JPS6361895A - Heat transfer pipe - Google Patents
Heat transfer pipeInfo
- Publication number
- JPS6361895A JPS6361895A JP20563986A JP20563986A JPS6361895A JP S6361895 A JPS6361895 A JP S6361895A JP 20563986 A JP20563986 A JP 20563986A JP 20563986 A JP20563986 A JP 20563986A JP S6361895 A JPS6361895 A JP S6361895A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- ridges
- grooves
- broken parts
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 230000007547 defect Effects 0.000 claims description 7
- 239000003507 refrigerant Substances 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract 1
- 230000002950 deficient Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 229910000532 Deoxidized steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はフレオン等の冷媒を蒸発または凝縮させて熱交
換する熱交換器用の改良された伝熱管に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improved heat exchanger tube for a heat exchanger that exchanges heat by evaporating or condensing a refrigerant such as Freon.
(従来の技術)
フレオン等の冷媒を用いて熱交換させるカーエアコンや
ルームエアコン等の小型熱交換器には第7図に示すよう
な管(1)の内面に螺旋状または管軸方向に多数の微細
なうね(2)と溝(3)が設けられた伝熱管が用いられ
ている。この伝熱管はうねと溝が独立して管軸方向に連
続して形成されているため管の長手方向への冷媒液の流
れはよいが、管の周方向への冷媒の流れが分流し難く、
このため伝熱性能が劣る欠点があった。これを改善する
ために第8図に示すようにうね部(2)を切削などによ
り取除きうねの欠所部の)ヲ設けて溝(3)ヲ管の周方
向に連結し周方向への冷媒液の流れを促進した伝熱管が
開発された。(Prior art) Small heat exchangers such as car air conditioners and room air conditioners that exchange heat using a refrigerant such as Freon have a spiral shape on the inner surface of the tube (1) or a large number of tubes in the axial direction as shown in Fig. 7. A heat exchanger tube provided with minute ridges (2) and grooves (3) is used. In this heat transfer tube, the ridges and grooves are formed independently and continuously in the tube axis direction, so the refrigerant liquid flows well in the longitudinal direction of the tube, but the refrigerant flow in the circumferential direction of the tube is divided. difficult,
For this reason, it had the disadvantage of poor heat transfer performance. In order to improve this, as shown in Figure 8, the ridges (2) are removed by cutting, etc., and grooves (3) are connected in the circumferential direction of the pipe by creating grooves (3) in the missing parts of the ridges. A heat exchanger tube has been developed that facilitates the flow of refrigerant liquid to.
しかし、この伝熱管はうねの欠所部が溝の複数にわたっ
て設けられていることから長手方向への冷媒液の流れが
悪くなシ、液の滞留による伝熱性能が低下する問題が生
じ、また機械加工により作製するため生産性が悪いなど
の欠点があった。However, in this heat transfer tube, since the defective parts of the ridges are provided across multiple grooves, the flow of the refrigerant liquid in the longitudinal direction is poor, and there is a problem that the heat transfer performance is deteriorated due to the stagnation of the liquid. Furthermore, since it is manufactured by machining, it has drawbacks such as poor productivity.
(問題点を解決するための手段および作用)本発明は上
記の問題を解決するためになされたもので、伝熱管の管
内に管軸に対し直状または螺旋状に多数の微細なうねと
溝を設け、かつ該うねにその長手方向に多数の局部的な
欠所部を設け、相隣れる溝間の液流路とすることを特徴
とする伝熱管である。(Means and effects for solving the problems) The present invention has been made to solve the above problems, and includes a heat exchanger tube with a large number of fine ridges arranged linearly or spirally with respect to the tube axis. This heat transfer tube is characterized by having grooves and providing a large number of localized defects in the longitudinal direction of the ridges to form liquid flow paths between adjacent grooves.
すなわち本発明の伝熱管は、第1図に示すように伝熱管
(1)の管内にうね(2)と溝(3)が多数膜けられて
おシ(この場合は管軸に対し直状)このうね(2)の長
手方向に多数の局部的な欠所部(イ)を設けたものであ
る。この欠所部は相隣れる溝(3)に管周方向への冷媒
液の流路全なし周方向への液の分流をなさしめ伝熱特性
を促進させるものである。従ってこの欠所部はうねの長
手方向に多数設けることにより、その効果があがるが、
あまり多過ぎると周方向への液分流が多くなり管軸方向
への流れが減少することになるので適当にその数に撰択
すべきであるが、およそ、そのうね巾の2〜10倍のう
ね長さにつき1個所程度の密度で設けた方がよい。In other words, the heat exchanger tube of the present invention has a heat exchanger tube (1) in which a large number of ridges (2) and grooves (3) are formed inside the tube (in this case, the tubes are directly aligned with the tube axis), as shown in FIG. ) This ridge (2) has a large number of local defects (A) in its longitudinal direction. These defective portions allow adjacent grooves (3) to have no flow path for refrigerant liquid in the circumferential direction of the pipe, thereby causing liquid to flow in the circumferential direction, thereby promoting heat transfer characteristics. Therefore, by providing a large number of these defective parts in the longitudinal direction of the ridge, the effect will be improved.
If the number is too large, the liquid flow will increase in the circumferential direction and the flow in the tube axis direction will decrease, so the number should be selected appropriately, but it is approximately 2 to 10 times the ridge width. It is better to provide them at a density of about one per ridge length.
捷たこの欠所部は相隣れるうねと周方向に一致した位置
に重なって設けると管周方向への流路が多くなるので、
なるべく重複しない方がよい。If the defective part of the cut is placed so that it overlaps the adjacent ridges in the circumferential direction, there will be more flow paths in the pipe circumferential direction.
It is better to avoid duplication as much as possible.
しかして本発明の伝熱管を製造するには先ず通常の管内
面に溝付プラグを用いた転造または抽伸加工により、管
軸に対し直状または螺旋状の多数の微細なうねと溝を設
ける。次にこの伝熱管を溝付プラグなしで強度の縮径加
工を与える空引抽伸により製造する。すなわち管に強度
の引張応力を負荷して管を連続的に引伸ばすことにより
管内部とうね部の材料伸びによる歪が発生し、うね部の
みに局所的に延性破壊奮起こさせることによってうねの
欠所部が形成されるものである。However, in order to manufacture the heat transfer tube of the present invention, first, a large number of fine ridges and grooves are formed on the inner surface of the tube by rolling or drawing using a grooved plug to form a large number of fine ridges and grooves that are linear or spiral with respect to the tube axis. establish. This heat transfer tube is then produced by air drawing which provides strong diameter reduction without a grooved plug. In other words, by applying strong tensile stress to the pipe and continuously stretching it, strain occurs due to material elongation inside the pipe and in the ridges, causing ductile fracture locally only in the ridges. A defective part of the spring is formed.
上記の適当な欠所部を起こさせるには管の外径、肉厚、
うねの大きさなどにより若干異なるかうねの比較的に大
きいものについては縮径加工率50〜70%、うねの細
いものについては40〜60係程度の加工率がよい。こ
れより加工率が低いと欠所部が形成されず、また加工率
が高いと管が破壊するおそれがある。この加工は1回に
行なってもよいが数回にわたって加工してもよく、1だ
適宜焼鈍を行なってもよい。In order to create the above-mentioned appropriate defects, the outside diameter of the pipe, the wall thickness,
The diameter reduction rate may vary slightly depending on the size of the ridges, etc. For relatively large ridges, a reduction rate of 50 to 70% is preferable, and for thin ridges, a reduction rate of about 40 to 60% is preferable. If the processing rate is lower than this, no defects will be formed, and if the processing rate is higher than this, there is a risk that the pipe will be destroyed. This processing may be performed at one time, or may be performed several times, and annealing may be performed as needed.
また本発明の伝熱管は小径の3〜10mmの外径のもの
に主として適用されるが、これより大径のものでも、ま
た小径のものにも適用が可能である。Further, although the heat exchanger tube of the present invention is mainly applied to a small outer diameter of 3 to 10 mm, it can also be applied to a tube with a larger diameter or a smaller diameter.
(実施例) 以下に本発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.
外径20ffIffIφのりん脱酸鋼管を管内に溝付プ
ラグを挿入し転造により溝深さ0.2 ff1ff+、
溝数501うね巾0.4 mmの管軸に対して直状のう
ねおよび溝を有する伝熱管を製造した。この伝熱管に縮
径加工率が60%の加工率をもって縮径加工を施して、
第2図に示すようなうね(2)の長手方向に欠所部(4
)を有し、この部分が溝(3)、 (3)の液流路とな
る本発明の外径7.9 n m+nの伝熱管を製造した
。この伝熱管を縦に切断した管内表面の写真を第6図に
示した。Insert a grooved plug into a phosphorus deoxidized steel pipe with an outer diameter of 20ffIffIφ and roll it to a groove depth of 0.2ff1ff+,
A heat exchanger tube having 50 grooves and a ridge width of 0.4 mm and having ridges and grooves perpendicular to the tube axis was manufactured. This heat transfer tube was subjected to diameter reduction processing at a processing rate of 60%,
Defects (4) in the longitudinal direction of the ridge (2) as shown in Figure 2
), and this portion serves as the liquid flow path of the grooves (3), (3).A heat transfer tube of the present invention having an outer diameter of 7.9 nm+n was manufactured. FIG. 6 shows a photograph of the inner surface of this heat exchanger tube cut vertically.
この写真は白い部分がうねを現わすものであるが、この
うねが長手方向に所々分断されて黒い欠所部をなしてい
ることが判る。なおその他の黒い部分は溝である。上記
の本発明の伝熱管と、比較のために製作した通常の溝を
有する同寸法の伝熱管全第1表に示す試験条件で熱伝達
率の測定を行なった結果を第4図〜第6図に示した。In this photo, the white parts show the ridges, but it can be seen that these ridges are divided in places in the longitudinal direction, creating black defects. Note that the other black parts are grooves. Figures 4 to 6 show the results of measuring the heat transfer coefficient under the test conditions shown in Table 1 for the above-mentioned heat exchanger tube of the present invention and a heat exchanger tube of the same size with ordinary grooves manufactured for comparison. Shown in the figure.
第1表
第4図および第5図から判るように蒸発および凝縮性能
とも本発明のものが著しく効果があることが判る。ま次
第6図は従来の伝熱管と本発明の伝熱管とを同一長さで
、ろう付けし、これを入口側と出口側に夫々配置させて
蒸発性能を試験したものである。この結果、本発明の伝
熱管は冷媒出口側に配置した方が入口側に配置するより
も伝達率が高いことが判る。これは冷媒が入口側では液
層主体の二相流であるのに対し管中央部から出口側にな
るに従い気相が主体の二相流と変遷していくため通常入
口側の方が蒸発し易いことを表わしており、出口側で効
果が発揮されると言うことは伝熱管自体の性能がそれだ
け向上しているためであると解釈できる。As can be seen from Table 1, Figures 4 and 5, the present invention is significantly effective in both evaporation and condensation performance. Fig. 6 shows a conventional heat exchanger tube and a heat exchanger tube of the present invention of the same length, brazed together, placed on the inlet side and outlet side, respectively, and tested for evaporation performance. As a result, it can be seen that the heat exchanger tube of the present invention has a higher transfer coefficient when placed on the refrigerant outlet side than when placed on the inlet side. This is because the refrigerant is a two-phase flow consisting mainly of a liquid layer on the inlet side, but as it moves from the center of the pipe to the outlet side, it changes to a two-phase flow consisting mainly of a gas phase, so the inlet side usually evaporates. The fact that the effect is exhibited on the outlet side can be interpreted to be due to the improved performance of the heat exchanger tube itself.
(効 果)
以上に説明したように本発明の伝熱管は冷媒液の流れが
管の周方向と軸方向にスムーズに行われることにより伝
熱性能、特に凝縮熱伝達率を著しく向上させる。このた
め熱交換器の小型化に貢献できるものであり、かつ製造
も容易であるなど優れた効果全奏するものである。(Effects) As explained above, in the heat transfer tube of the present invention, the flow of the refrigerant liquid is carried out smoothly in the circumferential direction and the axial direction of the tube, thereby significantly improving the heat transfer performance, particularly the condensing heat transfer coefficient. Therefore, it can contribute to the miniaturization of the heat exchanger, and it is also easy to manufacture, which provides excellent effects.
第1図は本発明の伝熱管の縦断面展開図、第2図は本発
明伝熱管の拡大縦断面展開図、第5図は本発明の伝熱管
の縦断面の表面写真、第4図〜第6図は本発明の伝熱管
の熱伝達率を示す図、第7図および第8図は従来の伝熱
管の縦断面展開図である。Fig. 1 is a developed longitudinal cross-sectional view of the heat exchanger tube of the present invention, Fig. 2 is an enlarged developed longitudinal cross-sectional view of the heat exchanger tube of the present invention, Fig. 5 is a surface photograph of the longitudinal cross-section of the heat exchanger tube of the present invention, Figs. FIG. 6 is a diagram showing the heat transfer coefficient of the heat exchanger tube of the present invention, and FIGS. 7 and 8 are developed vertical cross-sectional views of conventional heat exchanger tubes.
Claims (1)
細なうねと溝を設け、かつ該うねにその長手方向に多数
の局部的な欠所部を設け、相隣れる溝間の液流路とする
ことを特徴とする伝熱管。A large number of fine ridges and grooves are provided in the tube of the heat exchanger tube in a straight or spiral manner with respect to the tube axis, and the ridges are provided with a large number of local defects in the longitudinal direction, and adjacent grooves are provided. A heat transfer tube characterized by having a liquid flow path between the tubes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20563986A JPS6361895A (en) | 1986-09-01 | 1986-09-01 | Heat transfer pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20563986A JPS6361895A (en) | 1986-09-01 | 1986-09-01 | Heat transfer pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6361895A true JPS6361895A (en) | 1988-03-18 |
Family
ID=16510222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20563986A Pending JPS6361895A (en) | 1986-09-01 | 1986-09-01 | Heat transfer pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6361895A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05130684A (en) * | 1991-11-05 | 1993-05-25 | Rinnai Corp | Remote control device |
JPH05161188A (en) * | 1991-12-05 | 1993-06-25 | Rinnai Corp | Remote control manipulation device |
US5775411A (en) * | 1994-02-11 | 1998-07-07 | Wieland-Werke Ag | Heat-exchanger tube for condensing of vapor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54157369A (en) * | 1978-05-31 | 1979-12-12 | Kobe Steel Ltd | Heat transmitting bulkhead structure and manufacturing method of heat transmitting bulkhead and piping |
JPS56117097A (en) * | 1980-02-20 | 1981-09-14 | Hitachi Ltd | Heat transferring pipe |
JPS61125595A (en) * | 1984-11-20 | 1986-06-13 | Furukawa Electric Co Ltd:The | Heat transfer tube for boiling and manufacture thereof |
-
1986
- 1986-09-01 JP JP20563986A patent/JPS6361895A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54157369A (en) * | 1978-05-31 | 1979-12-12 | Kobe Steel Ltd | Heat transmitting bulkhead structure and manufacturing method of heat transmitting bulkhead and piping |
JPS56117097A (en) * | 1980-02-20 | 1981-09-14 | Hitachi Ltd | Heat transferring pipe |
JPS61125595A (en) * | 1984-11-20 | 1986-06-13 | Furukawa Electric Co Ltd:The | Heat transfer tube for boiling and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05130684A (en) * | 1991-11-05 | 1993-05-25 | Rinnai Corp | Remote control device |
JPH05161188A (en) * | 1991-12-05 | 1993-06-25 | Rinnai Corp | Remote control manipulation device |
US5775411A (en) * | 1994-02-11 | 1998-07-07 | Wieland-Werke Ag | Heat-exchanger tube for condensing of vapor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5377746A (en) | Texturized fin | |
JP2005083715A (en) | Heat exchanger | |
JPS6361895A (en) | Heat transfer pipe | |
JP2842810B2 (en) | Heat transfer tube with internal groove | |
JPH085278A (en) | Heat transfer tube with inner surface grooves | |
JPH02166394A (en) | Heat exchanger with fin | |
JPS6115092A (en) | Heat transfer tube for use in heat exchanger | |
JPS6321494A (en) | Lamination type heat exchanger | |
JP4632487B2 (en) | Internal grooved heat transfer tube and manufacturing method thereof | |
JP3199636B2 (en) | Heat transfer tube with internal groove | |
JPH11294986A (en) | Heat transfer tube having grooved inner surface | |
JPH02213694A (en) | Fin tube type heat exchanger | |
JPS6396492A (en) | Finned tubular body and manufacture thereof | |
JPS63116095A (en) | Flat type heat exchanging pipe | |
JP3129565B2 (en) | Heat exchanger tubes for heat exchangers | |
JPS6314091A (en) | Heat transfer pipe | |
JPH04126998A (en) | Boiling heat transfer tube | |
JP3130078B2 (en) | Boiling heat transfer tube | |
JPS5938596A (en) | Heat exchanger | |
JPS63180090A (en) | Heat transfer tube | |
JPH04126999A (en) | Boiling heat transfer tube | |
JPS63172891A (en) | Heat exchanger | |
JPS59202397A (en) | Internally grooved pipe and manufacture thereof | |
JPS60162189A (en) | Heat transfer tube with fin | |
JPS63197888A (en) | Heat exchanger |