JPS6359073B2 - - Google Patents
Info
- Publication number
- JPS6359073B2 JPS6359073B2 JP57035737A JP3573782A JPS6359073B2 JP S6359073 B2 JPS6359073 B2 JP S6359073B2 JP 57035737 A JP57035737 A JP 57035737A JP 3573782 A JP3573782 A JP 3573782A JP S6359073 B2 JPS6359073 B2 JP S6359073B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic block
- hole
- radiator
- heated
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 61
- 238000010438 heat treatment Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 24
- 230000005855 radiation Effects 0.000 claims description 24
- 230000035515 penetration Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 37
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052878 cordierite Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- -1 etc.) Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【発明の詳細な説明】
本発明は各種の加熱炉における輻射加熱効率を
増進せしめる方法及び該方法に使用する輻射体に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing radiation heating efficiency in various heating furnaces and a radiator used in the method.
熱効率の向上は古くより常に叫ばれているが、
最近は全般的な省エネルギ問題が大きく取上げら
れていることにより、熱の有効利用に対する関心
及び要望が強い。 Improving thermal efficiency has always been called for since ancient times, but
Recently, general energy saving issues have been widely discussed, and as a result, there is a strong interest and desire for effective use of heat.
加熱炉における熱効率の向上の為には、炉壁、
被加熱物の出入口等よりの熱放散の低下、排ガス
温度の低下又はこれらの放散熱の回収等に意が注
がれている。加熱炉内において被加熱物への伝熱
量を増加することは、加熱炉の主目的の遂行に直
接的に寄与することになり、排ガスの温度も低下
するので最も効果的である。高温ガスによる加熱
炉における被加熱物への伝熱は輻射によるものが
支配的であつて、対流、伝導によるものは全体の
10%以下又は無視できる場合が多い。従つて加熱
炉の設計には一般に輻射伝熱効率の向上の為の諸
施策がとられている。 In order to improve the thermal efficiency of a heating furnace, the furnace wall,
Attention is being paid to reducing heat dissipation from the entrance and exit of the heated object, reducing exhaust gas temperature, and recovering such dissipated heat. Increasing the amount of heat transferred to the object to be heated in the heating furnace is most effective because it directly contributes to achieving the main purpose of the heating furnace and also reduces the temperature of the exhaust gas. Heat transfer by high-temperature gas to objects to be heated in a heating furnace is mainly by radiation, and convection and conduction account for the entire heat transfer.
In many cases, it is less than 10% or can be ignored. Therefore, in the design of heating furnaces, various measures are generally taken to improve the efficiency of radiant heat transfer.
加熱炉内において被加熱物への伝熱量を増加さ
せる方法とし、加熱室出口側の排ガス流路に輻射
体を配置し、該輻射体にて排ガスの保有熱を吸収
し、吸収熱を被加熱物に向けて輻射し、被加熱物
を加熱する方法は極めて有効な方法であり、現在
よく知られていることである。該方法の具体的な
典型例は、加熱室出口側の排ガス流路に、金網な
いし耐熱性の繊維状の物質よりなる輻射体を設
け、該輻射体により排ガスの保有熱を吸収して被
加熱物に向けて輻射し、被加熱物を加熱する方法
である。 This is a method of increasing the amount of heat transferred to the heated object in the heating furnace. A radiator is placed in the exhaust gas flow path on the exit side of the heating chamber, the radiator absorbs the heat held in the exhaust gas, and the absorbed heat is transferred to the heated object. The method of heating an object by radiating radiation toward the object is an extremely effective method and is currently well known. A specific typical example of this method is to provide a radiator made of a wire mesh or a heat-resistant fibrous material in the exhaust gas flow path on the exit side of the heating chamber, and use the radiator to absorb the heat retained in the exhaust gas to heat the exhaust gas. This is a method of heating an object by emitting radiation toward the object.
しかしながら、該方法において使用する輻射体
の金網は、通気性が大で排ガスより熱回収が充分
に行なわれ難く、また耐熱性が低いので高温での
使用が困難である。また、従来品の多くが金属製
であるため輻射率が低い。セラミツクフアイバを
使用する場合には耐熱性、輻射率については改善
されるが、使用温度も1400℃が限界であり、高価
である。 However, the wire mesh used as the radiator used in this method has high air permeability, making it difficult to sufficiently recover heat from exhaust gas, and has low heat resistance, making it difficult to use at high temperatures. In addition, many conventional products are made of metal, so their emissivity is low. When ceramic fiber is used, heat resistance and emissivity are improved, but the operating temperature is limited to 1400°C and it is expensive.
本発明の目的は、加熱炉における高温ガスによ
る被加熱物の輻射加熱効率を向上せしめる方法及
び該方法に使用して好適な輻射体を提供するにあ
る。 An object of the present invention is to provide a method for improving the radiation heating efficiency of a heated object using high-temperature gas in a heating furnace, and a radiator suitable for use in the method.
本発明の適用しうる加熱炉としては種々のもの
があり、例えば窯業用炉(ガラス、煉瓦、セメン
ト等)、金属用炉(鉄鋼、非鉄等)、生ゴミ焼却
炉、発生炉等の被加熱物に熱を与える用途に用い
る炉であり、さらに非加熱物自体が発熱するよう
な炉であつてもよい。また被加熱物は加熱中に静
止しているものに限られず、加熱中に連続的また
は断続的に移動するものでもよい。 There are various heating furnaces to which the present invention can be applied, such as ceramic furnaces (glass, bricks, cement, etc.), metal furnaces (steel, non-ferrous metals, etc.), garbage incinerators, generation furnaces, etc. It is a furnace used for applying heat to an object, and may also be a furnace in which the unheated object itself generates heat. Further, the object to be heated is not limited to one that remains stationary during heating, but may be one that moves continuously or intermittently during heating.
本発明による輻射加熱方法は、加熱室内の高温
ガス流路に、輻射体として多数の平行な貫通孔を
有するセラミツクブロツクを、該貫通孔の貫通方
向を高温ガスの流れ方向に対して傾けて、被加熱
物に向けて配置して行うことを特徴とする方法で
ある。 The radiation heating method according to the present invention includes a ceramic block having a large number of parallel through-holes as a radiator in a high-temperature gas flow path in a heating chamber, the through-hole direction being inclined with respect to the flow direction of the high-temperature gas; This method is characterized in that it is performed by arranging it toward the object to be heated.
本発明による輻射体は、前記の輻射加熱方法に
使用して好適な輻射体であり、1個又は複数個の
開口部を有する耐熱性枠体の該開口部に、多数の
平行な貫通孔を有するセラミツクブロツクを、該
貫通孔の貫通方向を枠体面に対して傾けて、取付
けてなるものである。 The radiant body according to the present invention is a radiant body suitable for use in the above-mentioned radiant heating method, and has a large number of parallel through holes in the opening of a heat-resistant frame having one or more openings. The ceramic block is mounted with the through-hole extending in a direction inclined with respect to the frame surface.
本発明の輻射加熱方法及び輻射体の好ましい態
様においては、前記セラミツクブロツクの貫通孔
の径が1〜200mmで、該セラミツクブロツク貫通
孔の貫通方向の厚さが貫通孔の径の2倍以上であ
る。 In a preferred embodiment of the radiation heating method and radiator of the present invention, the diameter of the through hole in the ceramic block is 1 to 200 mm, and the thickness of the through hole in the ceramic block in the penetrating direction is at least twice the diameter of the through hole. be.
本発明の輻射加熱方法の他の好ましい態様にお
いては、前記セラミツクブロツクを、セラミツク
ブロツクの貫通孔の貫通方向を高温ガスの流れ方
向に対して5〜20度傾くように配置して行う。 In another preferred embodiment of the radiation heating method of the present invention, the ceramic block is arranged so that the direction of the through-holes in the ceramic block is inclined by 5 to 20 degrees with respect to the flow direction of the high-temperature gas.
本発明の輻射体の他の好ましい態様において
は、前記セラミツクブロツクを、該セラミツクブ
ロツクの貫通孔貫通方向が枠体面に直角より5〜
20度傾くように取付けてなる。 In another preferred embodiment of the radiator of the present invention, the ceramic block is arranged so that the through-hole passing direction of the ceramic block is 5 to 50 mm perpendicular to the frame surface.
It is installed so that it is tilted 20 degrees.
本発明の輻射体の更に好ましい態様において
は、前記枠体に開口部が複数個設けられ、各開口
部に2個の前記セラミツクブロツクを、該枠体の
両側面の中間面に対称に、取付けてある。 In a further preferred embodiment of the radiator of the present invention, the frame body is provided with a plurality of openings, and the two ceramic blocks are attached to each opening symmetrically to the intermediate plane of both sides of the frame body. There is.
本発明で使用されるセラミツクブロツクの材質
としては、コージエライト、ジルコン、ジルコニ
ア、アルミニウムチタネート、ムライト、アルミ
ナなど耐熱性のあるものが任意に選択しうる。 The material of the ceramic block used in the present invention may be arbitrarily selected from heat-resistant materials such as cordierite, zircon, zirconia, aluminum titanate, mullite, and alumina.
また、セラミツクブロツクの貫通孔の形状は、
六角、四角、三角、円など種々のものが可能であ
る。 In addition, the shape of the through hole in the ceramic block is
Various shapes such as hexagonal, square, triangular, circular, etc. are possible.
第1図に本発明に方法を実施する加熱炉の一例
を模型的に断面図で示す。1はバーナ口で、重油
等の燃焼バーナを取付け、高温燃焼ガスが加熱室
2へ送られる。バーナ口1に相当する個所より他
設備の高温排ガス等を取込み加熱室2へ送られる
ようにしてあつてもよい。加熱室2内には被加熱
物3、例えば煉瓦等、が収容されている。被加熱
物3は主として高温ガスの焔輻射及び炉壁を介し
ての固体輻射により加熱され、高温ガスは熱を奮
われ矢印のように排ガス通路4に排出される。排
ガス通路4の入口には、被加熱物3に向けて輻射
体としてのセラミツクブロツク5が配置されてい
る。セラミツクブロツク5は多数の平行な貫通孔
5Aを有する例えばコージエライト質からなるハ
ニカム状セラミツクブロツクよりなり、貫通孔5
Aの貫通方向は矢印に示す高温ガスの流れ方向に
対して傾けてある。 FIG. 1 schematically shows, in sectional view, an example of a heating furnace in which the method of the present invention is carried out. 1 is a burner port to which a combustion burner of heavy oil or the like is attached, and high-temperature combustion gas is sent to the heating chamber 2. It may be arranged such that high-temperature exhaust gas, etc. from other equipment is taken in from a location corresponding to the burner port 1 and sent to the heating chamber 2. The heating chamber 2 accommodates an object 3 to be heated, such as a brick or the like. The object to be heated 3 is heated mainly by flame radiation of high-temperature gas and solid radiation through the furnace wall, and the high-temperature gas is heated and discharged into the exhaust gas passage 4 as shown by the arrow. At the entrance of the exhaust gas passage 4, a ceramic block 5 serving as a radiator is placed facing the object 3 to be heated. The ceramic block 5 is made of a honeycomb-shaped ceramic block made of cordierite, for example, and has a large number of parallel through holes 5A.
The penetrating direction of A is inclined with respect to the flow direction of the high temperature gas shown by the arrow.
貫通孔5Aの方向がガス流の方向と一致すると
きは、ガスよりセラミツクブロツク5への伝熱効
率が低下し、また、貫通孔5Aの方向が被加熱物
3に向くことになるので、被加熱物3への輻射効
率が低下する。ガス流れ方向に対する傾度は炉の
構造、被加熱物の状態等によるが一般に5〜20度
程度がよい。 When the direction of the through hole 5A matches the direction of the gas flow, the efficiency of heat transfer from the gas to the ceramic block 5 decreases, and since the direction of the through hole 5A faces the object to be heated 3, The radiation efficiency towards object 3 decreases. The inclination with respect to the gas flow direction depends on the structure of the furnace, the condition of the object to be heated, etc., but is generally about 5 to 20 degrees.
貫通孔5Aの径については、径が小さく孔の数
が多い方がガスよりセラミツクブロツクへの伝熱
効率がよくなると共に、輻射面の凹凸が多くなり
輻射効率が上昇するので好ましい。しかしながら
粉塵がつまり易くなる。通常のガス燃焼炉では、
1〜5mm程度の孔径の貫通孔でよいが、重油燃焼
炉やキヤリオーバがでる被加熱物の加熱炉では更
に孔径を大きくする必要がある。ガラス炉では孔
径が100mm以上の貫通孔を有するセラミツクブロ
ツクの使用が適当であることもあり、一般には
200mmで十分である。また、セラミツクブロツク
の貫通孔の貫通方向の厚さが薄いときは、被加熱
物に対する輻射面に、裏面まで貫通する空隙が生
ずることとなり輻射率が低下するので、セラミツ
クブロツクの貫通孔の貫通方向の厚さは貫通孔の
径の2倍以上が望ましい。 Regarding the diameter of the through-holes 5A, it is preferable to have a small diameter and a large number of holes because this will improve the efficiency of heat transfer to the ceramic block than the gas, and increase the unevenness of the radiation surface, increasing the radiation efficiency. However, it tends to become clogged with dust. In a normal gas-fired furnace,
A through hole with a hole diameter of about 1 to 5 mm may be sufficient, but in a heavy oil combustion furnace or a heating furnace for heating objects that cause carryover, the hole diameter needs to be made even larger. For glass furnaces, it is appropriate to use ceramic blocks with through holes with a diameter of 100 mm or more;
200mm is sufficient. In addition, when the thickness of the through-hole in the ceramic block is thin, a gap is created in the radiation surface facing the object to be heated that penetrates all the way to the back surface, reducing the emissivity. The thickness of the through hole is preferably at least twice the diameter of the through hole.
第2図に輻射体としてのセラミツクブロツクの
形状及び配置の例を示す。図面の右側に被加熱物
があり、熱ガスは図面の右より左に向けて概ね水
平に流れるとしてある。前述のようにセラミツク
ブロツク5は、貫通孔5Aの貫通方向をガス流れ
方向に対して傾けて、被加熱物に向けて配置され
る。輻射効率をよくする為には、セラミツクブロ
ツクの輻射面を被加熱物に正対せしめることが望
ましい。また、一般に被加熱物の方向と熱ガスの
流れて来る方向が一致しているので、貫通方向が
輻射面に直角になるように貫通孔を設けてあるセ
ラミツクブロツクを被加熱物に正対させると、貫
通孔貫通方向がガス流方向と一致するので望まし
くない。このような場合は第2図aのようにセラ
ミツクブロツクを傾けて被加熱物に対向させる必
要がある。第2図bのセラミツクブロツクでは上
述の問題を解決することができるが、ハニカム状
などのセラミツクブロツクとしての製造が若干面
倒になる。更に第2図c,dのように2つのハニ
カム状セラミツクブロツクを貫通孔を一致させて
組合せて一個の輻射体とするときは、貫通孔が屈
折するので輻射体の熱吸収率及び輻射率が向上す
る。実際には炉及び被加熱物が種々の形状をな
し、熱ガスの流れ方向も異なるので、その状況に
応じて貫通孔貫通方向をガスの流れ方向に対して
傾けて、出来る丈輻射率の高い状態に配置する。 FIG. 2 shows an example of the shape and arrangement of a ceramic block as a radiator. The object to be heated is on the right side of the drawing, and the hot gas flows approximately horizontally from the right to the left of the drawing. As described above, the ceramic block 5 is arranged so that the direction of the through-hole 5A is inclined with respect to the gas flow direction, so as to face the object to be heated. In order to improve the radiation efficiency, it is desirable to have the radiation surface of the ceramic block directly facing the object to be heated. In addition, since the direction of the object to be heated and the direction in which the hot gas flows are generally the same, a ceramic block with through holes provided in it should face the object to be heated so that the direction of penetration is perpendicular to the radiation surface. This is not desirable because the direction of passage through the through hole coincides with the direction of gas flow. In such a case, it is necessary to tilt the ceramic block to face the object to be heated as shown in FIG. 2a. Although the ceramic block shown in FIG. 2b can solve the above-mentioned problems, it is somewhat complicated to manufacture the ceramic block in a honeycomb shape or the like. Furthermore, when two honeycomb-shaped ceramic blocks are combined to form a single radiator with their through holes aligned as shown in Fig. 2c and d, the through holes are refracted, so the heat absorption rate and emissivity of the radiator decrease. improves. In reality, furnaces and objects to be heated have various shapes, and the flow direction of hot gas also differs. Place in the state.
実際の炉で加熱室の出口を塞ぐ範囲の輻射体を
一個のハニカム状セラミツクブロツクで形成する
ことはなかなか困難である。それで、所要の面積
の耐熱性の枠体に複数のハニカム状セラミツクブ
ロツクを取付けて輻射体を形成する。かかる輻射
体の一例を第3図及び第4図に示す。6Aはセラ
ミツクス、耐熱性金属等の枠体である。実施例の
枠体6Aには16個の正方形の開口部が設けられて
ある。各開口部には第1図の実施例で使用したと
同様のコージエライト質のセラミツクブロツク5
が取付けられ、接着剤、セラミツクスボルト等に
て枠体6Aに接着されて輻射体6が形成されてい
る。この実施例において、セラミツクブロツクの
大きさは約75×75×15(厚さ)mmで、貫通孔の大
きさは1.8×1.8mmである。該セラミツクブロツク
5には両側面に直角に貫通する孔が設けられてい
る。従つて輻射体6の枠体面を被加熱物に正対せ
しめることが多いのでセラミツクブロツク5の貫
通孔貫通方向を枠体6A面に直角より10度傾けて
取付けてある。また、各開口部には2個の同様な
セラミツクブロツク5を、両側面の中間面に対称
に取付けてある。これにより貫通孔が屈折せしめ
られ、輻射体6の熱吸収率及び輻射率が向上す
る。但し、この場合は、第2図c,dと異なり2
つのセラミツクブロツク5は隔離しているので、
下流側のセラミツクブロツクの吸収熱は輻射及び
枠体6Aを介しての伝導により上流側のセラミツ
クブロツクに伝熱され、上流側セラミツクブロツ
クより輻射される。図示の輻射体は、複数個組合
せて更に広い面積とすることができるように上下
縁に嵌合の為の溝及び突起が形成してある。 In an actual furnace, it is quite difficult to form a radiator that covers the outlet of the heating chamber with a single honeycomb-shaped ceramic block. Therefore, a radiator is formed by attaching a plurality of honeycomb-shaped ceramic blocks to a heat-resistant frame having a required area. An example of such a radiator is shown in FIGS. 3 and 4. 6A is a frame made of ceramics, heat-resistant metal, or the like. The frame 6A of the embodiment is provided with 16 square openings. Each opening has a cordierite ceramic block 5 similar to that used in the embodiment shown in FIG.
is attached and bonded to the frame 6A with adhesive, ceramic bolts, etc. to form the radiator 6. In this example, the size of the ceramic block is approximately 75 x 75 x 15 mm (thickness) and the size of the through hole is 1.8 x 1.8 mm. The ceramic block 5 is provided with holes passing through it at right angles on both sides. Therefore, since the frame surface of the radiator 6 is often directly opposed to the object to be heated, the ceramic block 5 is mounted so that the direction through which the through hole passes through the ceramic block 5 is inclined by 10 degrees from the right angle to the surface of the frame 6A. Moreover, two similar ceramic blocks 5 are attached to each opening symmetrically on the intermediate plane of both sides. As a result, the through hole is bent, and the heat absorption rate and radiation rate of the radiator 6 are improved. However, in this case, unlike Figure 2 c and d, 2
Since the two ceramic blocks 5 are isolated,
The absorbed heat of the ceramic block on the downstream side is transferred to the ceramic block on the upstream side by radiation and conduction through the frame 6A, and is radiated from the ceramic block on the upstream side. The illustrated radiators have grooves and protrusions formed on their upper and lower edges for fitting so that a larger area can be obtained by combining a plurality of radiators.
第1図に示すような加熱炉において加熱室より
排ガス通路へ排出される排ガスの温度が900℃で
あつた場合に、排ガス通路入口を概ね塞ぐよう
に、孔径10mmφ、開孔率40%、厚さ80mmのセラミ
ツクブロツクを取付けた輻射体を配置することに
より排ガスの温度は870℃に降下した。これによ
り12%の燃料節減となつた。また別の例では1200
℃の排ガスの温度を輻射体の設置により1120℃に
低下することができた。 In a heating furnace as shown in Figure 1, when the temperature of the exhaust gas discharged from the heating chamber to the exhaust gas passage is 900°C, a hole diameter of 10 mmφ, an open area ratio of 40%, and a thickness of By installing a radiator with a ceramic block of 80 mm in diameter, the temperature of the exhaust gas was reduced to 870°C. This resulted in a 12% fuel savings. In another example 1200
By installing a radiator, we were able to reduce the temperature of exhaust gas from 1120°C to 1120°C.
以上の如く、本発明の方法においては、セラミ
ツクブロツクの輻射体が、貫通孔がガス流れ方向
に対して傾くようにして、高温ガス流路に置かれ
るので、輻射体の高温ガスよりの熱吸収率及び被
加熱物への輻射率が大であり、熱効率の向上に著
しく役立つ。また、この輻射体の配置場所は加熱
室の出口附近に限られることなく、被加熱物に対
向せしめ得る場所ならばどこでもよい。例えば、
第1図で一点鎖線で示すような位置でもよい。但
し、排ガスの温度を出来る限り降下することが熱
効率の向上につながるので、このような場合は、
加熱室出口附近と2個所に設置するとよい。ま
た、本発明の方法における輻射体は、セラミツク
ブロツクであり、耐熱性に優れ、量産が可能であ
り、強度が大、通気の圧損失が少ない、輻射率が
高い等の優れた利点を有す。 As described above, in the method of the present invention, the radiator of the ceramic block is placed in the high-temperature gas flow path with the through hole inclined with respect to the gas flow direction, so that the radiator absorbs heat from the high-temperature gas. It has a high radiation rate and radiation rate to the heated object, and is extremely useful for improving thermal efficiency. Furthermore, the radiator is not limited to the vicinity of the exit of the heating chamber, but may be placed anywhere as long as it can face the object to be heated. for example,
The position may be as shown by the dashed line in FIG. However, since lowering the exhaust gas temperature as much as possible will improve thermal efficiency, in such cases,
It is best to install it in two places, one near the heating chamber exit. In addition, the radiator in the method of the present invention is a ceramic block, which has excellent heat resistance, can be mass-produced, and has excellent advantages such as high strength, low pressure loss during ventilation, and high emissivity. .
また、本発明の方法に使用するに好適な輻射体
は耐熱性枠体にセラミツクブロツクが適切な状態
で取付けられて形成してあるので、輻射体がセラ
ミツクブロツクであることによる上述の利点を発
揮していると共に大面積の輻射体の要望に簡単に
応ずることができる。 Furthermore, since the radiator suitable for use in the method of the present invention is formed by attaching a ceramic block to a heat-resistant frame in an appropriate state, the radiator exhibits the above-mentioned advantages of being a ceramic block. At the same time, it can easily meet the demands for large-area radiators.
第1図は本発明の方法を実施する加熱炉の一例
の断面図、第2図は本発明の方法に使用するセラ
ミツクブロツクの実施例の断面図、第3図及び第
4図は本発明のセラミツクブロツクを使用した輻
射体の実施例の一部省略した平面図及び第3図に
おけるA−A線矢視断面図である。
1……バーナ口、2……加熱室、3……被加熱
物、4……排ガス通路、5……セラミツクブロツ
ク、5A……貫通孔、6……輻射体、6A……枠
体。
FIG. 1 is a cross-sectional view of an example of a heating furnace for carrying out the method of the present invention, FIG. 2 is a cross-sectional view of an example of a ceramic block used in the method of the present invention, and FIGS. 4 is a partially omitted plan view of an embodiment of a radiator using a ceramic block, and a sectional view taken along the line A--A in FIG. 3. FIG. 1...Burner port, 2...Heating chamber, 3...Heated object, 4...Exhaust gas passage, 5...Ceramic block, 5A...Through hole, 6...Radiator, 6A...Frame.
Claims (1)
数の平行な貫通孔を有するセラミツクブロツク
を、該貫通孔の貫通方向を高温ガスの流れ方向に
対して傾けて、被加熱物に向けて配置して行うこ
とを特徴とする輻射加熱方法。 2 前記セラミツクブロツクの貫通孔の径が1〜
200mmで、該セラミツクブロツクの貫通孔貫通方
向の厚さが該貫通孔の径の2倍以上である特許請
求の範囲第1項の輻射加熱方法。 3 前記セラミツクブロツクを、該セラミツクブ
ロツクの貫通孔貫通方向が高温ガスの流れ方向に
対して5〜20度傾むくように配置して行う特許請
求の範囲第1項又は第2項の輻射加熱方法。 4 1個又は複数個の開口部を有する耐熱性枠体
の該開口部に、多数の平行な貫通孔を有するセラ
ミツクブロツクを、該貫通孔の貫通方向を枠体面
に対して傾けて、取付けてなる輻射体。 5 前記セラミツクブロツクの貫通孔の径が1〜
200mmで、該セラミツクブロツクの貫通孔貫通方
向の厚さが該貫通孔の径の2倍以上である特許請
求の範囲第4項の輻射体。 6 前記セラミツクブロツクを、該セラミツクブ
ロツクの貫通孔貫通方向が枠体面に直角より5〜
20度傾むくように取付けてなる特許請求の範囲第
4項又は第5項の輻射体。 7 前記枠体に開口部が複数個設けられ、各開口
部に2個の前記セラミツクブロツクを、該枠体両
側面の中間面に対称に、取付けてある特許請求の
範囲第4項、第5項又は第6項の輻射体。[Scope of Claims] 1. A ceramic block having a large number of parallel through-holes as a radiator is placed in a high-temperature gas flow path in a heating chamber, and the through-hole direction is inclined with respect to the high-temperature gas flow direction. A radiation heating method characterized by being placed facing the object to be heated. 2 The diameter of the through hole of the ceramic block is 1 to
2. The radiation heating method according to claim 1, wherein the thickness of the ceramic block in the direction of passing through the through hole is 200 mm or more than the diameter of the through hole. 3. The radiation heating method according to claim 1 or 2, which is carried out by arranging the ceramic block so that the direction through which the through hole of the ceramic block passes is inclined by 5 to 20 degrees with respect to the flow direction of the high-temperature gas. . 4. A ceramic block having a large number of parallel through-holes is attached to the opening of a heat-resistant frame having one or more openings, with the penetration direction of the through-holes being inclined with respect to the frame surface. A radiant body. 5 The diameter of the through hole of the ceramic block is 1 to 1.
5. The radiator according to claim 4, wherein the thickness of the ceramic block in the direction of passing through the through hole is 200 mm or more than the diameter of the through hole. 6. Set the ceramic block so that the through-hole passing direction of the ceramic block is 5 to
The radiator according to claim 4 or 5, which is mounted so as to be inclined at 20 degrees. 7. A plurality of openings are provided in the frame, and two ceramic blocks are attached to each opening symmetrically with respect to the intermediate plane of both sides of the frame. Radiator in term or term 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3573782A JPS58153088A (en) | 1982-03-09 | 1982-03-09 | Radiation heating method and radiator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3573782A JPS58153088A (en) | 1982-03-09 | 1982-03-09 | Radiation heating method and radiator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58153088A JPS58153088A (en) | 1983-09-10 |
JPS6359073B2 true JPS6359073B2 (en) | 1988-11-17 |
Family
ID=12450134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3573782A Granted JPS58153088A (en) | 1982-03-09 | 1982-03-09 | Radiation heating method and radiator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58153088A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6363700U (en) * | 1986-10-13 | 1988-04-27 | ||
JP5563360B2 (en) * | 2010-04-26 | 2014-07-30 | 株式会社超高温材料研究センター | Method for producing breathable radiant heat reflector |
JP4801789B1 (en) * | 2010-10-07 | 2011-10-26 | 株式会社超高温材料研究センター | Heating furnace thermal efficiency improvement method and heating furnace thermal efficiency improvement apparatus |
JP5775746B2 (en) * | 2011-05-26 | 2015-09-09 | 株式会社超高温材料研究センター | Method for improving thermal efficiency of heat treatment furnace |
JP5807633B2 (en) * | 2012-12-27 | 2015-11-10 | Jfeスチール株式会社 | heating furnace |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54123509A (en) * | 1978-03-20 | 1979-09-25 | Kawasaki Steel Co | Heating furnace |
JPS5525353A (en) * | 1978-08-11 | 1980-02-23 | Ricoh Co Ltd | Printing means |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945239Y1 (en) * | 1969-11-07 | 1974-12-11 | ||
JPS50133376U (en) * | 1974-04-20 | 1975-11-01 |
-
1982
- 1982-03-09 JP JP3573782A patent/JPS58153088A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54123509A (en) * | 1978-03-20 | 1979-09-25 | Kawasaki Steel Co | Heating furnace |
JPS5525353A (en) * | 1978-08-11 | 1980-02-23 | Ricoh Co Ltd | Printing means |
Also Published As
Publication number | Publication date |
---|---|
JPS58153088A (en) | 1983-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3155142A (en) | Radiant gas burner | |
DE19529343A1 (en) | Space heating device | |
JPS6359073B2 (en) | ||
JP2019507861A (en) | High intensity gas fired infrared radiator | |
CN100339673C (en) | Blackbody furnace-producing material and heating furnace | |
CN215713205U (en) | Gas furnace and gas furnace system | |
US2601167A (en) | Furnace and heat retaining unit therefor | |
NL7906555A (en) | CERAMIC, HEAT RECOVERY CONSTRUCTION AND COMPOSITION. | |
JPS6312236B2 (en) | ||
JPH0222296B2 (en) | ||
JPS59113117A (en) | Continuous heating furnace | |
EP1318370A4 (en) | Regenerative heat reservoir for combustion burner | |
JPH06281132A (en) | Burner tile made of ceramic fiber | |
JP2873392B2 (en) | Radiant tube burner | |
JPS6236073Y2 (en) | ||
JPS6236071Y2 (en) | ||
JPS6135340Y2 (en) | ||
JPS5926237Y2 (en) | Furnace wall structure | |
JPH0344965Y2 (en) | ||
JPS60202259A (en) | Catalytic combustion type hot water supplier | |
JPH02259322A (en) | Radiant tube | |
JPS6336038Y2 (en) | ||
JPS6017686A (en) | Heating furnace and radiating panel | |
JPS5969689A (en) | Heating furnace | |
JP3722588B2 (en) | Burner equipment |