Nothing Special   »   [go: up one dir, main page]

JPS6345063B2 - - Google Patents

Info

Publication number
JPS6345063B2
JPS6345063B2 JP9706780A JP9706780A JPS6345063B2 JP S6345063 B2 JPS6345063 B2 JP S6345063B2 JP 9706780 A JP9706780 A JP 9706780A JP 9706780 A JP9706780 A JP 9706780A JP S6345063 B2 JPS6345063 B2 JP S6345063B2
Authority
JP
Japan
Prior art keywords
section
gas
distillation
gas outlet
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9706780A
Other languages
Japanese (ja)
Other versions
JPS5722558A (en
Inventor
Tomonori Kojima
Yasumitsu Katsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9706780A priority Critical patent/JPS5722558A/en
Priority to US06/270,231 priority patent/US4348359A/en
Priority to GB8117745A priority patent/GB2080538B/en
Priority to DE19813128175 priority patent/DE3128175A1/en
Publication of JPS5722558A publication Critical patent/JPS5722558A/en
Publication of JPS6345063B2 publication Critical patent/JPS6345063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Specific cations in water, e.g. heavy metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/182Specific anions in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】 本発明は超微量窒素の形態別測定装置に係り、
詳しくはアンモニア態窒素、亜硝酸態窒素、硝酸
態窒素、有機態窒素を分別定量する測定装置に関
するものである。
[Detailed Description of the Invention] The present invention relates to a device for measuring ultratrace amounts of nitrogen by form,
Specifically, the present invention relates to a measuring device for separately quantifying ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and organic nitrogen.

水質の富栄養化現象を引き起すといわれている
河川、湖沼、海域等の環境水及び工場排水、プロ
セス排水、衛生排水等の排水中の窒素量及び成分
が近年大きな問題になつてきている。これら水中
に含まれる窒素の形態はアンモニア態、亜硝酸
態、硝酸態及び有機態の4種類に分けられるが、
窒素の形態別含量を把握しておくことは排水等の
公害対策上重要である。
BACKGROUND ART In recent years, the amount and components of nitrogen in environmental water such as rivers, lakes, marine areas, and wastewater such as industrial wastewater, process wastewater, and sanitary wastewater, which are said to cause eutrophication of water quality, have become a major problem. The forms of nitrogen contained in these waters are divided into four types: ammonia, nitrite, nitrate, and organic.
Understanding the content of nitrogen in each form is important for pollution control measures such as wastewater.

従来、超微量窒素の形態別測定装置としては、
反応管を2基設け、ヘリウムをキヤリヤーガスと
して、第1の反応管内で試料水中のアンモニア態
窒素を臭素イオン含有反応液で還元して窒素ガス
とし、同伴される水分を完全に除去した後ガスク
ロマトグラフイーで定量し、第2の反応管内で試
料水中の亜硝酸態窒素をアミドスルホン酸反応液
で還元して窒素ガスとし、同伴される水分を完全
に除去した後ガスクロマトグラフイーで定量し、
硝酸態窒素は亜鉛粉末で還元して亜硝酸イオンと
した後、前記第2の方法で測定する装置が提案さ
れている。しかしこの装置では各反応液及び試料
水中の溶存窒素ガスを完全に除去しておかなけれ
ばならず、また窒素ガスに還元した後も同伴水分
を完全に除去しなければならないので、前処理操
作に時間を要しかつ操作が煩雑である欠点があ
る。
Conventionally, ultratrace nitrogen measurement devices for different forms are:
Two reaction tubes are provided, and in the first reaction tube, ammonia nitrogen in the sample water is reduced with a bromide ion-containing reaction solution using helium as a carrier gas, and the entrained moisture is completely removed, followed by gas chromatography. The nitrite nitrogen in the sample water is reduced to nitrogen gas using the amidosulfonic acid reaction solution in the second reaction tube, and the entrained moisture is completely removed, followed by quantitative determination using gas chromatography.
An apparatus has been proposed in which nitrate nitrogen is reduced to nitrite ions with zinc powder and then measured using the second method. However, with this device, dissolved nitrogen gas in each reaction solution and sample water must be completely removed, and entrained moisture must be completely removed even after reduction to nitrogen gas, so pretreatment operations are difficult. This method has the drawbacks of being time consuming and complicated to operate.

本発明はこのような欠点のない超微量窒素の形
態別測定装置を提供するものであつて、その要旨
は下記の測定部、蒸留部A及び蒸留部Bを有する
ことを特徴とする超微量窒素の形態別測定装置。
The present invention provides an apparatus for measuring ultra-trace amounts of nitrogen by form without such drawbacks, and the gist thereof is to provide an ultra-trace amount of nitrogen measuring device characterized by having the following measurement section, distillation section A, and distillation section B. Measuring device for each form.

(a) 測定部 一端に試料導入口及び水素ガス導入管を有
し、他端にガス導出口を有する筒状反応管の
内部に還元触媒を充填した反応部 ガス導入口及びガス導出口を有する容器の
内部に固体アルカリ性物質を充填した酸性ガ
ス除去部 反応部及び酸性ガス除去部を加熱するため
の加熱部 ガス導入管、ガス導出口、電解電極、終点
検出電極及び電解槽を有する電量滴定部 よりなり、反応部及び酸性ガス除去部はそれぞ
れ加熱部内に収納され、反応部のガス導出口は
酸性ガス除去部のガス導入口と連接され、酸性
ガス除去部のガス導出口は電量滴定部のガス導
入管と連接され、該ガス導入管は電解槽内の底
部近くに開口されている。
(a) Measuring section A reaction section consisting of a cylindrical reaction tube filled with a reduction catalyst, which has a sample inlet and a hydrogen gas inlet at one end and a gas outlet at the other end.It has a gas inlet and a gas outlet. An acidic gas removal section filled with a solid alkaline substance inside the container; A heating section for heating the reaction section and the acidic gas removal section; A coulometric titration section having a gas inlet pipe, a gas outlet, an electrolytic electrode, an end point detection electrode, and an electrolytic tank. The reaction section and the acidic gas removal section are each housed in the heating section, the gas outlet of the reaction section is connected to the gas inlet of the acidic gas removal section, and the gas outlet of the acidic gas removal section is connected to the coulometric titration section. It is connected to a gas introduction pipe, and the gas introduction pipe is opened near the bottom inside the electrolytic cell.

(b) 蒸留部A 試料導入口、キヤリヤーガス導入管及び発
生ガス導出口を有し、かつ耐酸性の材質から
なる蒸留槽 還流コンデンサー よりなり、キヤリヤーガス導入管は蒸留槽内の
底部近くに開口し、還流コンデンサーの下端は
蒸留槽の発生ガス導出口に連接され、上端は前
記反応部の試料導入口近くに連接されている。
(b) Distillation section A A distillation tank made of acid-resistant material and having a sample inlet, a carrier gas inlet pipe, and a generated gas outlet. It consists of a reflux condenser, and the carrier gas inlet pipe opens near the bottom of the distillation tank. The lower end of the reflux condenser is connected to the generated gas outlet of the distillation tank, and the upper end is connected near the sample inlet of the reaction section.

(c) 蒸留部B 試料導入口、キヤリヤーガス導入管及び発
生ガス導出口を有し、かつ耐アルカリ性の材
質からなる蒸留槽 還流コンデンサー よりなり、キヤリヤーガス導入管は蒸留槽内の
底部近くに開口し、還流コンデンサーの下端は
蒸留槽の発生ガス導出口に連接され、上端は前
記電量滴定部のガス導入管と連接されている。
(c) Distillation section B A distillation tank made of an alkali-resistant material and having a sample inlet, a carrier gas inlet pipe, and a generated gas outlet. It consists of a reflux condenser, and the carrier gas inlet pipe opens near the bottom of the distillation tank. The lower end of the reflux condenser is connected to the generated gas outlet of the distillation tank, and the upper end is connected to the gas inlet pipe of the coulometric titration section.

に存する。exists in

以下、本発明を図面と共に説明する。第1図は
本発明に係る装置の一例の説明図である。図中1
は測定部、2は蒸留部A、3は制御部、4は蒸留
部B、12及び19は蒸留槽、23は電量滴定
部、29及び32は加熱部、30は酸性ガス除去
部、33は反応部である。
The present invention will be explained below with reference to the drawings. FIG. 1 is an explanatory diagram of an example of a device according to the present invention. 1 in the diagram
2 is a measurement section, 2 is a distillation section A, 3 is a control section, 4 is a distillation section B, 12 and 19 are a distillation tank, 23 is a coulometric titration section, 29 and 32 are a heating section, 30 is an acidic gas removal section, 33 is a This is the reaction part.

測定部1は試料中の窒素化合部を還元してアン
モニアに転換するための反応部33、転換された
ガス中の酸性ガスを除去するための酸性ガス除去
部30及びアンモニアを定量するための電量滴定
部23より構成される。
The measurement unit 1 includes a reaction unit 33 for reducing the nitrogen compound in the sample and converting it into ammonia, an acid gas removal unit 30 for removing acid gas from the converted gas, and a coulometric unit for quantifying ammonia. It is composed of a titration section 23.

反応部33は、一端に試料導入口5及び水素ガ
ス導入管34を有し、他端にガス導出口を有する
筒状の反応管の内部に例えばニツケル、銅等の金
属粒子または軽石、アルミナ等の不活性粒子の表
面をこれらの金属で被覆した金属触媒を充填した
ものである。触媒粒子の大きさは反応管の大きさ
にもよるが、通常0.5〜15mm程度のものが用いら
れる。触媒は石英、アスベスト、アルミナ等の耐
熱性不活性物質を触媒粒子と混合して充填するの
が好ましい。反応部33は例えば電熱線を内蔵し
た電気炉等の加熱部32内に収納され、300〜600
℃程度の高温に保持される。
The reaction section 33 has a cylindrical reaction tube having a sample inlet 5 and a hydrogen gas inlet tube 34 at one end and a gas outlet at the other end, and metal particles such as nickel or copper, pumice, alumina, etc. are placed inside the reaction tube. These are inert particles whose surfaces are coated with these metals and filled with metal catalysts. Although the size of the catalyst particles depends on the size of the reaction tube, catalyst particles of about 0.5 to 15 mm are usually used. The catalyst is preferably filled with a heat-resistant inert material such as quartz, asbestos, alumina, etc. mixed with catalyst particles. The reaction part 33 is housed in a heating part 32 such as an electric furnace with a built-in heating wire, and has a heating temperature of 300 to 600
It is maintained at a high temperature of about ℃.

酸性ガス除去部30は反応部導出ガス中に含ま
れて来る硫化水素等の酸性ガスを除去するための
ものであり、通常ガス導入口及びガス導出口を有
する容器に、アルカリ金属又はアルカリ土類金属
の酸化物又は水酸化物の1種又は2種以上の混合
物を1〜7mm程度の粒状にしたアルカリ吸収剤を
充填したものである。アルカリ吸収剤の具体例と
しては、水酸化ナトリウムと酸化カルシウムとの
混合物(ソーダライム)、水酸化カルシウムと酸
化カルシウムとの混合物、水酸化ナトリウムとα
−アルミナとの混合物、水酸化ナトリウムと炭酸
カリウムとアスベストとの混合物等が挙げられ
る。
The acidic gas removal section 30 is for removing acidic gases such as hydrogen sulfide contained in the gas discharged from the reaction section. It is filled with an alkali absorbent in which one or a mixture of two or more metal oxides or hydroxides is made into particles of about 1 to 7 mm. Specific examples of alkaline absorbents include a mixture of sodium hydroxide and calcium oxide (soda lime), a mixture of calcium hydroxide and calcium oxide, and a mixture of sodium hydroxide and
- Mixtures with alumina, mixtures of sodium hydroxide, potassium carbonate and asbestos, etc.

酸性ガス除去部30は、加熱部32と同様の加
熱部29内に収納され、室温〜300℃程度の温度
に保持される。
The acid gas removal section 30 is housed in a heating section 29 similar to the heating section 32, and is maintained at a temperature of about room temperature to 300°C.

電量滴定部23は、酸性ガス除去部導出ガス中
のアンモニアを定量するためのものであり、摺合
せ蓋付の電解槽27と該槽内に設置された電解電
極24、検出電極25、ガス導入管22,26及
びガス導出管21より構成される。各電極24,
25及びガス導入管22,26は下端が電解液中
に埋没する位置に設置される。
The coulometric titration unit 23 is for quantifying ammonia in the gas discharged from the acidic gas removal unit, and includes an electrolytic tank 27 with a sliding lid, an electrolytic electrode 24 installed in the tank, a detection electrode 25, and a gas introduction unit. It is composed of pipes 22 and 26 and a gas outlet pipe 21. Each electrode 24,
25 and the gas introduction pipes 22 and 26 are installed at a position where their lower ends are submerged in the electrolyte.

蒸留部A2は、試料中の亜硝酸態窒素を一酸化
窒素又は二酸化窒素ガスとして追出するためもの
であり、試料導入口18、キヤリヤーガス導入管
17及び発生ガス導出口を有する蒸留槽19、還
流コンデンサー7及び加熱部20より構成され
る。キヤリヤーガス導入管17は蒸留槽19内の
底部近くに開口されるが、開口端に多孔板と取付
けておくのが好ましい。蒸留槽19は硫酸、リン
酸等の不揮発生強酸の30〜80wt%、好ましくは
30〜50wt%の水溶液が入れられるので、耐酸性
の材質、例えばガラス、ステンレス、セラミツク
等からなることが望ましい。還流コンデンサー7
はミストの揮散を避け得るように、ガス流路に障
害物のあるものが好ましく、通常蛇管のものが用
いられるが、直管の場合は充填物を入れて用いれ
ばよい。
The distillation section A2 is for expelling nitrite nitrogen in the sample as nitrogen monoxide or nitrogen dioxide gas, and includes a distillation tank 19 having a sample inlet 18, a carrier gas inlet pipe 17, and a generated gas outlet, and a reflux tank. It is composed of a condenser 7 and a heating section 20. The carrier gas introduction pipe 17 is opened near the bottom of the distillation tank 19, and it is preferable to attach a perforated plate to the open end. The distillation tank 19 contains 30 to 80 wt% of non-volatile strong acids such as sulfuric acid and phosphoric acid, preferably
Since a 30 to 50 wt% aqueous solution is contained, it is preferable to use an acid-resistant material such as glass, stainless steel, or ceramic. Reflux condenser 7
It is preferable to have an obstruction in the gas flow path so as to avoid volatilization of the mist, and a coiled pipe is usually used, but if it is a straight pipe, it may be used with a filler.

還流コンデンサー7の下端開口は蒸留槽19の
発生ガス導出口に連通され、上端開口は導管6に
より前記反応部33の試料導入口5近くに連接さ
れる。蒸留槽19は加熱器20により70℃〜液の
沸騰温度、好ましくは80〜90℃に加熱される。
The lower end opening of the reflux condenser 7 is connected to the generated gas outlet of the distillation tank 19, and the upper end opening is connected to the vicinity of the sample inlet 5 of the reaction section 33 through the conduit 6. The distillation tank 19 is heated by a heater 20 to 70°C to the boiling temperature of the liquid, preferably 80 to 90°C.

蒸留部B4は、試料中のアンモニア態窒素をア
ンモニアガスとして追出するためのものであり、
試料導入口11、キヤリヤーガス導入管10及び
発生ガス導出口を有する蒸留槽12、還流コンデ
ンサー9及び加熱器13より構成される。キヤリ
ヤーガス導入管10は蒸留槽12、内の底部近く
に開口されるが、開口端に多孔板を取付けておく
のが好ましい。
Distillation part B4 is for expelling ammonia nitrogen in the sample as ammonia gas,
It is composed of a distillation tank 12 having a sample inlet 11, a carrier gas inlet pipe 10, and a generated gas outlet, a reflux condenser 9, and a heater 13. The carrier gas introduction pipe 10 is opened near the bottom of the distillation tank 12, and it is preferable to attach a perforated plate to the open end.

蒸留槽12は水酸化ナトリウム、水酸化カリウ
ム等の強アルカリの20〜50wt%、好ましくは20
〜40wt%の水溶液が入れられるので、耐アルカ
リ性の材質、例えば高いニツケル合金鋼、セラミ
ツク等からなることが望ましい。還流コンデンサ
ー9は還流コンデンサー7と同様のものであり、
その下端開口は蒸留槽12の発生ガス導出口に連
通され、上端開口は導管8により前記電量滴定部
23のガス導入管22に連接される。蒸留槽12
は加熱器13により70℃〜液の沸騰温度、好まし
くは100℃〜液の沸騰温度に加熱される。
The distillation tank 12 contains 20 to 50 wt% of strong alkali such as sodium hydroxide or potassium hydroxide, preferably 20 wt%.
Since an aqueous solution of ~40 wt% is contained, it is preferable to use an alkali-resistant material such as high nickel alloy steel, ceramic, etc. The reflux condenser 9 is similar to the reflux condenser 7,
Its lower end opening is connected to the generated gas outlet of the distillation tank 12, and its upper end opening is connected to the gas introduction pipe 22 of the coulometric titration section 23 through a conduit 8. Distillation tank 12
is heated by the heater 13 to 70° C. to the boiling temperature of the liquid, preferably 100° C. to the boiling temperature of the liquid.

制御部3は、通常電量滴定制御装置14、温度
制御装置15、及びガス流量制御装置16より構
成される。電量滴定制御装置14に於ては検出電
極25より得られる水素イオン濃度に対応した電
気信号を増巾し、終点PH値からの偏差に見合つて
比例する電流出力に変換して電解電極24に電解
電流が供給される。
The control unit 3 usually includes a coulometric titration control device 14, a temperature control device 15, and a gas flow rate control device 16. The coulometric titration control device 14 amplifies the electric signal corresponding to the hydrogen ion concentration obtained from the detection electrode 25, converts it into a current output proportional to the deviation from the end point PH value, and sends the electrolytic signal to the electrolytic electrode 24. Current is supplied.

一方、この電解電流は必要があればブランク電
流を差引いた電流となし、分析値単位換算、採取
試料に対する割合を示すための試料採取量係数等
の補正演算を行なつたのち積算され、電気量に見
合つた分析の直続値で表示される。
On the other hand, if necessary, this electrolytic current is calculated as a current by subtracting the blank current, and after performing correction calculations such as analysis value unit conversion and sampling amount coefficient to indicate the ratio to the collected sample, it is integrated, and the electrical quantity is It is displayed as a continuation value of the analysis commensurate with the above.

温度制御装置15は加熱部29,32及び加熱
器13,20の温度を所定の温度に調節するため
のものである。
The temperature control device 15 is for adjusting the temperature of the heating sections 29, 32 and the heaters 13, 20 to a predetermined temperature.

ガス流量制御装置16は水素ガス導入管34か
ら導入される水素ガス及びキヤリヤーガス導入管
10,17から導入される水素ガス、窒素ガス、
アルゴンガス等のキヤリヤーガスの流量を所定の
量に調節するためのものである。これらガスの流
量は通常200〜700ml/分、好ましくは400〜500
ml/分の範囲から選ばれる。
The gas flow rate control device 16 controls hydrogen gas introduced from the hydrogen gas introduction pipe 34, hydrogen gas introduced from the carrier gas introduction pipes 10 and 17, nitrogen gas,
This is for adjusting the flow rate of carrier gas such as argon gas to a predetermined amount. The flow rate of these gases is usually 200-700ml/min, preferably 400-500ml/min.
Selected from the range of ml/min.

次にこのように構成された本発明装置を用いて
超微量の窒素化合物を含有する水の分析を行なう
場合について説明する。まず全窒素量の測定は試
料水の所定量を測定部1の試料導入口5より注入
する。注入された試料水は水素ガス導入管34よ
り導入される水素ガスに同伴され、反応部33で
全ての窒素化合物がアンモニアに還元される。生
成したアンモニアガスは水素ガスと共に導管31
より酸性ガス除去部30に導入され、共存する酸
性ガスが除去される。次いで、導管28及び26
を経て電解槽27へ導入され、電解槽27内に予
め入れられている例えば1%硫酸ナトリウム水溶
液等の電解液に吸収され電量滴定が行なわれる。
滴定結果は電量滴定制御装置14に表示される。
試料水の注入量は含有される窒素化合物の量によ
つて異なるが、通常5〜500μ程度である。1
回の測定は4〜8分程度で終了する。
Next, a case will be described in which water containing an ultratrace amount of nitrogen compounds is analyzed using the apparatus of the present invention configured as described above. First, to measure the total nitrogen amount, a predetermined amount of sample water is injected from the sample inlet 5 of the measuring section 1. The injected sample water is accompanied by hydrogen gas introduced from the hydrogen gas introduction pipe 34, and all nitrogen compounds are reduced to ammonia in the reaction section 33. The generated ammonia gas is sent to the conduit 31 along with hydrogen gas.
The acid gas is introduced into the acid gas removal section 30, and the coexisting acid gas is removed. Then conduits 28 and 26
The sample is then introduced into the electrolytic cell 27, where it is absorbed by an electrolytic solution, such as a 1% aqueous sodium sulfate solution, which has been placed in advance in the electrolytic cell 27, and coulometric titration is performed.
The titration results are displayed on the coulometric titration control device 14.
The amount of sample water injected varies depending on the amount of nitrogen compounds contained, but is usually about 5 to 500 microns. 1
Each measurement is completed in about 4 to 8 minutes.

次に亜硝酸態窒素を測定する場合は、試料水の
所定量を蒸留部A2の試料導入口18より注入す
る。注入された試料水中の亜硝酸態窒素は一酸化
窒素又は二酸化窒素となり、キヤリヤーガス導入
管17より導入されるキヤリヤーガスに同伴さ
れ、還流コンデンサー7で同伴される水分の大部
分を除去された後導管6を経て反応部33に導入
され、前述したと同様の方法でアンモニアに還元
され電量滴定される。この場合硝酸態窒素は蒸留
槽19内の液中に残留する。試料水の注入量は含
有される亜硝酸態窒素化合物の量によつて異なる
が、通常5μ〜5ml程度である。1回の測定は
6〜8分程度で終了する。
Next, when measuring nitrite nitrogen, a predetermined amount of sample water is injected from the sample inlet 18 of the distillation section A2. Nitrite nitrogen in the injected sample water becomes nitrogen monoxide or nitrogen dioxide, and is entrained in the carrier gas introduced from the carrier gas introduction pipe 17, and after most of the entrained water is removed in the reflux condenser 7, it is passed through the conduit 6. The ammonia is then introduced into the reaction section 33, where it is reduced to ammonia and subjected to coulometric titration in the same manner as described above. In this case, nitrate nitrogen remains in the liquid in the distillation tank 19. The amount of sample water to be injected varies depending on the amount of nitrite nitrogen compound contained, but is usually about 5 μ to 5 ml. One measurement is completed in about 6 to 8 minutes.

硝酸態窒素を測定する場合は、試料水を予じめ
還元処理して硝酸態窒素を亜硝酸イオンに還元し
た後前記した亜硝酸態窒素の測定方法に従つて測
定する。1回の測定は10〜15分程度で終了する。
試料水の還元処理は例えばJIS−K0104の方法に
従つて行なえばよい。例えば試料水80mlを100ml
容メスフラスコに入れ、中性緩衝溶液15mlを加え
て混合した後、亜鉛粉末0.5gを加え直ちに水を
標線まで加える。1分間振り混ぜた後未反応の亜
鉛粉末を紙で別し、液を試料とする。
When measuring nitrate nitrogen, the sample water is previously subjected to a reduction treatment to reduce nitrate nitrogen to nitrite ions, and then measured according to the method for measuring nitrite nitrogen described above. One measurement takes about 10 to 15 minutes.
The reduction treatment of the sample water may be performed, for example, according to the method of JIS-K0104. For example, 80ml of sample water becomes 100ml.
After adding 15 ml of neutral buffer solution and mixing, add 0.5 g of zinc powder and immediately add water up to the marked line. After shaking for 1 minute, remove unreacted zinc powder with paper and use the liquid as a sample.

アンモニア態窒素の測定は、試料水の所定量を
蒸留部B4の試料導入口11より注入する。注入
された試料水中のアンモニア態窒素はアンモニア
ガスとなり、キヤリヤーガス導入管10から導入
されるキヤリヤーガスに同伴され、還流コンデン
サー9で同伴される水分の大部分を除去された後
導管8及び22を経て電量滴定部23の電解槽2
7に導入され、前記した方法に従つて電量滴定さ
れる。試料水の注入量は含有される窒素化合物の
量によつて異なるが、通常5μ〜5ml程度であ
る。1回の測定は6〜8分程度で終了する。
To measure ammonia nitrogen, a predetermined amount of sample water is injected from the sample inlet 11 of the distillation section B4. The ammonia nitrogen in the injected sample water becomes ammonia gas, which is entrained in the carrier gas introduced from the carrier gas introduction pipe 10, and after most of the entrained water is removed in the reflux condenser 9, it passes through the conduits 8 and 22 and becomes a coulometric gas. Electrolytic cell 2 of titration section 23
7 and titrated coulometrically according to the method described above. The amount of sample water to be injected varies depending on the amount of nitrogen compounds contained, but is usually about 5 μ to 5 ml. One measurement is completed in about 6 to 8 minutes.

有機態窒素の含量は、前記した方法で測定され
た全窒素の測定値から亜硝酸態窒素、硝酸態窒素
及びアンモニア態窒素の測定値を計算により差引
くことによつて得られる。
The content of organic nitrogen can be obtained by calculating the measured values of nitrite nitrogen, nitrate nitrogen, and ammonia nitrogen from the measured value of total nitrogen measured by the method described above.

以上詳述したように、本発明装置は水の影響の
ない蒸留部A2及び蒸留部B4を測定部1と組合
して構成しているので、試料の採取量を変えるこ
とにより種々の形態の窒素化合物を0.002ppm程
度の超微量の範囲迄形態別に、精度よくしかも短
時間で測定することができるので、環境水、排
水、農業、食品、医薬品関係の全窒素分析及び窒
素の形態別分析用として極めて有用である。
As detailed above, the device of the present invention is configured by combining the distillation section A2 and the distillation section B4, which are not affected by water, with the measurement section 1, so that various forms of nitrogen can be obtained by changing the amount of sample collected. Compounds can be measured in each form down to ultra-trace amounts of around 0.002 ppm with high precision and in a short time, so it is suitable for total nitrogen analysis and analysis of nitrogen by form in environmental water, wastewater, agriculture, food, and pharmaceuticals. Extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の一例の説明図であ
る。 1:測定部、2:蒸留部A、3:制御部、4:
蒸留部B、12,19:蒸留槽、23:電量滴定
部、29,32:加熱部、30:酸性ガス除去
部、33:反応部。
FIG. 1 is an explanatory diagram of an example of a device according to the present invention. 1: Measuring section, 2: Distillation section A, 3: Control section, 4:
Distillation section B, 12, 19: distillation tank, 23: coulometric titration section, 29, 32: heating section, 30: acidic gas removal section, 33: reaction section.

Claims (1)

【特許請求の範囲】 1 下記の測定部、蒸留部A及び蒸留部Bを有す
ることを特徴とする超微量窒素の形態別測定装
置。 (a) 測定部 一端に試料導入口及び水素ガス導入管を有
し、他端にガス導出口を有する筒状反応管の
内部に還元触媒を充填した反応部 ガス導入口及びガス導出口を有する容器の
内部に固体アルカリ性物質を充填した酸性ガ
ス除去部 反応部及び酸性ガス除去部を加熱するため
の加熱部 ガス導入管、ガス導出口、電解電極、終点
検出電極及び電解槽を有する電量滴定部 よりなり、反応部及び酸性ガス除去部はそれぞ
れ加熱部内に収納され、反応部のガス導出口は
酸性ガス除去部のガス導入口と連接され、酸性
ガス除去部のガス導出口は電量滴定部のガス導
入管と連接され、該ガス導入管は電解槽内の底
部近くに開口されている。 (b) 蒸留部A 試料導入口、キヤリヤーガス導入管及び発
生ガス導出口を有し、かつ耐酸性の材質から
なる蒸留槽 還流コンデンサー よりなり、キヤリヤーガス導入管は蒸留槽内の
底部近くに開口し、還流コンデンサーの下端は
蒸留槽の発生ガス導出口に連接され、上端は前
記反応部の試料導入口近くに連接されている。 (c) 蒸留部B 試料導入口、キヤリヤーガス導入管及び発
生ガス導出口を有し、かつ耐アルカリ性の材
質からなる蒸留槽 還流コンデンサー よりなり、キヤリヤーガス導入管は蒸留槽内の
底部近くに開口し、還流コンデンサーの下端は
蒸留槽の発生ガス導出口に連接され、上端は前
記電量滴定部のガス導入管と連接されている。
[Scope of Claims] 1. An apparatus for measuring ultratrace amounts of nitrogen by form, characterized by having the following measurement section, distillation section A, and distillation section B. (a) Measuring section A reaction section consisting of a cylindrical reaction tube filled with a reduction catalyst, which has a sample inlet and a hydrogen gas inlet at one end and a gas outlet at the other end.It has a gas inlet and a gas outlet. An acidic gas removal section filled with a solid alkaline substance inside the container; A heating section for heating the reaction section and the acidic gas removal section; A coulometric titration section having a gas inlet pipe, a gas outlet, an electrolytic electrode, an end point detection electrode, and an electrolytic tank. The reaction section and the acidic gas removal section are each housed in the heating section, the gas outlet of the reaction section is connected to the gas inlet of the acidic gas removal section, and the gas outlet of the acidic gas removal section is connected to the coulometric titration section. It is connected to a gas introduction pipe, and the gas introduction pipe is opened near the bottom of the electrolytic cell. (b) Distillation section A A distillation tank made of acid-resistant material and having a sample inlet, a carrier gas inlet pipe, and a generated gas outlet. It consists of a reflux condenser, and the carrier gas inlet pipe opens near the bottom of the distillation tank. The lower end of the reflux condenser is connected to the generated gas outlet of the distillation tank, and the upper end is connected near the sample inlet of the reaction section. (c) Distillation section B A distillation tank made of alkali-resistant material and having a sample inlet, a carrier gas inlet pipe, and a generated gas outlet. It consists of a reflux condenser, and the carrier gas inlet pipe opens near the bottom of the distillation tank. The lower end of the reflux condenser is connected to the generated gas outlet of the distillation tank, and the upper end is connected to the gas inlet pipe of the coulometric titration section.
JP9706780A 1980-07-16 1980-07-16 Formwise measuring device for extreme trace of nitrogen Granted JPS5722558A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9706780A JPS5722558A (en) 1980-07-16 1980-07-16 Formwise measuring device for extreme trace of nitrogen
US06/270,231 US4348359A (en) 1980-07-16 1981-06-04 Device for determining various types of trace nitrogen
GB8117745A GB2080538B (en) 1980-07-16 1981-06-10 Device for determining various types of trace nitrogen
DE19813128175 DE3128175A1 (en) 1980-07-16 1981-07-16 DEVICE FOR DETERMINING VARIOUS TYPES OF TRACE NITROGEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9706780A JPS5722558A (en) 1980-07-16 1980-07-16 Formwise measuring device for extreme trace of nitrogen

Publications (2)

Publication Number Publication Date
JPS5722558A JPS5722558A (en) 1982-02-05
JPS6345063B2 true JPS6345063B2 (en) 1988-09-07

Family

ID=14182292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9706780A Granted JPS5722558A (en) 1980-07-16 1980-07-16 Formwise measuring device for extreme trace of nitrogen

Country Status (1)

Country Link
JP (1) JPS5722558A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0164235B1 (en) * 1993-01-13 1999-01-15 도바 다다스 Novel cell cortex protein

Also Published As

Publication number Publication date
JPS5722558A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
Chen et al. Kinetics of oxidation of aqueous sulfide by oxygen
EP0871877A4 (en) Method and apparatus for the measurement of dissolved carbon
JP3495994B2 (en) Method and apparatus for measuring chemical oxygen demand
Jones et al. A simple and rapid titrimetric method for the determination of carbon in iron and steel
JPS6345063B2 (en)
Flint A method for the determination of small concentrations of so3 in the presence of larger concentrations of so2
JP7264888B2 (en) Fluorine concentration measuring method, fluorine concentration measuring device, water treatment method, and water treatment device
US4348359A (en) Device for determining various types of trace nitrogen
Neelakantan et al. Kinetics of absorption of oxygen in aqueous solutions of ammonium sulfite
JPS6345062B2 (en)
JPH0241706B2 (en)
JPH07294509A (en) Analysis of mixed acid and control of pickling solution
MXPA01005464A (en) Device and method to control steel pickling processes.
Bernth et al. Interferences from nickel, lead, copper and silver and their elimination in the determination of mercury by cold vapour atomic-absorption spectrometry exemplified by fly ash assays
Lakin Chemical catalyst interference in the winkler titration determination of dissolved oxygen—a method for correction
WO2014028329A1 (en) Trihalomethane control in wet flue gas desulfurization
JPH0376421B2 (en)
JPH08219987A (en) Method for determining concentration of sn2+ ion
JPS6329218B2 (en)
Fuoss Bimetallic electrodes for titrations involving a change of hydrogen-ion concentration
RU2102736C1 (en) Method of inversion-volt-amperometric determination of heterovalent arsenic forms in aqueous solutions
RU1777065C (en) Method of volt-amperometric determination of concentration of nickel in solutions of zinc sulfate
DE2116148B2 (en) Device for the automatic continuous analysis of the carbon content of an aqueous system
JPS5925178B2 (en) Acid self-contained analyzer
Hoyle et al. Rapid dissolution of sulphide ore for the determination of copper