Nothing Special   »   [go: up one dir, main page]

JPS6345791A - Radio frequency heater - Google Patents

Radio frequency heater

Info

Publication number
JPS6345791A
JPS6345791A JP18927386A JP18927386A JPS6345791A JP S6345791 A JPS6345791 A JP S6345791A JP 18927386 A JP18927386 A JP 18927386A JP 18927386 A JP18927386 A JP 18927386A JP S6345791 A JPS6345791 A JP S6345791A
Authority
JP
Japan
Prior art keywords
cavity resonator
wall surface
entrance
door
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18927386A
Other languages
Japanese (ja)
Inventor
岩淵 康司
哲男 窪田
幸雄 田中
多和田 正春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Heating Appliances Co Ltd
Original Assignee
Hitachi Heating Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Heating Appliances Co Ltd filed Critical Hitachi Heating Appliances Co Ltd
Priority to JP18927386A priority Critical patent/JPS6345791A/en
Publication of JPS6345791A publication Critical patent/JPS6345791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波加熱装置のドア構造の改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to an improvement in the door structure of a high-frequency heating device.

従来の技術 高周波加熱装置のドア周縁に特性インピーダンスの異な
る溝を深さ方向に設け、この溝の深さ方向の特性インピ
ーダンスを不連続にすることにより、実質的深さが使用
波長の4分の”1より小さくしても、溝の入口でのイン
ピーダンスが最大となり、チョーク溝と同様に漏洩電波
を少なくすることができるという提案°が特開昭60−
25190号公報にある。この従来′例では、溝の深さ
方向に幅の異なる溝を設けたり、溝の周壁の形状を深さ
方向に変形するなどかなり形状が複雑である。また、特
性インピーダンスの不連続部における反射防止を考慮す
る必要がある。
Conventional technology Grooves with different characteristic impedances are provided in the depth direction on the periphery of the door of a high-frequency heating device, and by making the characteristic impedance of the grooves discontinuous in the depth direction, the effective depth is reduced to a quarter of the wavelength used. ``Even if the impedance is smaller than 1, the impedance at the entrance of the groove is maximized, and leakage radio waves can be reduced in the same way as a choke groove.'' was proposed in JP-A-1988-
It is in Publication No. 25190. In this conventional example, the shape is quite complicated, as grooves with different widths are provided in the depth direction of the groove, and the shape of the peripheral wall of the groove is deformed in the depth direction. Furthermore, it is necessary to consider reflection prevention at discontinuous portions of characteristic impedance.

また、第7図で示すように、ドア5の外周に電波漏洩防
止用の空胴共振器12を屈曲形成して口字状断面とし、
空胴共振器12の一周壁である張出面11の端部切口と
空胴共振器12の他の壁面(第1の壁面8)とを対向さ
せた入口25を有する構造が実開昭61−795号公報
に示されている。この従来例では空胴共振器12の周壁
が複数の導体片に分割されていることは記載されていな
い。したがって空胴共振器12内には進行方向がyz面
以外にも生じる高次モードの電波が入ってくるため、空
胴共振器12が共振状態から外れ。
In addition, as shown in FIG. 7, a cavity resonator 12 for preventing radio wave leakage is formed in a curved manner on the outer periphery of the door 5 to form a mouth-shaped cross section.
A structure having an entrance 25 in which the end cut of the protruding surface 11, which is one peripheral wall of the cavity resonator 12, and the other wall surface (first wall surface 8) of the cavity resonator 12 are opposed was developed in 1982. It is shown in Publication No. 795. This conventional example does not describe that the peripheral wall of the cavity resonator 12 is divided into a plurality of conductor pieces. Therefore, higher-order mode radio waves whose propagation direction is not in the yz plane enter the cavity resonator 12, so that the cavity resonator 12 goes out of its resonant state.

電波漏洩防止効果が小さくなる。仮りに第7図の空胴共
振器12の立上り面23と張出面11を長手方向(X方
向)に使用波長の1/2より小さい幅の導体片に分割し
たと考える。この場合、空胴共振器12を等価容′l1
kCと等価インダクタンスLとから成る並列共振素子を
ドア5の長手方向(X方向)に複数個並べたものとみな
せる。各並列共振素子において、後述の(2)式で示す
ように、空胴共振器12の入口25と空胴断面の面積中
心0の距mQpsと、入口寸法Gとの比CM7Gが大き
いほど等価容量Cが大きくなる。第7図の空胴共振器1
2ではQM/G=1.0で、後述する本発明のQM/G
≧1.5に比べて等価容量cが小さくなる。その分だけ
後述の(3)式より等価インダクタンスLを大きくして
漏洩電波の周波数に共振させるようにしなければならな
い。そのため、後述の(1)式から明らかなように、空
胴共振器12の断面ABを大きくする必要があるので、
従来例の空胴共振器12は大形となり、ドアの小形化、
低コスト化には不向きである。なお、第7図は実開昭6
1−795号公報の明細書の図面の各部首法を同一比率
で示したものであり、また、構成要素の名称および番号
は本実施例と対応する部分は同じにしである。
The effect of preventing radio wave leakage will be reduced. Assume that the rising surface 23 and the projecting surface 11 of the cavity resonator 12 shown in FIG. 7 are divided into conductor pieces having a width smaller than 1/2 of the wavelength used in the longitudinal direction (X direction). In this case, the cavity resonator 12 has an equivalent capacity 'l1
It can be considered that a plurality of parallel resonant elements consisting of kC and equivalent inductance L are arranged in the longitudinal direction (X direction) of the door 5. In each parallel resonant element, as shown in equation (2) below, the larger the ratio CM7G of the distance mQps between the inlet 25 of the cavity resonator 12 and the area center 0 of the cavity cross section to the inlet dimension G is, the greater the equivalent capacitance. C becomes larger. Cavity resonator 1 in Figure 7
2, QM/G=1.0, and QM/G of the present invention described later
The equivalent capacitance c becomes smaller than when ≧1.5. Accordingly, the equivalent inductance L must be increased by that amount according to equation (3), which will be described later, in order to resonate with the frequency of the leaked radio waves. Therefore, as is clear from equation (1) below, it is necessary to increase the cross section AB of the cavity resonator 12.
The cavity resonator 12 of the conventional example is large, and the door is made smaller.
It is not suitable for cost reduction. In addition, Figure 7 shows the
Each radical in the drawings of the specification of Publication No. 1-795 is shown in the same proportion, and the names and numbers of the constituent elements corresponding to those in this embodiment are the same.

発明が解決しようとする問題点 溝の深さ方向に、複雑な形状をした溝を設ける必要があ
り、また特性インピーダンスの、不連続部における反射
防止に手間が掛かったり、ドアの小形化に不向きな点で
ある。
Problems that the invention aims to solve: It is necessary to provide a groove with a complicated shape in the depth direction of the groove, and it takes time and effort to prevent reflection of characteristic impedance at discontinuous parts, making it unsuitable for miniaturizing doors. This is a point.

問題点を解決するための手段 ドア周囲に口字状断面を持つ漏洩電波防止用の空胴共振
器を設け、この空胴共振器の壁面の一部を多数のコ字状
導体片で形成し、又空胴共振器に漏洩電波を導き入れる
入口を設け、かっこの入口と空胴断面の面積中心の距離
AMと、入口寸法Gとの比QM/Gを1.5以上とし、
入口に複数の容量調整素子を設けたものである。
Means for solving the problem: A cavity resonator with a square-shaped cross section for preventing leakage radio waves was installed around the door, and a part of the wall of this cavity resonator was formed with a large number of U-shaped conductor pieces. , and the cavity resonator is provided with an entrance for introducing leakage radio waves, and the ratio QM/G between the distance AM between the entrance of the bracket and the center of area of the cavity cross section and the entrance dimension G is 1.5 or more,
A plurality of capacitance adjustment elements are provided at the inlet.

作用 上記のように構成することにより、コ字状導体片により
漏洩しようとする電波はTEM波として口字状断面の空
胴共振器内に導き入れられる。この空胴共振器は、近似
的に1巻きの筒状コイルとして空胴断面積に比例した等
価インダクタンスLと、空胴の入口付近の乱れ電界に基
づく等価容量Cから成る並列共振素子を形成する。空胴
の入口を小さくし容量調整素子を設けるとCが大きくな
り、その分だけLを小さくできる。すなわち空胴断面積
を小さくできる1口字状断面の各辺がそれぞれ使用波長
の4分の1よりも小さい寸法で、電波シール効果が最大
となる。
Effect: By configuring as described above, radio waves that are about to leak through the U-shaped conductor piece are introduced as TEM waves into the cavity resonator having a square-shaped cross section. This cavity resonator forms a parallel resonant element consisting of an equivalent inductance L proportional to the cross-sectional area of the cavity and an equivalent capacitance C based on the disturbed electric field near the entrance of the cavity as a cylindrical coil with approximately one turn. . If the entrance of the cavity is made smaller and a capacitance adjustment element is provided, C becomes larger, and L can be made smaller by that amount. That is, the radio wave sealing effect is maximized when each side of the single-shaped cross section, which can reduce the cross-sectional area of the cavity, is smaller than one-fourth of the wavelength used.

実施例 本発明の一実施例による高周波加熱装置の構成および作
用を図面とともに説明する。
Embodiment The structure and operation of a high-frequency heating device according to an embodiment of the present invention will be explained with reference to the drawings.

第1図および第2図において、1は加熱室で。In Figures 1 and 2, 1 is a heating chamber.

2は加熱室1の開口部を取り囲むフランジで、3は外箱
である。4は加熱室1内を覗くためにドア5の中央部に
できるだけ広範囲に設けた小穴群である。6はこの小穴
群4の周囲を取り囲む段部で。
2 is a flange surrounding the opening of the heating chamber 1, and 3 is an outer box. Reference numeral 4 designates a group of small holes provided in the center of the door 5 as wide as possible to allow viewing into the heating chamber 1. 6 is a step surrounding this small hole group 4.

この段部6は小穴群4の内面に固若した透光性のドア内
カバー15の端部が清掃の際などにはがれるのを防ぐと
共に、ドア5閉成時にフランジ2と平面接触する封口面
7の平面度を良くするものである。8は封口面7の端部
よりフランジ2に対して略直角に折り曲げた第1の壁面
である。9は第1の壁面8の端部よりフランジ2に対し
て略平行に延長した第2の壁面である。10は第2の壁
面9に溶接した多数のコ字状導体片である。このコ字状
導体片10は第2の壁面9に溶接される取り付は面19
と、第1の壁面8にほぼ平行に対向する立ち上がり面2
3と、端部切口を第1の壁面8に対向させた張出面11
との3面から成る。ドア5の周囲の長手方向に対する各
コ字状導体片10の幅D(X方向)は使用波長の2分の
1よりも小さくしている。
This stepped portion 6 prevents the end portion of the translucent door inner cover 15 fixed to the inner surface of the small hole group 4 from peeling off during cleaning, and also serves as a sealing surface that makes plane contact with the flange 2 when the door 5 is closed. 7 improves the flatness. Reference numeral 8 denotes a first wall surface bent from the end of the sealing surface 7 at a substantially right angle to the flange 2. Reference numeral 9 denotes a second wall surface extending substantially parallel to the flange 2 from the end of the first wall surface 8. 10 is a large number of U-shaped conductor pieces welded to the second wall surface 9. This U-shaped conductor piece 10 is attached to the second wall surface 9 by welding to the surface 19.
and a rising surface 2 facing substantially parallel to the first wall surface 8.
3, and an overhanging surface 11 whose end cut faces the first wall surface 8.
It consists of three sides. The width D (X direction) of each U-shaped conductor piece 10 in the longitudinal direction of the periphery of the door 5 is made smaller than one-half of the wavelength used.

第1の壁面8とコ字状導体片1oとで囲まれた口字状断
面は狭小な入口25を有する空胴共振器12を形成する
。この空胴共振器12の入口25をふさぐ不透明の誘電
体カバー13から突き出した突起片14は、コ字状導体
片10の立ち上がり面23に設けた取り付は穴18に引
っ掛かるようになっている。ドア5の前面を覆う透光性
のドア外力へ−16を保持するための誘電体製のドア外
枠24から突き出した突起片17は第2の壁面9の最外
周縁端部2oに引っ掛かるようになっている。
The opening-shaped cross section surrounded by the first wall surface 8 and the U-shaped conductor piece 1o forms a cavity resonator 12 having a narrow entrance 25. A projection piece 14 protruding from the opaque dielectric cover 13 that blocks the entrance 25 of the cavity resonator 12 is attached to a hole 18 provided on the rising surface 23 of the U-shaped conductor piece 10. . A protruding piece 17 protruding from the dielectric door frame 24 for holding the light-transmitting door external force 16 covering the front surface of the door 5 is hooked on the outermost peripheral edge 2o of the second wall surface 9. It has become.

また、第5図ので示すように、入口25をふさぐ誘電体
カバー13の裏面から空欄共振器12の内部に向かって
複数の容量調整素子26,27を突き出している。
Further, as shown in FIG. 5, a plurality of capacitance adjustment elements 26 and 27 are protruded from the back surface of the dielectric cover 13 that blocks the entrance 25 toward the inside of the blank resonator 12.

次に上記のように構成した実施例の作用効果を説明する
。加熱室1開口部を取り囲むフランジ2と封口面7との
平面接触部に向かう入射電波に対して、第4図のような
簡易等価回路によって定性的に電波シール効果を説明す
る。21はフランジ2と封口面7との平面接触部に対応
する容量で。
Next, the effects of the embodiment configured as described above will be explained. The radio wave sealing effect will be qualitatively explained using a simple equivalent circuit as shown in FIG. 4 with respect to the incident radio waves directed toward the planar contact portion between the flange 2 surrounding the opening of the heating chamber 1 and the sealing surface 7. 21 is a capacity corresponding to the planar contact portion between the flange 2 and the sealing surface 7;

一種のバイパスコンデンサとして作用する。平面接触部
は平行板線路と考えられ、この線路の容量は平行板のギ
ャップに比例するので容量21は上記平面接触部のギャ
ップが小さいほど大きくなり、電波シール効果が増す、
コ字状導体片10の幅D(第3図のX方向)を使用波長
の2分の1より小さくしているので、第1の壁面8と各
コ字状導体片10とで形成された口字状断面を持っ空胴
共振器12の内部に入り込んだ電波の進行方向は第3図
のyz面内に限定される。張出面11が無ければ第6図
のように電界が分布し、平行板線路の長さQが自由空間
波長λの約4分の1で並列共振を起こし、インピーダン
スが最大となり、電波漏洩を防止することができるが、
2450MHzの高周波加熱装置では2は30.6mm
で、これをドアに実装しようとすると厚くなり、意匠的
にもコスト的にも不利である。
It acts as a kind of bypass capacitor. The planar contact portion is considered to be a parallel plate line, and the capacitance of this line is proportional to the gap between the parallel plates, so the capacitance 21 increases as the gap of the planar contact portion becomes smaller, increasing the radio wave sealing effect.
Since the width D (in the X direction in FIG. 3) of the U-shaped conductor piece 10 is made smaller than half of the wavelength used, the width D of the U-shaped conductor piece 10 is The direction of propagation of the radio waves entering the cavity resonator 12 having a cross-section is limited to the yz plane of FIG. 3. If there is no overhanging surface 11, the electric field will be distributed as shown in Figure 6, and the length Q of the parallel plate line will cause parallel resonance at about one-fourth of the free space wavelength λ, and the impedance will be maximum, preventing radio wave leakage. You can, but
2 is 30.6mm for a 2450MHz high frequency heating device
If you try to implement this on a door, it will be thick, which is disadvantageous both in terms of design and cost.

本実施例のように、張出面11を設けて、口字状断面を
持ち狭小な入口25を有する空胴共振器12を形成した
場合は、第5図のような電界分布となる。この場合、張
出面11の端部切口付近と第1の壁面8との間に電気力
線の大部分が集まっている。空胴共振器12は第4図に
おいて等価インダクタンスLと等価容量Cとから成る並
列共振素子として表されている0等価インダクタンスL
は、近似的に空胴共振器12と同じ断面の1巻きの筒状
コイルとして働き、そのコイルの定数としての等価的な
インダクタンスを意味し、筒軸方向(X方向)の単位長
あたりの値は(1)式のようになる。また、等価容量C
は空胴共振器12の入口25付近の乱れ電界に基づくも
ので、近似的に(η式%式% AB:空胴共振器12の口字状断面の面積μ。:空胴共
振器12内の媒質の透磁率e:2.72 ΩM:空胴共振器12の入口25と空胴断面の面積中心
Oとの距離 ε。:空胴共振器12内の媒質の誘電率に:入口25付
近の形状に関係する補正項G:入口25の間隙(入口寸
法) 空胴共振器12の共振周波数f0は(3)式で表せる。
When the cavity resonator 12 is formed by providing the projecting surface 11 and having a cross-section with a narrow inlet 25 as in this embodiment, an electric field distribution as shown in FIG. 5 is obtained. In this case, most of the electric lines of force are concentrated between the vicinity of the end cut of the overhanging surface 11 and the first wall surface 8. The cavity resonator 12 is represented in FIG. 4 as a parallel resonant element consisting of an equivalent inductance L and an equivalent capacitance C.
acts as a one-turn cylindrical coil with approximately the same cross section as the cavity resonator 12, and means the equivalent inductance as a constant of the coil, and the value per unit length in the cylinder axis direction (X direction) is expressed as equation (1). Also, the equivalent capacitance C
is based on the turbulent electric field near the entrance 25 of the cavity resonator 12, and is approximated by Permeability e of the medium in the cavity resonator 12: 2.72 ΩM: Distance ε between the entrance 25 of the cavity resonator 12 and the center of area O of the cavity cross section: Permittivity of the medium inside the cavity resonator 12: Near the entrance 25 Correction term G related to the shape of: gap of the inlet 25 (inlet dimension) The resonant frequency f0 of the cavity resonator 12 can be expressed by equation (3).

(2)式より入口25の間隙Gを小さくするほど、ある
いはQM/Gを大きくするほど等価容量Cが大きくなる
ことがわかる。共振周波数f0を一定  。
From equation (2), it can be seen that the smaller the gap G of the inlet 25 or the larger QM/G, the larger the equivalent capacitance C becomes. Keep the resonance frequency f0 constant.

とすると1等価容量Cが大きくなるほど等価インダクタ
ンスLが小さくてよいことが、(3)式かられがる0等
価インダクタンスLを小さくするには(1)式より空胴
共振器12の口字状断面の面積ABを小さくすればよい
、すなわち、空胴共振器12を小形にするためには、入
口25の間隙Gを狭くして等価容量Cを大きくし、その
分だけ空胴面積ABを小さくして等価インダクタンスL
を小さくし、一定の共振周波数f、 (高周波加熱装置
の加熱周波数)で並列共振を起こさせて、入口25にお
けるインピーダンスを最大にし電波漏洩を防止すればよ
い。
Then, the larger the 1-equivalent capacitance C is, the smaller the equivalent inductance L is required to be. From equation (3), it is found that in order to reduce the zero-equivalent inductance L, the shape of the cavity resonator 12 is determined from equation (1). In other words, in order to make the cavity resonator 12 smaller, the cross-sectional area AB can be made smaller.In order to make the cavity resonator 12 smaller, the gap G of the inlet 25 can be narrowed to increase the equivalent capacitance C, and the cavity area AB can be made smaller accordingly. and the equivalent inductance L
, and cause parallel resonance at a constant resonance frequency f, (heating frequency of the high-frequency heating device) to maximize impedance at the inlet 25 and prevent radio wave leakage.

加熱周波数が2450MHz、高周波出力が500wの
高周波加熱装置において、フランジ2と封口面7との間
の間隙を2nm、張出面11と封口面7との段差を3m
、コ字状導体片の幅りを15mmとし、水275 m 
Qを加熱してドア5の周囲から5a++の距離で電波漏
洩量を測定してみた。その結果、G=5mn+のときA
B=15.4X15.91a、QM/G=2.1で、電
波漏洩量がO,1mw/d以下となり、G=8mと大き
くすると、上記と同程度に少ない電波漏洩量に抑えるた
めにはAB=20.4Xl、8.4mm、QM/G=1
.75というように口字状断面の面積も大きくなる。こ
のような実験により、入口25の間隙Gを4〜8m位と
狭小にしてQM/Gを1.5以上にすることにより1口
字状断面の空胴共振器12の寸法Aおよび寸法Bをそれ
ぞれ使用波長λの4分の1である30.6n*nよりも
かなり小さくできることが明らかとなっている。
In a high-frequency heating device with a heating frequency of 2450 MHz and a high-frequency output of 500 W, the gap between the flange 2 and the sealing surface 7 is 2 nm, and the step between the overhanging surface 11 and the sealing surface 7 is 3 m.
, the width of the U-shaped conductor piece is 15 mm, and the water is 275 m.
Q was heated and the amount of radio wave leakage was measured at a distance of 5a++ from around the door 5. As a result, when G=5mn+, A
When B=15.4X15.91a and QM/G=2.1, the amount of radio wave leakage is less than O,1mw/d, and if G=8m is increased, in order to suppress the amount of radio wave leakage to the same level as above, AB=20.4Xl, 8.4mm, QM/G=1
.. 75, the area of the mouth-shaped cross section also becomes large. Through such experiments, the dimensions A and B of the cavity resonator 12 with a single-shaped cross section can be reduced by narrowing the gap G of the inlet 25 to about 4 to 8 m and making QM/G 1.5 or more. It has become clear that each can be made considerably smaller than 30.6n*n, which is one quarter of the used wavelength λ.

また、誘電体カバー13の裏面から空胴共振器12の内
部に向かって複数の容量調整素子26゜27を突き出し
ているので、その容量調整素子26.27のお互いの位
置関係、突き出した寸法を調整することによって等価容
量Cをより大きくとることができる。そのため1等価イ
ンダクタンスLを小さく、すなわち空胴断面寸法Aおよ
びBを一層小さくでき、ドア5の小形、薄形化が図れる
In addition, since a plurality of capacitance adjustment elements 26 and 27 protrude from the back surface of the dielectric cover 13 toward the inside of the cavity resonator 12, the mutual positional relationship of the capacitance adjustment elements 26 and 27 and the dimensions of the protrusion are By adjusting, the equivalent capacitance C can be made larger. Therefore, the equivalent inductance L can be reduced, that is, the cavity cross-sectional dimensions A and B can be further reduced, and the door 5 can be made smaller and thinner.

発明の効果 以上のように本発明によると、多数のコ字状導体片と第
1の壁面とで囲まれた口字状断面の空胴共振器の入口を
コ字状導体片の張出面の端部切口と第1の壁面を対向さ
せた構成で狭小なものとし。
Effects of the Invention As described above, according to the present invention, the entrance of a cavity resonator having a square cross section surrounded by a large number of U-shaped conductor pieces and the first wall surface is connected to the projecting surface of the U-shaped conductor piece. The end cut and the first wall face each other and are narrow.

かつQM/G≧1.5のように寸法を選び、かつ誘電体
カバーから空胴共振器の内部に向かって複数の容量調整
素子を突き出すようにしたので空胴共振器の断面寸法A
およびBを使用波長λの4分の1よりも小さくでき、空
胴共振器の形状が簡単となり、ドアの小形化、薄形化が
図れ、コンパクトな高周波加熱装置を提供でき、経済的
波及効果も大なるものがある。
In addition, the dimensions were selected such that QM/G≧1.5, and a plurality of capacitance adjustment elements were made to protrude from the dielectric cover toward the inside of the cavity resonator, so that the cross-sectional dimension of the cavity resonator was A.
and B can be made smaller than one-fourth of the used wavelength λ, the shape of the cavity resonator can be simplified, the door can be made smaller and thinner, a compact high-frequency heating device can be provided, and economic ripple effects can be achieved. There is also something big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による高周波加熱装置のドア
5の金属部だけを示す要部斜視図、第2図は同ドア周囲
の電波シール部を示す要部断面図。 第3図は同電界方向を示す図、第4゛図はドア5の電波
シール部簡易等価回路図、第5図は同電波シール部の電
界分布図、第6図は同終端を短絡した平行板線路の電界
分布図、第7図は従来の電波シ、 −ル構造を示す構成
説明図、第8図は同電界方向を示す図である。
FIG. 1 is a perspective view of a main part showing only the metal part of a door 5 of a high-frequency heating device according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part showing a radio wave seal part around the door. Fig. 3 is a diagram showing the direction of the electric field, Fig. 4 is a simplified equivalent circuit diagram of the radio wave seal part of the door 5, Fig. 5 is an electric field distribution diagram of the radio wave seal part, and Fig. 6 is a parallel diagram with the same termination short-circuited. FIG. 7 is an explanatory diagram of the structure of a conventional radio cable structure, and FIG. 8 is a diagram showing the direction of the electric field.

Claims (1)

【特許請求の範囲】[Claims] 加熱室(1)開口部を開閉するドア(5)の周縁に位置
しドア(5)閉成時には加熱室(1)開口部のフランジ
(2)に平面接触する封口面(7)と、この封口面(7
)の端部よりフランジ(2)に対して略直角の第1の壁
面(8)と、この第1の壁面(8)と略直角の第2の壁
面(9)と、この第2の壁面(9)と略直角の立ち上が
り面(23)と、この立ち上がり面(23)と略直角の
張出面(11)とを備えた高周波加熱装置において、第
2の壁面(9)に端面が接した多数のコ字状導体片(1
0)を設け、第1の壁面(8)とコ字状導体片(10)
とによりロ字状断面を持つと共に入口(25)を有する
空胴共振器(12)を形成し、かつ入口(25)と空胴
断面の面積中心(O)の距離(l_M)と、入口寸法(
G)との比l_M/Gを1.5以上とし、入口(25)
をふさぐ誘電体カバー(13)の裏面から空胴共振器(
12)の内部に向かって複数の容量調整素子(26)、
(27)を突き出したことを特徴とする高周波加熱装置
A sealing surface (7) located at the periphery of the door (5) that opens and closes the opening of the heating chamber (1) and in planar contact with the flange (2) of the opening of the heating chamber (1) when the door (5) is closed; Sealing side (7
), a first wall surface (8) substantially perpendicular to the flange (2), a second wall surface (9) substantially perpendicular to the first wall surface (8), and a second wall surface (9) substantially perpendicular to the first wall surface (8); (9), a rising surface (23) substantially perpendicular to the rising surface (23), and a projecting surface (11) substantially perpendicular to the high-frequency heating device, the end surface of which is in contact with the second wall surface (9). Many U-shaped conductor pieces (1
0), and the first wall surface (8) and the U-shaped conductor piece (10)
A cavity resonator (12) having a square-shaped cross section and an entrance (25) is formed by the above, and the distance (l_M) between the entrance (25) and the center of area (O) of the cavity cross section, and the entrance dimension (
G), the ratio l_M/G is 1.5 or more, and the entrance (25)
The cavity resonator (
12) a plurality of capacitance adjustment elements (26) toward the inside;
(27) A high-frequency heating device characterized by protruding.
JP18927386A 1986-08-12 1986-08-12 Radio frequency heater Pending JPS6345791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18927386A JPS6345791A (en) 1986-08-12 1986-08-12 Radio frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18927386A JPS6345791A (en) 1986-08-12 1986-08-12 Radio frequency heater

Publications (1)

Publication Number Publication Date
JPS6345791A true JPS6345791A (en) 1988-02-26

Family

ID=16238556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18927386A Pending JPS6345791A (en) 1986-08-12 1986-08-12 Radio frequency heater

Country Status (1)

Country Link
JP (1) JPS6345791A (en)

Similar Documents

Publication Publication Date Title
US4254318A (en) Door seal arrangement for high-frequency heating apparatus
KR900008074B1 (en) Microwave sealing device
JPS6345791A (en) Radio frequency heater
JP2717401B2 (en) High frequency heating equipment
JPS6345795A (en) Radio frequency heater
JPS6345793A (en) Radio frequency heater
JPS6343287A (en) Radio frequency heater
JPS6380496A (en) Radio frequency heater
JPS6345792A (en) Radio frequency heater
JPS6345794A (en) Radio frequency heater
JP2673347B2 (en) High frequency heating equipment
JPS6372090A (en) Radio frequency heater
JPS6372095A (en) Radio frequency heater
JPS6372089A (en) Radio frequency heater
JPS62249386A (en) Radio frequency heater
JPS62249387A (en) Radio frequency heater
JPS6343289A (en) Radio frequency heater
JP3609536B2 (en) microwave
JPS62249388A (en) Radio frequency heater
JPS628919B2 (en)
JPS6343290A (en) Radio frequency heater
JPS62145689A (en) Radio frequency heater
JPH06260280A (en) Radio wave seal device
JPS6372093A (en) Radio frequency heater
JPS58201290A (en) High frequency heater