely good, the membrane resistance is extremely low, and the impedance is low, so a high input impedance amplifier is not required for measurement. (3) PH can be measured quantitatively and accurately in a short time even in solutions containing many types of ions, especially transition metal ions. It also works as a PH sensor in solution systems containing heterogeneous substances, such as suspensions and slurry liquids. (4) Even when oxygen gas, argon gas, or hydrogen gas is blown into the sample liquid, a linear relationship that satisfies Nernst's equation is established, and the pH of the sample liquid can be measured. (5) The coated membrane has the functions of partially permeating hydrogen ions and bromide ions, selectively permeating only hydrogen ions, and not permeating transition metal ions and their complexes, so that they do not allow ions and molecules to pass through. Can be used as a selectively permeable membrane. (6) Since the coating film has a low impedance, it can be used even in solutions with low electrical conductivity such as rainwater.
Operates as a PH sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のイオンセンサーの一部の拡
大断面図、第2図はこの発明のイオンセンサーに
よるPH測定方法を示す概略図、第3図は4,4′−
ジアミノジフエニルエーテルの電極酸化反応時の
サイクリツクボルタモグラム、第4図および第5
図はこの発明の異なるイオンセンサーの起電力と
PHとの関係を示すグラフ。 11……導電体、12……重合体膜、23……
PHセンサー、24……参照電極、26……電位差
計。
Fig. 1 is an enlarged cross-sectional view of a part of the ion sensor of the present invention, Fig. 2 is a schematic diagram showing a pH measurement method using the ion sensor of the present invention, and Fig. 3 is a 4,4'-
Cyclic voltammograms during electrode oxidation reaction of diaminodiphenyl ether, Figures 4 and 5
The figure shows the electromotive force of different ion sensors of this invention.
Graph showing the relationship with PH. 11... Conductor, 12... Polymer film, 23...
PH sensor, 24... reference electrode, 26... potentiometer.

Claims (1)

【特許請求の範囲】 1 溶液中のイオンを選択的に透過させる膜であ
つて、アニリン、2−アミノベンゾトリフルオリ
ド、2−アミノピリジン、2,3−ジアミノピリ
ジン、4,4′−ジアミノジフエニルエーテル、
4,4′−メチレンジアニリンおよびピロールから
選ばれた少なくとも1種の窒素含有芳香族化合物
から誘導された重合体膜、またはビスシクロ
[2,2,2]−オクト−7−エン−2,3,5,
6−テトラカルボン酸二無水物を塩化チオニルと
反応させて得た酸塩化物に4,4′−ジアミノジフ
エニルエーテルを反応させて得たポリアミド重合
体からなるイオン選択透過膜。 2 窒素含有芳香族化合物の電解酸化重合膜であ
る特許請求の範囲第1項記載のイオン選択透過
膜。 3 溶液中のイオン濃度を電極電位あるいは電流
応答で測定するイオンセンサーであつて、導電体
と、該導電体の表面に被着された、アニリン、2
−アミノベンゾトリフルオリド、2−アミノピリ
ジン、2,3−ジアミノピリジン、4,4′−ジア
ミノジフエニルエーテル、4,4′−メチレンジア
ニリンおよびピロールから選ばれた少なくとも1
種の窒素含有芳香族化合物から誘導された重合体
膜、またはビスシクロ[2,2,2]−オクト−
7−エン−2,3,5,6−テトラカルボン酸二
無水物を塩化チオニルと反応させて得た酸塩化物
に4,4′−ジアミノジフエニルエーテルを反応さ
せて得たポリアミド重合体膜とを具備したことを
特徴とするイオンセンサー。 4 重合体膜が低インピーダンス化されている特
許請求の範囲第3項記載のイオンセンサー。 5 重合体膜が窒素含有芳香族化合物の電解酸化
重合膜である特許請求の範囲第3または第4項記
載のイオンセンサー。 6 PHセンサーである特許請求の範囲第3項ない
し第5項のいずれか1項に記載のイオンセンサ
ー。
[Scope of Claims] 1. A membrane that selectively permeates ions in a solution, which contains aniline, 2-aminobenzotrifluoride, 2-aminopyridine, 2,3-diaminopyridine, 4,4'-diaminodiphrolide. enyl ether,
A polymer film derived from at least one nitrogen-containing aromatic compound selected from 4,4'-methylene dianiline and pyrrole, or biscyclo[2,2,2]-oct-7-ene-2,3 ,5,
An ion selective permeable membrane made of a polyamide polymer obtained by reacting 4,4'-diaminodiphenyl ether with an acid chloride obtained by reacting 6-tetracarboxylic dianhydride with thionyl chloride. 2. The ion selectively permeable membrane according to claim 1, which is an electrolytically oxidized polymerized membrane of a nitrogen-containing aromatic compound. 3. An ion sensor that measures ion concentration in a solution using electrode potential or current response, comprising a conductor, aniline, 2.
- at least one selected from aminobenzotrifluoride, 2-aminopyridine, 2,3-diaminopyridine, 4,4'-diaminodiphenyl ether, 4,4'-methylene dianiline and pyrrole
Polymeric films derived from species of nitrogen-containing aromatic compounds, or biscyclo[2,2,2]-octo-
A polyamide polymer membrane obtained by reacting 4,4'-diaminodiphenyl ether with an acid chloride obtained by reacting 7-ene-2,3,5,6-tetracarboxylic dianhydride with thionyl chloride. An ion sensor characterized by comprising: 4. The ion sensor according to claim 3, wherein the polymer membrane has a low impedance. 5. The ion sensor according to claim 3 or 4, wherein the polymer membrane is an electrolytically oxidized polymer membrane of a nitrogen-containing aromatic compound. 6. The ion sensor according to any one of claims 3 to 5, which is a PH sensor.
JP56129750A 1981-01-14 1981-08-19 Ion sensor Granted JPS5832155A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56129750A JPS5832155A (en) 1981-08-19 1981-08-19 Ion sensor
EP19820100198 EP0056283B1 (en) 1981-01-14 1982-01-13 Ion sensor
DE8282100198T DE3264957D1 (en) 1981-01-14 1982-01-13 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56129750A JPS5832155A (en) 1981-08-19 1981-08-19 Ion sensor

Publications (2)

Publication Number Publication Date
JPS5832155A JPS5832155A (en) 1983-02-25
JPS6364740B2 true JPS6364740B2 (en) 1988-12-13

Family

ID=15017270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56129750A Granted JPS5832155A (en) 1981-01-14 1981-08-19 Ion sensor

Country Status (1)

Country Link
JP (1) JPS5832155A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852556A (en) * 1981-09-24 1983-03-28 Terumo Corp Ion selective permeable film and ion sensor
JPS5865775A (en) * 1981-10-15 1983-04-19 Terumo Corp Ion contact preventing membrane
JPS6114560A (en) * 1984-06-30 1986-01-22 Terumo Corp Ph sensor
JPS61213661A (en) * 1985-03-19 1986-09-22 Terumo Corp Ph sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118153A (en) * 1981-01-14 1982-07-22 Terumo Corp Ph sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118153A (en) * 1981-01-14 1982-07-22 Terumo Corp Ph sensor

Also Published As

Publication number Publication date
JPS5832155A (en) 1983-02-25

Similar Documents

Publication Publication Date Title
US4563263A (en) Selectively permeable film and ion sensor
US4861454A (en) Oxygen sensor
Ivaska Analytical applications of conducting polymers
Lindner et al. Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications
Brahim et al. Electroconductive hydrogels: Electrical and electrochemical properties of polypyrrole‐poly (HEMA) composites
US4507194A (en) Reference electrode
Michalska et al. PEDOT films: multifunctional membranes for electrochemical ion sensing
JPH0419503B2 (en)
JPH0362227B2 (en)
EP0056283B1 (en) Ion sensor
Mazeikiene et al. Potentiometric response of polyaniline electrode to dissolved nitrate
Zen et al. Flow injection amperometric detection of hydrazine by electrocatalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode
JPS6114562A (en) Ph measuring instrument
Salimi et al. Adsorption and reactivity of chlorogenic acid at a hydrophobic carbon ceramic composite electrode: application for the amperometric detection of hydrazine
Milczarek et al. 2, 2‐bis (3‐amino‐4‐hydroxyphenyl) hexafluoropropane modified glassy carbon electrodes as selective and sensitive voltammetric sensors. Selective detection of dopamine and uric acid
Zheng et al. Selective determination of dopamine in the presence of ascorbic acid at an over-oxidized poly (N-acetylaniline) electrode
Han et al. Coulometric Response of H+‐Selective Solid‐Contact Ion‐Selective Electrodes and Its Application in Flexible Sensors
Wang et al. Composite Polymeric Films on Electrodes: Incorporation of Poly (4‐Vinylpyridine) into Base‐Hydrolyzed Cellulose Acetate Coating
Ricci et al. Investigation of the effect of different glassy carbon materials on the performance of Prussian Blue based sensors for hydrogen peroxide
JPS6364740B2 (en)
JPS6052759A (en) Oxygen sensor
Hailin et al. Characterization of a chemoresistor pH sensor based on conducting polypyrrole
Casero et al. Electrocatalytic Oxidation of Nitric Oxide at 6, 17‐Diferrocenyl‐dibenzo [b, i] 5, 9, 14, 18‐tetraaza [14] annulen]‐nickel (II) Modifed Electrodes
JPS6279345A (en) Ion density measurement
JPS5852556A (en) Ion selective permeable film and ion sensor