Nothing Special   »   [go: up one dir, main page]

JPS6350991B2 - - Google Patents

Info

Publication number
JPS6350991B2
JPS6350991B2 JP9196081A JP9196081A JPS6350991B2 JP S6350991 B2 JPS6350991 B2 JP S6350991B2 JP 9196081 A JP9196081 A JP 9196081A JP 9196081 A JP9196081 A JP 9196081A JP S6350991 B2 JPS6350991 B2 JP S6350991B2
Authority
JP
Japan
Prior art keywords
medium
antibiotics
zeolite
culture
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9196081A
Other languages
Japanese (ja)
Other versions
JPS57206380A (en
Inventor
Satoshi Oomura
Yoshitake Tanaka
Yuzuru Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP9196081A priority Critical patent/JPS57206380A/en
Publication of JPS57206380A publication Critical patent/JPS57206380A/en
Publication of JPS6350991B2 publication Critical patent/JPS6350991B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳现な説明】 本発明は抗生物質生産胜を有する埮生物を培逊
しお抗生物質を培逊物䞭に生成蓄積させるための
培地以䞋抗生物質生産甚培地ずいうに関す
る。 抗生物質は埮生物によ぀お生産され、埮生物そ
の他の现胞の発育を阻害し、あるいは特異的な薬
理䜜甚や酵玠阻害䜜甚を有する物質田䞭信男、
䞭村昭四郎著、抗生物質倧芁第版、第頁、
1977幎、東京倧孊出版であ぀お、珟圚、医薬、
蟲薬、動物飌料添加物、駆虫剀などに倚数䜿甚さ
れおいる。 抗生物質生産量を増加させるために改良された
公知の培地の䟋は次の通りである。 (1) 抗生物質生合成の有効な前駆䜓を含有する培
地〔ゞダヌナル・オブ・アメリカン・ケミカ
ル・゜サ゚テむJ.Am.Chem.Soc.第68巻、
第1669頁1946幎〕 (2) 培逊液のPHを最適範囲に保぀のに有効な緩衝
剀を含有する培地〔ドメむンDemainアヌ
カむブ・オブ・マむクロバむオロゞ−Arch.
Microbiol.第115巻、第169頁1977幎〕 (3) 有効な界面掻性剀を含有しお発泡を抑え、あ
るいは抗生物質生産埮生物の现胞内より现胞倖
ぞの抗生物質の溢出を有利にする培地䞊野芳
倫、倧村智線著、埮生物薬品化孊、第176頁、
1979幎、南江堂 (4) 培地の栄逊玠炭玠源、窒玠源、リン酞根な
どずしお各皮物質の䞭から有効なものを遞択
しお各々を最適濃床に含有する培地同䞊 このような各皮の組成を組合わせるこずによ぀
お䞀぀䞀぀の抗生物質の生産に適した培地が決定
される。しかし、このためには通垞、膚倧な劎力
ず長時間を芁し、しかもある抗生物質の生産に有
利な培地が別の抗生物質の生産にず぀おは逆に䞍
利である堎合が決しお少なくなか぀た。埓぀お広
範囲の抗生物質生産ぞの応甚性ず高い生産性ずを
有する抗生物質生産甚培地の提䟛が望たれおい
た。 さきに本発明者は、リン酞第䞉マグネシりム等
のいく぀かのリン酞を含有する培地を甚いお抗生
物質を垞法により生産するず、倚数の抗生物質の
生産量を著しく増加し埗るこずを芋出したが特
願昭54−153792号、いたや、公知の抗生物質生
産甚培地にれオラむトを添加するず、倚数の抗生
物質の生産量を容易に著しく増加し埗るこずを芋
出した。 埓぀お、本発明の目的は、抗生物質生産胜力を
有する埮生物を垞法により培逊しお抗生物質を生
成蓄積させるための培地ずしお、簡䟿、容易に抗
生物質の生成蓄積量を増加させるこずができる培
地を提䟛するこずにある。本発明の培地は、埓来
垞甚される培地に含有する組成物のほかにれオラ
むトを含有するこずを特城ずする。本発明による
培地を甚いお、抗生物質生産胜を有する埮生物を
垞法により培逊するず、その生産量を䞀般に数倍
たずえば倍以䞊増加させるこずができる。 以䞋に本発明を詳现に説明する。 本発明培地を利甚しお抗生物質を生産する際に
䜿甚する埮生物ずしおは、抗生物質を生成する胜
力を有する埮生物であれば䜕でもよい。たずえば
野性株でもよいし、たた特定の栄逊芁求性、特定
物質に察する抵抗性あるいは感受性を有する株で
もよい。あるいは特定物質を分解たたは䞍掻性化
する性質を有しおいおもいなくおもよい。埓぀
お、公知の広範囲のカビ、酵母、现菌、攟線菌を
含む各皮の抗生物質生産胜力を有する埮生物を甚
いるこずができる。たたその埮生物は倩然界、た
ずえば土壌、河川氎、海氎たたは空気䞭等に存圚
したものであ぀おもよいし、予め本発明培地以倖
の培地で生育させたものでもよい。 本発明に甚いられるれオラむトは、わが囜では
沞石ずよばれる鉱物で、 〔AlO2xSiO2y〕zH2O 〔ただし䞊匏においお、はナトリりム、カリり
ム、カルシりム等のアルカリ金属、は金属むオ
ンの電荷数、すなわちカリりムでは、カルシり
ムでは、、、は敎数を衚わすが、れオラ
むトの皮類によ぀おは科孊的に未確定のものもあ
る〕 の組成を有し、沞石氎を含み、䞉次元構造をなす
アルミノケむ酞のアルカリ金属塩である〔原䌞
宜、高橋浩線、「れオラむト」、構談瀟発行1978
幎F.A.コツトン、G.A.りむルキン゜ン著、䞭
原勝〓蚳、「無機化孊䞊」、培颚通発行1976
幎427−428頁桐山良䞀著、「構造無機化孊
」、共立党曞1978幎、226−238頁など〕。倩
然に産するれオラむトずしおは、方沞石、十字沞
石、菱沞石、濁沞石、湯河原沞石、茝沞石、束沞
石、クリノチロ沞石、ハク沞石、モルデン沞石、
゜ヌダ沞石などが知られおおり、倚くの堎合この
いく぀かの皮類の混成物である。合成れオラむト
ずしおは、れオラクト、、、、、、
、などが知られおいる。本発明による培地に
は抗生物質生産増加胜を有する倩然れオラむト、
合成れオラむトのいずれも䜿甚可胜である。 れオラむトが、アンモニア態窒玠吞着性を有す
るこずは公知であり、汚氎凊理等に利甚されおい
るが、抗生物質生産甚培地に添加するこずによ぀
お、抗生物質の生産量を著増させ埗るこずは知ら
れおいない。 本発明培地に甚いるれオラむトは単独で甚いお
もよいし、さきに本発明者らが教瀺したリン酞マ
グネシりム等ず組合わせお甚いるこずもできる。
所望により、れオラむトを含有する各皮工業廃棄
物たたはれオラむトを含有、吞着、包含たたは結
合した各皮工業補品などを利甚できる。 れオラむトは垂販されおいるものをそのたた甚
いおもよい。あるいは次の(1)〜(6)に瀺す物質の溶
液の以䞊で予め掗浄しおから甚いおもよい。 (1) 塩酞、硫酞、ギ酞などの酞類 (2) 苛性゜ヌダ、苛性カリ、アンモニアアなどの
アルカリ類 (3) 食塩、硫安、塩化マグネシりムなどの公知の
抗生物質生産培地の組成物の䞀぀、あるいは二
぀以䞊の混合物 (4) 目的抗生物質の生産培地 (5) メタノヌル、゚タノヌル、アセトン、クロロ
ホルム、ベンれンなどの有機溶剀類 (6) æ°Ž 培地䞭に生産させるれオラむトの濃床はその粒
床や䜿甚埮生物や培逊条件を考慮しお決定すべき
であるが、通垞0.01−の濃床が奜適である。
ある抗生物質の生産に察する至適枩床、時間、PH
等の諞条件は、公知の圓該抗生物質生産甚培地の
堎合に準じればよい。 本発明培地のれオラむトのほかに、埓来垞甚さ
れる抗生物質生産甚培地の䟋にならい、䜿甚埮生
物の利甚し埗る炭玠源、窒玠源、無機物、その他
必芁な栄逊玠を皋良く含有する。本発明培地の皮
類ずしおは、倩然培地、合成培地のいずれでもよ
く、たたその圢態ずしおは液䜓培地、固圢培地の
いずれでもよい。 本発明培地がれオラむトのほかに含有する栄逊
玠を詳现に瀺せば、炭玠源ずしおは、たずえば、
グルコヌス、グリセロヌル、フラクトヌス、マル
トヌス、マンニツト、キシロヌス、ガラクトヌ
ス、ラクトヌス、、リボヌス、柱粉たたはその加
氎分解物等の皮々の炭氎化物が䜿甚できる。その
濃床は通垞、培地に察しお0.1−グルコヌ
ス換算が奜たしい。たたグルコン酞、ピルビン
酞、乳酞、酢酞等の各皮有機酞、グリシン、グル
タミン酞、アラニン等の各皮アミノ酞、さらには
メタノヌル、゚タノヌル等のアルコヌル類やノル
マルパラフむン等各皮の非芳銙族系炭化氎玠、あ
るいは怍物性もしくは動物性の各皮油脂等も䜿甚
可胜である。 窒玠源ずしおは、アンモニア、塩化アンモニり
ム、硫酞アンモニりム、硝酞アンモニりム、酢酞
アンモニりム、乳酞アンモニりム等各皮の無機酞
あるいは有機酞のアンモニりム塩類、尿玠、ペプ
トン、NZ−アミン、肉゚キス、酵母゚キス、也
燥酵母、コヌンスチヌプリカヌ、カれむン加氎分
解物、フむツシナミヌルあるいはその消化物、倧
豆粉あるいはその消化物、脱脂倧豆あるいはその
消化物、蛹加氎分解物等の含窒玠有機物質、さら
にはグリシン、グリタミン酞、アラニン等の各皮
アミノ酞が䜿甚可胜である。 無機物ずしおは、各皮リン酞塩、硫酞マグネシ
りム、食塩等、さらに埮量の重金属塩が䜿甚され
る。 たた栄逊芁求性を瀺す倉異株を甚いる堎合に
は、圓然その栄逊芁求性を満足させる物質を培地
に加えなければならないが、この皮の栄逊玠は倩
然物を含む培地を䜿甚する堎合にはずくに添加を
必芁ずしない堎合がある。 本発明に応甚し埗る公知の培地組成の䟋をあげ
るず次の通りである。 (1) グルコヌス、ペプトン0.5、酵母゚キ
ス0.3、肉゚キス0.5、NaCl0.3、
CaCO30.3PH7.0 (2) グルコヌス、ペプトン0.3、肉゚キス
0.5、NaCl0.3、寒倩1.2PH7.2 (3) グリセリン、グルコヌス0.2、倧豆粉
、NaCl0.3PH7.5 (4) 柱粉、コヌンスチヌプリカヌ、
MgSO4・7H2O0.1PH7.5 (5) デキストリン、ペプトン0.5、倧豆粉
、KH2PO40.05、MgSO4・7H2O0.05
PH7.0 (6) グルコヌス、NH42SO40.5、
KH2PO40.1、MgSO40.1、FeSO4・
7H2O0.01、CuSO4・5H2O0.001、ZnSO4・
7H2O0.001、MnSO4・4H2O0.001、
CaCl2・2H2O0.001、CaCO30.3PH6.5 (7) グルコヌス、カザミノ酞、
K2HPO40.1、MgSO4・7H2O0.1、KCl0.05
、ZnSO4・7H2O0.01、MnSO4・
5H2O0.005、FeSO4・7H2O0.005、
CaCO30.3PH7.5 本発明培地を甚いお埮生物を培逊するに際しお
その培逊条件は垞法に準じお行なう。すなわち、
培逊物のPHは通垞−の範囲、培逊枩床は通垞
20℃−40℃の範囲が奜結果をもたらし埗る。培逊
期間は通垞−10日間である。もちろん、これ以
倖の条件、たずえば酞性条件やアルカリ性条件で
より旺盛に生育する埮生物や、あるいは20℃以䞋
の䜎枩や40℃以䞊の高枩条件をずくに奜む埮生物
を甚いる堎合には、それぞれ望たしい環境䞋で培
逊する。 たた、培逊開始から培逊完了時たでの適圓な時
期に、抗生物質の生産量をさらに増加させる目的
で各皮の添加物、たずえば有効な前駆䜓、各皮界
面掻性剀、各皮溶剀、飜和たたは䞍飜和の脂肪酞
などを培地に添加しおもよい。 本発明培地を甚いお埮生物を培逊するに際し
お、どのような組成の本発明培地がどのような埮
生物に最適であるかに぀いお、珟段階では芏則性
を確認できない。すなわち、特定の組成を有する
本発明の培地を甚いお抗生物質生産胜力を有する
埮生物を培逊するず、垞法による培逊法で、䞀般
的には抗生物質の生産量を埓来の培地を甚いた堎
合よりも著しく増加させ埗るが、䜿甚する埮生物
によ぀おは生産量の増加が認められない堎合があ
るこずは事実である。しかし、このこずが本発明
の実甚的䟡倀を害するずはいえない。なぜなら、
䞋蚘のような簡単な実隓的培逊によ぀お、特定の
埮生物に察する特定の本発明による培地の適合
性、れオラむトの皮類および䜿甚量などの条件を
きわめお容易に刀断するこずができるからであ
る。この皮の実隓的培逊が、埓来の最適培地組成
決定に芁求された耇雑な詊行錯誀的手法よりもは
るかに簡䟿であるこずは、圓業者の容易に理解で
きるずころである。 実隓䟋 菌株ずしお、ナナオマむシン生産菌、ストレプ
トミセス・ロヌザ・バリアント・ノト゚ンシス
rosavar.notoensis埮工研菌寄第2249
号、セルレニン生産菌、セフアロスボリりム、・
セルレンスCephalosporium cerulens〔ゞダ
ヌナル・オブ・アンチビオチクスJ.Antibiot.
系列第16巻、第236頁1963幎〕を䜿甚し
た。これらの菌株を培逊しお抗生物質を生産させ
るための培地ずしお、攟線菌の培逊に垞甚される
䞋蚘の、の培地、およびカビの培逊に垞甚さ
れる〜の培地を実隓培地ずしお遞択した。
各々の培地に倩然れオラむト沞石化鉱、40ムツ
シナを含たせたもの、およびの培地に合
成れオラむト−和光玔薬、200メツシナ
を含たせたもの、合蚈皮類の培地を調敎し、
詊隓管×20cmにそれぞれの培地を10ml分泚
し、27℃で、ナナオマむシンの生産には日間、
セルレニンの生産には日間、垞法通り埀埩振ず
う培逊した。 培地組成 グリセロヌル、倧豆粉、NaCl0.3
PH7.0 グルコヌス、ペプトン0.5、也燥酵母0.3
、肉゚キス0.5、NaCl0.3、CaCO30.3
PH6.8 グルコヌス、ペプトンPH7.0 グルコヌス、NaNO30.3、KH2PO40.1
、KCl0.05、MgSO4・7H2O0.05、
FeSO4・7H2O0.01PH6.7 グリセロヌル、グルコヌス、ペプト
ン0.5、NaCl0.2PH6.9 培逊終了埌、培逊液䞭に生成蓄積した抗生物質
量を枬定したずころ第衚に瀺す結果が埗られ
た。比范のためにれオラむトを含たない培地で、
同様に培逊した結果も瀺す。 【衚】 は倩然れオラむトを䜿甚した。
第衚からナナオマむシンの生産にはの培
地、セルレニンの生産にはの培地に、それぞれ
倩然れオラむトを含有させたものが適しおい
るこずが容易にわかる。たた第衚から、本発明
による培地においお、公知の培地よりも著しく倚
量の抗生物質が生産されるこずが明らかである。
たたの培地に添加するれオラむトの皮類ずしお
は、合成れオラむト−よりも倩然れオラむト
が適しおいるこずがわかる。 本発明による培地での生産にずくに奜適である
抗生物質の䟋ずしお、ストレプトマむシン、ゞヒ
ドロストレプトマむシン、ペニシリン、セフアロ
スボリン、チ゚ナマむシン、ロむコマむシン、ス
ピラマむシン、タむロシン、チダルコマむシン、
バンドリン、クゞマむシン、゚リスロマむシン、
シラマむシン、テトラサむクリン、パシトラシ
ン、アンフオマむシン、アズレオマむシン、ナナ
オマむシン、クロラムプニコヌル、セルレニン
など、珟圚、臚床的に広く甚いられるアミノグリ
コシド系、β−ラクタム系、マクロラむド系、テ
トラサむクリン系およびペプチド系抗生物質など
を含む、倚数の抗生物質をあげるこずができる。
この皮の実隓に芁する時間、劎力および費甚は、
抗生物質生産甚培地の遞定に埓来必芁ずされたも
のに比べるず、きわめお軜埮である。しかも、こ
のようにきわめお容易に遞ばれた培地を甚いお、
抗生物質の生産量を著しく増加させるこずができ
る。 実斜䟋  皮菌ずしおセルレニン生産菌株、セフアロスポ
リりム・セルレンスCephalosporium
caerulens〔ゞダヌナル・オブ・アンチビオチク
スJ.Antibiotics系列第16巻、第236頁
1963幎〕を䜿甚した。グルコヌス、ペプト
ン0.5、也燥酵母0.3、肉゚キス0.5、
NaCl0.5からなる皮培地PH7.010mlを含む50
ml容倪型詊隓管×20cmに皮菌を怍菌し、27
℃で日間振ずう培逊した。グリセロヌル、
グルコヌス、ペプトン0.5、NaCl0.2、倩
然れオラむト粒埄mm以䞋たたはから
なる生産培地PH7.0100mlを含む500ml容坂口
フラスコに、䞊蚘の通りに埗た皮培逊液mlを怍
菌し、27℃で日間埀埩振ずう培逊したずころ、
培逊液䞭に第衚の通りセルレニンが生成蓄積し
た。 【衚】 実斜䟋  皮菌ずしおナナオマむシン生産菌株、ストレプ
トミセス・ロヌザ・バリアント・ノト゚ンシス
rosa var.notoensis埮工研菌寄第2249
号を甚いた。グルコヌス、肉゚キス、
NaCl0.5、CaCO30.3を含む皮培地PH5.0
50mlを含む500ml容坂口フラスコに皮菌を怍菌し、
37℃で30時間生育させた。この皮培逊液mlを䞊
蚘の培地に第衚に瀺す物質を添加した組成の培
地PH5.050mlを含む500ml容坂口フラスコに移
し、37℃で36時間培逊したずころ、培逊液䞭にナ
ナオマむシンが第衚に瀺す通りに蓄積した。 【衚】 篩通過分
〃 1.0 450
無添加 370

DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a medium for culturing microorganisms capable of producing antibiotics to produce and accumulate antibiotics in the culture (hereinafter referred to as an antibiotic production medium). Antibiotics are substances produced by microorganisms that inhibit the growth of microorganisms and other cells, or have specific pharmacological or enzyme inhibitory effects (Nobuo Tanaka,
Shoshiro Nakamura, Compendium of Antibiotics, 2nd edition, page 1,
(University of Tokyo Press, 1977) and is currently engaged in pharmaceutical,
It is widely used in pesticides, animal feed additives, anthelmintics, etc. Examples of known media that have been modified to increase antibiotic production are as follows. (1) Medium containing effective precursors for antibiotic biosynthesis [Journal of American Chemical Society (J.Am.Chem.Soc.) Vol. 68,
No. 1669 (1946)] (2) A medium containing a buffering agent effective to maintain the pH of the culture medium within the optimum range [Demain Archives of Microbiology (Arch.
Microbiol.) Vol. 115, p. 169 (1977)] (3) Contains an effective surfactant to suppress foaming or facilitate extravasation of antibiotics from inside to outside the cells of antibiotic-producing microorganisms. (edited by Yoshio Ueno and Satoshi Omura, Microbial Pharmaceutical Chemistry, p. 176)
(1979, Nankodo) (4) A culture medium that selects effective substances from among various substances as nutrients (carbon source, nitrogen source, phosphate roots, etc.) and contains each in the optimum concentration (same as above). A medium suitable for producing each antibiotic is determined by combining the compositions of the following. However, this usually requires a huge amount of labor and time, and in many cases, a culture medium that is advantageous for the production of one antibiotic is disadvantageous for the production of another antibiotic. . Therefore, it has been desired to provide a culture medium for antibiotic production that has high productivity and applicability to a wide range of antibiotic production. Previously, the present inventor has discovered that the production of many antibiotics can be significantly increased when antibiotics are produced by a conventional method using a medium containing some phosphoric acids such as tertiary magnesium phosphate. (Japanese Patent Application No. 54-153792), it has now been discovered that the production of many antibiotics can be easily and significantly increased by adding zeolite to a known culture medium for antibiotic production. Therefore, an object of the present invention is to use a medium for culturing microorganisms capable of producing antibiotics in a conventional manner to produce and accumulate antibiotics, which can simply and easily increase the amount of antibiotics produced and accumulated. The goal is to provide a culture medium. The medium of the present invention is characterized in that it contains zeolite in addition to the compositions contained in conventionally used medium. When microorganisms capable of producing antibiotics are cultured in a conventional manner using the medium according to the present invention, the production amount can generally be increased several times, for example, by more than two times. The present invention will be explained in detail below. Any microorganism can be used to produce antibiotics using the culture medium of the present invention as long as it has the ability to produce antibiotics. For example, it may be a wild strain or a strain having specific auxotrophy or resistance or sensitivity to a specific substance. Alternatively, it may or may not have the property of decomposing or inactivating a specific substance. Therefore, a variety of microorganisms capable of producing antibiotics can be used, including a wide range of known molds, yeasts, bacteria, and actinomycetes. Further, the microorganism may exist in nature, for example, in soil, river water, seawater, or air, or may be grown in advance in a medium other than the medium of the present invention. The zeolite used in the present invention is a mineral called zeolite in Japan, and has the following formula: Mx/n [(AlO 2 ) x (SiO 2 ) y ] z H 2 O [However, in the above formula, M is sodium, potassium, calcium, etc. n is the number of charges on the metal ion, i.e., 1 for potassium and 2 for calcium; It is an alkali metal salt of aluminosilicate that has the following composition, contains zeolite water, and has a three-dimensional structure.
); FA Kotton, GA Wilkinson, translated by Masaru Nakahara, “Inorganic Chemistry (Part 1)”, published by Baifukan (1976)
Ryoichi Kiriyama, "Structural Inorganic Chemistry," Kyoritsu Zensho (1978), pp. 226-238]. Naturally occurring zeolites include analzeite, craziite, chabazite, turbidite, yugawara zeolite, diabolite, fasciolite, clinotyl zeolite, halite, mordenite,
It is known as soda zeolite, and is often a mixture of several types. Examples of synthetic zeolites include zeolact A, C, G, L, T, S,
W, X, etc. are known. The culture medium according to the present invention contains natural zeolite, which has the ability to increase antibiotic production.
Any synthetic zeolite can be used. Zeolite is known to have ammonia nitrogen adsorption properties and is used for sewage treatment, etc., but by adding it to antibiotic production media, it is possible to significantly increase the production amount of antibiotics. is not known. The zeolite used in the culture medium of the present invention may be used alone or in combination with magnesium phosphate, etc., as previously taught by the present inventors.
If desired, various industrial wastes containing zeolite or various industrial products containing, adsorbing, incorporating or bonding zeolite can be used. Commercially available zeolites may be used as they are. Alternatively, it may be used after being washed in advance with one or more solutions of substances shown in the following (1) to (6). (1) Acids such as hydrochloric acid, sulfuric acid, and formic acid (2) Alkalies such as caustic soda, caustic potash, and ammonia (3) One or more of the compositions of known antibiotic production media such as common salt, ammonium sulfate, and magnesium chloride. (4) Production medium for the target antibiotic (5) Organic solvents such as methanol, ethanol, acetone, chloroform, and benzene (6) Water The concentration of zeolite produced in the medium depends on its particle size, the microorganism used, and the culture. The concentration should be determined taking into consideration the conditions, but a concentration of 0.01-5% is usually suitable.
Optimal temperature, time, and PH for the production of certain antibiotics
The conditions may be the same as those for the known antibiotic production medium. In addition to the zeolite in the culture medium of the present invention, it contains carbon sources, nitrogen sources, inorganic substances, and other necessary nutrients suitable for the microorganisms used, following the example of conventionally used antibiotic production media. The type of medium of the present invention may be either a natural medium or a synthetic medium, and its form may be either a liquid medium or a solid medium. In detail, the nutrients contained in the culture medium of the present invention in addition to zeolite include, for example, as a carbon source:
Various carbohydrates can be used, such as glucose, glycerol, fructose, maltose, mannite, xylose, galactose, lactose, ribose, starch or its hydrolysates. The concentration is usually preferably 0.1-5% (calculated as glucose) based on the medium. In addition, various organic acids such as gluconic acid, pyruvic acid, lactic acid, and acetic acid, various amino acids such as glycine, glutamic acid, and alanine, alcohols such as methanol and ethanol, various non-aromatic hydrocarbons such as normal paraffin, and plants. Various oils and fats of natural or animal origin can also be used. Nitrogen sources include ammonium salts of various inorganic or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium acetate, ammonium lactate, urea, peptone, NZ-amine, meat extract, yeast extract, dried yeast, corn steep. Nitrogen-containing organic substances such as liquor, casein hydrolyzate, fat meal or its digested product, soybean flour or its digested product, defatted soybean or its digested product, pupa hydrolysate, and various amino acids such as glycine, glitamic acid, and alanine. is available. As inorganic substances, various phosphates, magnesium sulfate, common salt, etc., and trace amounts of heavy metal salts are used. Furthermore, when using a mutant strain that exhibits auxotrophy, it is of course necessary to add substances that satisfy the auxotrophy to the medium, but it is especially important to add this kind of nutrients when using a medium containing natural substances. may not be necessary. Examples of known culture medium compositions that can be applied to the present invention are as follows. (1) Glucose 2%, peptone 0.5%, yeast extract 0.3%, meat extract 0.5%, NaCl 0.3%,
CaCO 3 0.3% (PH7.0) (2) Glucose 1%, peptone 0.3%, meat extract
0.5%, NaCl 0.3%, agar 1.2% (PH7.2) (3) Glycerin 1%, glucose 0.2%, soy flour 1%, NaCl 0.3% (PH7.5) (4) Starch 2%, corn steep 2% liquor,
MgSO 4 7H 2 O 0.1% (PH 7.5) (5) Dextrin 2%, peptone 0.5%, soy flour 1%, KH 2 PO 4 0.05%, MgSO 4 7H 2 O 0.05%
(PH7.0) (6) Glucose 4%, (NH 4 ) 2 SO 4 0.5%,
KH2PO4 0.1 %, MgSO4 0.1%, FeSO4・
7H2O0.01 %, CuSO4・5H2O0.001 %, ZnSO4・
7H2O0.001 %, MnSO4・4H2O0.001 %,
CaCl 2 2H 2 O 0.001%, CaCO 3 0.3% (PH6.5) (7) Glucose 2%, Casamino acid 1%,
K2HPO4 0.1 %, MgSO4・7H2O0.1 %, KCl0.05
%, ZnSO4・7H2O0.01 %, MnSO4・
5H2O0.005 %, FeSO4・7H2O0.005 %,
CaCO 3 0.3% (PH7.5) When culturing microorganisms using the culture medium of the present invention, the culture conditions are according to conventional methods. That is,
The pH of the culture is usually in the range of 3-9, and the culture temperature is usually
A range of 20°C-40°C may give good results. The culture period is usually 1-10 days. Of course, if you want to use microorganisms that grow more vigorously under other conditions, such as acidic or alkaline conditions, or microorganisms that particularly prefer low temperatures below 20°C or high temperatures above 40°C, it is necessary to use microorganisms that grow more vigorously under other conditions, such as under the desired environment. Cultivate. In addition, various additives such as effective precursors, various surfactants, various solvents, and saturated or unsaturated additives may be added at appropriate times from the start of cultivation to the completion of cultivation to further increase the production of antibiotics. Fatty acids and the like may be added to the medium. When culturing microorganisms using the culture medium of the present invention, no regularity can be confirmed at this stage regarding which composition of the culture medium of the present invention is optimal for what type of microorganism. In other words, when a microorganism capable of producing antibiotics is cultured using the medium of the present invention having a specific composition, the amount of antibiotic produced by a conventional culture method is generally lower than when using a conventional culture medium. However, it is true that depending on the microorganism used, there may be cases where no increase in production is observed. However, this cannot be said to impair the practical value of the present invention. because,
This is because conditions such as the suitability of a particular culture medium according to the present invention for a particular microorganism, the type of zeolite and the amount used can be determined very easily by a simple experimental culture as described below. Those skilled in the art will readily understand that this type of experimental culture is much simpler than the complex trial-and-error approach required for conventional determination of optimal medium composition. Experimental example The strain used was a nanaomycin-producing bacterium, Streptomyces rosa var .
No.), cerulenin-producing bacteria, Cephalosborium,
Cephalosporium cerulens (J.Antibiot.)
(A Series) Volume 16, Page 236 (1963)] was used. As experimental media for culturing these bacterial strains to produce antibiotics, the following medium commonly used for culturing actinomycetes and the following mediums commonly used for culturing fungi were selected as experimental media.
Each medium contained 1% natural zeolite (Zolite, 40 ml), and the medium contained 1% synthetic zeolite A-3 (Wako Pure Chemical, 200 ml).
A total of 6 types of media were prepared, including %.
Dispense 10 ml of each medium into test tubes (2 x 20 cm) and incubate at 27°C for 3 days to produce nanaomycin.
For production of cerulenin, culture was carried out with reciprocating shaking for 2 days as usual. Medium composition: 2% glycerol, 2% soybean flour, 0.3% NaCl
(PH7.0) Glucose 2%, Peptone 0.5, Dry Yeast 0.3
%, meat extract 0.5%, NaCl 0.3%, CaCO3 0.3 %
(PH6.8) Glucose 4%, Peptone 1% (PH7.0) Glucose 4%, NaNO 3 0.3%, KH 2 PO 4 0.1
%, KCl0.05%, MgSO4・7H2O0.05 %,
FeSO 4・7H 2 O0.01% (PH6.7) Glycerol 3%, Glucose 1%, Peptone 0.5%, NaCl 0.2% (PH6.9) After culturing, remove the amount of antibiotics produced and accumulated in the culture solution. As a result of the measurement, the results shown in Table 1 were obtained. For comparison, a medium containing no zeolite was used.
The results of culturing in the same manner are also shown. [Table] used natural zeolite.
From Table 1, it can be easily seen that the medium containing 1% natural zeolite is suitable for the production of nanaomycin and the medium for the production of cerulenin. It is also clear from Table 1 that significantly more antibiotics are produced in the culture medium according to the invention than in the known culture medium.
Furthermore, it can be seen that natural zeolite is more suitable than synthetic zeolite A-3 as the type of zeolite to be added to the culture medium. Examples of antibiotics which are particularly suitable for production in the medium according to the invention include streptomycin, dihydrostreptomycin, penicillin, cephalosvorin, thienamycin, leucomycin, spiramycin, tylosin, tyalcomycin,
Bandolin, Kuzimycin, Erythromycin,
Aminoglycosides, β-lactams, macrolides, tetracyclines, and peptides that are currently widely used clinically, such as sillamycin, tetracycline, pacitracin, amphomycin, azureomycin, nanaomycin, chloramphenicol, and cerulenin. A large number of antibiotics can be mentioned, including antibiotics and the like.
The time, effort, and expense required for this type of experiment are
This is extremely small compared to what was previously required for selecting a culture medium for antibiotic production. Moreover, using such an extremely easily selected medium,
The production of antibiotics can be significantly increased. Example 1 A cerulenin-producing strain, Cephalosporium cerulens, was used as an inoculum.
caerulens) [J. Antibiotics (A series) Vol. 16, p. 236 (1963)] was used. Glucose 2%, peptone 0.5%, dry yeast 0.3%, meat extract 0.5%,
50ml containing 10ml of seed medium (PH7.0) consisting of 0.5% NaCl
Inoculate the inoculum into a large test tube (2 x 20 cm), and
The cells were cultured with shaking at ℃ for 2 days. 3% glycerol,
Seeds obtained as above were placed in a 500 ml Sakaguchi flask containing 100 ml of production medium (PH 7.0) consisting of 1% glucose, 0.5% peptone, 0.2% NaCl, and 1 or 2% natural zeolite (particle size 2 mm or less). When 1 ml of the culture solution was inoculated and cultured at 27°C for 2 days with reciprocal shaking,
Cerulenin was produced and accumulated in the culture solution as shown in Table 2. [ Table ] Example 2 Nanaomycin-producing strain, Streptomyces rosa var. notoensis ( S. rosa var.
No.) was used. 2% glucose, 1% meat extract,
Seed medium containing 0.5% NaCl, 0.3% CaCO3 (PH5.0)
Inoculate the inoculum into a 500ml Sakaguchi flask containing 50ml of
It was grown for 30 hours at 37°C. 2 ml of this seed culture was transferred to a 500 ml Sakaguchi flask containing 50 ml of a medium (PH5.0) with the composition of the above medium supplemented with the substances shown in Table 3, and cultured at 37°C for 36 hours. Nanaomycin accumulated as shown in Table 3. [Table] Amount passed through sieve)
〃 1.0 450
No additives 370

Claims (1)

【特蚱請求の範囲】[Claims]  抗生物質生産胜力を有する埮生物を培逊し
お、抗生物質を培逊物䞭に生成蓄積させるための
培地においお、れオラむトを含有する培地。
1. A medium containing zeolite for culturing microorganisms capable of producing antibiotics and producing and accumulating antibiotics in the culture.
JP9196081A 1981-06-15 1981-06-15 Culture medium for producing antibiotic substance Granted JPS57206380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9196081A JPS57206380A (en) 1981-06-15 1981-06-15 Culture medium for producing antibiotic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9196081A JPS57206380A (en) 1981-06-15 1981-06-15 Culture medium for producing antibiotic substance

Publications (2)

Publication Number Publication Date
JPS57206380A JPS57206380A (en) 1982-12-17
JPS6350991B2 true JPS6350991B2 (en) 1988-10-12

Family

ID=14041124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9196081A Granted JPS57206380A (en) 1981-06-15 1981-06-15 Culture medium for producing antibiotic substance

Country Status (1)

Country Link
JP (1) JPS57206380A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164478A (en) * 1984-02-08 1985-08-27 Ajinomoto Co Inc Method for cultivating mold
JPH0630567B2 (en) * 1985-03-20 1994-04-27 北里研究所瀟団法人 Antibiotic production medium
JPH0761257B2 (en) * 1990-02-23 1995-07-05 セントラル硝子株匏䌚瀟 Method for growing VA mycorrhizal fungus

Also Published As

Publication number Publication date
JPS57206380A (en) 1982-12-17

Similar Documents

Publication Publication Date Title
FI90091C (en) Process for producing non-natural demethylavermectins
CA1301689C (en) Method for selectively increasing the ratio of single major components ofantibiotic a 16686 complex
MASUMA et al. Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents
US5378617A (en) Process for the production of macrolide compounds
KR960013575B1 (en) Method for selectively increasing the ratio of single major components of antibiotic a40926 complex
JPS6350991B2 (en)
JPH03130084A (en) Production of trehalose
US3232844A (en) Method for manufacturing inosinic acid by fermentation
US4202819A (en) 2-(3-Alanyl)clavam antibiotic
JP2816422B2 (en) Method for producing 5-aminolevulinic acid by microorganism
US3296088A (en) Process for the production of uridylic acid by fermentation
US3963579A (en) Microbiological process for the production of pepstatins
JPH022589B2 (en)
JPS588397B2 (en) Novel mitomycin derivative and its production method
US3784445A (en) Culture medium and process for the biological production of alpha, omega-alkanedioic acid
JPH0630567B2 (en) Antibiotic production medium
JP4537862B2 (en) Highly efficient production method of organic acid by aerobic bacteria
Wagman et al. A chemically defined fermentation medium for the growth of Micromonospora purpurea
JPS5933358B2 (en) Production method of Mildeiomycin
US4296040A (en) Antibiotic nanaomycin E and a process for producing the same
US4123329A (en) Process for producing L-lysine by fermentation
US4086138A (en) Process for producing glucose isomerase
US3586606A (en) Process for producing 9-beta-d-ribofuranoside - 5' -phosphoric acid esters of 2-substituted-6-hydroxypurines
US2760903A (en) Use of cobalt-containing yeasts in production of cobalamines
US3041247A (en) Process for producing l-isoleucine